text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
⊢ ∃ s x, r ≤ s
[PROOFSTEP]
let S := {s | IsPartialOrder α s}
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
⊢ ∃ s x, r ≤ s
[PROOFSTEP]
have hS : ∀ c, c ⊆ S → IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ S, ∀ z ∈ c, z ≤ ub :=
by
rintro c hc₁ hc₂ s hs
haveI := (hc₁ hs).1
refine' ⟨sSup c, _, fun z hz => le_sSup hz⟩
refine'
{ refl := _
trans := _
antisymm := _ } <;>
simp_rw [binary_relation_sSup_iff]
· intro x
exact ⟨s, hs, refl x⟩
· rintro x y z ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩
haveI : IsPartialOrder _ _ := hc₁ h₁s₁
haveI : IsPartialOrder _ _ := hc₁ h₁s₂
cases' hc₂.total h₁s₁ h₁s₂ with h h
· exact ⟨s₂, h₁s₂, _root_.trans (h _ _ h₂s₁) h₂s₂⟩
· exact ⟨s₁, h₁s₁, _root_.trans h₂s₁ (h _ _ h₂s₂)⟩
· rintro x y ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩
haveI : IsPartialOrder _ _ := hc₁ h₁s₁
haveI : IsPartialOrder _ _ := hc₁ h₁s₂
cases' hc₂.total h₁s₁ h₁s₂ with h h
· exact antisymm (h _ _ h₂s₁) h₂s₂
· apply antisymm h₂s₁ (h _ _ h₂s₂)
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
⊢ ∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
[PROOFSTEP]
rintro c hc₁ hc₂ s hs
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
⊢ ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
[PROOFSTEP]
haveI := (hc₁ hs).1
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
[PROOFSTEP]
refine' ⟨sSup c, _, fun z hz => le_sSup hz⟩
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ sSup c ∈ S
[PROOFSTEP]
refine'
{ refl := _
trans := _
antisymm := _ }
[GOAL]
case refine'_1
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∀ (a : α), sSup c a a
[PROOFSTEP]
simp_rw [binary_relation_sSup_iff]
[GOAL]
case refine'_2
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∀ (a b c_1 : α), sSup c a b → sSup c b c_1 → sSup c a c_1
[PROOFSTEP]
simp_rw [binary_relation_sSup_iff]
[GOAL]
case refine'_3
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∀ (a b : α), sSup c a b → sSup c b a → a = b
[PROOFSTEP]
simp_rw [binary_relation_sSup_iff]
[GOAL]
case refine'_1
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∀ (a : α), ∃ r, r ∈ c ∧ r a a
[PROOFSTEP]
intro x
[GOAL]
case refine'_1
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
x : α
⊢ ∃ r, r ∈ c ∧ r x x
[PROOFSTEP]
exact ⟨s, hs, refl x⟩
[GOAL]
case refine'_2
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∀ (a b c_1 : α), (∃ r, r ∈ c ∧ r a b) → (∃ r, r ∈ c ∧ r b c_1) → ∃ r, r ∈ c ∧ r a c_1
[PROOFSTEP]
rintro x y z ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
x y z : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y z
⊢ ∃ r, r ∈ c ∧ r x z
[PROOFSTEP]
haveI : IsPartialOrder _ _ := hc₁ h₁s₁
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝ : IsPreorder α s
x y z : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y z
this : IsPartialOrder α s₁
⊢ ∃ r, r ∈ c ∧ r x z
[PROOFSTEP]
haveI : IsPartialOrder _ _ := hc₁ h₁s₂
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝¹ : IsPreorder α s
x y z : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y z
this✝ : IsPartialOrder α s₁
this : IsPartialOrder α s₂
⊢ ∃ r, r ∈ c ∧ r x z
[PROOFSTEP]
cases' hc₂.total h₁s₁ h₁s₂ with h h
[GOAL]
case refine'_2.intro.intro.intro.intro.inl
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝¹ : IsPreorder α s
x y z : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y z
this✝ : IsPartialOrder α s₁
this : IsPartialOrder α s₂
h : s₁ ≤ s₂
⊢ ∃ r, r ∈ c ∧ r x z
[PROOFSTEP]
exact ⟨s₂, h₁s₂, _root_.trans (h _ _ h₂s₁) h₂s₂⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.inr
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝¹ : IsPreorder α s
x y z : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y z
this✝ : IsPartialOrder α s₁
this : IsPartialOrder α s₂
h : s₂ ≤ s₁
⊢ ∃ r, r ∈ c ∧ r x z
[PROOFSTEP]
exact ⟨s₁, h₁s₁, _root_.trans h₂s₁ (h _ _ h₂s₂)⟩
[GOAL]
case refine'_3
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
⊢ ∀ (a b : α), (∃ r, r ∈ c ∧ r a b) → (∃ r, r ∈ c ∧ r b a) → a = b
[PROOFSTEP]
rintro x y ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩
[GOAL]
case refine'_3.intro.intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this : IsPreorder α s
x y : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y x
⊢ x = y
[PROOFSTEP]
haveI : IsPartialOrder _ _ := hc₁ h₁s₁
[GOAL]
case refine'_3.intro.intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝ : IsPreorder α s
x y : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y x
this : IsPartialOrder α s₁
⊢ x = y
[PROOFSTEP]
haveI : IsPartialOrder _ _ := hc₁ h₁s₂
[GOAL]
case refine'_3.intro.intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝¹ : IsPreorder α s
x y : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y x
this✝ : IsPartialOrder α s₁
this : IsPartialOrder α s₂
⊢ x = y
[PROOFSTEP]
cases' hc₂.total h₁s₁ h₁s₂ with h h
[GOAL]
case refine'_3.intro.intro.intro.intro.inl
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝¹ : IsPreorder α s
x y : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y x
this✝ : IsPartialOrder α s₁
this : IsPartialOrder α s₂
h : s₁ ≤ s₂
⊢ x = y
[PROOFSTEP]
exact antisymm (h _ _ h₂s₁) h₂s₂
[GOAL]
case refine'_3.intro.intro.intro.intro.inr
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
c : Set (α → α → Prop)
hc₁ : c ⊆ S
hc₂ : IsChain (fun x x_1 => x ≤ x_1) c
s : α → α → Prop
hs : s ∈ c
this✝¹ : IsPreorder α s
x y : α
s₁ : α → α → Prop
h₁s₁ : s₁ ∈ c
h₂s₁ : s₁ x y
s₂ : α → α → Prop
h₁s₂ : s₂ ∈ c
h₂s₂ : s₂ y x
this✝ : IsPartialOrder α s₁
this : IsPartialOrder α s₂
h : s₂ ≤ s₁
⊢ x = y
[PROOFSTEP]
apply antisymm h₂s₁ (h _ _ h₂s₂)
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
⊢ ∃ s x, r ≤ s
[PROOFSTEP]
obtain ⟨s, hs₁ : IsPartialOrder _ _, rs, hs₂⟩ := zorn_nonempty_partialOrder₀ S hS r ‹_›
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
⊢ ∃ s x, r ≤ s
[PROOFSTEP]
haveI : IsPartialOrder α s := hs₁
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
⊢ ∃ s x, r ≤ s
[PROOFSTEP]
refine ⟨s, { total := ?_, refl := hs₁.refl, trans := hs₁.trans, antisymm := hs₁.antisymm }, rs⟩
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
⊢ ∀ (a b : α), s a b ∨ s b a
[PROOFSTEP]
intro x y
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
⊢ s x y ∨ s y x
[PROOFSTEP]
by_contra' h
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
⊢ False
[PROOFSTEP]
let s' x' y' := s x' y' ∨ s x' x ∧ s y y'
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
⊢ False
[PROOFSTEP]
rw [← hs₂ s' _ fun _ _ ↦ Or.inl] at h
[GOAL]
case intro.intro.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
h : ¬s' x y ∧ ¬s' y x
⊢ False
[PROOFSTEP]
apply h.1 (Or.inr ⟨refl _, refl _⟩)
[GOAL]
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
⊢ s' ∈ S
[PROOFSTEP]
refine'
{ refl := fun x ↦ Or.inl (refl _)
trans := _
antisymm := _ }
[GOAL]
case refine'_1
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
⊢ ∀ (a b c : α), s' a b → s' b c → s' a c
case refine'_2
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
⊢ ∀ (a b : α), s' a b → s' b a → a = b
[PROOFSTEP]
rintro a b c (ab | ⟨ax : s a x, yb : s y b⟩) (bc | ⟨bx : s b x, yc : s y c⟩)
[GOAL]
case refine'_1.inl.inl
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b c : α
ab : s a b
bc : s b c
⊢ s' a c
[PROOFSTEP]
exact Or.inl (_root_.trans ab bc)
[GOAL]
case refine'_1.inl.inr.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b c : α
ab : s a b
bx : s b x
yc : s y c
⊢ s' a c
[PROOFSTEP]
exact Or.inr ⟨_root_.trans ab bx, yc⟩
[GOAL]
case refine'_1.inr.intro.inl
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b c : α
ax : s a x
yb : s y b
bc : s b c
⊢ s' a c
[PROOFSTEP]
exact Or.inr ⟨ax, _root_.trans yb bc⟩
[GOAL]
case refine'_1.inr.intro.inr.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b c : α
ax : s a x
yb : s y b
bx : s b x
yc : s y c
⊢ s' a c
[PROOFSTEP]
exact Or.inr ⟨ax, yc⟩
[GOAL]
case refine'_2
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
⊢ ∀ (a b : α), s' a b → s' b a → a = b
[PROOFSTEP]
rintro a b (ab | ⟨ax : s a x, yb : s y b⟩) (ba | ⟨bx : s b x, ya : s y a⟩)
[GOAL]
case refine'_2.inl.inl
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b : α
ab : s a b
ba : s b a
⊢ a = b
[PROOFSTEP]
exact antisymm ab ba
[GOAL]
case refine'_2.inl.inr.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b : α
ab : s a b
bx : s b x
ya : s y a
⊢ a = b
[PROOFSTEP]
exact (h.2 (_root_.trans ya (_root_.trans ab bx))).elim
[GOAL]
case refine'_2.inr.intro.inl
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b : α
ax : s a x
yb : s y b
ba : s b a
⊢ a = b
[PROOFSTEP]
exact (h.2 (_root_.trans yb (_root_.trans ba ax))).elim
[GOAL]
case refine'_2.inr.intro.inr.intro
α : Type u
r : α → α → Prop
inst✝ : IsPartialOrder α r
S : Set (α → α → Prop) := {s | IsPartialOrder α s}
hS :
∀ (c : Set (α → α → Prop)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c →
∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub
s : α → α → Prop
hs₁ : IsPartialOrder α s
rs : r ≤ s
hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s
this : IsPartialOrder α s
x y : α
h : ¬s x y ∧ ¬s y x
s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y'
a b : α
ax : s a x
yb : s y b
bx : s b x
ya : s y a
⊢ a = b
[PROOFSTEP]
exact (h.2 (_root_.trans yb bx)).elim
| {"mathlib_filename": "Mathlib.Order.Extension.Linear", "llama_tokens": 11070} |
[GOAL]
α β : BddDistLatCat
e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat
⊢ ((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : BddDistLatCat
e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat
x✝ : (forget BddDistLatCat).obj α
⊢ ↑((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : BddDistLatCat
e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat
⊢ ((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : BddDistLatCat
e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat
x✝ : (forget BddDistLatCat).obj β
⊢ ↑((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.BddDistLatCat", "llama_tokens": 7581} |
[GOAL]
α β : NonemptyFinLinOrdCat
e : ↑α ≃o ↑β
⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α
[PROOFSTEP]
ext x
[GOAL]
case w
α β : NonemptyFinLinOrdCat
e : ↑α ≃o ↑β
x : (forget NonemptyFinLinOrdCat).obj α
⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x
[PROOFSTEP]
exact e.symm_apply_apply x
[GOAL]
α β : NonemptyFinLinOrdCat
e : ↑α ≃o ↑β
⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext x
[GOAL]
case w
α β : NonemptyFinLinOrdCat
e : ↑α ≃o ↑β
x : (forget NonemptyFinLinOrdCat).obj β
⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x
[PROOFSTEP]
exact e.apply_symm_apply x
[GOAL]
A B : NonemptyFinLinOrdCat
x✝¹ x✝ : A ⟶ B
h :
(fun f =>
↑(let_fun this := f;
this))
x✝¹ =
(fun f =>
↑(let_fun this := f;
this))
x✝
⊢ x✝¹ = x✝
[PROOFSTEP]
ext x
[GOAL]
case w
A B : NonemptyFinLinOrdCat
x✝¹ x✝ : A ⟶ B
h :
(fun f =>
↑(let_fun this := f;
this))
x✝¹ =
(fun f =>
↑(let_fun this := f;
this))
x✝
x : (forget NonemptyFinLinOrdCat).obj A
⊢ ↑x✝¹ x = ↑x✝ x
[PROOFSTEP]
exact congr_fun h x
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
⊢ Mono f ↔ Function.Injective ↑f
[PROOFSTEP]
refine' ⟨_, ConcreteCategory.mono_of_injective f⟩
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
⊢ Mono f → Function.Injective ↑f
[PROOFSTEP]
intro
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
⊢ Function.Injective ↑f
[PROOFSTEP]
intro a₁ a₂ h
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
⊢ a₁ = a₂
[PROOFSTEP]
let X := NonemptyFinLinOrdCat.of (ULift (Fin 1))
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
⊢ a₁ = a₂
[PROOFSTEP]
let g₁ : X ⟶ A := ⟨fun _ => a₁, fun _ _ _ => by rfl⟩
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
x✝² x✝¹ : ↑X
x✝ : x✝² ≤ x✝¹
⊢ (fun x => a₁) x✝² ≤ (fun x => a₁) x✝¹
[PROOFSTEP]
rfl
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
⊢ a₁ = a₂
[PROOFSTEP]
let g₂ : X ⟶ A := ⟨fun _ => a₂, fun _ _ _ => by rfl⟩
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
x✝² x✝¹ : ↑X
x✝ : x✝² ≤ x✝¹
⊢ (fun x => a₂) x✝² ≤ (fun x => a₂) x✝¹
[PROOFSTEP]
rfl
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) }
⊢ a₁ = a₂
[PROOFSTEP]
change g₁ (ULift.up (0 : Fin 1)) = g₂ (ULift.up (0 : Fin 1))
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) }
⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 }
[PROOFSTEP]
have eq : g₁ ≫ f = g₂ ≫ f := by
ext
exact h
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) }
⊢ g₁ ≫ f = g₂ ≫ f
[PROOFSTEP]
ext
[GOAL]
case w
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) }
x✝ : (forget NonemptyFinLinOrdCat).obj X
⊢ ↑(g₁ ≫ f) x✝ = ↑(g₂ ≫ f) x✝
[PROOFSTEP]
exact h
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) }
eq : g₁ ≫ f = g₂ ≫ f
⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 }
[PROOFSTEP]
rw [cancel_mono] at eq
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Mono f
a₁ a₂ : ↑A
h : ↑f a₁ = ↑f a₂
X : NonemptyFinLinOrdCat := of (ULift (Fin 1))
g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) }
g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) }
eq : g₁ = g₂
⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 }
[PROOFSTEP]
rw [eq]
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
⊢ Epi f ↔ Function.Surjective ↑f
[PROOFSTEP]
constructor
[GOAL]
case mp
A B : NonemptyFinLinOrdCat
f : A ⟶ B
⊢ Epi f → Function.Surjective ↑f
[PROOFSTEP]
intro
[GOAL]
case mp
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
⊢ Function.Surjective ↑f
[PROOFSTEP]
dsimp only [Function.Surjective]
[GOAL]
case mp
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
⊢ ∀ (b : ↑B), ∃ a, ↑f a = b
[PROOFSTEP]
by_contra' hf'
[GOAL]
case mp
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
hf' : ∃ b, ∀ (a : ↑A), ↑f a ≠ b
⊢ False
[PROOFSTEP]
rcases hf' with ⟨m, hm⟩
[GOAL]
case mp.intro
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
⊢ False
[PROOFSTEP]
let Y := NonemptyFinLinOrdCat.of (ULift (Fin 2))
[GOAL]
case mp.intro
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
⊢ False
[PROOFSTEP]
let p₁ : B ⟶ Y :=
⟨fun b => if b < m then ULift.up 0 else ULift.up 1, fun x₁ x₂ h =>
by
simp only
split_ifs with h₁ h₂ h₂
any_goals apply Fin.zero_le
· exfalso
exact h₁ (lt_of_le_of_lt h h₂)
· rfl⟩
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
⊢ (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂
[PROOFSTEP]
simp only
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
⊢ (if x₁ < m then { down := 0 } else { down := 1 }) ≤ if x₂ < m then { down := 0 } else { down := 1 }
[PROOFSTEP]
split_ifs with h₁ h₂ h₂
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ < m
h₂ : x₂ < m
⊢ { down := 0 } ≤ { down := 0 }
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ < m
h₂ : ¬x₂ < m
⊢ { down := 0 } ≤ { down := 1 }
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : x₂ < m
⊢ { down := 1 } ≤ { down := 0 }
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : ¬x₂ < m
⊢ { down := 1 } ≤ { down := 1 }
[PROOFSTEP]
any_goals apply Fin.zero_le
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ < m
h₂ : x₂ < m
⊢ { down := 0 } ≤ { down := 0 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ < m
h₂ : ¬x₂ < m
⊢ { down := 0 } ≤ { down := 1 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : x₂ < m
⊢ { down := 1 } ≤ { down := 0 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : ¬x₂ < m
⊢ { down := 1 } ≤ { down := 1 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : x₂ < m
⊢ { down := 1 } ≤ { down := 0 }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : x₂ < m
⊢ False
[PROOFSTEP]
exact h₁ (lt_of_le_of_lt h h₂)
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ < m
h₂ : ¬x₂ < m
⊢ { down := 1 } ≤ { down := 1 }
[PROOFSTEP]
rfl
[GOAL]
case mp.intro
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
⊢ False
[PROOFSTEP]
let p₂ : B ⟶ Y :=
⟨fun b => if b ≤ m then ULift.up 0 else ULift.up 1, fun x₁ x₂ h =>
by
simp only
split_ifs with h₁ h₂ h₂
any_goals apply Fin.zero_le
· exfalso
exact h₁ (h.trans h₂)
· rfl⟩
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
⊢ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂
[PROOFSTEP]
simp only
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
⊢ (if x₁ ≤ m then { down := 0 } else { down := 1 }) ≤ if x₂ ≤ m then { down := 0 } else { down := 1 }
[PROOFSTEP]
split_ifs with h₁ h₂ h₂
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ ≤ m
h₂ : x₂ ≤ m
⊢ { down := 0 } ≤ { down := 0 }
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ ≤ m
h₂ : ¬x₂ ≤ m
⊢ { down := 0 } ≤ { down := 1 }
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : x₂ ≤ m
⊢ { down := 1 } ≤ { down := 0 }
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : ¬x₂ ≤ m
⊢ { down := 1 } ≤ { down := 1 }
[PROOFSTEP]
any_goals apply Fin.zero_le
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ ≤ m
h₂ : x₂ ≤ m
⊢ { down := 0 } ≤ { down := 0 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : x₁ ≤ m
h₂ : ¬x₂ ≤ m
⊢ { down := 0 } ≤ { down := 1 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : x₂ ≤ m
⊢ { down := 1 } ≤ { down := 0 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : ¬x₂ ≤ m
⊢ { down := 1 } ≤ { down := 1 }
[PROOFSTEP]
apply Fin.zero_le
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : x₂ ≤ m
⊢ { down := 1 } ≤ { down := 0 }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : x₂ ≤ m
⊢ False
[PROOFSTEP]
exact h₁ (h.trans h₂)
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
x₁ x₂ : ↑B
h : x₁ ≤ x₂
h₁ : ¬x₁ ≤ m
h₂ : ¬x₂ ≤ m
⊢ { down := 1 } ≤ { down := 1 }
[PROOFSTEP]
rfl
[GOAL]
case mp.intro
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
⊢ False
[PROOFSTEP]
have h : p₁ m = p₂ m := by
congr
rw [← cancel_epi f]
ext a
simp only [coe_of, comp_apply]
change ite _ _ _ = ite _ _ _
split_ifs with h₁ h₂ h₂
any_goals rfl
· exfalso
exact h₂ (le_of_lt h₁)
· exfalso
exact hm a (eq_of_le_of_not_lt h₂ h₁)
[GOAL]
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
⊢ ↑p₁ m = ↑p₂ m
[PROOFSTEP]
congr
[GOAL]
case e_a
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
⊢ p₁ = p₂
[PROOFSTEP]
rw [← cancel_epi f]
[GOAL]
case e_a
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
⊢ f ≫ p₁ = f ≫ p₂
[PROOFSTEP]
ext a
[GOAL]
case e_a.w
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
⊢ ↑(f ≫ p₁) a = ↑(f ≫ p₂) a
[PROOFSTEP]
simp only [coe_of, comp_apply]
[GOAL]
case e_a.w
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
⊢ ↑{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
(↑f a) =
↑{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
(↑f a)
[PROOFSTEP]
change ite _ _ _ = ite _ _ _
[GOAL]
case e_a.w
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
⊢ (if ↑f a < m then { down := 0 } else { down := 1 }) = if ↑f a ≤ m then { down := 0 } else { down := 1 }
[PROOFSTEP]
split_ifs with h₁ h₂ h₂
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ↑f a < m
h₂ : ↑f a ≤ m
⊢ { down := 0 } = { down := 0 }
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ↑f a < m
h₂ : ¬↑f a ≤ m
⊢ { down := 0 } = { down := 1 }
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ¬↑f a < m
h₂ : ↑f a ≤ m
⊢ { down := 1 } = { down := 0 }
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ¬↑f a < m
h₂ : ¬↑f a ≤ m
⊢ { down := 1 } = { down := 1 }
[PROOFSTEP]
any_goals rfl
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ↑f a < m
h₂ : ↑f a ≤ m
⊢ { down := 0 } = { down := 0 }
[PROOFSTEP]
rfl
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ↑f a < m
h₂ : ¬↑f a ≤ m
⊢ { down := 0 } = { down := 1 }
[PROOFSTEP]
rfl
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ¬↑f a < m
h₂ : ↑f a ≤ m
⊢ { down := 1 } = { down := 0 }
[PROOFSTEP]
rfl
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ¬↑f a < m
h₂ : ¬↑f a ≤ m
⊢ { down := 1 } = { down := 1 }
[PROOFSTEP]
rfl
[GOAL]
case neg
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ↑f a < m
h₂ : ¬↑f a ≤ m
⊢ { down := 0 } = { down := 1 }
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ↑f a < m
h₂ : ¬↑f a ≤ m
⊢ False
[PROOFSTEP]
exact h₂ (le_of_lt h₁)
[GOAL]
case pos
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ¬↑f a < m
h₂ : ↑f a ≤ m
⊢ { down := 1 } = { down := 0 }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
a : (forget NonemptyFinLinOrdCat).obj A
h₁ : ¬↑f a < m
h₂ : ↑f a ≤ m
⊢ False
[PROOFSTEP]
exact hm a (eq_of_le_of_not_lt h₂ h₁)
[GOAL]
case mp.intro
A B : NonemptyFinLinOrdCat
f : A ⟶ B
a✝ : Epi f
m : ↑B
hm : ∀ (a : ↑A), ↑f a ≠ m
Y : NonemptyFinLinOrdCat := of (ULift (Fin 2))
p₁ : B ⟶ Y :=
{ toFun := fun b => if b < m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b < m then { down := 0 } else { down := 1 }) x₂) }
p₂ : B ⟶ Y :=
{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 },
monotone' :=
(_ :
∀ (x₁ x₂ : ↑B),
x₁ ≤ x₂ →
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤
(fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) }
h : ↑p₁ m = ↑p₂ m
⊢ False
[PROOFSTEP]
simp [FunLike.coe] at h
[GOAL]
case mpr
A B : NonemptyFinLinOrdCat
f : A ⟶ B
⊢ Function.Surjective ↑f → Epi f
[PROOFSTEP]
intro h
[GOAL]
case mpr
A B : NonemptyFinLinOrdCat
f : A ⟶ B
h : Function.Surjective ↑f
⊢ Epi f
[PROOFSTEP]
exact ConcreteCategory.epi_of_surjective f h
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
⊢ IsSplitEpi f
[PROOFSTEP]
have H : ∀ y : Y, Nonempty (f ⁻¹' { y }) := by
rw [epi_iff_surjective] at hf
intro y
exact Nonempty.intro ⟨(hf y).choose, (hf y).choose_spec⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
⊢ ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
[PROOFSTEP]
rw [epi_iff_surjective] at hf
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Function.Surjective ↑f
⊢ ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
[PROOFSTEP]
intro y
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Function.Surjective ↑f
y : ↑Y
⊢ Nonempty ↑(↑f ⁻¹' {y})
[PROOFSTEP]
exact Nonempty.intro ⟨(hf y).choose, (hf y).choose_spec⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
⊢ IsSplitEpi f
[PROOFSTEP]
let φ : Y → X := fun y => (H y).some.1
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
⊢ IsSplitEpi f
[PROOFSTEP]
have hφ : ∀ y : Y, f (φ y) = y := fun y => (H y).some.2
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
⊢ IsSplitEpi f
[PROOFSTEP]
refine' IsSplitEpi.mk' ⟨⟨φ, _⟩, _⟩
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
⊢ Monotone φ
case refine'_2
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
⊢ { toFun := φ, monotone' := ?refine'_1 } ≫ f = 𝟙 Y
[PROOFSTEP]
swap
[GOAL]
case refine'_2
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
⊢ { toFun := φ, monotone' := ?refine'_1 } ≫ f = 𝟙 Y
[PROOFSTEP]
ext b
[GOAL]
case refine'_2.w
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
b : (forget NonemptyFinLinOrdCat).obj Y
⊢ ↑({ toFun := φ, monotone' := ?refine'_1 } ≫ f) b = ↑(𝟙 Y) b
[PROOFSTEP]
apply hφ
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
⊢ Monotone φ
[PROOFSTEP]
intro a b
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
⊢ a ≤ b → φ a ≤ φ b
[PROOFSTEP]
contrapose
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
⊢ ¬φ a ≤ φ b → ¬a ≤ b
[PROOFSTEP]
intro h
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
h : ¬φ a ≤ φ b
⊢ ¬a ≤ b
[PROOFSTEP]
simp only [not_le] at h ⊢
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a})))
⊢ b < a
[PROOFSTEP]
suffices b ≤ a by
apply lt_of_le_of_ne this
rintro rfl
exfalso
simp at h
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a})))
this : b ≤ a
⊢ b < a
[PROOFSTEP]
apply lt_of_le_of_ne this
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a})))
this : b ≤ a
⊢ b ≠ a
[PROOFSTEP]
rintro rfl
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b})))
this : b ≤ b
⊢ False
[PROOFSTEP]
exfalso
[GOAL]
case h
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b})))
this : b ≤ b
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a})))
⊢ b ≤ a
[PROOFSTEP]
have H : f (φ b) ≤ f (φ a) := f.monotone (le_of_lt h)
[GOAL]
case refine'_1
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
hf : Epi f
H✝ : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y})
φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y})))
hφ : ∀ (y : ↑Y), ↑f (φ y) = y
a b : ↑Y
h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a})))
H : ↑f (φ b) ≤ ↑f (φ a)
⊢ b ≤ a
[PROOFSTEP]
simpa only [hφ] using H
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
letI : NonemptyFinLinOrd (Set.image f ⊤) := ⟨by infer_instance⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
⊢ Nonempty ↑(↑f '' ⊤)
[PROOFSTEP]
infer_instance
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
let I := NonemptyFinLinOrdCat.of (Set.image f ⊤)
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
let e : X ⟶ I := ⟨fun x => ⟨f x, ⟨x, by tauto⟩⟩, fun x₁ x₂ h => f.monotone h⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
x : ↑X
⊢ x ∈ ⊤ ∧ ↑f x = ↑f x
[PROOFSTEP]
tauto
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
let m : I ⟶ Y := ⟨fun y => y.1, by tauto⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
⊢ Monotone fun y => ↑y
[PROOFSTEP]
tauto
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
haveI : Epi e := by
rw [epi_iff_surjective]
rintro ⟨_, y, h, rfl⟩
exact ⟨y, rfl⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
⊢ Epi e
[PROOFSTEP]
rw [epi_iff_surjective]
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
⊢ Function.Surjective ↑e
[PROOFSTEP]
rintro ⟨_, y, h, rfl⟩
[GOAL]
case mk.intro.intro
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
y : ↑X
h : y ∈ ⊤
⊢ ∃ a, ↑e a = { val := ↑f y, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f y) }
[PROOFSTEP]
exact ⟨y, rfl⟩
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this✝ : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
this : Epi e
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
haveI : StrongEpi e := strongEpi_of_epi e
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this✝¹ : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
this✝ : Epi e
this : StrongEpi e
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
haveI : Mono m := ConcreteCategory.mono_of_injective _ (fun x y h => Subtype.ext h)
[GOAL]
X Y : NonemptyFinLinOrdCat
f : X ⟶ Y
this✝² : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk
I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤)
e : X ⟶ I :=
{ toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) },
monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) }
m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) }
this✝¹ : Epi e
this✝ : StrongEpi e
this : Mono m
⊢ Nonempty (StrongEpiMonoFactorisation f)
[PROOFSTEP]
exact ⟨⟨I, m, e, rfl⟩⟩
| {"mathlib_filename": "Mathlib.Order.Category.NonemptyFinLinOrdCat", "llama_tokens": 23409} |
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x : (i : ι) → β i
⊢ hammingDist x x = 0
[PROOFSTEP]
rw [hammingDist, card_eq_zero, filter_eq_empty_iff]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x : (i : ι) → β i
⊢ ∀ (x_1 : ι), x_1 ∈ univ → ¬x x_1 ≠ x x_1
[PROOFSTEP]
exact fun _ _ H => H rfl
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
⊢ hammingDist x y = hammingDist y x
[PROOFSTEP]
simp_rw [hammingDist, ne_comm]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ hammingDist x z ≤ hammingDist x y + hammingDist y z
[PROOFSTEP]
classical
unfold hammingDist
refine le_trans (card_mono ?_) (card_union_le _ _)
rw [← filter_or]
exact monotone_filter_right _ fun i h ↦ (h.ne_or_ne _).imp_right Ne.symm
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ hammingDist x z ≤ hammingDist x y + hammingDist y z
[PROOFSTEP]
unfold hammingDist
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ card (filter (fun i => x i ≠ z i) univ) ≤
card (filter (fun i => x i ≠ y i) univ) + card (filter (fun i => y i ≠ z i) univ)
[PROOFSTEP]
refine le_trans (card_mono ?_) (card_union_le _ _)
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ filter (fun i => x i ≠ z i) univ ≤ filter (fun i => x i ≠ y i) univ ∪ filter (fun i => y i ≠ z i) univ
[PROOFSTEP]
rw [← filter_or]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ filter (fun i => x i ≠ z i) univ ≤ filter (fun a => x a ≠ y a ∨ y a ≠ z a) univ
[PROOFSTEP]
exact monotone_filter_right _ fun i h ↦ (h.ne_or_ne _).imp_right Ne.symm
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ hammingDist x y ≤ hammingDist z x + hammingDist z y
[PROOFSTEP]
rw [hammingDist_comm z]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ hammingDist x y ≤ hammingDist x z + hammingDist z y
[PROOFSTEP]
exact hammingDist_triangle _ _ _
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ hammingDist x y ≤ hammingDist x z + hammingDist y z
[PROOFSTEP]
rw [hammingDist_comm y]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y z : (i : ι) → β i
⊢ hammingDist x y ≤ hammingDist x z + hammingDist z y
[PROOFSTEP]
exact hammingDist_triangle _ _ _
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
⊢ swap hammingDist = hammingDist
[PROOFSTEP]
funext x y
[GOAL]
case h.h
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
⊢ swap hammingDist x y = hammingDist x y
[PROOFSTEP]
exact hammingDist_comm _ _
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
⊢ hammingDist x y = 0 → x = y
[PROOFSTEP]
simp_rw [hammingDist, card_eq_zero, filter_eq_empty_iff, Classical.not_not, funext_iff, mem_univ, forall_true_left,
imp_self]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
H : x = y
⊢ hammingDist x y = 0
[PROOFSTEP]
rw [H]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
H : x = y
⊢ hammingDist y y = 0
[PROOFSTEP]
exact hammingDist_self _
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
⊢ 0 = hammingDist x y ↔ x = y
[PROOFSTEP]
rw [eq_comm, hammingDist_eq_zero]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
⊢ 0 < hammingDist x y ↔ x ≠ y
[PROOFSTEP]
rw [← hammingDist_ne_zero, iff_not_comm, not_lt, le_zero_iff]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝ : (i : ι) → DecidableEq (γ i)
x y : (i : ι) → β i
⊢ hammingDist x y < 1 ↔ x = y
[PROOFSTEP]
rw [Nat.lt_one_iff, hammingDist_eq_zero]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝⁴ : Fintype ι
inst✝³ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝² : (i : ι) → DecidableEq (γ i)
inst✝¹ : (i : ι) → Zero (β i)
inst✝ : (i : ι) → Zero (γ i)
x : (i : ι) → β i
⊢ hammingDist 0 x = hammingNorm x
[PROOFSTEP]
rw [hammingDist_comm, hammingDist_zero_right]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝⁴ : Fintype ι
inst✝³ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝² : (i : ι) → DecidableEq (γ i)
inst✝¹ : (i : ι) → Zero (β i)
inst✝ : (i : ι) → Zero (γ i)
f : (i : ι) → γ i → β i
x : (i : ι) → γ i
hf : ∀ (i : ι), f i 0 = 0
⊢ (hammingNorm fun i => f i (x i)) ≤ hammingNorm x
[PROOFSTEP]
simpa only [← hammingDist_zero_right, hf] using hammingDist_comp_le_hammingDist f (y := fun _ ↦ 0)
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝⁴ : Fintype ι
inst✝³ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝² : (i : ι) → DecidableEq (γ i)
inst✝¹ : (i : ι) → Zero (β i)
inst✝ : (i : ι) → Zero (γ i)
f : (i : ι) → γ i → β i
x : (i : ι) → γ i
hf₁ : ∀ (i : ι), Injective (f i)
hf₂ : ∀ (i : ι), f i 0 = 0
⊢ (hammingNorm fun i => f i (x i)) = hammingNorm x
[PROOFSTEP]
simpa only [← hammingDist_zero_right, hf₂] using hammingDist_comp f hf₁ (y := fun _ ↦ 0)
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝⁶ : Fintype ι
inst✝⁵ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝⁴ : (i : ι) → DecidableEq (γ i)
inst✝³ : (i : ι) → Zero (β i)
inst✝² : (i : ι) → Zero (γ i)
inst✝¹ : Zero α
inst✝ : (i : ι) → SMulWithZero α (β i)
k : α
x : (i : ι) → β i
i : ι
⊢ (fun i c => k • c) i 0 = 0
[PROOFSTEP]
simp_rw [smul_zero]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝⁶ : Fintype ι
inst✝⁵ : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝⁴ : (i : ι) → DecidableEq (γ i)
inst✝³ : (i : ι) → Zero (β i)
inst✝² : (i : ι) → Zero (γ i)
inst✝¹ : Zero α
inst✝ : (i : ι) → SMulWithZero α (β i)
k : α
hk : ∀ (i : ι), IsSMulRegular (β i) k
x : (i : ι) → β i
i : ι
⊢ (fun i c => k • c) i 0 = 0
[PROOFSTEP]
simp_rw [smul_zero]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝³ : Fintype ι
inst✝² : (i : ι) → DecidableEq (β i)
γ : ι → Type u_4
inst✝¹ : (i : ι) → DecidableEq (γ i)
inst✝ : (i : ι) → AddGroup (β i)
x y : (i : ι) → β i
⊢ hammingDist x y = hammingNorm (x - y)
[PROOFSTEP]
simp_rw [hammingNorm, hammingDist, Pi.sub_apply, sub_ne_zero]
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ ∀ (x : Hamming β), dist x x = 0
[PROOFSTEP]
push_cast
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ ∀ (x : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming x)) = 0
[PROOFSTEP]
exact_mod_cast hammingDist_self
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ ∀ (x y : Hamming β), dist x y = dist y x
[PROOFSTEP]
push_cast
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ ∀ (x y : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) = ↑(hammingDist (↑ofHamming y) (↑ofHamming x))
[PROOFSTEP]
exact_mod_cast hammingDist_comm
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ ∀ (x y z : Hamming β), dist x z ≤ dist x y + dist y z
[PROOFSTEP]
push_cast
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ ∀ (x y z : Hamming β),
↑(hammingDist (↑ofHamming x) (↑ofHamming z)) ≤
↑(hammingDist (↑ofHamming x) (↑ofHamming y)) + ↑(hammingDist (↑ofHamming y) (↑ofHamming z))
[PROOFSTEP]
exact_mod_cast hammingDist_triangle
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
x✝¹ x✝ : Hamming β
⊢ (fun x y => ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝)
[PROOFSTEP]
exact ENNReal.coe_nnreal_eq _
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
⊢ s ∈ uniformity (Hamming β) ↔ ∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, dist a b < ε → (a, b) ∈ s
[PROOFSTEP]
push_cast
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
⊢ s ∈ uniformity (Hamming β) ↔
∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < ε → (a, b) ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
⊢ s ∈ uniformity (Hamming β) →
∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < ε → (a, b) ∈ s
[PROOFSTEP]
refine' fun hs => ⟨1, zero_lt_one, fun hab => _⟩
[GOAL]
case mp
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
hs : s ∈ uniformity (Hamming β)
a✝ b✝ : Hamming β
hab : ↑(hammingDist (↑ofHamming a✝) (↑ofHamming b✝)) < 1
⊢ (a✝, b✝) ∈ s
[PROOFSTEP]
rw_mod_cast [hammingDist_lt_one] at hab
[GOAL]
case mp
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
hs : s ∈ uniformity (Hamming β)
a✝ b✝ : Hamming β
hab : ↑ofHamming a✝ = ↑ofHamming b✝
⊢ (a✝, b✝) ∈ s
[PROOFSTEP]
rw [ofHamming_inj, ← mem_idRel] at hab
[GOAL]
case mp
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
hs : s ∈ uniformity (Hamming β)
a✝ b✝ : Hamming β
hab : (a✝, b✝) ∈ idRel
⊢ (a✝, b✝) ∈ s
[PROOFSTEP]
exact hs hab
[GOAL]
case mpr
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
⊢ (∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < ε → (a, b) ∈ s) →
s ∈ uniformity (Hamming β)
[PROOFSTEP]
rintro ⟨_, hε, hs⟩ ⟨_, _⟩ hab
[GOAL]
case mpr.intro.intro.mk
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
w✝ : ℝ
hε : w✝ > 0
hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s
fst✝ snd✝ : Hamming β
hab : (fst✝, snd✝) ∈ idRel
⊢ (fst✝, snd✝) ∈ s
[PROOFSTEP]
rw [mem_idRel] at hab
[GOAL]
case mpr.intro.intro.mk
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
w✝ : ℝ
hε : w✝ > 0
hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s
fst✝ snd✝ : Hamming β
hab : fst✝ = snd✝
⊢ (fst✝, snd✝) ∈ s
[PROOFSTEP]
rw [hab]
[GOAL]
case mpr.intro.intro.mk
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
w✝ : ℝ
hε : w✝ > 0
hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s
fst✝ snd✝ : Hamming β
hab : fst✝ = snd✝
⊢ (snd✝, snd✝) ∈ s
[PROOFSTEP]
refine' hs (lt_of_eq_of_lt _ hε)
[GOAL]
case mpr.intro.intro.mk
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
s : Set (Hamming β × Hamming β)
w✝ : ℝ
hε : w✝ > 0
hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s
fst✝ snd✝ : Hamming β
hab : fst✝ = snd✝
⊢ ↑(hammingDist (↑ofHamming snd✝) (↑ofHamming snd✝)) = 0
[PROOFSTEP]
exact_mod_cast hammingDist_self _
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
⊢ (Bornology.cobounded (Hamming β)).sets =
{s | ∃ C, ∀ (x : Hamming β), x ∈ sᶜ → ∀ (y : Hamming β), y ∈ sᶜ → dist x y ≤ C}
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
x✝ : Set (Hamming β)
⊢ x✝ ∈ (Bornology.cobounded (Hamming β)).sets ↔
x✝ ∈ {s | ∃ C, ∀ (x : Hamming β), x ∈ sᶜ → ∀ (y : Hamming β), y ∈ sᶜ → dist x y ≤ C}
[PROOFSTEP]
push_cast
[GOAL]
case h
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
x✝ : Set (Hamming β)
⊢ x✝ ∈ (Bornology.cobounded (Hamming β)).sets ↔
x✝ ∈
{s |
∃ C, ∀ (x : Hamming β), x ∈ sᶜ → ∀ (y : Hamming β), y ∈ sᶜ → ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) ≤ C}
[PROOFSTEP]
refine' iff_of_true (Filter.mem_sets.mpr Filter.mem_bot) ⟨Fintype.card ι, fun _ _ _ _ => _⟩
[GOAL]
case h
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝¹ : Fintype ι
inst✝ : (i : ι) → DecidableEq (β i)
x✝⁴ : Set (Hamming β)
x✝³ : Hamming β
x✝² : x✝³ ∈ x✝⁴ᶜ
x✝¹ : Hamming β
x✝ : x✝¹ ∈ x✝⁴ᶜ
⊢ ↑(hammingDist (↑ofHamming x✝³) (↑ofHamming x✝¹)) ≤ ↑(Fintype.card ι)
[PROOFSTEP]
exact_mod_cast hammingDist_le_card_fintype
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
inst✝ : (i : ι) → AddCommGroup (β i)
⊢ ∀ (x y : Hamming β), dist x y = ‖x - y‖
[PROOFSTEP]
push_cast
[GOAL]
α : Type u_1
ι : Type u_2
β : ι → Type u_3
inst✝² : Fintype ι
inst✝¹ : (i : ι) → DecidableEq (β i)
inst✝ : (i : ι) → AddCommGroup (β i)
⊢ ∀ (x y : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) = ↑(hammingNorm (↑ofHamming (x - y)))
[PROOFSTEP]
exact_mod_cast hammingDist_eq_hammingNorm
| {"mathlib_filename": "Mathlib.InformationTheory.Hamming", "llama_tokens": 8470} |
[GOAL]
α β : FinBddDistLatCat
e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat
⊢ ((let src :=
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : FinBddDistLatCat
e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat
x✝ : (forget FinBddDistLatCat).obj α
⊢ ↑((let src :=
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : FinBddDistLatCat
e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat
⊢ ((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : FinBddDistLatCat
e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat
x✝ : (forget FinBddDistLatCat).obj β
⊢ ↑((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBddDistLatCat.toDistLatCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.FinBddDistLatCat", "llama_tokens": 8337} |
[GOAL]
α β : PreordCat
e : ↑α ≃o ↑β
⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α
[PROOFSTEP]
ext x
[GOAL]
case w
α β : PreordCat
e : ↑α ≃o ↑β
x : (forget PreordCat).obj α
⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x
[PROOFSTEP]
exact e.symm_apply_apply x
[GOAL]
α β : PreordCat
e : ↑α ≃o ↑β
⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext x
[GOAL]
case w
α β : PreordCat
e : ↑α ≃o ↑β
x : (forget PreordCat).obj β
⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x
[PROOFSTEP]
exact e.apply_symm_apply x
[GOAL]
X✝ Y✝ : PreordCat
a₁✝ a₂✝ : X✝ ⟶ Y✝
h : preordCatToCat.map a₁✝ = preordCatToCat.map a₂✝
⊢ a₁✝ = a₂✝
[PROOFSTEP]
ext x
[GOAL]
case w
X✝ Y✝ : PreordCat
a₁✝ a₂✝ : X✝ ⟶ Y✝
h : preordCatToCat.map a₁✝ = preordCatToCat.map a₂✝
x : (forget PreordCat).obj X✝
⊢ ↑a₁✝ x = ↑a₂✝ x
[PROOFSTEP]
exact Functor.congr_obj h x
| {"mathlib_filename": "Mathlib.Order.Category.PreordCat", "llama_tokens": 521} |
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
⊢ annIdealGenerator 𝕜 a = 0 ↔ annIdeal 𝕜 a = ⊥
[PROOFSTEP]
simp only [annIdealGenerator, mul_eq_zero, IsPrincipal.eq_bot_iff_generator_eq_zero, Polynomial.C_eq_zero, inv_eq_zero,
Polynomial.leadingCoeff_eq_zero, or_self_iff]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
⊢ Ideal.span {annIdealGenerator 𝕜 a} = annIdeal 𝕜 a
[PROOFSTEP]
by_cases h : annIdealGenerator 𝕜 a = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : annIdealGenerator 𝕜 a = 0
⊢ Ideal.span {annIdealGenerator 𝕜 a} = annIdeal 𝕜 a
[PROOFSTEP]
rw [h, annIdealGenerator_eq_zero_iff.mp h, Set.singleton_zero, Ideal.span_zero]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ Ideal.span {annIdealGenerator 𝕜 a} = annIdeal 𝕜 a
[PROOFSTEP]
rw [annIdealGenerator, Ideal.span_singleton_mul_right_unit, Ideal.span_singleton_generator]
[GOAL]
case neg.h2
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ IsUnit (↑C (leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)))⁻¹)
[PROOFSTEP]
apply Polynomial.isUnit_C.mpr
[GOAL]
case neg.h2
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ IsUnit (leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)))⁻¹
[PROOFSTEP]
apply IsUnit.mk0
[GOAL]
case neg.h2.hx
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ (leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)))⁻¹ ≠ 0
[PROOFSTEP]
apply inv_eq_zero.not.mpr
[GOAL]
case neg.h2.hx
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ ¬leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)) = 0
[PROOFSTEP]
apply Polynomial.leadingCoeff_eq_zero.not.mpr
[GOAL]
case neg.h2.hx
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ ¬IsPrincipal.generator (annIdeal 𝕜 a) = 0
[PROOFSTEP]
apply (mul_ne_zero_iff.mp h).1
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
p : 𝕜[X]
a : A
⊢ p ∈ annIdeal 𝕜 a ↔ ∃ s, p = s • annIdealGenerator 𝕜 a
[PROOFSTEP]
simp_rw [@eq_comm _ p, ← mem_span_singleton, ← span_singleton_annIdealGenerator 𝕜 a, Ideal.span]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
p : 𝕜[X]
a : A
⊢ p ∈ annIdeal 𝕜 a ↔ annIdealGenerator 𝕜 a ∣ p
[PROOFSTEP]
rw [← Ideal.mem_span_singleton, span_singleton_annIdealGenerator]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
⊢ annIdealGenerator 𝕜 a = minpoly 𝕜 a
[PROOFSTEP]
by_cases h : annIdealGenerator 𝕜 a = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : annIdealGenerator 𝕜 a = 0
⊢ annIdealGenerator 𝕜 a = minpoly 𝕜 a
[PROOFSTEP]
rw [h, minpoly.eq_zero]
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : annIdealGenerator 𝕜 a = 0
⊢ ¬IsIntegral 𝕜 a
[PROOFSTEP]
rintro ⟨p, p_monic, hp : aeval a p = 0⟩
[GOAL]
case pos.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : annIdealGenerator 𝕜 a = 0
p : 𝕜[X]
p_monic : Monic p
hp : ↑(aeval a) p = 0
⊢ False
[PROOFSTEP]
refine' p_monic.ne_zero (Ideal.mem_bot.mp _)
[GOAL]
case pos.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : annIdealGenerator 𝕜 a = 0
p : 𝕜[X]
p_monic : Monic p
hp : ↑(aeval a) p = 0
⊢ p ∈ ⊥
[PROOFSTEP]
simpa only [annIdealGenerator_eq_zero_iff.mp h] using mem_annIdeal_iff_aeval_eq_zero.mpr hp
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
h : ¬annIdealGenerator 𝕜 a = 0
⊢ annIdealGenerator 𝕜 a = minpoly 𝕜 a
[PROOFSTEP]
exact
minpoly.unique _ _ (monic_annIdealGenerator _ _ h) (annIdealGenerator_aeval_eq_zero _ _) fun q q_monic hq =>
degree_annIdealGenerator_le_of_mem a q (mem_annIdeal_iff_aeval_eq_zero.mpr hq) q_monic.ne_zero
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
p_monic : Monic p
p_gen : Ideal.span {p} = annIdeal 𝕜 a
⊢ annIdealGenerator 𝕜 a = p
[PROOFSTEP]
by_cases h : p = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
p_monic : Monic p
p_gen : Ideal.span {p} = annIdeal 𝕜 a
h : p = 0
⊢ annIdealGenerator 𝕜 a = p
[PROOFSTEP]
rwa [h, annIdealGenerator_eq_zero_iff, ← p_gen, Ideal.span_singleton_eq_bot.mpr]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
p_monic : Monic p
p_gen : Ideal.span {p} = annIdeal 𝕜 a
h : ¬p = 0
⊢ annIdealGenerator 𝕜 a = p
[PROOFSTEP]
rw [← span_singleton_annIdealGenerator, Ideal.span_singleton_eq_span_singleton] at p_gen
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
p_monic : Monic p
p_gen : Associated p (annIdealGenerator 𝕜 a)
h : ¬p = 0
⊢ annIdealGenerator 𝕜 a = p
[PROOFSTEP]
rw [eq_comm]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
p_monic : Monic p
p_gen : Associated p (annIdealGenerator 𝕜 a)
h : ¬p = 0
⊢ p = annIdealGenerator 𝕜 a
[PROOFSTEP]
apply eq_of_monic_of_associated p_monic _ p_gen
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
p_monic : Monic p
p_gen : Associated p (annIdealGenerator 𝕜 a)
h : ¬p = 0
⊢ Monic (annIdealGenerator 𝕜 a)
[PROOFSTEP]
apply monic_annIdealGenerator _ _ ((Associated.ne_zero_iff p_gen).mp h)
| {"mathlib_filename": "Mathlib.LinearAlgebra.AnnihilatingPolynomial", "llama_tokens": 3037} |
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i i' : ι
⊢ ↑(stdBasis R (fun _x => R) i) 1 i' = if i = i' then 1 else 0
[PROOFSTEP]
rw [LinearMap.stdBasis_apply, Function.update_apply, Pi.zero_apply]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i i' : ι
⊢ (if i' = i then 1 else 0) = if i = i' then 1 else 0
[PROOFSTEP]
congr 1
[GOAL]
case e_c
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i i' : ι
⊢ (i' = i) = (i = i')
[PROOFSTEP]
rw [eq_iff_iff, eq_comm]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i : ι
⊢ stdBasis R φ i = pi (diag i)
[PROOFSTEP]
ext x j
[GOAL]
case h.h
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i : ι
x : φ i
j : ι
⊢ ↑(stdBasis R φ i) x j = ↑(pi (diag i)) x j
[PROOFSTEP]
convert (update_apply (R := R) (φ := φ) (ι := ι) 0 x i j _).symm
[GOAL]
case h.e'_2.h.e'_1
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i : ι
x : φ i
j : ι
⊢ x = ↑id x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
i j : ι
⊢ comp (proj i) (stdBasis R φ j) = diag j i
[PROOFSTEP]
rw [stdBasis_eq_pi_diag, proj_pi]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
⊢ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) ≤ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
[PROOFSTEP]
refine' iSup_le fun i => iSup_le fun hi => range_le_iff_comap.2 _
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
i : ι
hi : i ∈ I
⊢ comap (stdBasis R φ i) (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) = ⊤
[PROOFSTEP]
simp only [← ker_comp, eq_top_iff, SetLike.le_def, mem_ker, comap_iInf, mem_iInf]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
i : ι
hi : i ∈ I
⊢ ∀ ⦃x : φ i⦄, x ∈ ⊤ → ∀ (i_1 : ι), i_1 ∈ J → ↑(comp (proj i_1) (stdBasis R φ i)) x = 0
[PROOFSTEP]
rintro b - j hj
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
i : ι
hi : i ∈ I
b : φ i
j : ι
hj : j ∈ J
⊢ ↑(comp (proj j) (stdBasis R φ i)) b = 0
[PROOFSTEP]
rw [proj_stdBasis_ne R φ j i, zero_apply]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
i : ι
hi : i ∈ I
b : φ i
j : ι
hj : j ∈ J
⊢ j ≠ i
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
j : ι
hj : j ∈ J
hi : j ∈ I
b : φ j
⊢ False
[PROOFSTEP]
exact h.le_bot ⟨hi, hj⟩
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
⊢ ∀ ⦃x : (i : ι) → φ i⦄, x ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) → x ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
intro b hb
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
⊢ b ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
simp only [mem_iInf, mem_ker, proj_apply] at hb
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
⊢ b ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
rw [←
show (∑ i in I, stdBasis R φ i (b i)) = b by
ext i
rw [Finset.sum_apply, ← stdBasis_same R φ i (b i)]
refine Finset.sum_eq_single i (fun j _ ne => stdBasis_ne _ _ _ _ ne.symm _) ?_
intro hiI
rw [stdBasis_same]
exact hb _ ((hu trivial).resolve_left hiI)]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
⊢ ∑ i in I, ↑(stdBasis R φ i) (b i) = b
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
i : ι
⊢ Finset.sum I (fun i => ↑(stdBasis R φ i) (b i)) i = b i
[PROOFSTEP]
rw [Finset.sum_apply, ← stdBasis_same R φ i (b i)]
[GOAL]
case h
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
i : ι
⊢ ∑ c in I, ↑(stdBasis R φ c) (b c) i = ↑(stdBasis R φ i) (b i) i
[PROOFSTEP]
refine Finset.sum_eq_single i (fun j _ ne => stdBasis_ne _ _ _ _ ne.symm _) ?_
[GOAL]
case h
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
i : ι
⊢ ¬i ∈ I → ↑(stdBasis R φ i) (b i) i = 0
[PROOFSTEP]
intro hiI
[GOAL]
case h
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
i : ι
hiI : ¬i ∈ I
⊢ ↑(stdBasis R φ i) (b i) i = 0
[PROOFSTEP]
rw [stdBasis_same]
[GOAL]
case h
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
i : ι
hiI : ¬i ∈ I
⊢ b i = 0
[PROOFSTEP]
exact hb _ ((hu trivial).resolve_left hiI)
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I : Finset ι
J : Set ι
hu : Set.univ ⊆ ↑I ∪ J
b : (i : ι) → φ i
hb : ∀ (i : ι), i ∈ J → b i = 0
⊢ ∑ i in I, ↑(stdBasis R φ i) (b i) ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
exact sum_mem_biSup fun i _ => mem_range_self (stdBasis R φ i) (b i)
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
hI : Set.Finite I
⊢ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) = ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
[PROOFSTEP]
refine' le_antisymm (iSup_range_stdBasis_le_iInf_ker_proj _ _ _ _ hd) _
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
hI : Set.Finite I
⊢ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ≤ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
have : Set.univ ⊆ ↑hI.toFinset ∪ J := by rwa [hI.coe_toFinset]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
hI : Set.Finite I
⊢ Set.univ ⊆ ↑(Set.Finite.toFinset hI) ∪ J
[PROOFSTEP]
rwa [hI.coe_toFinset]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
hI : Set.Finite I
this : Set.univ ⊆ ↑(Set.Finite.toFinset hI) ∪ J
⊢ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ≤ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
refine' le_trans (iInf_ker_proj_le_iSup_range_stdBasis R φ this) (iSup_mono fun i => _)
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
hI : Set.Finite I
this : Set.univ ⊆ ↑(Set.Finite.toFinset hI) ∪ J
i : ι
⊢ ⨆ (_ : i ∈ Set.Finite.toFinset hI), range (stdBasis R φ i) ≤ ⨆ (_ : i ∈ I), range (stdBasis R φ i)
[PROOFSTEP]
rw [Set.Finite.mem_toFinset]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝⁴ : Semiring R
φ : ι → Type u_3
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
⊢ ⨆ (i : ι), range (stdBasis R φ i) = ⊤
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u_1
ι : Type u_2
inst✝⁴ : Semiring R
φ : ι → Type u_3
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
⊢ ⨆ (i : ι), range (stdBasis R φ i) = ⊤
[PROOFSTEP]
convert top_unique (iInf_emptyset.ge.trans <| iInf_ker_proj_le_iSup_range_stdBasis R φ _)
[GOAL]
case h.e'_2.h.e'_4.h
R : Type u_1
ι : Type u_2
inst✝⁴ : Semiring R
φ : ι → Type u_3
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
x✝ : ι
⊢ range (stdBasis R φ x✝) = ⨆ (_ : x✝ ∈ ?intro.convert_1), range (stdBasis R φ x✝)
[PROOFSTEP]
rename_i i
[GOAL]
case h.e'_2.h.e'_4.h
R : Type u_1
ι : Type u_2
inst✝⁴ : Semiring R
φ : ι → Type u_3
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
i : ι
⊢ range (stdBasis R φ i) = ⨆ (_ : i ∈ ?intro.convert_1), range (stdBasis R φ i)
[PROOFSTEP]
exact ((@iSup_pos _ _ _ fun _ => range <| stdBasis R φ i) <| Finset.mem_univ i).symm
[GOAL]
case intro.convert_2
R : Type u_1
ι : Type u_2
inst✝⁴ : Semiring R
φ : ι → Type u_3
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
⊢ Set.univ ⊆ ↑Finset.univ ∪ ∅
[PROOFSTEP]
rw [Finset.coe_univ, Set.union_empty]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
⊢ Disjoint (⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)) (⨆ (i : ι) (_ : i ∈ J), range (stdBasis R φ i))
[PROOFSTEP]
refine'
Disjoint.mono (iSup_range_stdBasis_le_iInf_ker_proj _ _ _ _ <| disjoint_compl_right)
(iSup_range_stdBasis_le_iInf_ker_proj _ _ _ _ <| disjoint_compl_right) _
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
⊢ Disjoint (⨅ (i : ι) (_ : i ∈ Iᶜ), ker (proj i)) (⨅ (i : ι) (_ : i ∈ Jᶜ), ker (proj i))
[PROOFSTEP]
simp only [disjoint_iff_inf_le, SetLike.le_def, mem_iInf, mem_inf, mem_ker, mem_bot, proj_apply, funext_iff]
[GOAL]
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
⊢ ∀ ⦃x : (i : ι) → φ i⦄,
((∀ (i : ι), i ∈ Iᶜ → x i = 0) ∧ ∀ (i : ι), i ∈ Jᶜ → x i = 0) → ∀ (a : ι), x a = OfNat.ofNat 0 a
[PROOFSTEP]
rintro b ⟨hI, hJ⟩ i
[GOAL]
case intro
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
b : (i : ι) → φ i
hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0
hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0
i : ι
⊢ b i = OfNat.ofNat 0 i
[PROOFSTEP]
classical
by_cases hiI : i ∈ I
· by_cases hiJ : i ∈ J
· exact (h.le_bot ⟨hiI, hiJ⟩).elim
· exact hJ i hiJ
· exact hI i hiI
[GOAL]
case intro
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
b : (i : ι) → φ i
hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0
hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0
i : ι
⊢ b i = OfNat.ofNat 0 i
[PROOFSTEP]
by_cases hiI : i ∈ I
[GOAL]
case pos
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
b : (i : ι) → φ i
hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0
hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0
i : ι
hiI : i ∈ I
⊢ b i = OfNat.ofNat 0 i
[PROOFSTEP]
by_cases hiJ : i ∈ J
[GOAL]
case pos
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
b : (i : ι) → φ i
hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0
hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0
i : ι
hiI : i ∈ I
hiJ : i ∈ J
⊢ b i = OfNat.ofNat 0 i
[PROOFSTEP]
exact (h.le_bot ⟨hiI, hiJ⟩).elim
[GOAL]
case neg
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
b : (i : ι) → φ i
hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0
hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0
i : ι
hiI : i ∈ I
hiJ : ¬i ∈ J
⊢ b i = OfNat.ofNat 0 i
[PROOFSTEP]
exact hJ i hiJ
[GOAL]
case neg
R : Type u_1
ι : Type u_2
inst✝³ : Semiring R
φ : ι → Type u_3
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
I J : Set ι
h : Disjoint I J
b : (i : ι) → φ i
hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0
hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0
i : ι
hiI : ¬i ∈ I
⊢ b i = OfNat.ofNat 0 i
[PROOFSTEP]
exact hI i hiI
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
⊢ LinearIndependent R fun ji => ↑(stdBasis R Ms ji.fst) (v ji.fst ji.snd)
[PROOFSTEP]
have hs' : ∀ j : η, LinearIndependent R fun i : ιs j => stdBasis R Ms j (v j i) :=
by
intro j
exact (hs j).map' _ (ker_stdBasis _ _ _)
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
⊢ ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
[PROOFSTEP]
intro j
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
j : η
⊢ LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
[PROOFSTEP]
exact (hs j).map' _ (ker_stdBasis _ _ _)
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
⊢ LinearIndependent R fun ji => ↑(stdBasis R Ms ji.fst) (v ji.fst ji.snd)
[PROOFSTEP]
apply linearIndependent_iUnion_finite hs'
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
⊢ ∀ (i : η) (t : Set η),
Set.Finite t →
¬i ∈ t →
Disjoint (span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
(⨆ (i : η) (_ : i ∈ t), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
intro j J _ hiJ
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)))
(⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
simp only
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)))
(⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
have h₀ : ∀ j, span R (range fun i : ιs j => stdBasis R Ms j (v j i)) ≤ LinearMap.range (stdBasis R Ms j) :=
by
intro j
rw [span_le, LinearMap.range_coe]
apply range_comp_subset_range
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
⊢ ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
[PROOFSTEP]
intro j
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j✝ : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j✝ ∈ J
j : η
⊢ span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
[PROOFSTEP]
rw [span_le, LinearMap.range_coe]
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j✝ : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j✝ ∈ J
j : η
⊢ (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ⊆ Set.range ↑(stdBasis R Ms j)
[PROOFSTEP]
apply range_comp_subset_range
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)))
(⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
have h₁ :
span R (range fun i : ιs j => stdBasis R Ms j (v j i)) ≤ ⨆ i ∈ ({ j } : Set _), LinearMap.range (stdBasis R Ms i) :=
by
rw [@iSup_singleton _ _ _ fun i => LinearMap.range (stdBasis R (Ms) i)]
apply h₀
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
⊢ span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i)
[PROOFSTEP]
rw [@iSup_singleton _ _ _ fun i => LinearMap.range (stdBasis R (Ms) i)]
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
⊢ span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
[PROOFSTEP]
apply h₀
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i)
⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)))
(⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
have h₂ :
⨆ j ∈ J, span R (range fun i : ιs j => stdBasis R Ms j (v j i)) ≤
⨆ j ∈ J, LinearMap.range (stdBasis R (fun j : η => Ms j) j) :=
iSup₂_mono fun i _ => h₀ i
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i)
h₂ :
⨆ (j : η) (_ : j ∈ J), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤
⨆ (j : η) (_ : j ∈ J), LinearMap.range (stdBasis R (fun j => Ms j) j)
⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)))
(⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
have h₃ : Disjoint (fun i : η => i ∈ ({ j } : Set _)) J := by convert Set.disjoint_singleton_left.2 hiJ using 0
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i)
h₂ :
⨆ (j : η) (_ : j ∈ J), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤
⨆ (j : η) (_ : j ∈ J), LinearMap.range (stdBasis R (fun j => Ms j) j)
⊢ Disjoint (fun i => i ∈ {j}) J
[PROOFSTEP]
convert Set.disjoint_singleton_left.2 hiJ using 0
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Ring R
inst✝² : (i : η) → AddCommGroup (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : DecidableEq η
v : (j : η) → ιs j → Ms j
hs : ∀ (i : η), LinearIndependent R (v i)
hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i)
j : η
J : Set η
a✝ : Set.Finite J
hiJ : ¬j ∈ J
h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j)
h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i)
h₂ :
⨆ (j : η) (_ : j ∈ J), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤
⨆ (j : η) (_ : j ∈ J), LinearMap.range (stdBasis R (fun j => Ms j) j)
h₃ : Disjoint (fun i => i ∈ {j}) J
⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)))
(⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1)))
[PROOFSTEP]
exact (disjoint_stdBasis_stdBasis _ _ _ _ h₃).mono h₁ h₂
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
⊢ ↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i)) = Finsupp.single { fst := j, snd := i } 1
[PROOFSTEP]
ext ⟨j', i'⟩
[GOAL]
case h.mk
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
j' : η
i' : ιs j'
⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j', snd := i' } =
↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' }
[PROOFSTEP]
by_cases hj : j = j'
[GOAL]
case pos
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
j' : η
i' : ιs j'
hj : j = j'
⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j', snd := i' } =
↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' }
[PROOFSTEP]
subst hj
[GOAL]
case pos
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i i' : ιs j
⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j, snd := i' } =
↑(Finsupp.single { fst := j, snd := i } 1) { fst := j, snd := i' }
[PROOFSTEP]
simp only [Pi.basis, LinearEquiv.trans_apply, Basis.repr_self, stdBasis_same, LinearEquiv.piCongrRight,
Finsupp.sigmaFinsuppLEquivPiFinsupp_symm_apply, Basis.repr_symm_apply, LinearEquiv.coe_mk, ne_eq, Sigma.mk.inj_iff,
heq_eq_eq, true_and]
[GOAL]
case pos
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i i' : ιs j
⊢ ↑(Finsupp.single i 1) i' = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j, snd := i' }
[PROOFSTEP]
symm
-- Porting note: `Sigma.mk.inj` not found in the following, replaced by `Sigma.mk.inj_iff.mp`
[GOAL]
case pos
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i i' : ιs j
⊢ ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j, snd := i' } = ↑(Finsupp.single i 1) i'
[PROOFSTEP]
exact
Finsupp.single_apply_left (fun i i' (h : (⟨j, i⟩ : Σ j, ιs j) = ⟨j, i'⟩) => eq_of_heq (Sigma.mk.inj_iff.mp h).2) _ _ _
[GOAL]
case neg
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
j' : η
i' : ιs j'
hj : ¬j = j'
⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j', snd := i' } =
↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' }
[PROOFSTEP]
simp only [Pi.basis, LinearEquiv.trans_apply, Finsupp.sigmaFinsuppLEquivPiFinsupp_symm_apply, LinearEquiv.piCongrRight]
[GOAL]
case neg
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
j' : η
i' : ιs j'
hj : ¬j = j'
⊢ ↑(↑{
toLinearMap :=
{
toAddHom :=
{ toFun := fun f i => ↑(s i).repr (f i),
map_add' :=
(_ :
∀ (x y : (j : η) → (fun j => Ms j) j),
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv (x + y) =
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv x +
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv y) },
map_smul' :=
(_ :
∀ (c : R) (f : (i : η) → (fun j => Ms j) i),
AddHom.toFun
{ toFun := fun f i => ↑(s i).repr (f i),
map_add' :=
(_ :
∀ (x y : (j : η) → (fun j => Ms j) j),
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv (x + y) =
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv x +
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv y) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f i => ↑(s i).repr (f i),
map_add' :=
(_ :
∀ (x y : (j : η) → (fun j => Ms j) j),
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv
(x + y) =
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv x +
Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv
y) }
f) },
invFun := fun f i => ↑(LinearEquiv.symm (s i).repr) (f i),
left_inv :=
(_ :
LeftInverse (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.invFun
(AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.toFun),
right_inv :=
(_ :
Function.RightInverse (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.invFun
(AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.toFun) }
(↑(stdBasis R Ms j) (↑(s j) i)) j')
i' =
↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' }
[PROOFSTEP]
dsimp
[GOAL]
case neg
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
j' : η
i' : ιs j'
hj : ¬j = j'
⊢ ↑(↑(s j').repr (↑(stdBasis R Ms j) (↑(s j) i) j')) i' =
↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' }
[PROOFSTEP]
rw [stdBasis_ne _ _ _ _ (Ne.symm hj), LinearEquiv.map_zero, Finsupp.zero_apply, Finsupp.single_eq_of_ne]
[GOAL]
case neg
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
j' : η
i' : ιs j'
hj : ¬j = j'
⊢ { fst := j, snd := i } ≠ { fst := j', snd := i' }
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case neg.refl
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
j : η
i : ιs j
hj : ¬j = j
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
s : (j : η) → Basis (ιs j) R (Ms j)
ji : (j : η) × ιs j
⊢ ↑(Pi.basis s).repr (↑(stdBasis R Ms ji.fst) (↑(s ji.fst) ji.snd)) = Finsupp.single ji 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝⁴ : Semiring R
inst✝³ : (i : η) → AddCommMonoid (Ms i)
inst✝² : (i : η) → Module R (Ms i)
inst✝¹ : Fintype η
inst✝ : DecidableEq η
i : η
⊢ ↑(basisFun R η) i = ↑(stdBasis R (fun x => R) i) 1
[PROOFSTEP]
simp only [basisFun, Basis.coe_ofEquivFun, LinearEquiv.refl_symm, LinearEquiv.refl_apply, stdBasis_apply]
[GOAL]
R : Type u_1
η : Type u_2
ιs : η → Type u_3
Ms : η → Type u_4
inst✝³ : Semiring R
inst✝² : (i : η) → AddCommMonoid (Ms i)
inst✝¹ : (i : η) → Module R (Ms i)
inst✝ : Fintype η
x : η → R
i : η
⊢ ↑(↑(basisFun R η).repr x) i = x i
[PROOFSTEP]
simp [basisFun]
[GOAL]
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
⊢ ↑(stdBasis R n m) (i, j) = stdBasisMatrix i j 1
[PROOFSTEP]
ext a b
[GOAL]
case a.h
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
by_cases hi : i = a
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
by_cases hj : j = b
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
by_cases hj : j = b
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
hj : j = b
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
simp [stdBasis, hi, hj, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, StdBasisMatrix.apply_same]
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
hj : j = b
⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := a, snd := b } a b = 1
[PROOFSTEP]
erw [Pi.basis_apply]
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
hj : j = b
⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := a, snd := b }.fst) (↑(Pi.basisFun R m) { fst := a, snd := b }.snd) a
b =
1
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
hj : ¬j = b
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
simp only [stdBasis, hi, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, hj, and_false, not_false_iff,
StdBasisMatrix.apply_of_ne]
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
hj : ¬j = b
⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := a, snd := j } a b = 0
[PROOFSTEP]
erw [Pi.basis_apply]
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : i = a
hj : ¬j = b
⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := a, snd := j }.fst) (↑(Pi.basisFun R m) { fst := a, snd := j }.snd) a
b =
0
[PROOFSTEP]
simp [hj]
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
hj : j = b
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
simp only [stdBasis, hj, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, hi, and_true, not_false_iff,
StdBasisMatrix.apply_of_ne]
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
hj : j = b
⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := i, snd := b } a b = 0
[PROOFSTEP]
erw [Pi.basis_apply]
[GOAL]
case pos
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
hj : j = b
⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := i, snd := b }.fst) (↑(Pi.basisFun R m) { fst := i, snd := b }.snd) a
b =
0
[PROOFSTEP]
simp [hi, hj, Ne.symm hi, LinearMap.stdBasis_ne]
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
hj : ¬j = b
⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b
[PROOFSTEP]
simp only [stdBasis, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, hi, hj, and_self, not_false_iff,
StdBasisMatrix.apply_of_ne]
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
hj : ¬j = b
⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := i, snd := j } a b = 0
[PROOFSTEP]
erw [Pi.basis_apply]
[GOAL]
case neg
R : Type u_1
m : Type u_2
n : Type u_3
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Semiring R
i : n
j : m
inst✝¹ : DecidableEq n
inst✝ : DecidableEq m
a : n
b : m
hi : ¬i = a
hj : ¬j = b
⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := i, snd := j }.fst) (↑(Pi.basisFun R m) { fst := i, snd := j }.snd) a
b =
0
[PROOFSTEP]
simp [hi, hj, Ne.symm hj, Ne.symm hi, LinearMap.stdBasis_ne]
| {"mathlib_filename": "Mathlib.LinearAlgebra.StdBasis", "llama_tokens": 21739} |
[GOAL]
R : Type u
inst✝ : Semiring R
⊢ StrongRankCondition R ↔ ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f
[PROOFSTEP]
refine' ⟨fun h n => fun f hf => _, fun h => ⟨@fun n m f hf => _⟩⟩
[GOAL]
case refine'_1
R : Type u
inst✝ : Semiring R
h : StrongRankCondition R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
⊢ False
[PROOFSTEP]
letI : StrongRankCondition R := h
[GOAL]
case refine'_1
R : Type u
inst✝ : Semiring R
h : StrongRankCondition R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
this : StrongRankCondition R := h
⊢ False
[PROOFSTEP]
exact Nat.not_succ_le_self n (le_of_fin_injective R f hf)
[GOAL]
case refine'_2
R : Type u
inst✝ : Semiring R
h : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f
n m : ℕ
f : (Fin n → R) →ₗ[R] Fin m → R
hf : Injective ↑f
⊢ n ≤ m
[PROOFSTEP]
by_contra H
[GOAL]
case refine'_2
R : Type u
inst✝ : Semiring R
h : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f
n m : ℕ
f : (Fin n → R) →ₗ[R] Fin m → R
hf : Injective ↑f
H : ¬n ≤ m
⊢ False
[PROOFSTEP]
exact
h m (f.comp (Function.ExtendByZero.linearMap R (Fin.castLE (not_le.1 H))))
(hf.comp (Function.extend_injective (Fin.strictMono_castLE _).injective _))
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : StrongRankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α → R) →ₗ[R] β → R
i : Injective ↑f
⊢ Fintype.card α ≤ Fintype.card β
[PROOFSTEP]
let P := LinearEquiv.funCongrLeft R R (Fintype.equivFin α)
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : StrongRankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α → R) →ₗ[R] β → R
i : Injective ↑f
P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α)
⊢ Fintype.card α ≤ Fintype.card β
[PROOFSTEP]
let Q := LinearEquiv.funCongrLeft R R (Fintype.equivFin β)
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : StrongRankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α → R) →ₗ[R] β → R
i : Injective ↑f
P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α)
Q : (Fin (Fintype.card β) → R) ≃ₗ[R] β → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin β)
⊢ Fintype.card α ≤ Fintype.card β
[PROOFSTEP]
exact
le_of_fin_injective R ((Q.symm.toLinearMap.comp f).comp P.toLinearMap)
(((LinearEquiv.symm Q).injective.comp i).comp (LinearEquiv.injective P))
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : StrongRankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α →₀ R) →ₗ[R] β →₀ R
i : Injective ↑f
⊢ Fintype.card α ≤ Fintype.card β
[PROOFSTEP]
let P := Finsupp.linearEquivFunOnFinite R R β
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : StrongRankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α →₀ R) →ₗ[R] β →₀ R
i : Injective ↑f
P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β
⊢ Fintype.card α ≤ Fintype.card β
[PROOFSTEP]
let Q := (Finsupp.linearEquivFunOnFinite R R α).symm
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : StrongRankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α →₀ R) →ₗ[R] β →₀ R
i : Injective ↑f
P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β
Q : (α → R) ≃ₗ[R] α →₀ R := LinearEquiv.symm (Finsupp.linearEquivFunOnFinite R R α)
⊢ Fintype.card α ≤ Fintype.card β
[PROOFSTEP]
exact card_le_of_injective R ((P.toLinearMap.comp f).comp Q.toLinearMap) ((P.injective.comp i).comp Q.injective)
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : RankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α → R) →ₗ[R] β → R
i : Surjective ↑f
⊢ Fintype.card β ≤ Fintype.card α
[PROOFSTEP]
let P := LinearEquiv.funCongrLeft R R (Fintype.equivFin α)
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : RankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α → R) →ₗ[R] β → R
i : Surjective ↑f
P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α)
⊢ Fintype.card β ≤ Fintype.card α
[PROOFSTEP]
let Q := LinearEquiv.funCongrLeft R R (Fintype.equivFin β)
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : RankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α → R) →ₗ[R] β → R
i : Surjective ↑f
P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α)
Q : (Fin (Fintype.card β) → R) ≃ₗ[R] β → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin β)
⊢ Fintype.card β ≤ Fintype.card α
[PROOFSTEP]
exact
le_of_fin_surjective R ((Q.symm.toLinearMap.comp f).comp P.toLinearMap)
(((LinearEquiv.symm Q).surjective.comp i).comp (LinearEquiv.surjective P))
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : RankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α →₀ R) →ₗ[R] β →₀ R
i : Surjective ↑f
⊢ Fintype.card β ≤ Fintype.card α
[PROOFSTEP]
let P := Finsupp.linearEquivFunOnFinite R R β
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : RankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α →₀ R) →ₗ[R] β →₀ R
i : Surjective ↑f
P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β
⊢ Fintype.card β ≤ Fintype.card α
[PROOFSTEP]
let Q := (Finsupp.linearEquivFunOnFinite R R α).symm
[GOAL]
R : Type u
inst✝³ : Semiring R
inst✝² : RankCondition R
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
f : (α →₀ R) →ₗ[R] β →₀ R
i : Surjective ↑f
P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β
Q : (α → R) ≃ₗ[R] α →₀ R := LinearEquiv.symm (Finsupp.linearEquivFunOnFinite R R α)
⊢ Fintype.card β ≤ Fintype.card α
[PROOFSTEP]
exact card_le_of_surjective R ((P.toLinearMap.comp f).comp Q.toLinearMap) ((P.surjective.comp i).comp Q.surjective)
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
⊢ Nontrivial R
[PROOFSTEP]
by_contra h
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
⊢ False
[PROOFSTEP]
refine' zero_ne_one (eq_of_fin_equiv R _)
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
⊢ (Fin 0 → R) ≃ₗ[R] Fin 1 → R
[PROOFSTEP]
haveI := not_nontrivial_iff_subsingleton.1 h
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
this : Subsingleton R
⊢ (Fin 0 → R) ≃ₗ[R] Fin 1 → R
[PROOFSTEP]
haveI : Subsingleton (Fin 1 → R) := Subsingleton.intro <| fun a b => funext fun x => Subsingleton.elim _ _
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
this✝ : Subsingleton R
this : Subsingleton (Fin 1 → R)
⊢ (Fin 0 → R) ≃ₗ[R] Fin 1 → R
[PROOFSTEP]
exact
{ toFun := 0
invFun := 0
map_add' := by aesop
map_smul' := by aesop
left_inv := fun _ => by simp
right_inv := fun _ => by simp }
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
this✝ : Subsingleton R
this : Subsingleton (Fin 1 → R)
⊢ ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = OfNat.ofNat 0 x + OfNat.ofNat 0 y
[PROOFSTEP]
aesop
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
this✝ : Subsingleton R
this : Subsingleton (Fin 1 → R)
⊢ ∀ (r : R) (x : Fin 0 → R),
AddHom.toFun { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) } (r • x) =
↑(RingHom.id R) r •
AddHom.toFun { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) } x
[PROOFSTEP]
aesop
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
this✝ : Subsingleton R
this : Subsingleton (Fin 1 → R)
x✝ : Fin 0 → R
⊢ OfNat.ofNat 0
(AddHom.toFun
{ toAddHom := { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) },
map_smul' := (_ : ∀ (r : R) (x : Fin 0 → R), OfNat.ofNat 0 (r • x) = r • 0) }.toAddHom
x✝) =
x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝¹ : Semiring R
inst✝ : InvariantBasisNumber R
h : ¬Nontrivial R
this✝ : Subsingleton R
this : Subsingleton (Fin 1 → R)
x✝ : Fin 1 → R
⊢ AddHom.toFun
{ toAddHom := { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) },
map_smul' := (_ : ∀ (r : R) (x : Fin 0 → R), OfNat.ofNat 0 (r • x) = r • 0) }.toAddHom
(OfNat.ofNat 0 x✝) =
x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
⊢ StrongRankCondition R
[PROOFSTEP]
constructor
[GOAL]
case le_of_fin_injective
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
⊢ ∀ {n m : ℕ} (f : (Fin n → R) →ₗ[R] Fin m → R), Injective ↑f → n ≤ m
[PROOFSTEP]
intro m n f i
[GOAL]
case le_of_fin_injective
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
m n : ℕ
f : (Fin m → R) →ₗ[R] Fin n → R
i : Injective ↑f
⊢ m ≤ n
[PROOFSTEP]
by_contra h
[GOAL]
case le_of_fin_injective
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
m n : ℕ
f : (Fin m → R) →ₗ[R] Fin n → R
i : Injective ↑f
h : ¬m ≤ n
⊢ False
[PROOFSTEP]
rw [not_le, ← Nat.add_one_le_iff, le_iff_exists_add] at h
[GOAL]
case le_of_fin_injective
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
m n : ℕ
f : (Fin m → R) →ₗ[R] Fin n → R
i : Injective ↑f
h : ∃ c, m = n + 1 + c
⊢ False
[PROOFSTEP]
obtain ⟨m, rfl⟩ := h
[GOAL]
case le_of_fin_injective.intro
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
n m : ℕ
f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R
i : Injective ↑f
⊢ False
[PROOFSTEP]
let e : Fin (n + 1 + m) ≃ Sum (Fin n) (Fin (1 + m)) := (finCongr (add_assoc _ _ _)).trans finSumFinEquiv.symm
[GOAL]
case le_of_fin_injective.intro
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
n m : ℕ
f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R
i : Injective ↑f
e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm
⊢ False
[PROOFSTEP]
let f' := f.comp ((LinearEquiv.sumArrowLequivProdArrow _ _ R R).symm.trans (LinearEquiv.funCongrLeft R R e)).toLinearMap
[GOAL]
case le_of_fin_injective.intro
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
n m : ℕ
f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R
i : Injective ↑f
e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm
f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R :=
LinearMap.comp f
↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R))
(LinearEquiv.funCongrLeft R R e))
⊢ False
[PROOFSTEP]
have i' : Injective f' := i.comp (LinearEquiv.injective _)
[GOAL]
case le_of_fin_injective.intro
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
n m : ℕ
f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R
i : Injective ↑f
e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm
f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R :=
LinearMap.comp f
↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R))
(LinearEquiv.funCongrLeft R R e))
i' : Injective ↑f'
⊢ False
[PROOFSTEP]
apply @zero_ne_one (Fin (1 + m) → R) _ _
[GOAL]
case le_of_fin_injective.intro.a
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
n m : ℕ
f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R
i : Injective ↑f
e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm
f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R :=
LinearMap.comp f
↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R))
(LinearEquiv.funCongrLeft R R e))
i' : Injective ↑f'
⊢ 0 = 1
[PROOFSTEP]
apply (IsNoetherian.equivPUnitOfProdInjective f' i').injective
[GOAL]
case le_of_fin_injective.intro.a.a
R : Type u
inst✝² : Ring R
inst✝¹ : Nontrivial R
inst✝ : IsNoetherianRing R
n m : ℕ
f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R
i : Injective ↑f
e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm
f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R :=
LinearMap.comp f
↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R))
(LinearEquiv.funCongrLeft R R e))
i' : Injective ↑f'
⊢ ↑(IsNoetherian.equivPUnitOfProdInjective f' i') 0 = ↑(IsNoetherian.equivPUnitOfProdInjective f' i') 1
[PROOFSTEP]
ext
[GOAL]
R : Type u
inst✝¹ : CommRing R
I✝ : Ideal R
ι : Type v
inst✝ : Fintype ι
ι' : Type w
I : Ideal R
e : (ι → R) →ₗ[R] ι' → R
x : (ι → R) ⧸ Ideal.pi I ι
⊢ ∀ (a b : ι → R),
Setoid.r a b →
(fun y => ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑e y)) a =
(fun y => ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑e y)) b
[PROOFSTEP]
refine' fun a b hab => Ideal.Quotient.eq.2 fun h => _
[GOAL]
R : Type u
inst✝¹ : CommRing R
I✝ : Ideal R
ι : Type v
inst✝ : Fintype ι
ι' : Type w
I : Ideal R
e : (ι → R) →ₗ[R] ι' → R
x : (ι → R) ⧸ Ideal.pi I ι
a b : ι → R
hab : Setoid.r a b
h : ι'
⊢ (↑e a - ↑e b) h ∈ I
[PROOFSTEP]
rw [Submodule.quotientRel_r_def] at hab
[GOAL]
R : Type u
inst✝¹ : CommRing R
I✝ : Ideal R
ι : Type v
inst✝ : Fintype ι
ι' : Type w
I : Ideal R
e : (ι → R) →ₗ[R] ι' → R
x : (ι → R) ⧸ Ideal.pi I ι
a b : ι → R
hab : a - b ∈ Ideal.pi I ι
h : ι'
⊢ (↑e a - ↑e b) h ∈ I
[PROOFSTEP]
rw [← LinearMap.map_sub]
[GOAL]
R : Type u
inst✝¹ : CommRing R
I✝ : Ideal R
ι : Type v
inst✝ : Fintype ι
ι' : Type w
I : Ideal R
e : (ι → R) →ₗ[R] ι' → R
x : (ι → R) ⧸ Ideal.pi I ι
a b : ι → R
hab : a - b ∈ Ideal.pi I ι
h : ι'
⊢ ↑e (a - b) h ∈ I
[PROOFSTEP]
exact Ideal.map_pi _ _ hab e h
[GOAL]
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ((ι → R) ⧸ Ideal.pi I ι) ≃ₗ[R ⧸ I] (ι' → R) ⧸ Ideal.pi I ι'
[PROOFSTEP]
refine'
{ toFun := induced_map I e
invFun := induced_map I e.symm .. }
[GOAL]
case refine'_1
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y
case refine'_2
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun { toFun := induced_map I ↑e, map_add' := ?refine'_1 } (r • x) =
↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := ?refine'_1 } x
case refine'_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e))
{ toAddHom := { toFun := induced_map I ↑e, map_add' := ?refine'_1 }, map_smul' := ?refine'_2 }.toAddHom.toFun
case refine'_4
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e))
{ toAddHom := { toFun := induced_map I ↑e, map_add' := ?refine'_1 }, map_smul' := ?refine'_2 }.toAddHom.toFun
[PROOFSTEP]
all_goals
first
| rintro ⟨a⟩ ⟨b⟩
|
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_1
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y
[PROOFSTEP]
first
| rintro ⟨a⟩ ⟨b⟩
|
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_1
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case refine'_2
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x
[PROOFSTEP]
first
| rintro ⟨a⟩ ⟨b⟩
|
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_2
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case refine'_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e))
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom.toFun
[PROOFSTEP]
first
| rintro ⟨a⟩ ⟨b⟩
|
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e))
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom.toFun
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case refine'_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e))
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom.toFun
[PROOFSTEP]
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_4
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e))
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom.toFun
[PROOFSTEP]
first
| rintro ⟨a⟩ ⟨b⟩
|
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_4
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e))
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom.toFun
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case refine'_4
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e))
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom.toFun
[PROOFSTEP]
rintro
⟨a⟩
-- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)`
-- and `(I.pi ι')` on its own.
[GOAL]
case refine'_1.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b)
case refine'_2.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r a • Quot.mk Setoid.r b) =
↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r b)
case refine'_3.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
⊢ induced_map I (↑(LinearEquiv.symm e))
(AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
case refine'_4.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
pick_goal 3
[GOAL]
case refine'_3.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
⊢ induced_map I (↑(LinearEquiv.symm e))
(AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
case refine'_1.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b)
case refine'_2.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r a • Quot.mk Setoid.r b) =
↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r b)
case refine'_4.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
convert_to Ideal.Quotient.mk (I.pi ι) _ = Ideal.Quotient.mk (I.pi ι) _
[GOAL]
case refine'_3.mk.convert_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι)) (↑↑(LinearEquiv.symm e) (↑↑e a)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι)) a
case refine'_1.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b)
case refine'_2.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r a • Quot.mk Setoid.r b) =
↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r b)
case refine'_4.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
congr
[GOAL]
case refine'_3.mk.convert_3.h.e_6.h
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
⊢ ↑↑(LinearEquiv.symm e) (↑↑e a) = a
case refine'_1.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b)
case refine'_2.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r a • Quot.mk Setoid.r b) =
↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r b)
case refine'_4.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
simp only [LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply]
[GOAL]
case refine'_1.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b)
case refine'_2.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r a • Quot.mk Setoid.r b) =
↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r b)
case refine'_4.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
all_goals
convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _
congr
simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply]
[GOAL]
case refine'_1.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b)
[PROOFSTEP]
convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _
[GOAL]
case refine'_1.mk.mk.convert_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑↑e ((fun x x_1 => x + x_1) a b)) =
↑(Ideal.Quotient.mk (Ideal.pi I ι')) ((fun x x_1 => x + x_1) (↑↑e a) (↑↑e b))
[PROOFSTEP]
congr
[GOAL]
case refine'_1.mk.mk.convert_3.h.e_6.h
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι → R) ⧸ Ideal.pi I ι
a : ι → R
y✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ ↑↑e ((fun x x_1 => x + x_1) a b) = (fun x x_1 => x + x_1) (↑↑e a) (↑↑e b)
[PROOFSTEP]
simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply]
[GOAL]
case refine'_2.mk.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r a • Quot.mk Setoid.r b) =
↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(Quot.mk Setoid.r b)
[PROOFSTEP]
convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _
[GOAL]
case refine'_2.mk.mk.convert_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑↑e (a • b)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (a • ↑↑e b)
[PROOFSTEP]
congr
[GOAL]
case refine'_2.mk.mk.convert_3.h.e_6.h
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
r✝ : R ⧸ I
a : R
x✝ : (ι → R) ⧸ Ideal.pi I ι
b : ι → R
⊢ ↑↑e (a • b) = a • ↑↑e b
[PROOFSTEP]
simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply]
[GOAL]
case refine'_4.mk
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) },
map_smul' :=
(_ :
∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι),
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
(r • x) =
↑(RingHom.id (R ⧸ I)) r •
AddHom.toFun
{ toFun := induced_map I ↑e,
map_add' :=
(_ :
∀ (x y : (ι → R) ⧸ Ideal.pi I ι),
induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }
x) }.toAddHom
(induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _
[GOAL]
case refine'_4.mk.convert_3
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑↑e (↑↑(LinearEquiv.symm e) a)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι')) a
[PROOFSTEP]
congr
[GOAL]
case refine'_4.mk.convert_3.h.e_6.h
R : Type u
inst✝² : CommRing R
I✝ : Ideal R
ι : Type v
inst✝¹ : Fintype ι
ι' : Type w
inst✝ : Fintype ι'
I : Ideal R
e : (ι → R) ≃ₗ[R] ι' → R
x✝ : (ι' → R) ⧸ Ideal.pi I ι'
a : ι' → R
⊢ ↑↑e (↑↑(LinearEquiv.symm e) a) = a
[PROOFSTEP]
simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply]
| {"mathlib_filename": "Mathlib.LinearAlgebra.InvariantBasisNumber", "llama_tokens": 22668} |
[GOAL]
R : Type u_1
inst✝⁶ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
N : Type u_3
inst✝³ : AddCommMonoid N
inst✝² : Module R N
ι : Type u_4
inst✝¹ : DecidableEq ι
x✝ y✝ z : M
inst✝ : Subsingleton M
x y : M
⊢ SameRay R x y
[PROOFSTEP]
rw [Subsingleton.elim x 0]
[GOAL]
R : Type u_1
inst✝⁶ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
N : Type u_3
inst✝³ : AddCommMonoid N
inst✝² : Module R N
ι : Type u_4
inst✝¹ : DecidableEq ι
x✝ y✝ z : M
inst✝ : Subsingleton M
x y : M
⊢ SameRay R 0 y
[PROOFSTEP]
exact zero_left _
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x✝ y z x : M
⊢ SameRay R x x
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u_1
inst✝⁶ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
N : Type u_3
inst✝³ : AddCommMonoid N
inst✝² : Module R N
ι : Type u_4
inst✝¹ : DecidableEq ι
x✝ y z x : M
inst✝ : Nontrivial R
⊢ SameRay R x x
[PROOFSTEP]
exact Or.inr (Or.inr <| ⟨1, 1, zero_lt_one, zero_lt_one, rfl⟩)
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy : y = 0 → x = 0 ∨ z = 0
⊢ SameRay R x z
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
y z : M
hyz : SameRay R y z
hxy : SameRay R 0 y
hy : y = 0 → 0 = 0 ∨ z = 0
⊢ SameRay R 0 z
[PROOFSTEP]
exact zero_left z
[GOAL]
case inr
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy : y = 0 → x = 0 ∨ z = 0
hx : x ≠ 0
⊢ SameRay R x z
[PROOFSTEP]
rcases eq_or_ne z 0 with (rfl | hz)
[GOAL]
case inr.inl
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y : M
hxy : SameRay R x y
hx : x ≠ 0
hyz : SameRay R y 0
hy : y = 0 → x = 0 ∨ 0 = 0
⊢ SameRay R x 0
[PROOFSTEP]
exact zero_right x
[GOAL]
case inr.inr
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy : y = 0 → x = 0 ∨ z = 0
hx : x ≠ 0
hz : z ≠ 0
⊢ SameRay R x z
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy)
[GOAL]
case inr.inr.inl
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x z : M
hx : x ≠ 0
hz : z ≠ 0
hxy : SameRay R x 0
hyz : SameRay R 0 z
hy : 0 = 0 → x = 0 ∨ z = 0
⊢ SameRay R x z
[PROOFSTEP]
exact (hy rfl).elim (fun h => (hx h).elim) fun h => (hz h).elim
[GOAL]
case inr.inr.inr
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy✝ : y = 0 → x = 0 ∨ z = 0
hx : x ≠ 0
hz : z ≠ 0
hy : y ≠ 0
⊢ SameRay R x z
[PROOFSTEP]
rcases hxy.exists_pos hx hy with ⟨r₁, r₂, hr₁, hr₂, h₁⟩
[GOAL]
case inr.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy✝ : y = 0 → x = 0 ∨ z = 0
hx : x ≠ 0
hz : z ≠ 0
hy : y ≠ 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h₁ : r₁ • x = r₂ • y
⊢ SameRay R x z
[PROOFSTEP]
rcases hyz.exists_pos hy hz with ⟨r₃, r₄, hr₃, hr₄, h₂⟩
[GOAL]
case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy✝ : y = 0 → x = 0 ∨ z = 0
hx : x ≠ 0
hz : z ≠ 0
hy : y ≠ 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h₁ : r₁ • x = r₂ • y
r₃ r₄ : R
hr₃ : 0 < r₃
hr₄ : 0 < r₄
h₂ : r₃ • y = r₄ • z
⊢ SameRay R x z
[PROOFSTEP]
refine' Or.inr (Or.inr <| ⟨r₃ * r₁, r₂ * r₄, mul_pos hr₃ hr₁, mul_pos hr₂ hr₄, _⟩)
[GOAL]
case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hxy : SameRay R x y
hyz : SameRay R y z
hy✝ : y = 0 → x = 0 ∨ z = 0
hx : x ≠ 0
hz : z ≠ 0
hy : y ≠ 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h₁ : r₁ • x = r₂ • y
r₃ r₄ : R
hr₃ : 0 < r₃
hr₄ : 0 < r₄
h₂ : r₃ • y = r₄ • z
⊢ (r₃ * r₁) • x = (r₂ * r₄) • z
[PROOFSTEP]
rw [mul_smul, mul_smul, h₁, ← h₂, smul_comm]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z v : M
r : R
h✝ : 0 ≤ r
h : 0 < r
⊢ 0 < 1
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u_1
inst✝⁶ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
N : Type u_3
inst✝³ : AddCommMonoid N
inst✝² : Module R N
ι : Type u_4
inst✝¹ : DecidableEq ι
x y z v : M
r : R
h✝ : 0 ≤ r
h : 0 < r
inst✝ : Nontrivial R
⊢ 0 < 1
[PROOFSTEP]
exact zero_lt_one
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
r : R
h : SameRay R x y
hr : 0 ≤ r
hy : y = 0
⊢ r • y = 0
[PROOFSTEP]
rw [hy, smul_zero]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
f : M →ₗ[R] N
h : SameRay R x y
hx : x = 0
⊢ ↑f x = 0
[PROOFSTEP]
rw [hx, map_zero]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
f : M →ₗ[R] N
h : SameRay R x y
hy : y = 0
⊢ ↑f y = 0
[PROOFSTEP]
rw [hy, map_zero]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
f : M →ₗ[R] N
h✝ : SameRay R x y
x✝ : ∃ r₁ r₂, 0 < r₁ ∧ 0 < r₂ ∧ r₁ • x = r₂ • y
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • x = r₂ • y
⊢ r₁ • ↑f x = r₂ • ↑f y
[PROOFSTEP]
rw [← f.map_smul, ← f.map_smul, h]
[GOAL]
R : Type u_1
inst✝⁶ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
N : Type u_3
inst✝³ : AddCommMonoid N
inst✝² : Module R N
ι : Type u_4
inst✝¹ : DecidableEq ι
x y z : M
F : Type u_5
inst✝ : LinearMapClass F R M N
f : F
hf : Function.Injective ↑f
⊢ SameRay R (↑f x) (↑f y) ↔ SameRay R x y
[PROOFSTEP]
simp only [SameRay, map_zero, ← hf.eq_iff, map_smul]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
⊢ SameRay R (x + y) z
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx₀)
[GOAL]
case inl
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
y z : M
hy : SameRay R y z
hx : SameRay R 0 z
⊢ SameRay R (0 + y) z
[PROOFSTEP]
rwa [zero_add]
[GOAL]
case inr
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
⊢ SameRay R (x + y) z
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy₀)
[GOAL]
case inr.inl
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x z : M
hx : SameRay R x z
hx₀ : x ≠ 0
hy : SameRay R 0 z
⊢ SameRay R (x + 0) z
[PROOFSTEP]
rwa [add_zero]
[GOAL]
case inr.inr
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
⊢ SameRay R (x + y) z
[PROOFSTEP]
rcases eq_or_ne z 0 with (rfl | hz₀)
[GOAL]
case inr.inr.inl
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y : M
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hx : SameRay R x 0
hy : SameRay R y 0
⊢ SameRay R (x + y) 0
[PROOFSTEP]
apply zero_right
[GOAL]
case inr.inr.inr
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hz₀ : z ≠ 0
⊢ SameRay R (x + y) z
[PROOFSTEP]
rcases hx.exists_pos hx₀ hz₀ with ⟨rx, rz₁, hrx, hrz₁, Hx⟩
[GOAL]
case inr.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hz₀ : z ≠ 0
rx rz₁ : R
hrx : 0 < rx
hrz₁ : 0 < rz₁
Hx : rx • x = rz₁ • z
⊢ SameRay R (x + y) z
[PROOFSTEP]
rcases hy.exists_pos hy₀ hz₀ with ⟨ry, rz₂, hry, hrz₂, Hy⟩
[GOAL]
case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hz₀ : z ≠ 0
rx rz₁ : R
hrx : 0 < rx
hrz₁ : 0 < rz₁
Hx : rx • x = rz₁ • z
ry rz₂ : R
hry : 0 < ry
hrz₂ : 0 < rz₂
Hy : ry • y = rz₂ • z
⊢ SameRay R (x + y) z
[PROOFSTEP]
refine' Or.inr (Or.inr ⟨rx * ry, ry * rz₁ + rx * rz₂, mul_pos hrx hry, _, _⟩)
[GOAL]
case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hz₀ : z ≠ 0
rx rz₁ : R
hrx : 0 < rx
hrz₁ : 0 < rz₁
Hx : rx • x = rz₁ • z
ry rz₂ : R
hry : 0 < ry
hrz₂ : 0 < rz₂
Hy : ry • y = rz₂ • z
⊢ 0 < ry * rz₁ + rx * rz₂
[PROOFSTEP]
apply_rules [add_pos, mul_pos]
[GOAL]
case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hz₀ : z ≠ 0
rx rz₁ : R
hrx : 0 < rx
hrz₁ : 0 < rz₁
Hx : rx • x = rz₁ • z
ry rz₂ : R
hry : 0 < ry
hrz₂ : 0 < rz₂
Hy : ry • y = rz₂ • z
⊢ (rx * ry) • (x + y) = (ry * rz₁ + rx * rz₂) • z
[PROOFSTEP]
simp only [mul_smul, smul_add, add_smul, ← Hx, ← Hy]
[GOAL]
case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : M
hx : SameRay R x z
hy : SameRay R y z
hx₀ : x ≠ 0
hy₀ : y ≠ 0
hz₀ : z ≠ 0
rx rz₁ : R
hrx : 0 < rx
hrz₁ : 0 < rz₁
Hx : rx • x = rz₁ • z
ry rz₂ : R
hry : 0 < ry
hrz₂ : 0 < rz₂
Hy : ry • y = rz₂ • z
⊢ rx • ry • x + rx • ry • y = ry • rx • x + rx • ry • y
[PROOFSTEP]
rw [smul_comm]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
⊢ ∀ {x y z : RayVector R M}, SameRay R ↑x ↑y → SameRay R ↑y ↑z → SameRay R ↑x ↑z
[PROOFSTEP]
intros x y z hxy hyz
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
x y z : RayVector R M
hxy : SameRay R ↑x ↑y
hyz : SameRay R ↑y ↑z
⊢ SameRay R ↑x ↑z
[PROOFSTEP]
exact hxy.trans hyz fun hy => (y.2 hy).elim
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
u : Rˣ
hu : 0 < ↑u
v : Ray R M
⊢ u • v = v
[PROOFSTEP]
induction v using Module.Ray.ind
[GOAL]
case h
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
u : Rˣ
hu : 0 < ↑u
v✝ : M
hv✝ : v✝ ≠ 0
⊢ u • rayOfNeZero R v✝ hv✝ = rayOfNeZero R v✝ hv✝
[PROOFSTEP]
rw [smul_rayOfNeZero, ray_eq_iff]
[GOAL]
case h
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : DecidableEq ι
u : Rˣ
hu : 0 < ↑u
v✝ : M
hv✝ : v✝ ≠ 0
⊢ SameRay R (u • v✝) v✝
[PROOFSTEP]
exact SameRay.sameRay_pos_smul_left _ hu
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
⊢ SameRay R (-x) (-y) ↔ SameRay R x y
[PROOFSTEP]
simp only [SameRay, neg_eq_zero, smul_neg, neg_inj]
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
⊢ SameRay R (-x) y ↔ SameRay R x (-y)
[PROOFSTEP]
rw [← sameRay_neg_iff, neg_neg]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
r : R
hr : r < 0
h : SameRay R x (r • x)
⊢ x = 0
[PROOFSTEP]
rcases h with (rfl | h₀ | ⟨r₁, r₂, hr₁, hr₂, h⟩)
[GOAL]
case inl
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
y : M
inst✝ : NoZeroSMulDivisors R M
r : R
hr : r < 0
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case inr.inl
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
r : R
hr : r < 0
h₀ : r • x = 0
⊢ x = 0
[PROOFSTEP]
simpa [hr.ne] using h₀
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
r : R
hr : r < 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • x = r₂ • r • x
⊢ x = 0
[PROOFSTEP]
rw [← sub_eq_zero, smul_smul, ← sub_smul, smul_eq_zero] at h
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
r : R
hr : r < 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h✝ : r₁ • x = r₂ • r • x
h : r₁ - r₂ * r = 0 ∨ x = 0
⊢ x = 0
[PROOFSTEP]
refine' h.resolve_left (ne_of_gt <| sub_pos.2 _)
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
r : R
hr : r < 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h✝ : r₁ • x = r₂ • r • x
h : r₁ - r₂ * r = 0 ∨ x = 0
⊢ r₂ * r < r₁
[PROOFSTEP]
exact (mul_neg_of_pos_of_neg hr₂ hr).trans hr₁
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
h : SameRay R x (-x)
⊢ x = 0
[PROOFSTEP]
nontriviality M
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
h : SameRay R x (-x)
✝ : Nontrivial M
⊢ x = 0
[PROOFSTEP]
haveI : Nontrivial R := Module.nontrivial R M
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
h : SameRay R x (-x)
✝ : Nontrivial M
this : Nontrivial R
⊢ x = 0
[PROOFSTEP]
refine' eq_zero_of_sameRay_neg_smul_right (neg_lt_zero.2 (zero_lt_one' R)) _
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x y : M
inst✝ : NoZeroSMulDivisors R M
h : SameRay R x (-x)
✝ : Nontrivial M
this : Nontrivial R
⊢ SameRay R x (-1 • x)
[PROOFSTEP]
rwa [neg_one_smul]
[GOAL]
R✝ : Type u_1
inst✝⁴ : StrictOrderedCommRing R✝
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R✝ M
inst✝ : Module R✝ N
x y : M
R : Type u_4
v : RayVector R M
⊢ - -v = v
[PROOFSTEP]
rw [Subtype.ext_iff, coe_neg, coe_neg, neg_neg]
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x✝ y : M
x : Ray R M
⊢ - -x = x
[PROOFSTEP]
apply ind R (by simp) x
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x✝ y : M
x : Ray R M
⊢ ∀ (v : M) (hv : v ≠ 0), - -rayOfNeZero R v hv = rayOfNeZero R v hv
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x✝ y : M
inst✝ : NoZeroSMulDivisors R M
x : Ray R M
⊢ x ≠ -x
[PROOFSTEP]
induction' x using Module.Ray.ind with x hx
[GOAL]
case h
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x✝ y : M
inst✝ : NoZeroSMulDivisors R M
x : M
hx : x ≠ 0
⊢ rayOfNeZero R x hx ≠ -rayOfNeZero R x hx
[PROOFSTEP]
rw [neg_rayOfNeZero, Ne.def, ray_eq_iff]
[GOAL]
case h
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
x✝ y : M
inst✝ : NoZeroSMulDivisors R M
x : M
hx : x ≠ 0
⊢ ¬SameRay R x (-x)
[PROOFSTEP]
exact mt eq_zero_of_sameRay_self_neg hx
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
u : Rˣ
v : Ray R M
⊢ -u • v = -(u • v)
[PROOFSTEP]
induction v using Module.Ray.ind
[GOAL]
case h
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
u : Rˣ
v✝ : M
hv✝ : v✝ ≠ 0
⊢ -u • rayOfNeZero R v✝ hv✝ = -(u • rayOfNeZero R v✝ hv✝)
[PROOFSTEP]
simp only [smul_rayOfNeZero, Units.smul_def, Units.val_neg, neg_smul, neg_rayOfNeZero]
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
u : Rˣ
hu : ↑u < 0
v : Ray R M
⊢ u • v = -v
[PROOFSTEP]
rw [← neg_inj, neg_neg, ← neg_units_smul, units_smul_of_pos]
[GOAL]
case hu
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
u : Rˣ
hu : ↑u < 0
v : Ray R M
⊢ 0 < ↑(-u)
[PROOFSTEP]
rwa [Units.val_neg, Right.neg_pos_iff]
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
f : M ≃ₗ[R] N
v : Ray R M
⊢ ↑(map f) (-v) = -↑(map f) v
[PROOFSTEP]
induction' v using Module.Ray.ind with g hg
[GOAL]
case h
R : Type u_1
inst✝⁴ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
x y : M
f : M ≃ₗ[R] N
g : M
hg : g ≠ 0
⊢ ↑(map f) (-rayOfNeZero R g hg) = -↑(map f) (rayOfNeZero R g hg)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : LinearOrderedCommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v₁ v₂ : M
h : v₁ ∈ MulAction.orbit { x // x ∈ Units.posSubgroup R } v₂
⊢ SameRay R v₁ v₂
[PROOFSTEP]
rcases h with ⟨⟨r, hr : 0 < r.1⟩, rfl : r • v₂ = v₁⟩
[GOAL]
case intro.mk
R : Type u_1
inst✝² : LinearOrderedCommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v₂ : M
r : Rˣ
hr : 0 < ↑r
⊢ SameRay R (r • v₂) v₂
[PROOFSTEP]
exact SameRay.sameRay_pos_smul_left _ hr
[GOAL]
R : Type u_1
inst✝² : LinearOrderedCommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
u : Rˣ
v : Module.Ray R M
this : 0 < ↑u * ↑u
⊢ 0 < ↑(u * u)
[PROOFSTEP]
exact this
[GOAL]
R : Type u_1
inst✝² : LinearOrderedCommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
u : Rˣ
v : Module.Ray R M
this : 0 < ↑u * ↑u
⊢ (u * u) • u⁻¹ • v = u • v
[PROOFSTEP]
rw [mul_smul, smul_inv_smul]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
v : M
hv : v ≠ 0
r : R
hr : r ≠ 0
⊢ SameRay R v (r • v) ↔ 0 < r
[PROOFSTEP]
simp only [sameRay_smul_right_iff, hv, or_false_iff, hr.symm.le_iff_lt]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
v : M
r : R
⊢ SameRay R (-v) (r • v) ↔ r ≤ 0 ∨ v = 0
[PROOFSTEP]
rw [← sameRay_neg_iff, neg_neg, ← neg_smul, sameRay_smul_right_iff, neg_nonneg]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
v : M
r : R
hv : v ≠ 0
hr : r ≠ 0
⊢ SameRay R (-v) (r • v) ↔ r < 0
[PROOFSTEP]
simp only [sameRay_neg_smul_right_iff, hv, or_false_iff, hr.le_iff_lt]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
u : Rˣ
v : Module.Ray R M
⊢ u • v = v ↔ 0 < ↑u
[PROOFSTEP]
induction' v using Module.Ray.ind with v hv
[GOAL]
case h
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
u : Rˣ
v : M
hv : v ≠ 0
⊢ u • rayOfNeZero R v hv = rayOfNeZero R v hv ↔ 0 < ↑u
[PROOFSTEP]
simp only [smul_rayOfNeZero, ray_eq_iff, Units.smul_def, sameRay_smul_left_iff_of_ne hv u.ne_zero]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
u : Rˣ
v : Module.Ray R M
⊢ u • v = -v ↔ ↑u < 0
[PROOFSTEP]
rw [← neg_inj, neg_neg, ← Module.Ray.neg_units_smul, units_smul_eq_self_iff, Units.val_neg, neg_pos]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y]
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : x = 0
⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y]
[PROOFSTEP]
simpa [hx] using fun h : LinearIndependent R ![0, y] => h.ne_zero 0 rfl
[GOAL]
case neg
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y]
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : y = 0
⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y]
[PROOFSTEP]
simpa [hy] using fun h : LinearIndependent R ![x, 0] => h.ne_zero 1 rfl
[GOAL]
case neg
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y]
[PROOFSTEP]
simp_rw [Fintype.not_linearIndependent_iff]
[GOAL]
case neg
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
⊢ SameRay R x y ∨ SameRay R x (-y) ↔
∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case neg.refine'_1
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
h : SameRay R x y ∨ SameRay R x (-y)
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
rcases h with ((hx0 | hy0 | ⟨r₁, r₂, hr₁, _, h⟩) | (hx0 | hy0 | ⟨r₁, r₂, hr₁, _, h⟩))
[GOAL]
case neg.refine'_1.inl.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hx0 : x = 0
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
exact False.elim (hx hx0)
[GOAL]
case neg.refine'_1.inl.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hy0 : y = 0
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
exact False.elim (hy hy0)
[GOAL]
case neg.refine'_1.inl.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
r₁ r₂ : R
hr₁ : 0 < r₁
left✝ : 0 < r₂
h : r₁ • x = r₂ • y
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
refine' ⟨![r₁, -r₂], _⟩
[GOAL]
case neg.refine'_1.inl.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
r₁ r₂ : R
hr₁ : 0 < r₁
left✝ : 0 < r₂
h : r₁ • x = r₂ • y
⊢ ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons r₁ ![-r₂] i • Matrix.vecCons x ![y] i = 0 ∧
∃ i, Matrix.vecCons r₁ ![-r₂] i ≠ 0
[PROOFSTEP]
rw [Fin.sum_univ_two, Fin.exists_fin_two]
[GOAL]
case neg.refine'_1.inl.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
r₁ r₂ : R
hr₁ : 0 < r₁
left✝ : 0 < r₂
h : r₁ • x = r₂ • y
⊢ Matrix.vecCons r₁ ![-r₂] 0 • Matrix.vecCons x ![y] 0 + Matrix.vecCons r₁ ![-r₂] 1 • Matrix.vecCons x ![y] 1 = 0 ∧
(Matrix.vecCons r₁ ![-r₂] 0 ≠ 0 ∨ Matrix.vecCons r₁ ![-r₂] 1 ≠ 0)
[PROOFSTEP]
simp [h, hr₁.ne.symm]
[GOAL]
case neg.refine'_1.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hx0 : x = 0
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
exact False.elim (hx hx0)
[GOAL]
case neg.refine'_1.inr.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hy0 : -y = 0
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
exact False.elim (hy (neg_eq_zero.1 hy0))
[GOAL]
case neg.refine'_1.inr.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
r₁ r₂ : R
hr₁ : 0 < r₁
left✝ : 0 < r₂
h : r₁ • x = r₂ • -y
⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
refine' ⟨![r₁, r₂], _⟩
[GOAL]
case neg.refine'_1.inr.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
r₁ r₂ : R
hr₁ : 0 < r₁
left✝ : 0 < r₂
h : r₁ • x = r₂ • -y
⊢ ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons r₁ ![r₂] i • Matrix.vecCons x ![y] i = 0 ∧
∃ i, Matrix.vecCons r₁ ![r₂] i ≠ 0
[PROOFSTEP]
rw [Fin.sum_univ_two, Fin.exists_fin_two]
[GOAL]
case neg.refine'_1.inr.inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
r₁ r₂ : R
hr₁ : 0 < r₁
left✝ : 0 < r₂
h : r₁ • x = r₂ • -y
⊢ Matrix.vecCons r₁ ![r₂] 0 • Matrix.vecCons x ![y] 0 + Matrix.vecCons r₁ ![r₂] 1 • Matrix.vecCons x ![y] 1 = 0 ∧
(Matrix.vecCons r₁ ![r₂] 0 ≠ 0 ∨ Matrix.vecCons r₁ ![r₂] 1 ≠ 0)
[PROOFSTEP]
simp [h, hr₁.ne.symm]
[GOAL]
case neg.refine'_2
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
h : ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rcases h with ⟨m, hm, hmne⟩
[GOAL]
case neg.refine'_2.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : ∑ i : Fin (Nat.succ (Nat.succ 0)), m i • Matrix.vecCons x ![y] i = 0
hmne : ∃ i, m i ≠ 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rw [Fin.sum_univ_two, add_eq_zero_iff_eq_neg, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons] at hm
[GOAL]
case neg.refine'_2.intro.intro
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rcases lt_trichotomy (m 0) 0 with (hm0 | hm0 | hm0)
[GOAL]
case neg.refine'_2.intro.intro.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rcases lt_trichotomy (m 1) 0 with (hm1 | hm1 | hm1)
[GOAL]
case neg.refine'_2.intro.intro.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 = 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rcases lt_trichotomy (m 1) 0 with (hm1 | hm1 | hm1)
[GOAL]
case neg.refine'_2.intro.intro.inr.inr
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rcases lt_trichotomy (m 1) 0 with (hm1 | hm1 | hm1)
[GOAL]
case neg.refine'_2.intro.intro.inl.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
hm1 : m 1 < 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
refine' Or.inr (Or.inr (Or.inr ⟨-m 0, -m 1, Left.neg_pos_iff.2 hm0, Left.neg_pos_iff.2 hm1, _⟩))
[GOAL]
case neg.refine'_2.intro.intro.inl.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
hm1 : m 1 < 0
⊢ -m 0 • x = -m 1 • -y
[PROOFSTEP]
rw [neg_smul_neg, neg_smul, hm, neg_neg]
[GOAL]
case neg.refine'_2.intro.intro.inl.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
hm1 : m 1 = 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
exfalso
[GOAL]
case neg.refine'_2.intro.intro.inl.inr.inl.h
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
hm1 : m 1 = 0
⊢ False
[PROOFSTEP]
simp [hm1, hx, hm0.ne] at hm
[GOAL]
case neg.refine'_2.intro.intro.inl.inr.inr
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
hm1 : 0 < m 1
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
refine' Or.inl (Or.inr (Or.inr ⟨-m 0, m 1, Left.neg_pos_iff.2 hm0, hm1, _⟩))
[GOAL]
case neg.refine'_2.intro.intro.inl.inr.inr
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 < 0
hm1 : 0 < m 1
⊢ -m 0 • x = m 1 • y
[PROOFSTEP]
rw [neg_smul, hm, neg_neg]
[GOAL]
case neg.refine'_2.intro.intro.inr.inl.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 = 0
hm1 : m 1 < 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
exfalso
[GOAL]
case neg.refine'_2.intro.intro.inr.inl.inl.h
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 = 0
hm1 : m 1 < 0
⊢ False
[PROOFSTEP]
simp [hm0, hy, hm1.ne] at hm
[GOAL]
case neg.refine'_2.intro.intro.inr.inl.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 = 0
hm1 : m 1 = 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
rw [Fin.exists_fin_two] at hmne
[GOAL]
case neg.refine'_2.intro.intro.inr.inl.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : m 0 ≠ 0 ∨ m 1 ≠ 0
hm0 : m 0 = 0
hm1 : m 1 = 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
exact False.elim (not_and_or.2 hmne ⟨hm0, hm1⟩)
[GOAL]
case neg.refine'_2.intro.intro.inr.inl.inr.inr
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 = 0
hm1 : 0 < m 1
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
exfalso
[GOAL]
case neg.refine'_2.intro.intro.inr.inl.inr.inr.h
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : m 0 = 0
hm1 : 0 < m 1
⊢ False
[PROOFSTEP]
simp [hm0, hy, hm1.ne.symm] at hm
[GOAL]
case neg.refine'_2.intro.intro.inr.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
hm1 : m 1 < 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
refine' Or.inl (Or.inr (Or.inr ⟨m 0, -m 1, hm0, Left.neg_pos_iff.2 hm1, _⟩))
[GOAL]
case neg.refine'_2.intro.intro.inr.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
hm1 : m 1 < 0
⊢ m 0 • x = -m 1 • y
[PROOFSTEP]
rwa [neg_smul]
[GOAL]
case neg.refine'_2.intro.intro.inr.inr.inr.inl
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
hm1 : m 1 = 0
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
exfalso
[GOAL]
case neg.refine'_2.intro.intro.inr.inr.inr.inl.h
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
hm1 : m 1 = 0
⊢ False
[PROOFSTEP]
simp [hm1, hx, hm0.ne.symm] at hm
[GOAL]
case neg.refine'_2.intro.intro.inr.inr.inr.inr
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
hm1 : 0 < m 1
⊢ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
refine' Or.inr (Or.inr (Or.inr ⟨m 0, m 1, hm0, hm1, _⟩))
[GOAL]
case neg.refine'_2.intro.intro.inr.inr.inr.inr
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
m : Fin (Nat.succ (Nat.succ 0)) → R
hm : m 0 • x = -(m 1 • y)
hmne : ∃ i, m i ≠ 0
hm0 : 0 < m 0
hm1 : 0 < m 1
⊢ m 0 • x = m 1 • -y
[PROOFSTEP]
rwa [smul_neg]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y]
[PROOFSTEP]
rw [← sameRay_or_sameRay_neg_iff_not_linearIndependent]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : x = 0
⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : y = 0
⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
simp [hx, hy]
[GOAL]
case neg
R : Type u_1
inst✝³ : LinearOrderedCommRing R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y)
[PROOFSTEP]
simp [hx, hy]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
h✝ : SameRay R x y
hx : x ≠ 0
hy : y ≠ 0
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • x = r₂ • y
⊢ (r₂⁻¹ * r₁) • x = y
[PROOFSTEP]
rw [mul_smul, h, inv_smul_smul₀ hr₂.ne']
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
h : SameRay R x y
hx : x ≠ 0
⊢ ∃ r, 0 ≤ r ∧ r • x = y
[PROOFSTEP]
obtain rfl | hy := eq_or_ne y 0
[GOAL]
case inl
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x v₁ v₂ : M
hx : x ≠ 0
h : SameRay R x 0
⊢ ∃ r, 0 ≤ r ∧ r • x = 0
[PROOFSTEP]
exact ⟨0, le_rfl, zero_smul _ _⟩
[GOAL]
case inr
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
h : SameRay R x y
hx : x ≠ 0
hy : y ≠ 0
⊢ ∃ r, 0 ≤ r ∧ r • x = y
[PROOFSTEP]
exact (h.exists_pos_left hx hy).imp fun _ => And.imp_left le_of_lt
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
h : SameRay R v₁ v₂
⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂)
[PROOFSTEP]
rcases h with (rfl | rfl | ⟨r₁, r₂, h₁, h₂, H⟩)
[GOAL]
case inl
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₂ : M
⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ 0 = a • (0 + v₂) ∧ v₂ = b • (0 + v₂)
[PROOFSTEP]
use 0, 1
[GOAL]
case h
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₂ : M
⊢ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 + 1 = 1 ∧ 0 = 0 • (0 + v₂) ∧ v₂ = 1 • (0 + v₂)
[PROOFSTEP]
simp
[GOAL]
case inr.inl
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ : M
⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + 0) ∧ 0 = b • (v₁ + 0)
[PROOFSTEP]
use 1, 0
[GOAL]
case h
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ : M
⊢ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 1 + 0 = 1 ∧ v₁ = 1 • (v₁ + 0) ∧ 0 = 0 • (v₁ + 0)
[PROOFSTEP]
simp
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
r₁ r₂ : R
h₁ : 0 < r₁
h₂ : 0 < r₂
H : r₁ • v₁ = r₂ • v₂
⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂)
[PROOFSTEP]
have h₁₂ : 0 < r₁ + r₂ := add_pos h₁ h₂
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
r₁ r₂ : R
h₁ : 0 < r₁
h₂ : 0 < r₂
H : r₁ • v₁ = r₂ • v₂
h₁₂ : 0 < r₁ + r₂
⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂)
[PROOFSTEP]
refine' ⟨r₂ / (r₁ + r₂), r₁ / (r₁ + r₂), div_nonneg h₂.le h₁₂.le, div_nonneg h₁.le h₁₂.le, _, _, _⟩
[GOAL]
case inr.inr.intro.intro.intro.intro.refine'_1
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
r₁ r₂ : R
h₁ : 0 < r₁
h₂ : 0 < r₂
H : r₁ • v₁ = r₂ • v₂
h₁₂ : 0 < r₁ + r₂
⊢ r₂ / (r₁ + r₂) + r₁ / (r₁ + r₂) = 1
[PROOFSTEP]
rw [← add_div, add_comm, div_self h₁₂.ne']
[GOAL]
case inr.inr.intro.intro.intro.intro.refine'_2
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
r₁ r₂ : R
h₁ : 0 < r₁
h₂ : 0 < r₂
H : r₁ • v₁ = r₂ • v₂
h₁₂ : 0 < r₁ + r₂
⊢ v₁ = (r₂ / (r₁ + r₂)) • (v₁ + v₂)
[PROOFSTEP]
rw [div_eq_inv_mul, mul_smul, smul_add, ← H, ← add_smul, add_comm r₂, inv_smul_smul₀ h₁₂.ne']
[GOAL]
case inr.inr.intro.intro.intro.intro.refine'_3
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y v₁ v₂ : M
r₁ r₂ : R
h₁ : 0 < r₁
h₂ : 0 < r₂
H : r₁ • v₁ = r₂ • v₂
h₁₂ : 0 < r₁ + r₂
⊢ v₂ = (r₁ / (r₁ + r₂)) • (v₁ + v₂)
[PROOFSTEP]
rw [div_eq_inv_mul, mul_smul, smul_add, H, ← add_smul, add_comm r₂, inv_smul_smul₀ h₁₂.ne']
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ r • x = y) ↔ SameRay R x y
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.exists_pos_left hx hy⟩
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
hy : y ≠ 0
h : ∃ r, 0 < r ∧ r • x = y
⊢ SameRay R x y
[PROOFSTEP]
rcases h with ⟨r, hr, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x : M
hx : x ≠ 0
r : R
hr : 0 < r
hy : r • x ≠ 0
⊢ SameRay R x (r • x)
[PROOFSTEP]
exact SameRay.sameRay_pos_smul_right x hr
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
⊢ (∃ r, 0 < r ∧ r • x = y) ↔ SameRay R x y ∧ y ≠ 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
⊢ (∃ r, 0 < r ∧ r • x = y) → SameRay R x y ∧ y ≠ 0
[PROOFSTEP]
rintro ⟨r, hr, rfl⟩
[GOAL]
case mp.intro.intro
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x : M
hx : x ≠ 0
r : R
hr : 0 < r
⊢ SameRay R x (r • x) ∧ r • x ≠ 0
[PROOFSTEP]
simp [hx, hr.le, hr.ne']
[GOAL]
case mpr
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
⊢ SameRay R x y ∧ y ≠ 0 → ∃ r, 0 < r ∧ r • x = y
[PROOFSTEP]
rintro ⟨hxy, hy⟩
[GOAL]
case mpr.intro
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
hxy : SameRay R x y
hy : y ≠ 0
⊢ ∃ r, 0 < r ∧ r • x = y
[PROOFSTEP]
exact (exists_pos_left_iff_sameRay hx hy).2 hxy
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
⊢ (∃ r, 0 ≤ r ∧ r • x = y) ↔ SameRay R x y
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.exists_nonneg_left hx⟩
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
h : ∃ r, 0 ≤ r ∧ r • x = y
⊢ SameRay R x y
[PROOFSTEP]
rcases h with ⟨r, hr, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x : M
hx : x ≠ 0
r : R
hr : 0 ≤ r
⊢ SameRay R x (r • x)
[PROOFSTEP]
exact SameRay.sameRay_nonneg_smul_right x hr
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R x y
[PROOFSTEP]
rw [SameRay.sameRay_comm]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R y x
[PROOFSTEP]
simp_rw [eq_comm (a := x)]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hx : x ≠ 0
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ r • y = x) ↔ SameRay R y x
[PROOFSTEP]
exact exists_pos_left_iff_sameRay hy hx
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R x y ∧ x ≠ 0
[PROOFSTEP]
rw [SameRay.sameRay_comm]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R y x ∧ x ≠ 0
[PROOFSTEP]
simp_rw [eq_comm (a := x)]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hy : y ≠ 0
⊢ (∃ r, 0 < r ∧ r • y = x) ↔ SameRay R y x ∧ x ≠ 0
[PROOFSTEP]
exact exists_pos_left_iff_sameRay_and_ne_zero hy
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hy : y ≠ 0
⊢ (∃ r, 0 ≤ r ∧ x = r • y) ↔ SameRay R x y
[PROOFSTEP]
rw [SameRay.sameRay_comm]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hy : y ≠ 0
⊢ (∃ r, 0 ≤ r ∧ x = r • y) ↔ SameRay R y x
[PROOFSTEP]
simp_rw [eq_comm (a := x)]
[GOAL]
R : Type u_1
inst✝² : LinearOrderedField R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
hy : y ≠ 0
⊢ (∃ r, 0 ≤ r ∧ r • y = x) ↔ SameRay R y x
[PROOFSTEP]
exact exists_nonneg_left_iff_sameRay (R := R) hy
| {"mathlib_filename": "Mathlib.LinearAlgebra.Ray", "llama_tokens": 27817} |
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeAlgebra", "llama_tokens": 0} |
|
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y✝ : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
x y : M
⊢ Setoid.r x y ↔ -(x - y) ∈ p
[PROOFSTEP]
rw [leftRel_apply, sub_eq_add_neg, neg_add, neg_neg]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y✝ : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
x y : M
⊢ -x + y ∈ toAddSubgroup p ↔ -x + y ∈ p
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ mk x = 0 ↔ x ∈ p
[PROOFSTEP]
simpa using (Quotient.eq' p : mk x = 0 ↔ _)
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y✝ : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
S : Type u_3
inst✝² : SMul S R
inst✝¹ : SMul S M
inst✝ : IsScalarTower S R M
P : Submodule R M
a : S
x y : M
h : Setoid.r x y
⊢ -(fun x x_1 => x • x_1) a x + (fun x x_1 => x • x_1) a y ∈ toAddSubgroup P
[PROOFSTEP]
simpa using Submodule.smul_mem P (a • (1 : R)) (leftRel_apply.mp h)
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ Function.Surjective mk
[PROOFSTEP]
rintro ⟨x⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
b✝ : M ⧸ p
x : M
⊢ ∃ a, mk a = Quot.mk Setoid.r x
[PROOFSTEP]
exact ⟨x, rfl⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p < ⊤
⊢ Nontrivial (M ⧸ p)
[PROOFSTEP]
obtain ⟨x, _, not_mem_s⟩ := SetLike.exists_of_lt h
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p < ⊤
x : M
left✝ : x ∈ ⊤
not_mem_s : ¬x ∈ p
⊢ Nontrivial (M ⧸ p)
[PROOFSTEP]
refine' ⟨⟨mk x, 0, _⟩⟩
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p < ⊤
x : M
left✝ : x ∈ ⊤
not_mem_s : ¬x ∈ p
⊢ mk x ≠ 0
[PROOFSTEP]
simpa using not_mem_s
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ Subsingleton (M ⧸ p) ↔ p = ⊤
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ Subsingleton (M ⧸ p) → p = ⊤
[PROOFSTEP]
rintro h
[GOAL]
case mp
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : Subsingleton (M ⧸ p)
⊢ p = ⊤
[PROOFSTEP]
refine' eq_top_iff.mpr fun x _ => _
[GOAL]
case mp
R : Type u_1
M : Type u_2
r : R
x✝¹ y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : Subsingleton (M ⧸ p)
x : M
x✝ : x ∈ ⊤
⊢ x ∈ p
[PROOFSTEP]
have : x - 0 ∈ p := (Submodule.Quotient.eq p).mp (Subsingleton.elim _ _)
[GOAL]
case mp
R : Type u_1
M : Type u_2
r : R
x✝¹ y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : Subsingleton (M ⧸ p)
x : M
x✝ : x ∈ ⊤
this : x - 0 ∈ p
⊢ x ∈ p
[PROOFSTEP]
rwa [sub_zero] at this
[GOAL]
case mpr
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ p = ⊤ → Subsingleton (M ⧸ p)
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p' : Submodule R M
⊢ Subsingleton (M ⧸ ⊤)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ p = ⊤ → Nonempty (Unique (M ⧸ p))
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p' : Submodule R M
⊢ Nonempty (Unique (M ⧸ ⊤))
[PROOFSTEP]
exact ⟨QuotientTop.unique⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
p p' : Submodule R M
inst✝¹ : Fintype M
S : Submodule R M
inst✝ : DecidablePred fun x => x ∈ S
⊢ Fintype.card M = Fintype.card { x // x ∈ S } * Fintype.card (M ⧸ S)
[PROOFSTEP]
rw [mul_comm, ← Fintype.card_prod]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
p p' : Submodule R M
inst✝¹ : Fintype M
S : Submodule R M
inst✝ : DecidablePred fun x => x ∈ S
⊢ Fintype.card M = Fintype.card ((M ⧸ S) × { x // x ∈ S })
[PROOFSTEP]
exact Fintype.card_congr AddSubgroup.addGroupEquivQuotientProdAddSubgroup
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
p p' : Submodule R M
M₂ : Type u_3
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
⊢ ∀ (x y : M), Quotient.mk (x + y) = Quotient.mk x + Quotient.mk y
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
p p' : Submodule R M
M₂ : Type u_3
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
⊢ ∀ (r : R) (x : M),
AddHom.toFun
{ toFun := Quotient.mk,
map_add' := (_ : ∀ (a a_1 : M), Quotient.mk a + Quotient.mk a_1 = Quotient.mk a + Quotient.mk a_1) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := Quotient.mk,
map_add' := (_ : ∀ (a a_1 : M), Quotient.mk a + Quotient.mk a_1 = Quotient.mk a + Quotient.mk a_1) }
x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
p p' : Submodule R M
M₂ : Type u_3
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
A : Submodule R M
⊢ Function.Surjective ↑(mkQ A)
[PROOFSTEP]
rintro ⟨x⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
p p' : Submodule R M
M₂ : Type u_3
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
A : Submodule R M
b✝ : M ⧸ A
x : M
⊢ ∃ a, ↑(mkQ A) a = Quot.mk Setoid.r x
[PROOFSTEP]
exact ⟨x, rfl⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
src✝ : M ⧸ toAddSubgroup p →+ M₂ := lift (toAddSubgroup p) (toAddMonoidHom f) h
⊢ ∀ (r : R) (x : M ⧸ p),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : M ⧸ toAddSubgroup p),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r • x) =
↑τ₁₂ r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : M ⧸ toAddSubgroup p),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
x
[PROOFSTEP]
rintro a ⟨x⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
r : R
x✝¹ y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
src✝ : M ⧸ toAddSubgroup p →+ M₂ := lift (toAddSubgroup p) (toAddMonoidHom f) h
a : R
x✝ : M ⧸ p
x : M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : M ⧸ toAddSubgroup p),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(a • Quot.mk Setoid.r x) =
↑τ₁₂ a •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : M ⧸ toAddSubgroup p),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(Quot.mk Setoid.r x)
[PROOFSTEP]
exact f.map_smulₛₗ a x
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
⊢ comp (liftQ p f h) (mkQ p) = f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
x✝ : M
⊢ ↑(comp (liftQ p f h) (mkQ p)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
x : M
f : M →ₛₗ[τ₁₂] M₂
h : ↑f x = 0
⊢ span R {x} ≤ ker f
[PROOFSTEP]
rw [span_singleton_le_iff_mem, LinearMap.mem_ker, h]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
⊢ ∀ (x : M ⧸ p), x ∈ range (mkQ p)
[PROOFSTEP]
rintro ⟨x⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
r : R
x✝¹ y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
x✝ : M ⧸ p
x : M
⊢ Quot.mk Setoid.r x ∈ range (mkQ p)
[PROOFSTEP]
exact ⟨x, rfl⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
⊢ ker (mkQ p) = p
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
x✝ : M
⊢ x✝ ∈ ker (mkQ p) ↔ x✝ ∈ p
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p'✝ : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
p' : Submodule R (M ⧸ p)
⊢ p ≤ comap (mkQ p) p'
[PROOFSTEP]
simpa using (comap_mono bot_le : ker p.mkQ ≤ comap p.mkQ p')
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
⊢ map (mkQ p) p = ⊥
[PROOFSTEP]
rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkQ]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
⊢ comap (mkQ p) (map (mkQ p) p') = p ⊔ p'
[PROOFSTEP]
simp [comap_map_eq, sup_comm]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
⊢ map (mkQ p) p' = ⊤ ↔ p ⊔ p' = ⊤
[PROOFSTEP]
simp only [LinearMap.map_eq_top_iff p.range_mkQ, sup_comm, ker_mkQ]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ comap f q
⊢ p ≤ ker (comp (mkQ q) f)
[PROOFSTEP]
simpa [ker_comp] using h
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ comap f q
⊢ comp (mapQ p q f h) (mkQ p) = comp (mkQ q) f
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ comap f q
x : M
⊢ ↑(comp (mapQ p q f h) (mkQ p)) x = ↑(comp (mkQ q) f) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
⊢ p ≤ comap 0 q
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
h : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q)
⊢ mapQ p q 0 h = 0
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
h : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q)
x✝ : M
⊢ ↑(comp (mapQ p q 0 h) (mkQ p)) x✝ = ↑(comp 0 (mkQ p)) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁶ : Ring R₂
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
R₃ : Type u_5
M₃ : Type u_6
inst✝³ : Ring R₃
inst✝² : AddCommGroup M₃
inst✝¹ : Module R₃ M₃
p₂ : Submodule R₂ M₂
p₃ : Submodule R₃ M₃
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
hf : p ≤ comap f p₂
hg : p₂ ≤ comap g p₃
h : optParam (p ≤ comap f (comap g p₃)) (_ : p ≤ comap f (comap g p₃))
⊢ mapQ p p₃ (comp g f) h = comp (mapQ p₂ p₃ g hg) (mapQ p p₂ f hf)
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁶ : Ring R₂
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
R₃ : Type u_5
M₃ : Type u_6
inst✝³ : Ring R₃
inst✝² : AddCommGroup M₃
inst✝¹ : Module R₃ M₃
p₂ : Submodule R₂ M₂
p₃ : Submodule R₃ M₃
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
hf : p ≤ comap f p₂
hg : p₂ ≤ comap g p₃
h : optParam (p ≤ comap f (comap g p₃)) (_ : p ≤ comap f (comap g p₃))
x✝ : M
⊢ ↑(comp (mapQ p p₃ (comp g f) h) (mkQ p)) x✝ = ↑(comp (comp (mapQ p₂ p₃ g hg) (mapQ p p₂ f hf)) (mkQ p)) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
⊢ p ≤ comap LinearMap.id p
[PROOFSTEP]
rw [comap_id]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
h : optParam (p ≤ comap LinearMap.id p) (_ : p ≤ comap LinearMap.id p)
⊢ mapQ p p LinearMap.id h = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
h : optParam (p ≤ comap LinearMap.id p) (_ : p ≤ comap LinearMap.id p)
x✝ : M
⊢ ↑(comp (mapQ p p LinearMap.id h) (mkQ p)) x✝ = ↑(comp LinearMap.id (mkQ p)) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₗ[R] M
h : p ≤ comap f p
k : ℕ
h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)
⊢ mapQ p p (f ^ k) h' = mapQ p p f h ^ k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₗ[R] M
h : p ≤ comap f p
k : ℕ
h'✝ : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)
h' : optParam (p ≤ comap (f ^ Nat.zero) p) (_ : p ≤ comap (f ^ Nat.zero) p)
⊢ mapQ p p (f ^ Nat.zero) h' = mapQ p p f h ^ Nat.zero
[PROOFSTEP]
simp [LinearMap.one_eq_id]
[GOAL]
case succ
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₗ[R] M
h : p ≤ comap f p
k✝ : ℕ
h'✝ : optParam (p ≤ comap (f ^ k✝) p) (_ : p ≤ comap (f ^ k✝) p)
k : ℕ
ih : ∀ (h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)), mapQ p p (f ^ k) h' = mapQ p p f h ^ k
h' : optParam (p ≤ comap (f ^ Nat.succ k) p) (_ : p ≤ comap (f ^ Nat.succ k) p)
⊢ mapQ p p (f ^ Nat.succ k) h' = mapQ p p f h ^ Nat.succ k
[PROOFSTEP]
simp only [LinearMap.iterate_succ]
-- porting note: why does any of these `optParams` need to be applied? Why didn't `simp` handle
-- all of this for us?
[GOAL]
case succ
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₗ[R] M
h : p ≤ comap f p
k✝ : ℕ
h'✝ : optParam (p ≤ comap (f ^ k✝) p) (_ : p ≤ comap (f ^ k✝) p)
k : ℕ
ih : ∀ (h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)), mapQ p p (f ^ k) h' = mapQ p p f h ^ k
h' : optParam (p ≤ comap (f ^ Nat.succ k) p) (_ : p ≤ comap (f ^ Nat.succ k) p)
⊢ mapQ p p (comp (f ^ k) f) (_ : p ≤ comap (comp (f ^ k) f) p) = comp (mapQ p p f h ^ k) (mapQ p p f h)
[PROOFSTEP]
convert
mapQ_comp p p p f (f ^ k) h (p.le_comap_pow_of_le_comap h k) (h.trans (comap_mono <| p.le_comap_pow_of_le_comap h k))
[GOAL]
case h.e'_3.h.e'_20
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₗ[R] M
h : p ≤ comap f p
k✝ : ℕ
h'✝ : optParam (p ≤ comap (f ^ k✝) p) (_ : p ≤ comap (f ^ k✝) p)
k : ℕ
ih : ∀ (h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)), mapQ p p (f ^ k) h' = mapQ p p f h ^ k
h' : optParam (p ≤ comap (f ^ Nat.succ k) p) (_ : p ≤ comap (f ^ Nat.succ k) p)
⊢ mapQ p p f h ^ k = mapQ p p (f ^ k) (_ : p ≤ comap (f ^ k) p)
[PROOFSTEP]
exact (ih _).symm
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
⊢ comap (liftQ p f h) q ≤ map (mkQ p) (comap f q)
[PROOFSTEP]
rintro ⟨x⟩ hx
[GOAL]
case mk
R : Type u_1
M : Type u_2
r : R
x✝¹ y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
x✝ : M ⧸ p
x : M
hx : Quot.mk Setoid.r x ∈ comap (liftQ p f h) q
⊢ Quot.mk Setoid.r x ∈ map (mkQ p) (comap f q)
[PROOFSTEP]
exact ⟨_, hx, rfl⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
⊢ map (mkQ p) (comap f q) ≤ comap (liftQ p f h) q
[PROOFSTEP]
rw [map_le_iff_le_comap, ← comap_comp, liftQ_mkQ]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q✝ : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
q : Submodule R (M ⧸ p)
⊢ map (liftQ p f h) q ≤ map f (comap (mkQ p) q)
[PROOFSTEP]
rintro _ ⟨⟨x⟩, hxq, rfl⟩
[GOAL]
case intro.mk.intro
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q✝ : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
q : Submodule R (M ⧸ p)
w✝ : M ⧸ p
x : M
hxq : Quot.mk Setoid.r x ∈ ↑q
⊢ ↑(liftQ p f h) (Quot.mk Setoid.r x) ∈ map f (comap (mkQ p) q)
[PROOFSTEP]
exact ⟨x, hxq, rfl⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q✝ : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
q : Submodule R (M ⧸ p)
⊢ map f (comap (mkQ p) q) ≤ map (liftQ p f h) q
[PROOFSTEP]
rintro _ ⟨x, hxq, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q✝ : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
q : Submodule R (M ⧸ p)
x : M
hxq : x ∈ ↑(comap (mkQ p) q)
⊢ ↑f x ∈ map (liftQ p f h) q
[PROOFSTEP]
exact ⟨Quotient.mk x, hxq, rfl⟩
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
⊢ range (liftQ p f h) = range f
[PROOFSTEP]
simpa only [range_eq_map] using map_liftQ _ _ _ _
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
f : M →ₛₗ[τ₁₂] M₂
h : p ≤ ker f
h' : ker f ≤ p
⊢ ker (liftQ p f h) = ⊥
[PROOFSTEP]
rw [ker_liftQ, le_antisymm h h', mkQ_map_self]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p'✝ : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
p' : Submodule R (M ⧸ p)
⊢ p' ≤ range (mkQ p)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁵ : Ring R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝² : Ring R₂
inst✝¹ : AddCommGroup M₂
inst✝ : Module R₂ M₂
τ₁₂ : R →+* R₂
q✝ : Submodule R₂ M₂
x✝ : { p' // p ≤ p' }
q : Submodule R M
hq : p ≤ q
⊢ ↑((fun p' => { val := comap (mkQ p) p', property := (_ : p ≤ comap (mkQ p) p') })
((fun q => map (mkQ p) ↑q) { val := q, property := hq })) =
↑{ val := q, property := hq }
[PROOFSTEP]
simpa [comap_map_mkQ p]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
⊢ span R (↑f ⁻¹' s) = comap f (span R₂ s)
[PROOFSTEP]
suffices (span R₂ s).comap f ≤ span R (f ⁻¹' s) by exact le_antisymm (span_preimage_le f s) this
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
this : comap f (span R₂ s) ≤ span R (↑f ⁻¹' s)
⊢ span R (↑f ⁻¹' s) = comap f (span R₂ s)
[PROOFSTEP]
exact le_antisymm (span_preimage_le f s) this
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
have hk : ker f ≤ span R (f ⁻¹' s) := by
let y := Classical.choose h₀
have hy : y ∈ s := Classical.choose_spec h₀
rw [ker_le_iff]
use y, h₁ hy
rw [← Set.singleton_subset_iff] at hy
exact Set.Subset.trans subset_span (span_mono (Set.preimage_mono hy))
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
⊢ ker f ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
let y := Classical.choose h₀
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y✝ : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
y : M₂ := Classical.choose h₀
⊢ ker f ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
have hy : y ∈ s := Classical.choose_spec h₀
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y✝ : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
y : M₂ := Classical.choose h₀
hy : y ∈ s
⊢ ker f ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
rw [ker_le_iff]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y✝ : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
y : M₂ := Classical.choose h₀
hy : y ∈ s
⊢ ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑(span R (↑f ⁻¹' s))
[PROOFSTEP]
use y, h₁ hy
[GOAL]
case right
R : Type u_1
M : Type u_2
r : R
x y✝ : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
y : M₂ := Classical.choose h₀
hy : y ∈ s
⊢ ↑f ⁻¹' {y} ⊆ ↑(span R (↑f ⁻¹' s))
[PROOFSTEP]
rw [← Set.singleton_subset_iff] at hy
[GOAL]
case right
R : Type u_1
M : Type u_2
r : R
x y✝ : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
y : M₂ := Classical.choose h₀
hy : {y} ⊆ s
⊢ ↑f ⁻¹' {y} ⊆ ↑(span R (↑f ⁻¹' s))
[PROOFSTEP]
exact Set.Subset.trans subset_span (span_mono (Set.preimage_mono hy))
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
hk : ker f ≤ span R (↑f ⁻¹' s)
⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
rw [← left_eq_sup] at hk
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ ↑(range f)
hk : span R (↑f ⁻¹' s) = span R (↑f ⁻¹' s) ⊔ ker f
⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
rw [range_coe f] at h₁
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ Set.range ↑f
hk : span R (↑f ⁻¹' s) = span R (↑f ⁻¹' s) ⊔ ker f
⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s)
[PROOFSTEP]
rw [hk, ← LinearMap.map_le_map_iff, map_span, map_comap_eq, Set.image_preimage_eq_of_subset h₁]
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝³ : Ring R₂
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
s : Set M₂
h₀ : Set.Nonempty s
h₁ : s ⊆ Set.range ↑f
hk : span R (↑f ⁻¹' s) = span R (↑f ⁻¹' s) ⊔ ker f
⊢ range f ⊓ span R₂ s ≤ span R₂ s
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁴ : Ring R₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
P : Submodule R M
Q : Submodule R N
f : M ≃ₗ[R] N
hf : map f P = Q
src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)
x : N
hx : x ∈ Q
⊢ x ∈ comap (↑(LinearEquiv.symm f)) P
[PROOFSTEP]
rw [← hf, Submodule.mem_map] at hx
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁴ : Ring R₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
P : Submodule R M
Q : Submodule R N
f : M ≃ₗ[R] N
hf : map f P = Q
src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)
x : N
hx : ∃ y, y ∈ P ∧ ↑f y = x
⊢ x ∈ comap (↑(LinearEquiv.symm f)) P
[PROOFSTEP]
obtain ⟨y, hy, rfl⟩ := hx
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
r : R
x y✝ : M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁴ : Ring R₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
P : Submodule R M
Q : Submodule R N
f : M ≃ₗ[R] N
hf : map f P = Q
src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)
y : M
hy : y ∈ P
⊢ ↑f y ∈ comap (↑(LinearEquiv.symm f)) P
[PROOFSTEP]
simpa
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁴ : Ring R₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
P : Submodule R M
Q : Submodule R N
f : M ≃ₗ[R] N
hf : map f P = Q
src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)
x : M ⧸ P
⊢ ∀ (a : M),
↑(mapQ Q P ↑(LinearEquiv.symm f) (_ : ∀ (x : N), x ∈ Q → x ∈ comap (↑(LinearEquiv.symm f)) P))
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)),
map_add' :=
(_ :
∀ (x y : M ⧸ P),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : M ⧸ P),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Quotient.mk'' a)) =
Quotient.mk'' a
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x✝ y : M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁴ : Ring R₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
P : Submodule R M
Q : Submodule R N
f : M ≃ₗ[R] N
hf : map f P = Q
src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)
x : N ⧸ Q
⊢ ∀ (a : N),
AddHom.toFun
{
toAddHom :=
{ toFun := ↑(mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)),
map_add' :=
(_ :
∀ (x y : M ⧸ P),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : M ⧸ P),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(↑(mapQ Q P ↑(LinearEquiv.symm f) (_ : ∀ (x : N), x ∈ Q → x ∈ comap (↑(LinearEquiv.symm f)) P))
(Quotient.mk'' a)) =
Quotient.mk'' a
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁶ : Ring R₂
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
O : Type u_6
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : AddCommGroup O
inst✝ : Module R O
P : Submodule R M
Q : Submodule R N
S : Submodule R O
e : M ≃ₗ[R] N
f : N ≃ₗ[R] O
he : map e P = Q
hf : map f Q = S
hef : map (LinearEquiv.trans e f) P = S
⊢ equiv P S (LinearEquiv.trans e f) hef = LinearEquiv.trans (equiv P Q e he) (equiv Q S f hf)
[PROOFSTEP]
ext
-- `simp` can deal with `hef` depending on `e` and `f`
[GOAL]
case h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁶ : Ring R₂
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
O : Type u_6
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : AddCommGroup O
inst✝ : Module R O
P : Submodule R M
Q : Submodule R N
S : Submodule R O
e : M ≃ₗ[R] N
f : N ≃ₗ[R] O
he : map e P = Q
hf : map f Q = S
hef : map (LinearEquiv.trans e f) P = S
x✝ : M ⧸ P
⊢ ↑(equiv P S (LinearEquiv.trans e f) hef) x✝ = ↑(LinearEquiv.trans (equiv P Q e he) (equiv Q S f hf)) x✝
[PROOFSTEP]
simp only [Quotient.equiv_apply, LinearEquiv.trans_apply, LinearEquiv.coe_trans]
-- `rw` can deal with `mapQ_comp` needing extra hypotheses coming from the RHS
[GOAL]
case h
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
p p' : Submodule R M
R₂ : Type u_3
M₂ : Type u_4
inst✝⁶ : Ring R₂
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R₂ M₂
τ₁₂ : R →+* R₂
q : Submodule R₂ M₂
N : Type u_5
O : Type u_6
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : AddCommGroup O
inst✝ : Module R O
P : Submodule R M
Q : Submodule R N
S : Submodule R O
e : M ≃ₗ[R] N
f : N ≃ₗ[R] O
he : map e P = Q
hf : map f Q = S
hef : map (LinearEquiv.trans e f) P = S
x✝ : M ⧸ P
⊢ ↑(mapQ P S (comp ↑f ↑e) (_ : P ≤ comap (comp ↑f ↑e) S)) x✝ =
↑(mapQ Q S ↑f (_ : ∀ (x : N), x ∈ Q → x ∈ comap (↑f) S))
(↑(mapQ P Q ↑e (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑e) Q)) x✝)
[PROOFSTEP]
rw [mapQ_comp, LinearMap.comp_apply]
[GOAL]
R : Type u_1
M : Type u_2
R₂ : Type u_3
M₂ : Type u_4
R₃ : Type u_5
M₃ : Type u_6
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
x : M
⊢ ↑(comp (mkQ (range f)) f) x = ↑0 x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
R₂ : Type u_3
M₂ : Type u_4
R₃ : Type u_5
M₃ : Type u_6
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
⊢ ker g ≤ range f ↔ comp (mkQ (range f)) (Submodule.subtype (ker g)) = 0
[PROOFSTEP]
rw [← range_le_ker_iff, Submodule.ker_mkQ, Submodule.range_subtype]
[GOAL]
R : Type u_1
M : Type u_2
R₂ : Type u_3
M₂ : Type u_4
R₃ : Type u_5
M₃ : Type u_6
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ range f), comp u f = comp v f → u = v
⊢ range f = ⊤
[PROOFSTEP]
have h₁ : (0 : M₂ →ₗ[R₂] M₂ ⧸ (range f)).comp f = 0 := zero_comp _
[GOAL]
R : Type u_1
M : Type u_2
R₂ : Type u_3
M₂ : Type u_4
R₃ : Type u_5
M₃ : Type u_6
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ range f), comp u f = comp v f → u = v
h₁ : comp 0 f = 0
⊢ range f = ⊤
[PROOFSTEP]
rw [← Submodule.ker_mkQ (range f), ← h 0 f.range.mkQ (Eq.trans h₁ (range_mkQ_comp _).symm)]
[GOAL]
R : Type u_1
M : Type u_2
R₂ : Type u_3
M₂ : Type u_4
R₃ : Type u_5
M₃ : Type u_6
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ range f), comp u f = comp v f → u = v
h₁ : comp 0 f = 0
⊢ ker 0 = ⊤
[PROOFSTEP]
exact ker_zero
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p = p'
a b : M
⊢ Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b)
[PROOFSTEP]
subst h
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p : Submodule R M
a b : M
⊢ Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p = p'
src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') :=
Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b))
⊢ ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y
[PROOFSTEP]
rintro ⟨x⟩ ⟨y⟩
[GOAL]
case mk.mk
R : Type u_1
M : Type u_2
r : R
x✝¹ y✝¹ : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p = p'
src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') :=
Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b))
x✝ : M ⧸ p
x : M
y✝ : M ⧸ p
y : M
⊢ Equiv.toFun src✝ (Quot.mk Setoid.r x + Quot.mk Setoid.r y) =
Equiv.toFun src✝ (Quot.mk Setoid.r x) + Equiv.toFun src✝ (Quot.mk Setoid.r y)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p = p'
src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') :=
Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b))
⊢ ∀ (r : R) (x : M ⧸ p),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
x
[PROOFSTEP]
rintro x ⟨y⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
r : R
x✝¹ y✝ : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
h : p = p'
src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') :=
Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b))
x : R
x✝ : M ⧸ p
y : M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
(x • Quot.mk Setoid.r y) =
↑(RingHom.id R) x •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
(Quot.mk Setoid.r y)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
r : R
x y : M
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' P Q : Submodule R M
hf : map (↑(LinearEquiv.refl R M)) P = Q
⊢ P = Q
[PROOFSTEP]
simpa using hf
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
r : R
x✝ y✝ : M
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x y : { x // x ∈ compatibleMaps p q }
⊢ (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) =
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
M₂ : Type u_3
r : R
x✝¹ y✝ : M
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x y : { x // x ∈ compatibleMaps p q }
x✝ : M
⊢ ↑(LinearMap.comp ((fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y)) (mkQ p)) x✝ =
↑(LinearMap.comp
((fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x +
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y)
(mkQ p))
x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
r : R
x y : M
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
c : R
f : { x // x ∈ compatibleMaps p q }
⊢ AddHom.toFun
{ toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q),
map_add' :=
(_ :
∀ (x y : { x // x ∈ compatibleMaps p q }),
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) =
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x +
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q),
map_add' :=
(_ :
∀ (x y : { x // x ∈ compatibleMaps p q }),
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) =
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x +
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) }
f
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
M₂ : Type u_3
r : R
x y : M
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
c : R
f : { x // x ∈ compatibleMaps p q }
x✝ : M
⊢ ↑(LinearMap.comp
(AddHom.toFun
{ toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q),
map_add' :=
(_ :
∀ (x y : { x // x ∈ compatibleMaps p q }),
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) =
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x +
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) }
(c • f))
(mkQ p))
x✝ =
↑(LinearMap.comp
(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q),
map_add' :=
(_ :
∀ (x y : { x // x ∈ compatibleMaps p q }),
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) =
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x +
(fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) }
f)
(mkQ p))
x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.LinearAlgebra.Quotient", "llama_tokens": 24541} |
[GOAL]
l : Type u_1
R : Type u_2
inst✝¹ : DecidableEq l
inst✝ : CommRing R
⊢ (J l R)ᵀ = -J l R
[PROOFSTEP]
rw [J, fromBlocks_transpose, ← neg_one_smul R (fromBlocks _ _ _ _ : Matrix (l ⊕ l) (l ⊕ l) R), fromBlocks_smul,
Matrix.transpose_zero, Matrix.transpose_one, transpose_neg]
[GOAL]
l : Type u_1
R : Type u_2
inst✝¹ : DecidableEq l
inst✝ : CommRing R
⊢ fromBlocks 0 1 (-1ᵀ) 0 = fromBlocks (-1 • 0) (-1 • -1) (-1 • 1) (-1 • 0)
[PROOFSTEP]
simp [fromBlocks]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ J l R * J l R = -1
[PROOFSTEP]
rw [J, fromBlocks_multiply]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ fromBlocks (0 * 0 + -1 * 1) (0 * -1 + -1 * 0) (1 * 0 + 0 * 1) (1 * -1 + 0 * 0) = -1
[PROOFSTEP]
simp only [Matrix.zero_mul, Matrix.neg_mul, zero_add, neg_zero, Matrix.one_mul, add_zero]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ fromBlocks (-1) 0 0 (-1) = -1
[PROOFSTEP]
rw [← neg_zero, ← Matrix.fromBlocks_neg, ← fromBlocks_one]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ (J l R)⁻¹ = -J l R
[PROOFSTEP]
refine' Matrix.inv_eq_right_inv _
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ J l R * -J l R = 1
[PROOFSTEP]
rw [Matrix.mul_neg, J_squared]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ - -1 = 1
[PROOFSTEP]
exact neg_neg 1
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ det (J l R) * det (J l R) = 1
[PROOFSTEP]
rw [← det_mul, J_squared, ← one_smul R (-1 : Matrix _ _ R), smul_neg, ← neg_smul, det_smul, Fintype.card_sum, det_one,
mul_one]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ (-1) ^ (Fintype.card l + Fintype.card l) = 1
[PROOFSTEP]
apply Even.neg_one_pow
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ Even (Fintype.card l + Fintype.card l)
[PROOFSTEP]
exact even_add_self _
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
a b : Matrix (l ⊕ l) (l ⊕ l) R
ha : a ∈ {A | A * J l R * Aᵀ = J l R}
hb : b ∈ {A | A * J l R * Aᵀ = J l R}
⊢ a * b ∈ {A | A * J l R * Aᵀ = J l R}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, transpose_mul] at *
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
a b : Matrix (l ⊕ l) (l ⊕ l) R
ha : a * J l R * aᵀ = J l R
hb : b * J l R * bᵀ = J l R
⊢ a * b * J l R * (bᵀ * aᵀ) = J l R
[PROOFSTEP]
rw [← Matrix.mul_assoc, a.mul_assoc, a.mul_assoc, hb]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
a b : Matrix (l ⊕ l) (l ⊕ l) R
ha : a * J l R * aᵀ = J l R
hb : b * J l R * bᵀ = J l R
⊢ a * J l R * aᵀ = J l R
[PROOFSTEP]
exact ha
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : CommRing R
inst✝ : Fintype l
⊢ 1 ∈
{ carrier := {A | A * J l R * Aᵀ = J l R},
mul_mem' :=
(_ :
∀ {a b : Matrix (l ⊕ l) (l ⊕ l) R},
a ∈ {A | A * J l R * Aᵀ = J l R} →
b ∈ {A | A * J l R * Aᵀ = J l R} → a * b ∈ {A | A * J l R * Aᵀ = J l R}) }.carrier
[PROOFSTEP]
simp
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
⊢ A ∈ symplecticGroup l R ↔ A * J l R * Aᵀ = J l R
[PROOFSTEP]
simp [symplecticGroup]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
⊢ J l R ∈ symplecticGroup l R
[PROOFSTEP]
rw [mem_iff, J, fromBlocks_multiply, fromBlocks_transpose, fromBlocks_multiply]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
⊢ fromBlocks ((0 * 0 + -1 * 1) * 0ᵀ + (0 * -1 + -1 * 0) * (-1)ᵀ) ((0 * 0 + -1 * 1) * 1ᵀ + (0 * -1 + -1 * 0) * 0ᵀ)
((1 * 0 + 0 * 1) * 0ᵀ + (1 * -1 + 0 * 0) * (-1)ᵀ) ((1 * 0 + 0 * 1) * 1ᵀ + (1 * -1 + 0 * 0) * 0ᵀ) =
fromBlocks 0 (-1) 1 0
[PROOFSTEP]
simp
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
h : A ∈ symplecticGroup l R
⊢ -A ∈ symplecticGroup l R
[PROOFSTEP]
rw [mem_iff] at h ⊢
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
h : A * J l R * Aᵀ = J l R
⊢ -A * J l R * (-A)ᵀ = J l R
[PROOFSTEP]
simp [h]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ IsUnit (det A)
[PROOFSTEP]
rw [isUnit_iff_exists_inv]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ ∃ b, det A * b = 1
[PROOFSTEP]
use A.det
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ det A * det A = 1
[PROOFSTEP]
refine' (isUnit_det_J l R).mul_left_cancel _
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ det (J l R) * (det A * det A) = det (J l R) * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ det (J l R) * (det A * det A) = det (J l R)
[PROOFSTEP]
rw [mem_iff] at hA
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
⊢ det (J l R) * (det A * det A) = det (J l R)
[PROOFSTEP]
apply_fun det at hA
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : det (A * J l R * Aᵀ) = det (J l R)
⊢ det (J l R) * (det A * det A) = det (J l R)
[PROOFSTEP]
simp only [det_mul, det_transpose] at hA
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : det A * det (J l R) * det A = det (J l R)
⊢ det (J l R) * (det A * det A) = det (J l R)
[PROOFSTEP]
rw [mul_comm A.det, mul_assoc] at hA
[GOAL]
case h
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : det (J l R) * (det A * det A) = det (J l R)
⊢ det (J l R) * (det A * det A) = det (J l R)
[PROOFSTEP]
exact hA
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ Aᵀ ∈ symplecticGroup l R
[PROOFSTEP]
rw [mem_iff] at hA ⊢
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
⊢ Aᵀ * J l R * Aᵀᵀ = J l R
[PROOFSTEP]
rw [transpose_transpose]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
⊢ Aᵀ * J l R * A = J l R
[PROOFSTEP]
have huA := symplectic_det hA
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
⊢ Aᵀ * J l R * A = J l R
[PROOFSTEP]
have huAT : IsUnit Aᵀ.det := by
rw [Matrix.det_transpose]
exact huA
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
⊢ IsUnit (det Aᵀ)
[PROOFSTEP]
rw [Matrix.det_transpose]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
⊢ IsUnit (det A)
[PROOFSTEP]
exact huA
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ Aᵀ * J l R * A = J l R
[PROOFSTEP]
calc
Aᵀ * J l R * A = (-Aᵀ) * (J l R)⁻¹ * A := by
rw [J_inv]
simp
_ = (-Aᵀ) * (A * J l R * Aᵀ)⁻¹ * A := by rw [hA]
_ = -(Aᵀ * (Aᵀ⁻¹ * (J l R)⁻¹)) * A⁻¹ * A := by simp only [Matrix.mul_inv_rev, Matrix.mul_assoc, Matrix.neg_mul]
_ = -(J l R)⁻¹ := by rw [mul_nonsing_inv_cancel_left _ _ huAT, nonsing_inv_mul_cancel_right _ _ huA]
_ = J l R := by simp [J_inv]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ Aᵀ * J l R * A = -Aᵀ * (J l R)⁻¹ * A
[PROOFSTEP]
rw [J_inv]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ Aᵀ * J l R * A = -Aᵀ * -J l R * A
[PROOFSTEP]
simp
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ -Aᵀ * (J l R)⁻¹ * A = -Aᵀ * (A * J l R * Aᵀ)⁻¹ * A
[PROOFSTEP]
rw [hA]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ -Aᵀ * (A * J l R * Aᵀ)⁻¹ * A = -(Aᵀ * (Aᵀ⁻¹ * (J l R)⁻¹)) * A⁻¹ * A
[PROOFSTEP]
simp only [Matrix.mul_inv_rev, Matrix.mul_assoc, Matrix.neg_mul]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ -(Aᵀ * (Aᵀ⁻¹ * (J l R)⁻¹)) * A⁻¹ * A = -(J l R)⁻¹
[PROOFSTEP]
rw [mul_nonsing_inv_cancel_left _ _ huAT, nonsing_inv_mul_cancel_right _ _ huA]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A * J l R * Aᵀ = J l R
huA : IsUnit (det A)
huAT : IsUnit (det Aᵀ)
⊢ -(J l R)⁻¹ = J l R
[PROOFSTEP]
simp [J_inv]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : Aᵀ ∈ symplecticGroup l R
⊢ A ∈ symplecticGroup l R
[PROOFSTEP]
simpa using transpose_mem hA
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
⊢ A ∈ symplecticGroup l R ↔ Aᵀ * J l R * A = J l R
[PROOFSTEP]
rw [← transpose_mem_iff, mem_iff, transpose_transpose]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ -(J l R * Aᵀ * J l R * A) = -J l R * (Aᵀ * J l R * A)
[PROOFSTEP]
simp only [Matrix.mul_assoc, Matrix.neg_mul]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ -J l R * (Aᵀ * J l R * A) = -J l R * J l R
[PROOFSTEP]
rw [mem_iff'] at hA
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : Aᵀ * J l R * A = J l R
⊢ -J l R * (Aᵀ * J l R * A) = -J l R * J l R
[PROOFSTEP]
rw [hA]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ -J l R * J l R = -1 • (J l R * J l R)
[PROOFSTEP]
simp only [Matrix.neg_mul, neg_smul, one_smul]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ -1 • (J l R * J l R) = -1 • -1
[PROOFSTEP]
rw [J_squared]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ -1 • -1 = 1
[PROOFSTEP]
simp only [neg_smul_neg, one_smul]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A✝ : Matrix (l ⊕ l) (l ⊕ l) R
A : { x // x ∈ symplecticGroup l R }
⊢ ↑A⁻¹ = (↑A)⁻¹
[PROOFSTEP]
refine' (coe_inv A).trans (inv_eq_left_inv _).symm
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A✝ : Matrix (l ⊕ l) (l ⊕ l) R
A : { x // x ∈ symplecticGroup l R }
⊢ -J l R * (↑A)ᵀ * J l R * ↑A = 1
[PROOFSTEP]
simp [inv_left_mul_aux, coe_inv]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A✝ A : Matrix (l ⊕ l) (l ⊕ l) R
hA : A ∈ symplecticGroup l R
⊢ -J l R * Aᵀ * J l R * A = 1
[PROOFSTEP]
simp only [Matrix.neg_mul, inv_left_mul_aux hA]
[GOAL]
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A✝ : Matrix (l ⊕ l) (l ⊕ l) R
src✝¹ : Inv { x // x ∈ symplecticGroup l R } := hasInv
src✝ : Monoid { x // x ∈ symplecticGroup l R } := Submonoid.toMonoid (symplecticGroup l R)
A : { x // x ∈ symplecticGroup l R }
⊢ A⁻¹ * A = 1
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case a
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A✝ : Matrix (l ⊕ l) (l ⊕ l) R
src✝¹ : Inv { x // x ∈ symplecticGroup l R } := hasInv
src✝ : Monoid { x // x ∈ symplecticGroup l R } := Submonoid.toMonoid (symplecticGroup l R)
A : { x // x ∈ symplecticGroup l R }
⊢ ↑(A⁻¹ * A) = ↑1
[PROOFSTEP]
simp only [Submonoid.coe_one, Submonoid.coe_mul, Matrix.neg_mul, coe_inv]
[GOAL]
case a
l : Type u_1
R : Type u_2
inst✝² : DecidableEq l
inst✝¹ : Fintype l
inst✝ : CommRing R
A✝ : Matrix (l ⊕ l) (l ⊕ l) R
src✝¹ : Inv { x // x ∈ symplecticGroup l R } := hasInv
src✝ : Monoid { x // x ∈ symplecticGroup l R } := Submonoid.toMonoid (symplecticGroup l R)
A : { x // x ∈ symplecticGroup l R }
⊢ -(J l R * (↑A)ᵀ * J l R * ↑A) = 1
[PROOFSTEP]
exact inv_left_mul_aux A.2
| {"mathlib_filename": "Mathlib.LinearAlgebra.SymplecticGroup", "llama_tokens": 7672} |
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V = ↑n
⊢ finrank K V = n
[PROOFSTEP]
apply_fun toNat at h
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : ↑toNat (Module.rank K V) = ↑toNat ↑n
⊢ finrank K V = n
[PROOFSTEP]
rw [toNat_cast] at h
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : ↑toNat (Module.rank K V) = n
⊢ finrank K V = n
[PROOFSTEP]
exact_mod_cast h
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V ≤ ↑n
⊢ finrank K V ≤ n
[PROOFSTEP]
rwa [← Cardinal.toNat_le_iff_le_of_lt_aleph0, toNat_cast] at h
[GOAL]
case hc
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V ≤ ↑n
⊢ Module.rank K V < ℵ₀
[PROOFSTEP]
exact h.trans_lt (nat_lt_aleph0 n)
[GOAL]
case hd
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V ≤ ↑n
⊢ ↑n < ℵ₀
[PROOFSTEP]
exact nat_lt_aleph0 n
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V < ↑n
⊢ finrank K V < n
[PROOFSTEP]
rwa [← Cardinal.toNat_lt_iff_lt_of_lt_aleph0, toNat_cast] at h
[GOAL]
case hc
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V < ↑n
⊢ Module.rank K V < ℵ₀
[PROOFSTEP]
exact h.trans (nat_lt_aleph0 n)
[GOAL]
case hd
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : Module.rank K V < ↑n
⊢ ↑n < ℵ₀
[PROOFSTEP]
exact nat_lt_aleph0 n
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : n < finrank K V
⊢ ↑n < Module.rank K V
[PROOFSTEP]
rwa [← Cardinal.toNat_lt_iff_lt_of_lt_aleph0, toNat_cast]
[GOAL]
case hc
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : n < finrank K V
⊢ ↑n < ℵ₀
[PROOFSTEP]
exact nat_lt_aleph0 n
[GOAL]
case hd
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : n < finrank K V
⊢ Module.rank K V < ℵ₀
[PROOFSTEP]
contrapose! h
[GOAL]
case hd
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : ℵ₀ ≤ Module.rank K V
⊢ finrank K V ≤ n
[PROOFSTEP]
rw [finrank, Cardinal.toNat_apply_of_aleph0_le h]
[GOAL]
case hd
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
h : ℵ₀ ≤ Module.rank K V
⊢ 0 ≤ n
[PROOFSTEP]
exact n.zero_le
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
h : 1 < finrank K V
⊢ 1 < Module.rank K V
[PROOFSTEP]
simpa using lt_rank_of_lt_finrank h
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
h : lift (Module.rank K V) ≤ lift (Module.rank K V₂)
h' : Module.rank K V₂ < ℵ₀
⊢ finrank K V ≤ finrank K V₂
[PROOFSTEP]
simpa only [toNat_lift] using toNat_le_of_le_of_lt_aleph0 (lift_lt_aleph0.mpr h') h
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Ring K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : Nontrivial K
inst✝ : NoZeroSMulDivisors K V
n : ℕ
hn : finrank K V = Nat.succ n
⊢ 0 < finrank (?m.108424 hn) V
[PROOFSTEP]
rw [hn]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Ring K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : Nontrivial K
inst✝ : NoZeroSMulDivisors K V
n : ℕ
hn : finrank K V = Nat.succ n
⊢ 0 < Nat.succ n
[PROOFSTEP]
exact n.succ_pos
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Ring K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : Nontrivial K
inst✝ : NoZeroSMulDivisors K V
h : Subsingleton V
⊢ finrank K V = 0
[PROOFSTEP]
by_contra h0
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Ring K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : Nontrivial K
inst✝ : NoZeroSMulDivisors K V
h : Subsingleton V
h0 : ¬finrank K V = 0
⊢ False
[PROOFSTEP]
obtain ⟨x, y, hxy⟩ := nontrivial_of_finrank_pos (Nat.pos_of_ne_zero h0)
[GOAL]
case mk.intro.intro
K : Type u
V : Type v
inst✝⁶ : Ring K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : Nontrivial K
inst✝ : NoZeroSMulDivisors K V
h : Subsingleton V
h0 : ¬finrank K V = 0
x y : V
hxy : x ≠ y
⊢ False
[PROOFSTEP]
exact hxy (Subsingleton.elim _ _)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : Ring K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : StrongRankCondition K
ι : Type w
b : Finset ι
h : Basis { x // x ∈ b } K V
⊢ finrank K V = Finset.card b
[PROOFSTEP]
rw [finrank_eq_card_basis h, Fintype.card_coe]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : Ring K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : StrongRankCondition K
⊢ Module.rank K K = ↑1
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁵ : Ring K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : StrongRankCondition K
n : ℕ
⊢ finrank K (Fin n → K) = n
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : StrongRankCondition K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
h : ∀ (s : Set V), Basis (↑s) K V → ¬Set.Finite s
⊢ finrank K V = 0
[PROOFSTEP]
obtain ⟨_, ⟨b⟩⟩ := (Module.free_iff_set K V).mp ‹_›
[GOAL]
case intro.intro
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : StrongRankCondition K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
h : ∀ (s : Set V), Basis (↑s) K V → ¬Set.Finite s
w✝ : Set V
b : Basis (↑w✝) K V
⊢ finrank K V = 0
[PROOFSTEP]
exact dif_neg fun rank_lt => h _ b (b.finite_index_of_rank_lt_aleph0 rank_lt)
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : StrongRankCondition K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
h : ∀ (s : Finset V), Basis (↑↑s) K V → False
s : Set V
b : Basis (↑s) K V
hs : Set.Finite s
⊢ Basis (↑↑(Set.Finite.toFinset hs)) K V
[PROOFSTEP]
convert b
[GOAL]
case h.e'_1.h.e'_2
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : StrongRankCondition K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
h : ∀ (s : Finset V), Basis (↑↑s) K V → False
s : Set V
b : Basis (↑s) K V
hs : Set.Finite s
⊢ ↑(Set.Finite.toFinset hs) = s
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
V₂ : Type v'
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module K V₂
R : Type u_1
M : Type u_2
M₂ : Type u_3
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
f : M ≃ₗ[R] M₂
⊢ finrank R M = finrank R M₂
[PROOFSTEP]
unfold finrank
[GOAL]
K : Type u
V : Type v
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
V₂ : Type v'
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module K V₂
R : Type u_1
M : Type u_2
M₂ : Type u_3
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
f : M ≃ₗ[R] M₂
⊢ ↑toNat (Module.rank R M) = ↑toNat (Module.rank R M₂)
[PROOFSTEP]
rw [← Cardinal.toNat_lift, f.lift_rank_eq, Cardinal.toNat_lift]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
hf : Injective ↑f
⊢ finrank K { x // x ∈ range f } = finrank K V
[PROOFSTEP]
rw [(LinearEquiv.ofInjective f hf).finrank_eq]
[GOAL]
K : Type u
V : Type v
inst✝² : Ring K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ finrank K { x // x ∈ ⊤ } = finrank K V
[PROOFSTEP]
unfold finrank
[GOAL]
K : Type u
V : Type v
inst✝² : Ring K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ ↑toNat (Module.rank K { x // x ∈ ⊤ }) = ↑toNat (Module.rank K V)
[PROOFSTEP]
simp [rank_top]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
s t : Submodule K V
le : s ≤ t
lt : finrank K { x // x ∈ s } < finrank K { x // x ∈ t }
h : s = t
⊢ finrank K { x // x ∈ s } = finrank K { x // x ∈ t }
[PROOFSTEP]
rw [h]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
s : Submodule K V
lt : finrank K { x // x ∈ s } < finrank K V
⊢ s < ⊤
[PROOFSTEP]
rw [← finrank_top K V] at lt
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
s : Submodule K V
lt : finrank K { x // x ∈ s } < finrank K { x // x ∈ ⊤ }
⊢ s < ⊤
[PROOFSTEP]
exact lt_of_le_of_finrank_lt_finrank le_top lt
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
s : Set V
inst✝ : Fintype ↑s
⊢ Module.rank K { x // x ∈ span K s } ≤ ↑(Finset.card (Set.toFinset s))
[PROOFSTEP]
simpa using rank_span_le (K := K) s
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
⊢ Finset.card (Set.toFinset ↑s) = Finset.card s
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ Set.finrank K (Set.range b) ≤ Fintype.card ι
[PROOFSTEP]
classical
refine (finrank_span_le_card _).trans ?_
rw [Set.toFinset_range]
exact Finset.card_image_le
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ Set.finrank K (Set.range b) ≤ Fintype.card ι
[PROOFSTEP]
refine (finrank_span_le_card _).trans ?_
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ Finset.card (Set.toFinset (Set.range b)) ≤ Fintype.card ι
[PROOFSTEP]
rw [Set.toFinset_range]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ Finset.card (Finset.image b Finset.univ) ≤ Fintype.card ι
[PROOFSTEP]
exact Finset.card_image_le
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hb : LinearIndependent K b
⊢ Module.rank K { x // x ∈ span K (Set.range b) } = ↑(Fintype.card ι)
[PROOFSTEP]
have : Module.rank K (span K (Set.range b)) = #(Set.range b) := rank_span hb
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hb : LinearIndependent K b
this : Module.rank K { x // x ∈ span K (Set.range b) } = #↑(Set.range b)
⊢ Module.rank K { x // x ∈ span K (Set.range b) } = ↑(Fintype.card ι)
[PROOFSTEP]
rwa [← lift_inj, mk_range_eq_of_injective hb.injective, Cardinal.mk_fintype, lift_natCast, lift_eq_nat_iff] at this
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
s : Set V
inst✝ : Fintype ↑s
hs : LinearIndependent K Subtype.val
⊢ Module.rank K { x // x ∈ span K s } = ↑(Finset.card (Set.toFinset s))
[PROOFSTEP]
have : Module.rank K (span K s) = #s := rank_span_set hs
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
s : Set V
inst✝ : Fintype ↑s
hs : LinearIndependent K Subtype.val
this : Module.rank K { x // x ∈ span K s } = #↑s
⊢ Module.rank K { x // x ∈ span K s } = ↑(Finset.card (Set.toFinset s))
[PROOFSTEP]
rwa [Cardinal.mk_fintype, ← Set.toFinset_card] at this
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : LinearIndependent K Subtype.val
⊢ finrank K { x // x ∈ span K ↑s } = Finset.card s
[PROOFSTEP]
convert finrank_span_set_eq_card (s : Set V) hs
[GOAL]
case h.e'_3.h.e'_2
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : LinearIndependent K Subtype.val
⊢ s = Set.toFinset ↑s
[PROOFSTEP]
ext
[GOAL]
case h.e'_3.h.e'_2.a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : LinearIndependent K Subtype.val
a✝ : V
⊢ a✝ ∈ s ↔ a✝ ∈ Set.toFinset ↑s
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
⊢ g i = 0
[PROOFSTEP]
classical
by_contra gx_ne_zero
refine'
not_le_of_gt (span_lt_top_of_card_lt_finrank (show (b '' (Set.univ \ { i })).toFinset.card < finrank K V from _)) _
·
calc
(b '' (Set.univ \ { i })).toFinset.card = ((Set.univ \ { i }).toFinset.image b).card := by
rw [Set.toFinset_card, Fintype.card_ofFinset]
_ ≤ (Set.univ \ { i }).toFinset.card := Finset.card_image_le
_ = (Finset.univ.erase i).card := (congr_arg Finset.card (Finset.ext (by simp [and_comm])))
_ < Finset.univ.card := (Finset.card_erase_lt_of_mem (Finset.mem_univ i))
_ = finrank K V := card_eq
refine' spans.trans (span_le.mpr _)
rintro _
⟨j, rfl, rfl⟩
-- The case that `j ≠ i` is easy because `b j ∈ b '' (univ \ {i})`.
by_cases j_eq : j = i
swap
· refine' subset_span ⟨j, (Set.mem_diff _).mpr ⟨Set.mem_univ _, _⟩, rfl⟩
exact mt Set.mem_singleton_iff.mp j_eq
rw [j_eq, SetLike.mem_coe, show b i = -((g i)⁻¹ • (s.erase i).sum fun j => g j • b j) from _]
· refine' neg_mem (smul_mem _ _ (sum_mem fun k hk => _))
obtain ⟨k_ne_i, _⟩ := Finset.mem_erase.mp hk
refine' smul_mem _ _ (subset_span ⟨k, _, rfl⟩)
simp_all only [Set.mem_univ, Set.mem_diff, Set.mem_singleton_iff]
-- To show `b i` is a weighted sum of the other `b j`s, we'll rewrite this sum
-- to have the form of the assumption `dependent`.
apply eq_neg_of_add_eq_zero_left
calc
(b i + (g i)⁻¹ • (s.erase i).sum fun j => g j • b j) = (g i)⁻¹ • (g i • b i + (s.erase i).sum fun j => g j • b j) :=
by rw [smul_add, ← mul_smul, inv_mul_cancel gx_ne_zero, one_smul]
_ = (g i)⁻¹ • (0 : V) := (congr_arg _ ?_)
_ = 0 :=
smul_zero
_
-- And then it's just a bit of manipulation with finite sums.
rwa [← Finset.insert_erase i_mem_s, Finset.sum_insert (Finset.not_mem_erase _ _)] at dependent
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
⊢ g i = 0
[PROOFSTEP]
by_contra gx_ne_zero
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
⊢ False
[PROOFSTEP]
refine'
not_le_of_gt (span_lt_top_of_card_lt_finrank (show (b '' (Set.univ \ { i })).toFinset.card < finrank K V from _)) _
[GOAL]
case refine'_1
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
⊢ Finset.card (Set.toFinset (b '' (Set.univ \ {i}))) < finrank K V
[PROOFSTEP]
calc
(b '' (Set.univ \ { i })).toFinset.card = ((Set.univ \ { i }).toFinset.image b).card := by
rw [Set.toFinset_card, Fintype.card_ofFinset]
_ ≤ (Set.univ \ { i }).toFinset.card := Finset.card_image_le
_ = (Finset.univ.erase i).card := (congr_arg Finset.card (Finset.ext (by simp [and_comm])))
_ < Finset.univ.card := (Finset.card_erase_lt_of_mem (Finset.mem_univ i))
_ = finrank K V := card_eq
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
⊢ Finset.card (Set.toFinset (b '' (Set.univ \ {i}))) = Finset.card (Finset.image b (Set.toFinset (Set.univ \ {i})))
[PROOFSTEP]
rw [Set.toFinset_card, Fintype.card_ofFinset]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
⊢ ∀ (a : ι), a ∈ Set.toFinset (Set.univ \ {i}) ↔ a ∈ Finset.erase Finset.univ i
[PROOFSTEP]
simp [and_comm]
[GOAL]
case refine'_2
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
⊢ ⊤ ≤ span K (b '' (Set.univ \ {i}))
[PROOFSTEP]
refine' spans.trans (span_le.mpr _)
[GOAL]
case refine'_2
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
⊢ Set.range b ⊆ ↑(span K (b '' (Set.univ \ {i})))
[PROOFSTEP]
rintro _
⟨j, rfl, rfl⟩
-- The case that `j ≠ i` is easy because `b j ∈ b '' (univ \ {i})`.
[GOAL]
case refine'_2.intro.refl
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i})))
[PROOFSTEP]
by_cases j_eq : j = i
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i})))
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : ¬j = i
⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i})))
[PROOFSTEP]
swap
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : ¬j = i
⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i})))
[PROOFSTEP]
refine' subset_span ⟨j, (Set.mem_diff _).mpr ⟨Set.mem_univ _, _⟩, rfl⟩
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : ¬j = i
⊢ ¬j ∈ {i}
[PROOFSTEP]
exact mt Set.mem_singleton_iff.mp j_eq
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i})))
[PROOFSTEP]
rw [j_eq, SetLike.mem_coe, show b i = -((g i)⁻¹ • (s.erase i).sum fun j => g j • b j) from _]
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ -((g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) ∈ span K (b '' (Set.univ \ {i}))
[PROOFSTEP]
refine' neg_mem (smul_mem _ _ (sum_mem fun k hk => _))
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
k : ι
hk : k ∈ Finset.erase s i
⊢ g k • b k ∈ span K (b '' (Set.univ \ {i}))
[PROOFSTEP]
obtain ⟨k_ne_i, _⟩ := Finset.mem_erase.mp hk
[GOAL]
case pos.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
k : ι
hk : k ∈ Finset.erase s i
k_ne_i : k ≠ i
right✝ : k ∈ s
⊢ g k • b k ∈ span K (b '' (Set.univ \ {i}))
[PROOFSTEP]
refine' smul_mem _ _ (subset_span ⟨k, _, rfl⟩)
[GOAL]
case pos.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
k : ι
hk : k ∈ Finset.erase s i
k_ne_i : k ≠ i
right✝ : k ∈ s
⊢ k ∈ Set.univ \ {i}
[PROOFSTEP]
simp_all only [Set.mem_univ, Set.mem_diff, Set.mem_singleton_iff]
-- To show `b i` is a weighted sum of the other `b j`s, we'll rewrite this sum
-- to have the form of the assumption `dependent`.
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ b i = -((g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j)
[PROOFSTEP]
apply eq_neg_of_add_eq_zero_left
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ (b i + (g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) = 0
[PROOFSTEP]
calc
(b i + (g i)⁻¹ • (s.erase i).sum fun j => g j • b j) = (g i)⁻¹ • (g i • b i + (s.erase i).sum fun j => g j • b j) :=
by rw [smul_add, ← mul_smul, inv_mul_cancel gx_ne_zero, one_smul]
_ = (g i)⁻¹ • (0 : V) := (congr_arg _ ?_)
_ = 0 :=
smul_zero
_
-- And then it's just a bit of manipulation with finite sums.
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ (b i + (g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) =
(g i)⁻¹ • (g i • b i + Finset.sum (Finset.erase s i) fun j => g j • b j)
[PROOFSTEP]
rw [smul_add, ← mul_smul, inv_mul_cancel gx_ne_zero, one_smul]
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
spans : ⊤ ≤ span K (Set.range b)
card_eq : Fintype.card ι = finrank K V
s : Finset ι
g : ι → K
dependent : (Finset.sum s fun i => g i • b i) = 0
i : ι
i_mem_s : i ∈ s
gx_ne_zero : ¬g i = 0
j : ι
j_eq : j = i
⊢ (g i • b i + Finset.sum (Finset.erase s i) fun j => g j • b j) = 0
[PROOFSTEP]
rwa [← Finset.insert_erase i_mem_s, Finset.sum_insert (Finset.not_mem_erase _ _)] at dependent
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ LinearIndependent K b ↔ Fintype.card ι = Set.finrank K (Set.range b)
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ LinearIndependent K b → Fintype.card ι = Set.finrank K (Set.range b)
[PROOFSTEP]
intro h
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
h : LinearIndependent K b
⊢ Fintype.card ι = Set.finrank K (Set.range b)
[PROOFSTEP]
exact (finrank_span_eq_card h).symm
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ Fintype.card ι = Set.finrank K (Set.range b) → LinearIndependent K b
[PROOFSTEP]
intro hc
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
⊢ LinearIndependent K b
[PROOFSTEP]
let f := Submodule.subtype (span K (Set.range b))
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
⊢ LinearIndependent K b
[PROOFSTEP]
let b' : ι → span K (Set.range b) := fun i => ⟨b i, mem_span.2 fun p hp => hp (Set.mem_range_self _)⟩
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
⊢ LinearIndependent K b
[PROOFSTEP]
have hs : ⊤ ≤ span K (Set.range b') := by
intro x
have h : span K (f '' Set.range b') = map f (span K (Set.range b')) := span_image f
have hf : f '' Set.range b' = Set.range b := by
ext x
simp [Set.mem_image, Set.mem_range]
rw [hf] at h
have hx : (x : V) ∈ span K (Set.range b) := x.property
conv at hx =>
arg 2
rw [h]
simpa [mem_map] using hx
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
⊢ ⊤ ≤ span K (Set.range b')
[PROOFSTEP]
intro x
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
⊢ x ∈ ⊤ → x ∈ span K (Set.range b')
[PROOFSTEP]
have h : span K (f '' Set.range b') = map f (span K (Set.range b')) := span_image f
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b'))
⊢ x ∈ ⊤ → x ∈ span K (Set.range b')
[PROOFSTEP]
have hf : f '' Set.range b' = Set.range b := by
ext x
simp [Set.mem_image, Set.mem_range]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b'))
⊢ ↑f '' Set.range b' = Set.range b
[PROOFSTEP]
ext x
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x✝ : { x // x ∈ span K (Set.range b) }
h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b'))
x : V
⊢ x ∈ ↑f '' Set.range b' ↔ x ∈ Set.range b
[PROOFSTEP]
simp [Set.mem_image, Set.mem_range]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
⊢ x ∈ ⊤ → x ∈ span K (Set.range b')
[PROOFSTEP]
rw [hf] at h
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
⊢ x ∈ ⊤ → x ∈ span K (Set.range b')
[PROOFSTEP]
have hx : (x : V) ∈ span K (Set.range b) := x.property
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
hx : ↑x ∈ span K (Set.range b)
⊢ x ∈ ⊤ → x ∈ span K (Set.range b')
[PROOFSTEP]
conv at hx =>
arg 2
rw [h]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
hx : ↑x ∈ span K (Set.range b)
| ↑x ∈ span K (Set.range b)
[PROOFSTEP]
arg 2
rw [h]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
hx : ↑x ∈ span K (Set.range b)
| ↑x ∈ span K (Set.range b)
[PROOFSTEP]
arg 2
rw [h]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
hx : ↑x ∈ span K (Set.range b)
| ↑x ∈ span K (Set.range b)
[PROOFSTEP]
arg 2
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
hx : ↑x ∈ span K (Set.range b)
| span K (Set.range b)
[PROOFSTEP]
rw [h]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
x : { x // x ∈ span K (Set.range b) }
h : span K (Set.range b) = Submodule.map f (span K (Set.range b'))
hf : ↑f '' Set.range b' = Set.range b
hx : ↑x ∈ Submodule.map f (span K (Set.range b'))
⊢ x ∈ ⊤ → x ∈ span K (Set.range b')
[PROOFSTEP]
simpa [mem_map] using hx
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
hs : ⊤ ≤ span K (Set.range b')
⊢ LinearIndependent K b
[PROOFSTEP]
have hi : LinearMap.ker f = ⊥ := ker_subtype _
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
hc : Fintype.card ι = Set.finrank K (Set.range b)
f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b))
b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) }
hs : ⊤ ≤ span K (Set.range b')
hi : LinearMap.ker f = ⊥
⊢ LinearIndependent K b
[PROOFSTEP]
convert (linearIndependent_of_top_le_span_of_card_eq_finrank hs hc).map' _ hi
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
⊢ LinearIndependent K b ↔ Fintype.card ι ≤ Set.finrank K (Set.range b)
[PROOFSTEP]
rw [linearIndependent_iff_card_eq_finrank_span, finrank_range_le_card.le_iff_eq]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
v : V
n : v ≠ 0
h : ∀ (w : V), ∃ c, c • v = w
⊢ finrank K V = 1
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber K
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
v : V
n : v ≠ 0
h : ∀ (w : V), ∃ c, c • v = w
this : Nontrivial K
⊢ finrank K V = 1
[PROOFSTEP]
obtain ⟨b⟩ := (Basis.basis_singleton_iff.{u} PUnit).mpr ⟨v, n, h⟩
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
v : V
n : v ≠ 0
h : ∀ (w : V), ∃ c, c • v = w
this : Nontrivial K
b : Basis PUnit K V
⊢ finrank K V = 1
[PROOFSTEP]
rw [finrank_eq_card_basis b, Fintype.card_punit]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
v : V
h : ∀ (w : V), ∃ c, c • v = w
⊢ finrank K V ≤ 1
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber K
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
v : V
h : ∀ (w : V), ∃ c, c • v = w
this : Nontrivial K
⊢ finrank K V ≤ 1
[PROOFSTEP]
rcases eq_or_ne v 0 with (rfl | hn)
[GOAL]
case inl
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
this : Nontrivial K
h : ∀ (w : V), ∃ c, c • 0 = w
⊢ finrank K V ≤ 1
[PROOFSTEP]
haveI :=
subsingleton_of_forall_eq (0 : V) fun w => by
obtain ⟨c, rfl⟩ := h w
simp
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
this : Nontrivial K
h : ∀ (w : V), ∃ c, c • 0 = w
w : V
⊢ w = 0
[PROOFSTEP]
obtain ⟨c, rfl⟩ := h w
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
this : Nontrivial K
h : ∀ (w : V), ∃ c, c • 0 = w
c : K
⊢ c • 0 = 0
[PROOFSTEP]
simp
[GOAL]
case inl
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
this✝ : Nontrivial K
h : ∀ (w : V), ∃ c, c • 0 = w
this : Subsingleton V
⊢ finrank K V ≤ 1
[PROOFSTEP]
rw [finrank_zero_of_subsingleton]
[GOAL]
case inl
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
this✝ : Nontrivial K
h : ∀ (w : V), ∃ c, c • 0 = w
this : Subsingleton V
⊢ 0 ≤ 1
[PROOFSTEP]
exact zero_le_one
[GOAL]
case inr
K : Type u
V : Type v
inst✝⁴ : Ring K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : NoZeroSMulDivisors K V
inst✝ : StrongRankCondition K
v : V
h : ∀ (w : V), ∃ c, c • v = w
this : Nontrivial K
hn : v ≠ 0
⊢ finrank K V ≤ 1
[PROOFSTEP]
exact (finrank_eq_one v hn h).le
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : CommRing F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F { x // x ∈ ⊤ }
[PROOFSTEP]
rw [← Algebra.top_toSubmodule]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : CommRing F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F { x // x ∈ ↑Subalgebra.toSubmodule ⊤ }
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : CommRing F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ finrank F { x // x ∈ ⊤ } = finrank F { x // x ∈ ⊤ }
[PROOFSTEP]
rw [← Algebra.top_toSubmodule]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : CommRing F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ finrank F { x // x ∈ ⊤ } = finrank F { x // x ∈ ↑Subalgebra.toSubmodule ⊤ }
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : CommRing F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F E
[PROOFSTEP]
rw [subalgebra_top_rank_eq_submodule_top_rank]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : CommRing F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F E
[PROOFSTEP]
exact _root_.rank_top F E
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝⁵ : CommRing F
inst✝⁴ : Ring E
inst✝³ : Algebra F E
inst✝² : StrongRankCondition F
inst✝¹ : NoZeroSMulDivisors F E
inst✝ : Nontrivial E
⊢ Module.rank F { x // x ∈ span F {1} } = 1
[PROOFSTEP]
letI := Module.nontrivial F E
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝⁵ : CommRing F
inst✝⁴ : Ring E
inst✝³ : Algebra F E
inst✝² : StrongRankCondition F
inst✝¹ : NoZeroSMulDivisors F E
inst✝ : Nontrivial E
this : Nontrivial F := Module.nontrivial F E
⊢ Module.rank F { x // x ∈ span F {1} } = 1
[PROOFSTEP]
rw [rank_span_set]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝⁵ : CommRing F
inst✝⁴ : Ring E
inst✝³ : Algebra F E
inst✝² : StrongRankCondition F
inst✝¹ : NoZeroSMulDivisors F E
inst✝ : Nontrivial E
this : Nontrivial F := Module.nontrivial F E
⊢ #↑{1} = 1
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝⁵ : CommRing F
inst✝⁴ : Ring E
inst✝³ : Algebra F E
inst✝² : StrongRankCondition F
inst✝¹ : NoZeroSMulDivisors F E
inst✝ : Nontrivial E
this : Nontrivial F := Module.nontrivial F E
⊢ LinearIndependent F fun x => ↑x
[PROOFSTEP]
exacts [mk_singleton _, linearIndependent_singleton one_ne_zero]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝⁵ : CommRing F
inst✝⁴ : Ring E
inst✝³ : Algebra F E
inst✝² : StrongRankCondition F
inst✝¹ : NoZeroSMulDivisors F E
inst✝ : Nontrivial E
⊢ Module.rank F { x // x ∈ ⊥ } = ↑1
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.LinearAlgebra.Finrank", "llama_tokens": 21476} |
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
x : (i : ι) → Ms i
⊢ (↑(piQuotientLift p q f hf) fun i => Quotient.mk (x i)) = Quotient.mk (↑(↑(lsum R (fun i => Ms i) R) f) x)
[PROOFSTEP]
rw [piQuotientLift, lsum_apply, sum_apply, ← mkQ_apply, lsum_apply, sum_apply, _root_.map_sum]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
x : (i : ι) → Ms i
⊢ (Finset.sum Finset.univ fun d =>
↑(comp (mapQ (p d) q (f d) (_ : p d ≤ comap (f d) q)) (proj d)) fun i => Quotient.mk (x i)) =
Finset.sum Finset.univ fun x_1 => ↑(mkQ q) (↑(comp (f x_1) (proj x_1)) x)
[PROOFSTEP]
simp only [coe_proj, mapQ_apply, mkQ_apply, comp_apply]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
⊢ ↑(piQuotientLift p q f hf) (Pi.single i x) = ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) x
[PROOFSTEP]
simp_rw [piQuotientLift, lsum_apply, sum_apply, comp_apply, proj_apply]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
⊢ (Finset.sum Finset.univ fun x_1 => ↑(mapQ (p x_1) q (f x_1) (_ : p x_1 ≤ comap (f x_1) q)) (Pi.single i x x_1)) =
↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) x
[PROOFSTEP]
rw [Finset.sum_eq_single i]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
⊢ ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) x
[PROOFSTEP]
rw [Pi.single_eq_same]
[GOAL]
case h₀
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
⊢ ∀ (b : ι), b ∈ Finset.univ → b ≠ i → ↑(mapQ (p b) q (f b) (_ : p b ≤ comap (f b) q)) (Pi.single i x b) = 0
[PROOFSTEP]
rintro j - hj
[GOAL]
case h₀
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
j : ι
hj : j ≠ i
⊢ ↑(mapQ (p j) q (f j) (_ : p j ≤ comap (f j) q)) (Pi.single i x j) = 0
[PROOFSTEP]
rw [Pi.single_eq_of_ne hj, _root_.map_zero]
[GOAL]
case h₁
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
⊢ ¬i ∈ Finset.univ → ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = 0
[PROOFSTEP]
intros
[GOAL]
case h₁
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
a✝ : ¬i ∈ Finset.univ
⊢ ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = 0
[PROOFSTEP]
have := Finset.mem_univ i
[GOAL]
case h₁
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
q : Submodule R N
f : (i : ι) → Ms i →ₗ[R] N
hf : ∀ (i : ι), p i ≤ comap (f i) q
i : ι
x : Ms i ⧸ p i
a✝ : ¬i ∈ Finset.univ
this : i ∈ Finset.univ
⊢ ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = 0
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁶ : CommRing R
Ms : ι → Type u_3
inst✝⁵ : (i : ι) → AddCommGroup (Ms i)
inst✝⁴ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝³ : AddCommGroup N
inst✝² : Module R N
Ns : ι → Type u_5
inst✝¹ : (i : ι) → AddCommGroup (Ns i)
inst✝ : (i : ι) → Module R (Ns i)
p : (i : ι) → Submodule R (Ms i)
f : (i : ι) → Ms i →ₗ[R] Ns i
hf : ∀ (i : ι), p i ≤ ker (f i)
x : (i : ι) → Ms i
hx : x ∈ pi Set.univ p
⊢ ↑(LinearMap.pi fun i => comp (f i) (proj i)) x = 0
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
R : Type u_2
inst✝⁶ : CommRing R
Ms : ι → Type u_3
inst✝⁵ : (i : ι) → AddCommGroup (Ms i)
inst✝⁴ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝³ : AddCommGroup N
inst✝² : Module R N
Ns : ι → Type u_5
inst✝¹ : (i : ι) → AddCommGroup (Ns i)
inst✝ : (i : ι) → Module R (Ns i)
p : (i : ι) → Submodule R (Ms i)
f : (i : ι) → Ms i →ₗ[R] Ns i
hf : ∀ (i : ι), p i ≤ ker (f i)
x : (i : ι) → Ms i
hx : x ∈ pi Set.univ p
i : ι
⊢ ↑(LinearMap.pi fun i => comp (f i) (proj i)) x i = OfNat.ofNat 0 i
[PROOFSTEP]
simpa using hf i (mem_pi.mp hx i (Set.mem_univ i))
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
x : ((i : ι) → Ms i) ⧸ pi Set.univ p
x' : (i : ι) → Ms i
⊢ invFun p (toFun p (Quotient.mk'' x')) = Quotient.mk'' x'
[PROOFSTEP]
rw [Quotient.mk''_eq_mk x']
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
x : ((i : ι) → Ms i) ⧸ pi Set.univ p
x' : (i : ι) → Ms i
⊢ invFun p (toFun p (Quotient.mk x')) = Quotient.mk x'
[PROOFSTEP]
dsimp only [toFun, invFun]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
x : ((i : ι) → Ms i) ⧸ pi Set.univ p
x' : (i : ι) → Ms i
⊢ ↑(piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p)))
(↑(quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i)))) (Quotient.mk x')) =
Quotient.mk x'
[PROOFSTEP]
rw [quotientPiLift_mk p, funext fun i => (mkQ_apply (p i) (x' i)), piQuotientLift_mk p, lsum_single, id_apply]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
⊢ Function.RightInverse (invFun p) (toFun p)
[PROOFSTEP]
dsimp only [toFun, invFun]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
⊢ Function.RightInverse
↑(piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p)))
↑(quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i))))
[PROOFSTEP]
rw [Function.rightInverse_iff_comp, ← coe_comp, ← @id_coe R]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
⊢ ↑(comp (quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i))))
(piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p)))) =
↑LinearMap.id
[PROOFSTEP]
refine' congr_arg _ (pi_ext fun i x => Quotient.inductionOn' x fun x' => funext fun j => _)
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
j : ι
⊢ ↑(comp (quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i))))
(piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p))))
(Pi.single i (Quotient.mk'' x')) j =
↑LinearMap.id (Pi.single i (Quotient.mk'' x')) j
[PROOFSTEP]
rw [comp_apply, piQuotientLift_single, Quotient.mk''_eq_mk, mapQ_apply, quotientPiLift_mk, id_apply]
[GOAL]
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
j : ι
⊢ (fun i_1 => ↑(mkQ (p i_1)) (↑(single i) x' i_1)) j = Pi.single i (Quotient.mk x') j
[PROOFSTEP]
by_cases hij : i = j
[GOAL]
case pos
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
j : ι
hij : i = j
⊢ (fun i_1 => ↑(mkQ (p i_1)) (↑(single i) x' i_1)) j = Pi.single i (Quotient.mk x') j
[PROOFSTEP]
simp only [mkQ_apply, coe_single]
[GOAL]
case neg
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
j : ι
hij : ¬i = j
⊢ (fun i_1 => ↑(mkQ (p i_1)) (↑(single i) x' i_1)) j = Pi.single i (Quotient.mk x') j
[PROOFSTEP]
simp only [mkQ_apply, coe_single]
[GOAL]
case pos
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
j : ι
hij : i = j
⊢ Quotient.mk (Pi.single i x' j) = Pi.single i (Quotient.mk x') j
[PROOFSTEP]
subst hij
[GOAL]
case pos
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
⊢ Quotient.mk (Pi.single i x' i) = Pi.single i (Quotient.mk x') i
[PROOFSTEP]
rw [Pi.single_eq_same, Pi.single_eq_same]
[GOAL]
case neg
ι : Type u_1
R : Type u_2
inst✝⁸ : CommRing R
Ms : ι → Type u_3
inst✝⁷ : (i : ι) → AddCommGroup (Ms i)
inst✝⁶ : (i : ι) → Module R (Ms i)
N : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
Ns : ι → Type u_5
inst✝³ : (i : ι) → AddCommGroup (Ns i)
inst✝² : (i : ι) → Module R (Ns i)
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (Ms i)
i : ι
x : Ms i ⧸ p i
x' : Ms i
j : ι
hij : ¬i = j
⊢ Quotient.mk (Pi.single i x' j) = Pi.single i (Quotient.mk x') j
[PROOFSTEP]
rw [Pi.single_eq_of_ne (Ne.symm hij), Pi.single_eq_of_ne (Ne.symm hij), Quotient.mk_zero]
| {"mathlib_filename": "Mathlib.LinearAlgebra.QuotientPi", "llama_tokens": 8458} |
[GOAL]
R : Type u_1
inst✝³² : Semiring R
S : Type u_2
inst✝³¹ : Semiring S
R₂ : Type u_3
inst✝³⁰ : Semiring R₂
S₂ : Type u_4
inst✝²⁹ : Semiring S₂
M : Type u_5
N : Type u_6
P : Type u_7
M₂ : Type u_8
N₂ : Type u_9
P₂ : Type u_10
Nₗ : Type u_11
Pₗ : Type u_12
M' : Type u_13
N' : Type u_14
P' : Type u_15
inst✝²⁸ : AddCommMonoid M
inst✝²⁷ : AddCommMonoid N
inst✝²⁶ : AddCommMonoid P
inst✝²⁵ : AddCommMonoid M₂
inst✝²⁴ : AddCommMonoid N₂
inst✝²³ : AddCommMonoid P₂
inst✝²² : AddCommMonoid Nₗ
inst✝²¹ : AddCommMonoid Pₗ
inst✝²⁰ : AddCommGroup M'
inst✝¹⁹ : AddCommGroup N'
inst✝¹⁸ : AddCommGroup P'
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module S N
inst✝¹⁵ : Module R₂ P
inst✝¹⁴ : Module S₂ P
inst✝¹³ : Module R M₂
inst✝¹² : Module S N₂
inst✝¹¹ : Module R P₂
inst✝¹⁰ : Module S₂ P₂
inst✝⁹ : Module R Pₗ
inst✝⁸ : Module S Pₗ
inst✝⁷ : Module R M'
inst✝⁶ : Module S N'
inst✝⁵ : Module R₂ P'
inst✝⁴ : Module S₂ P'
inst✝³ : SMulCommClass S₂ R₂ P
inst✝² : SMulCommClass S R Pₗ
inst✝¹ : SMulCommClass S₂ R₂ P'
inst✝ : SMulCommClass S₂ R P₂
ρ₁₂ : R →+* R₂
σ₁₂ : S →+* S₂
f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P
n : N
m₁ m₂ : M
⊢ (fun n m => ↑(↑f m) n) n (m₁ + m₂) = (fun n m => ↑(↑f m) n) n m₁ + (fun n m => ↑(↑f m) n) n m₂
[PROOFSTEP]
simp only [map_add, add_apply]
[GOAL]
R : Type u_1
inst✝³² : Semiring R
S : Type u_2
inst✝³¹ : Semiring S
R₂ : Type u_3
inst✝³⁰ : Semiring R₂
S₂ : Type u_4
inst✝²⁹ : Semiring S₂
M : Type u_5
N : Type u_6
P : Type u_7
M₂ : Type u_8
N₂ : Type u_9
P₂ : Type u_10
Nₗ : Type u_11
Pₗ : Type u_12
M' : Type u_13
N' : Type u_14
P' : Type u_15
inst✝²⁸ : AddCommMonoid M
inst✝²⁷ : AddCommMonoid N
inst✝²⁶ : AddCommMonoid P
inst✝²⁵ : AddCommMonoid M₂
inst✝²⁴ : AddCommMonoid N₂
inst✝²³ : AddCommMonoid P₂
inst✝²² : AddCommMonoid Nₗ
inst✝²¹ : AddCommMonoid Pₗ
inst✝²⁰ : AddCommGroup M'
inst✝¹⁹ : AddCommGroup N'
inst✝¹⁸ : AddCommGroup P'
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module S N
inst✝¹⁵ : Module R₂ P
inst✝¹⁴ : Module S₂ P
inst✝¹³ : Module R M₂
inst✝¹² : Module S N₂
inst✝¹¹ : Module R P₂
inst✝¹⁰ : Module S₂ P₂
inst✝⁹ : Module R Pₗ
inst✝⁸ : Module S Pₗ
inst✝⁷ : Module R M'
inst✝⁶ : Module S N'
inst✝⁵ : Module R₂ P'
inst✝⁴ : Module S₂ P'
inst✝³ : SMulCommClass S₂ R₂ P
inst✝² : SMulCommClass S R Pₗ
inst✝¹ : SMulCommClass S₂ R₂ P'
inst✝ : SMulCommClass S₂ R P₂
ρ₁₂ : R →+* R₂
σ₁₂ : S →+* S₂
f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P
c : R
n : N
m : M
⊢ (fun n m => ↑(↑f m) n) n (c • m) = ↑ρ₁₂ c • (fun n m => ↑(↑f m) n) n m
[PROOFSTEP]
simp only [map_smulₛₗ, smul_apply]
[GOAL]
R : Type u_1
inst✝³² : Semiring R
S : Type u_2
inst✝³¹ : Semiring S
R₂ : Type u_3
inst✝³⁰ : Semiring R₂
S₂ : Type u_4
inst✝²⁹ : Semiring S₂
M : Type u_5
N : Type u_6
P : Type u_7
M₂ : Type u_8
N₂ : Type u_9
P₂ : Type u_10
Nₗ : Type u_11
Pₗ : Type u_12
M' : Type u_13
N' : Type u_14
P' : Type u_15
inst✝²⁸ : AddCommMonoid M
inst✝²⁷ : AddCommMonoid N
inst✝²⁶ : AddCommMonoid P
inst✝²⁵ : AddCommMonoid M₂
inst✝²⁴ : AddCommMonoid N₂
inst✝²³ : AddCommMonoid P₂
inst✝²² : AddCommMonoid Nₗ
inst✝²¹ : AddCommMonoid Pₗ
inst✝²⁰ : AddCommGroup M'
inst✝¹⁹ : AddCommGroup N'
inst✝¹⁸ : AddCommGroup P'
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module S N
inst✝¹⁵ : Module R₂ P
inst✝¹⁴ : Module S₂ P
inst✝¹³ : Module R M₂
inst✝¹² : Module S N₂
inst✝¹¹ : Module R P₂
inst✝¹⁰ : Module S₂ P₂
inst✝⁹ : Module R Pₗ
inst✝⁸ : Module S Pₗ
inst✝⁷ : Module R M'
inst✝⁶ : Module S N'
inst✝⁵ : Module R₂ P'
inst✝⁴ : Module S₂ P'
inst✝³ : SMulCommClass S₂ R₂ P
inst✝² : SMulCommClass S R Pₗ
inst✝¹ : SMulCommClass S₂ R₂ P'
inst✝ : SMulCommClass S₂ R P₂
ρ₁₂ : R →+* R₂
σ₁₂ : S →+* S₂
f g : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P
H : flip f = flip g
m : M
n : N
⊢ ↑(↑(flip f) n) m = ↑(↑(flip g) n) m
[PROOFSTEP]
rw [H]
[GOAL]
R : Type u_1
inst✝³² : Semiring R
S : Type u_2
inst✝³¹ : Semiring S
R₂ : Type u_3
inst✝³⁰ : Semiring R₂
S₂ : Type u_4
inst✝²⁹ : Semiring S₂
M : Type u_5
N : Type u_6
P : Type u_7
M₂ : Type u_8
N₂ : Type u_9
P₂ : Type u_10
Nₗ : Type u_11
Pₗ : Type u_12
M' : Type u_13
N' : Type u_14
P' : Type u_15
inst✝²⁸ : AddCommMonoid M
inst✝²⁷ : AddCommMonoid N
inst✝²⁶ : AddCommMonoid P
inst✝²⁵ : AddCommMonoid M₂
inst✝²⁴ : AddCommMonoid N₂
inst✝²³ : AddCommMonoid P₂
inst✝²² : AddCommMonoid Nₗ
inst✝²¹ : AddCommMonoid Pₗ
inst✝²⁰ : AddCommGroup M'
inst✝¹⁹ : AddCommGroup N'
inst✝¹⁸ : AddCommGroup P'
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module S N
inst✝¹⁵ : Module R₂ P
inst✝¹⁴ : Module S₂ P
inst✝¹³ : Module R M₂
inst✝¹² : Module S N₂
inst✝¹¹ : Module R P₂
inst✝¹⁰ : Module S₂ P₂
inst✝⁹ : Module R Pₗ
inst✝⁸ : Module S Pₗ
inst✝⁷ : Module R M'
inst✝⁶ : Module S N'
inst✝⁵ : Module R₂ P'
inst✝⁴ : Module S₂ P'
inst✝³ : SMulCommClass S₂ R₂ P
inst✝² : SMulCommClass S R Pₗ
inst✝¹ : SMulCommClass S₂ R₂ P'
inst✝ : SMulCommClass S₂ R P₂
ρ₁₂ : R →+* R₂
σ₁₂ : S →+* S₂
f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P
q : Submodule S N
m₁ m₂ : M
x✝ : { x // x ∈ q }
⊢ ↑((fun m => domRestrict (↑f m) q) (m₁ + m₂)) x✝ =
↑((fun m => domRestrict (↑f m) q) m₁ + (fun m => domRestrict (↑f m) q) m₂) x✝
[PROOFSTEP]
simp only [map_add, domRestrict_apply, add_apply]
[GOAL]
R : Type u_1
inst✝³² : Semiring R
S : Type u_2
inst✝³¹ : Semiring S
R₂ : Type u_3
inst✝³⁰ : Semiring R₂
S₂ : Type u_4
inst✝²⁹ : Semiring S₂
M : Type u_5
N : Type u_6
P : Type u_7
M₂ : Type u_8
N₂ : Type u_9
P₂ : Type u_10
Nₗ : Type u_11
Pₗ : Type u_12
M' : Type u_13
N' : Type u_14
P' : Type u_15
inst✝²⁸ : AddCommMonoid M
inst✝²⁷ : AddCommMonoid N
inst✝²⁶ : AddCommMonoid P
inst✝²⁵ : AddCommMonoid M₂
inst✝²⁴ : AddCommMonoid N₂
inst✝²³ : AddCommMonoid P₂
inst✝²² : AddCommMonoid Nₗ
inst✝²¹ : AddCommMonoid Pₗ
inst✝²⁰ : AddCommGroup M'
inst✝¹⁹ : AddCommGroup N'
inst✝¹⁸ : AddCommGroup P'
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module S N
inst✝¹⁵ : Module R₂ P
inst✝¹⁴ : Module S₂ P
inst✝¹³ : Module R M₂
inst✝¹² : Module S N₂
inst✝¹¹ : Module R P₂
inst✝¹⁰ : Module S₂ P₂
inst✝⁹ : Module R Pₗ
inst✝⁸ : Module S Pₗ
inst✝⁷ : Module R M'
inst✝⁶ : Module S N'
inst✝⁵ : Module R₂ P'
inst✝⁴ : Module S₂ P'
inst✝³ : SMulCommClass S₂ R₂ P
inst✝² : SMulCommClass S R Pₗ
inst✝¹ : SMulCommClass S₂ R₂ P'
inst✝ : SMulCommClass S₂ R P₂
ρ₁₂ : R →+* R₂
σ₁₂ : S →+* S₂
f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P
q : Submodule S N
c : R
m : M
x✝ : { x // x ∈ q }
⊢ ↑(AddHom.toFun
{ toFun := fun m => domRestrict (↑f m) q,
map_add' :=
(_ :
∀ (m₁ m₂ : M),
(fun m => domRestrict (↑f m) q) (m₁ + m₂) =
(fun m => domRestrict (↑f m) q) m₁ + (fun m => domRestrict (↑f m) q) m₂) }
(c • m))
x✝ =
↑(↑ρ₁₂ c •
AddHom.toFun
{ toFun := fun m => domRestrict (↑f m) q,
map_add' :=
(_ :
∀ (m₁ m₂ : M),
(fun m => domRestrict (↑f m) q) (m₁ + m₂) =
(fun m => domRestrict (↑f m) q) m₁ + (fun m => domRestrict (↑f m) q) m₂) }
m)
x✝
[PROOFSTEP]
simp only [f.map_smulₛₗ, domRestrict_apply, smul_apply]
[GOAL]
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
⊢ compl₂ f id = f
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
x✝¹ : M
x✝ : N
⊢ ↑(↑(compl₂ f id) x✝¹) x✝ = ↑(↑f x✝¹) x✝
[PROOFSTEP]
rw [compl₂_apply, id_coe, id.def]
[GOAL]
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f✝ : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
⊢ compl₁₂ f id id = f
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f✝ : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
x✝¹ : Mₗ
x✝ : Nₗ
⊢ ↑(↑(compl₁₂ f id id) x✝¹) x✝ = ↑(↑f x✝¹) x✝
[PROOFSTEP]
simp_rw [compl₁₂_apply, id_coe, id.def]
[GOAL]
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
⊢ compl₁₂ f₁ g g' = compl₁₂ f₂ g g' ↔ f₁ = f₂
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
⊢ compl₁₂ f₁ g g' = compl₁₂ f₂ g g' → f₁ = f₂
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
⊢ f₁ = f₂ → compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
⊢ f₁ = f₂
[PROOFSTEP]
ext x y
[GOAL]
case mp.h.h
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
x : Mₗ
y : Nₗ
⊢ ↑(↑f₁ x) y = ↑(↑f₂ x) y
[PROOFSTEP]
cases' hₗ x with x' hx
[GOAL]
case mp.h.h.intro
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
x : Mₗ
y : Nₗ
x' : Qₗ
hx : ↑g x' = x
⊢ ↑(↑f₁ x) y = ↑(↑f₂ x) y
[PROOFSTEP]
subst hx
[GOAL]
case mp.h.h.intro
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
y : Nₗ
x' : Qₗ
⊢ ↑(↑f₁ (↑g x')) y = ↑(↑f₂ (↑g x')) y
[PROOFSTEP]
cases' hᵣ y with y' hy
[GOAL]
case mp.h.h.intro.intro
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
y : Nₗ
x' : Qₗ
y' : Qₗ'
hy : ↑g' y' = y
⊢ ↑(↑f₁ (↑g x')) y = ↑(↑f₂ (↑g x')) y
[PROOFSTEP]
subst hy
[GOAL]
case mp.h.h.intro.intro
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
x' : Qₗ
y' : Qₗ'
⊢ ↑(↑f₁ (↑g x')) (↑g' y') = ↑(↑f₂ (↑g x')) (↑g' y')
[PROOFSTEP]
convert LinearMap.congr_fun₂ h x' y' using 0
[GOAL]
case mpr
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
h : f₁ = f₂
⊢ compl₁₂ f₁ g g' = compl₁₂ f₂ g g'
[PROOFSTEP]
subst h
[GOAL]
case mpr
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
f₁ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ
g : Qₗ →ₗ[R] Mₗ
g' : Qₗ' →ₗ[R] Nₗ
hₗ : Function.Surjective ↑g
hᵣ : Function.Surjective ↑g'
⊢ compl₁₂ f₁ g g' = compl₁₂ f₁ g g'
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝²³ : CommSemiring R
R₂ : Type u_2
inst✝²² : CommSemiring R₂
R₃ : Type u_3
inst✝²¹ : CommSemiring R₃
R₄ : Type u_4
inst✝²⁰ : CommSemiring R₄
M : Type u_5
N : Type u_6
P : Type u_7
Q : Type u_8
Mₗ : Type u_9
Nₗ : Type u_10
Pₗ : Type u_11
Qₗ : Type u_12
Qₗ' : Type u_13
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : AddCommMonoid P
inst✝¹⁶ : AddCommMonoid Q
inst✝¹⁵ : AddCommMonoid Mₗ
inst✝¹⁴ : AddCommMonoid Nₗ
inst✝¹³ : AddCommMonoid Pₗ
inst✝¹² : AddCommMonoid Qₗ
inst✝¹¹ : AddCommMonoid Qₗ'
inst✝¹⁰ : Module R M
inst✝⁹ : Module R₂ N
inst✝⁸ : Module R₃ P
inst✝⁷ : Module R₄ Q
inst✝⁶ : Module R Mₗ
inst✝⁵ : Module R Nₗ
inst✝⁴ : Module R Pₗ
inst✝³ : Module R Qₗ
inst✝² : Module R Qₗ'
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₄₂ : R₄ →+* R₂
σ₄₃ : R₄ →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃
f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P
r s : R
m : M
⊢ (fun x x_1 => x • x_1) s (r • m) = r • (fun x x_1 => x • x_1) s m
[PROOFSTEP]
simp only [smul_smul, smul_eq_mul, mul_comm]
| {"mathlib_filename": "Mathlib.LinearAlgebra.BilinearMap", "llama_tokens": 13867} |
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : degree f < ↑(Finset.card s)
eval_f : ∀ (x : R), x ∈ s → eval x f = 0
⊢ f = 0
[PROOFSTEP]
rw [← mem_degreeLT] at degree_f_lt
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : f ∈ degreeLT R (Finset.card s)
eval_f : ∀ (x : R), x ∈ s → eval x f = 0
⊢ f = 0
[PROOFSTEP]
simp_rw [eval_eq_sum_degreeLTEquiv degree_f_lt] at eval_f
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : f ∈ degreeLT R (Finset.card s)
eval_f :
∀ (x : R),
x ∈ s →
∑ x_1 : Fin (Finset.card s),
↑(degreeLTEquiv R (Finset.card s)) { val := f, property := degree_f_lt } x_1 * x ^ ↑x_1 =
0
⊢ f = 0
[PROOFSTEP]
rw [← degreeLTEquiv_eq_zero_iff_eq_zero degree_f_lt]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : f ∈ degreeLT R (Finset.card s)
eval_f :
∀ (x : R),
x ∈ s →
∑ x_1 : Fin (Finset.card s),
↑(degreeLTEquiv R (Finset.card s)) { val := f, property := degree_f_lt } x_1 * x ^ ↑x_1 =
0
⊢ ↑(degreeLTEquiv R (Finset.card s)) { val := f, property := degree_f_lt } = 0
[PROOFSTEP]
exact
Matrix.eq_zero_of_forall_index_sum_mul_pow_eq_zero
(Injective.comp (Embedding.subtype _).inj' (equivFinOfCardEq (card_coe _)).symm.injective) fun _ =>
eval_f _ (Finset.coe_mem _)
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_fg_lt : degree (f - g) < ↑(Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ f = g
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_fg_lt : degree (f - g) < ↑(Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ f - g = 0
[PROOFSTEP]
refine' eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_fg_lt _
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_fg_lt : degree (f - g) < ↑(Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ ∀ (x : R), x ∈ s → eval x (f - g) = 0
[PROOFSTEP]
simp_rw [eval_sub, sub_eq_zero]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_fg_lt : degree (f - g) < ↑(Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ ∀ (x : R), x ∈ s → eval x f = eval x g
[PROOFSTEP]
exact eval_fg
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : degree f < ↑(Finset.card s)
degree_g_lt : degree g < ↑(Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ f = g
[PROOFSTEP]
rw [← mem_degreeLT] at degree_f_lt degree_g_lt
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : f ∈ degreeLT R (Finset.card s)
degree_g_lt : g ∈ degreeLT R (Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ f = g
[PROOFSTEP]
refine' eq_of_degree_sub_lt_of_eval_finset_eq _ _ eval_fg
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : f ∈ degreeLT R (Finset.card s)
degree_g_lt : g ∈ degreeLT R (Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ degree (f - g) < ↑(Finset.card s)
[PROOFSTEP]
rw [← mem_degreeLT]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
degree_f_lt : f ∈ degreeLT R (Finset.card s)
degree_g_lt : g ∈ degreeLT R (Finset.card s)
eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ f - g ∈ degreeLT R (Finset.card s)
[PROOFSTEP]
exact Submodule.sub_mem _ degree_f_lt degree_g_lt
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
h_deg_le : degree f ≤ ↑(Finset.card s)
h_deg_eq : degree f = degree g
hlc : leadingCoeff f = leadingCoeff g
h_eval : ∀ (x : R), x ∈ s → eval x f = eval x g
⊢ f = g
[PROOFSTEP]
rcases eq_or_ne f 0 with rfl | hf
[GOAL]
case inl
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
g : R[X]
s : Finset R
h_deg_le : degree 0 ≤ ↑(Finset.card s)
h_deg_eq : degree 0 = degree g
hlc : leadingCoeff 0 = leadingCoeff g
h_eval : ∀ (x : R), x ∈ s → eval x 0 = eval x g
⊢ 0 = g
[PROOFSTEP]
rwa [degree_zero, eq_comm, degree_eq_bot, eq_comm] at h_deg_eq
[GOAL]
case inr
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
s : Finset R
h_deg_le : degree f ≤ ↑(Finset.card s)
h_deg_eq : degree f = degree g
hlc : leadingCoeff f = leadingCoeff g
h_eval : ∀ (x : R), x ∈ s → eval x f = eval x g
hf : f ≠ 0
⊢ f = g
[PROOFSTEP]
exact eq_of_degree_sub_lt_of_eval_finset_eq s (lt_of_lt_of_le (degree_sub_lt h_deg_eq hf hlc) h_deg_le) h_eval
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card s)
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0
⊢ f = 0
[PROOFSTEP]
classical
rw [← card_image_of_injOn hvs] at degree_f_lt
refine' eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_f_lt _
intro x hx
rcases mem_image.mp hx with ⟨_, hj, rfl⟩
exact eval_f _ hj
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card s)
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0
⊢ f = 0
[PROOFSTEP]
rw [← card_image_of_injOn hvs] at degree_f_lt
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card (image v s))
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0
⊢ f = 0
[PROOFSTEP]
refine' eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_f_lt _
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card (image v s))
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0
⊢ ∀ (x : R), x ∈ image v s → eval x f = 0
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card (image v s))
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0
x : R
hx : x ∈ image v s
⊢ eval x f = 0
[PROOFSTEP]
rcases mem_image.mp hx with ⟨_, hj, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card (image v s))
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0
w✝ : ι
hj : w✝ ∈ s
hx : v w✝ ∈ image v s
⊢ eval (v w✝) f = 0
[PROOFSTEP]
exact eval_f _ hj
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_fg_lt : degree (f - g) < ↑(card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ f = g
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_fg_lt : degree (f - g) < ↑(card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ f - g = 0
[PROOFSTEP]
refine' eq_zero_of_degree_lt_of_eval_index_eq_zero _ hvs degree_fg_lt _
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_fg_lt : degree (f - g) < ↑(card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ ∀ (i : ι), i ∈ s → eval (v i) (f - g) = 0
[PROOFSTEP]
simp_rw [eval_sub, sub_eq_zero]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_fg_lt : degree (f - g) < ↑(card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
[PROOFSTEP]
exact eval_fg
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card s)
degree_g_lt : degree g < ↑(card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ f = g
[PROOFSTEP]
refine' eq_of_degree_sub_lt_of_eval_index_eq _ hvs _ eval_fg
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card s)
degree_g_lt : degree g < ↑(card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ degree (f - g) < ↑(card s)
[PROOFSTEP]
rw [← mem_degreeLT] at degree_f_lt degree_g_lt ⊢
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
degree_f_lt : f ∈ degreeLT R (card s)
degree_g_lt : g ∈ degreeLT R (card s)
eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ f - g ∈ degreeLT R (card s)
[PROOFSTEP]
exact Submodule.sub_mem _ degree_f_lt degree_g_lt
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
h_deg_le : degree f ≤ ↑(card s)
h_deg_eq : degree f = degree g
hlc : leadingCoeff f = leadingCoeff g
h_eval : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
⊢ f = g
[PROOFSTEP]
rcases eq_or_ne f 0 with rfl | hf
[GOAL]
case inl
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
h_deg_le : degree 0 ≤ ↑(card s)
h_deg_eq : degree 0 = degree g
hlc : leadingCoeff 0 = leadingCoeff g
h_eval : ∀ (i : ι), i ∈ s → eval (v i) 0 = eval (v i) g
⊢ 0 = g
[PROOFSTEP]
rwa [degree_zero, eq_comm, degree_eq_bot, eq_comm] at h_deg_eq
[GOAL]
case inr
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
f g : R[X]
ι : Type u_2
v : ι → R
s : Finset ι
hvs : Set.InjOn v ↑s
h_deg_le : degree f ≤ ↑(card s)
h_deg_eq : degree f = degree g
hlc : leadingCoeff f = leadingCoeff g
h_eval : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g
hf : f ≠ 0
⊢ f = g
[PROOFSTEP]
exact eq_of_degree_sub_lt_of_eval_index_eq s hvs (lt_of_lt_of_le (degree_sub_lt h_deg_eq hf hlc) h_deg_le) h_eval
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
⊢ basisDivisor x x = 0
[PROOFSTEP]
simp only [basisDivisor, sub_self, inv_zero, map_zero, zero_mul]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
hxy : basisDivisor x y = 0
⊢ x = y
[PROOFSTEP]
simp_rw [basisDivisor, mul_eq_zero, X_sub_C_ne_zero, or_false_iff, C_eq_zero, inv_eq_zero, sub_eq_zero] at hxy
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
hxy : x = y
⊢ x = y
[PROOFSTEP]
exact hxy
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
⊢ basisDivisor x y ≠ 0 ↔ x ≠ y
[PROOFSTEP]
rw [Ne.def, basisDivisor_eq_zero_iff]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
hxy : x ≠ y
⊢ degree (basisDivisor x y) = 1
[PROOFSTEP]
rw [basisDivisor, degree_mul, degree_X_sub_C, degree_C, zero_add]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
hxy : x ≠ y
⊢ (x - y)⁻¹ ≠ 0
[PROOFSTEP]
exact inv_ne_zero (sub_ne_zero_of_ne hxy)
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
⊢ degree (basisDivisor x x) = ⊥
[PROOFSTEP]
rw [basisDivisor_self, degree_zero]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
⊢ natDegree (basisDivisor x x) = 0
[PROOFSTEP]
rw [basisDivisor_self, natDegree_zero]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
⊢ eval y (basisDivisor x y) = 0
[PROOFSTEP]
simp only [basisDivisor, eval_mul, eval_C, eval_sub, eval_X, sub_self, mul_zero]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
hxy : x ≠ y
⊢ eval x (basisDivisor x y) = 1
[PROOFSTEP]
simp only [basisDivisor, eval_mul, eval_C, eval_sub, eval_X]
[GOAL]
F : Type u_1
inst✝ : Field F
x y : F
hxy : x ≠ y
⊢ (x - y)⁻¹ * (x - y) = 1
[PROOFSTEP]
exact inv_mul_cancel (sub_ne_zero_of_ne hxy)
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j i : ι
⊢ Lagrange.basis {i} v i = 1
[PROOFSTEP]
rw [Lagrange.basis, erase_singleton, prod_empty]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hij : i ≠ j
⊢ Lagrange.basis {i, j} v i = basisDivisor (v i) (v j)
[PROOFSTEP]
simp only [Lagrange.basis, hij, erase_insert_eq_erase, erase_eq_of_not_mem, mem_singleton, not_false_iff,
prod_singleton]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hij : i ≠ j
⊢ Lagrange.basis {i, j} v j = basisDivisor (v j) (v i)
[PROOFSTEP]
rw [pair_comm]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hij : i ≠ j
⊢ Lagrange.basis {j, i} v j = basisDivisor (v j) (v i)
[PROOFSTEP]
exact basis_pair_left hij.symm
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ Lagrange.basis s v i ≠ 0
[PROOFSTEP]
simp_rw [Lagrange.basis, prod_ne_zero_iff, Ne.def, mem_erase]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ ∀ (a : ι), a ≠ i ∧ a ∈ s → ¬basisDivisor (v i) (v a) = 0
[PROOFSTEP]
rintro j ⟨hij, hj⟩
[GOAL]
case intro
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
hij : j ≠ i
hj : j ∈ s
⊢ ¬basisDivisor (v i) (v j) = 0
[PROOFSTEP]
rw [basisDivisor_eq_zero_iff, hvs.eq_iff hi hj]
[GOAL]
case intro
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
hij : j ≠ i
hj : j ∈ s
⊢ ¬i = j
[PROOFSTEP]
exact hij.symm
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ eval (v i) (Lagrange.basis s v i) = 1
[PROOFSTEP]
rw [Lagrange.basis, eval_prod]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ ∏ j in Finset.erase s i, eval (v i) (basisDivisor (v i) (v j)) = 1
[PROOFSTEP]
refine' prod_eq_one fun j H => _
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
H : j ∈ Finset.erase s i
⊢ eval (v i) (basisDivisor (v i) (v j)) = 1
[PROOFSTEP]
rw [eval_basisDivisor_left_of_ne]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
H : j ∈ Finset.erase s i
⊢ v i ≠ v j
[PROOFSTEP]
rcases mem_erase.mp H with ⟨hij, hj⟩
[GOAL]
case intro
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
H : j ∈ Finset.erase s i
hij : j ≠ i
hj : j ∈ s
⊢ v i ≠ v j
[PROOFSTEP]
exact mt (hvs hi hj) hij.symm
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hij : i ≠ j
hj : j ∈ s
⊢ eval (v j) (Lagrange.basis s v i) = 0
[PROOFSTEP]
simp_rw [Lagrange.basis, eval_prod, prod_eq_zero_iff]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hij : i ≠ j
hj : j ∈ s
⊢ ∃ a, a ∈ Finset.erase s i ∧ eval (v j) (basisDivisor (v i) (v a)) = 0
[PROOFSTEP]
exact ⟨j, ⟨mem_erase.mpr ⟨hij.symm, hj⟩, eval_basisDivisor_right⟩⟩
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ natDegree (Lagrange.basis s v i) = card s - 1
[PROOFSTEP]
have H : ∀ j, j ∈ s.erase i → basisDivisor (v i) (v j) ≠ 0 :=
by
simp_rw [Ne.def, mem_erase, basisDivisor_eq_zero_iff]
exact fun j ⟨hij₁, hj⟩ hij₂ => hij₁ (hvs hj hi hij₂.symm)
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0
[PROOFSTEP]
simp_rw [Ne.def, mem_erase, basisDivisor_eq_zero_iff]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ ∀ (j : ι), j ≠ i ∧ j ∈ s → ¬v i = v j
[PROOFSTEP]
exact fun j ⟨hij₁, hj⟩ hij₂ => hij₁ (hvs hj hi hij₂.symm)
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0
⊢ natDegree (Lagrange.basis s v i) = card s - 1
[PROOFSTEP]
rw [← card_erase_of_mem hi, card_eq_sum_ones]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0
⊢ natDegree (Lagrange.basis s v i) = ∑ x in Finset.erase s i, 1
[PROOFSTEP]
convert natDegree_prod _ _ H using 1
[GOAL]
case h.e'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0
⊢ ∑ x in Finset.erase s i, 1 = ∑ i_1 in Finset.erase s i, natDegree (basisDivisor (v i) (v i_1))
[PROOFSTEP]
refine' sum_congr rfl fun j hj => (natDegree_basisDivisor_of_ne _).symm
[GOAL]
case h.e'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0
j : ι
hj : j ∈ Finset.erase s i
⊢ v i ≠ v j
[PROOFSTEP]
rw [Ne.def, ← basisDivisor_eq_zero_iff]
[GOAL]
case h.e'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j✝ : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0
j : ι
hj : j ∈ Finset.erase s i
⊢ ¬basisDivisor (v i) (v j) = 0
[PROOFSTEP]
exact H _ hj
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ degree (Lagrange.basis s v i) = ↑(card s - 1)
[PROOFSTEP]
rw [degree_eq_natDegree (basis_ne_zero hvs hi), natDegree_basis hvs hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ ∑ j in s, Lagrange.basis s v j = 1
[PROOFSTEP]
refine' eq_of_degrees_lt_of_eval_index_eq s hvs (lt_of_le_of_lt (degree_sum_le _ _) _) _ _
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ (sup s fun b => degree (Lagrange.basis s v b)) < ↑(card s)
[PROOFSTEP]
rw [Nat.cast_withBot, Finset.sup_lt_iff (WithBot.bot_lt_coe s.card)]
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ ∀ (b : ι), b ∈ s → degree (Lagrange.basis s v b) < ↑(card s)
[PROOFSTEP]
intro i hi
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
i : ι
hi : i ∈ s
⊢ degree (Lagrange.basis s v i) < ↑(card s)
[PROOFSTEP]
rw [degree_basis hvs hi, Nat.cast_withBot, WithBot.coe_lt_coe]
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
i : ι
hi : i ∈ s
⊢ card s - 1 < card s
[PROOFSTEP]
exact Nat.pred_lt (card_ne_zero_of_mem hi)
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ degree 1 < ↑(card s)
[PROOFSTEP]
rw [degree_one, ← WithBot.coe_zero, Nat.cast_withBot, WithBot.coe_lt_coe]
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ 0 < card s
[PROOFSTEP]
exact Nonempty.card_pos hs
[GOAL]
case refine'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ ∀ (i : ι), i ∈ s → eval (v i) (∑ j in s, Lagrange.basis s v j) = eval (v i) 1
[PROOFSTEP]
intro i hi
[GOAL]
case refine'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
i : ι
hi : i ∈ s
⊢ eval (v i) (∑ j in s, Lagrange.basis s v j) = eval (v i) 1
[PROOFSTEP]
rw [eval_finset_sum, eval_one, ← add_sum_erase _ _ hi, eval_basis_self hvs hi, add_right_eq_self]
[GOAL]
case refine'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
i : ι
hi : i ∈ s
⊢ ∑ x in Finset.erase s i, eval (v i) (Lagrange.basis s v x) = 0
[PROOFSTEP]
refine' sum_eq_zero fun j hj => _
[GOAL]
case refine'_3
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j✝ : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
i : ι
hi : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
⊢ eval (v i) (Lagrange.basis s v j) = 0
[PROOFSTEP]
rcases mem_erase.mp hj with ⟨hij, _⟩
[GOAL]
case refine'_3.intro
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i✝ j✝ : ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
i : ι
hi : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
hij : j ≠ i
right✝ : j ∈ s
⊢ eval (v i) (Lagrange.basis s v j) = 0
[PROOFSTEP]
rw [eval_basis_of_ne hij hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
x y : F
hxy : x ≠ y
⊢ basisDivisor x y + basisDivisor y x = 1
[PROOFSTEP]
classical rw [← sum_basis (Set.injOn_of_injective Function.injective_id _) ⟨x, mem_insert_self _ { y }⟩,
sum_insert (not_mem_singleton.mpr hxy), sum_singleton, basis_pair_left hxy, basis_pair_right hxy, id, id]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v : ι → F
i j : ι
x y : F
hxy : x ≠ y
⊢ basisDivisor x y + basisDivisor y x = 1
[PROOFSTEP]
rw [← sum_basis (Set.injOn_of_injective Function.injective_id _) ⟨x, mem_insert_self _ { y }⟩,
sum_insert (not_mem_singleton.mpr hxy), sum_singleton, basis_pair_left hxy, basis_pair_right hxy, id, id]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s✝ t : Finset ι
i j : ι
v✝ r r' : ι → F
s : Finset ι
v f g : ι → F
⊢ (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) (f + g) =
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) f + (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) g
[PROOFSTEP]
simp_rw [← Finset.sum_add_distrib]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s✝ t : Finset ι
i j : ι
v✝ r r' : ι → F
s : Finset ι
v f g : ι → F
⊢ ∑ x in s, ↑C ((f + g) x) * Lagrange.basis s v x =
∑ x in s, (↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x)
[PROOFSTEP]
have h :
(fun x => C (f x) * Lagrange.basis s v x + C (g x) * Lagrange.basis s v x) =
(fun x => C ((f + g) x) * Lagrange.basis s v x) :=
by simp_rw [← add_mul, ← C_add, Pi.add_apply]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s✝ t : Finset ι
i j : ι
v✝ r r' : ι → F
s : Finset ι
v f g : ι → F
⊢ (fun x => ↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x) = fun x =>
↑C ((f + g) x) * Lagrange.basis s v x
[PROOFSTEP]
simp_rw [← add_mul, ← C_add, Pi.add_apply]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s✝ t : Finset ι
i j : ι
v✝ r r' : ι → F
s : Finset ι
v f g : ι → F
h :
(fun x => ↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x) = fun x =>
↑C ((f + g) x) * Lagrange.basis s v x
⊢ ∑ x in s, ↑C ((f + g) x) * Lagrange.basis s v x =
∑ x in s, (↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x)
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s✝ t : Finset ι
i j : ι
v✝ r r' : ι → F
s : Finset ι
v : ι → F
c : F
f : ι → F
⊢ AddHom.toFun
{ toFun := fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i,
map_add' :=
(_ :
∀ (f g : ι → F),
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) (f + g) =
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) f +
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) g) }
(c • f) =
↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i,
map_add' :=
(_ :
∀ (f g : ι → F),
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) (f + g) =
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) f +
(fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) g) }
f
[PROOFSTEP]
simp_rw [Finset.smul_sum, C_mul', smul_smul, Pi.smul_apply, RingHom.id_apply, smul_eq_mul]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
⊢ ↑(interpolate ∅ v) r = 0
[PROOFSTEP]
rw [interpolate_apply, sum_empty]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
⊢ ↑(interpolate {i} v) r = ↑C (r i)
[PROOFSTEP]
rw [interpolate_apply, sum_singleton, basis_singleton, mul_one]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ ↑(interpolate s v) 1 = 1
[PROOFSTEP]
simp_rw [interpolate_apply, Pi.one_apply, map_one, one_mul]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
⊢ ∑ x in s, Lagrange.basis s v x = 1
[PROOFSTEP]
exact sum_basis hvs hs
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ eval (v i) (↑(interpolate s v) r) = r i
[PROOFSTEP]
rw [interpolate_apply, eval_finset_sum, ← add_sum_erase _ _ hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ eval (v i) (↑C (r i) * Lagrange.basis s v i) + ∑ x in Finset.erase s i, eval (v i) (↑C (r x) * Lagrange.basis s v x) =
r i
[PROOFSTEP]
simp_rw [eval_mul, eval_C, eval_basis_self hvs hi, mul_one, add_right_eq_self]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ ∑ x in Finset.erase s i, r x * eval (v i) (Lagrange.basis s v x) = 0
[PROOFSTEP]
refine' sum_eq_zero fun j H => _
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j✝ : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
H : j ∈ Finset.erase s i
⊢ r j * eval (v i) (Lagrange.basis s v j) = 0
[PROOFSTEP]
rw [eval_basis_of_ne (mem_erase.mp H).1 hi, mul_zero]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ degree (↑(interpolate s v) r) ≤ ↑(card s - 1)
[PROOFSTEP]
refine' (degree_sum_le _ _).trans _
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ (sup s fun b => degree (↑C (r b) * Lagrange.basis s v b)) ≤ ↑(card s - 1)
[PROOFSTEP]
rw [Finset.sup_le_iff]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ ∀ (b : ι), b ∈ s → degree (↑C (r b) * Lagrange.basis s v b) ≤ ↑(card s - 1)
[PROOFSTEP]
intro i hi
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
i : ι
hi : i ∈ s
⊢ degree (↑C (r i) * Lagrange.basis s v i) ≤ ↑(card s - 1)
[PROOFSTEP]
rw [degree_mul, degree_basis hvs hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
i : ι
hi : i ∈ s
⊢ degree (↑C (r i)) + ↑(card s - 1) ≤ ↑(card s - 1)
[PROOFSTEP]
by_cases hr : r i = 0
[GOAL]
case pos
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
i : ι
hi : i ∈ s
hr : r i = 0
⊢ degree (↑C (r i)) + ↑(card s - 1) ≤ ↑(card s - 1)
[PROOFSTEP]
simpa only [hr, map_zero, degree_zero, WithBot.bot_add] using bot_le
[GOAL]
case neg
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
i : ι
hi : i ∈ s
hr : ¬r i = 0
⊢ degree (↑C (r i)) + ↑(card s - 1) ≤ ↑(card s - 1)
[PROOFSTEP]
rw [degree_C hr, zero_add]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ degree (↑(interpolate s v) r) < ↑(card s)
[PROOFSTEP]
rw [Nat.cast_withBot]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ degree (↑(interpolate s v) r) < ↑(card s)
[PROOFSTEP]
rcases eq_empty_or_nonempty s with (rfl | h)
[GOAL]
case inl
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑∅
⊢ degree (↑(interpolate ∅ v) r) < ↑(card ∅)
[PROOFSTEP]
rw [interpolate_empty, degree_zero, card_empty]
[GOAL]
case inl
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑∅
⊢ ⊥ < ↑0
[PROOFSTEP]
exact WithBot.bot_lt_coe _
[GOAL]
case inr
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
h : Finset.Nonempty s
⊢ degree (↑(interpolate s v) r) < ↑(card s)
[PROOFSTEP]
refine' lt_of_le_of_lt (degree_interpolate_le _ hvs) _
[GOAL]
case inr
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
h : Finset.Nonempty s
⊢ ↑(card s - 1) < ↑(card s)
[PROOFSTEP]
rw [Nat.cast_withBot, WithBot.coe_lt_coe]
[GOAL]
case inr
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
h : Finset.Nonempty s
⊢ card s - 1 < card s
[PROOFSTEP]
exact Nat.sub_lt (Nonempty.card_pos h) zero_lt_one
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ degree (↑(interpolate (Finset.erase s i) v) r) < ↑(card s - 1)
[PROOFSTEP]
rw [← Finset.card_erase_of_mem hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ degree (↑(interpolate (Finset.erase s i) v) r) < ↑(card (Finset.erase s i))
[PROOFSTEP]
exact degree_interpolate_lt _ (Set.InjOn.mono (coe_subset.mpr (erase_subset _ _)) hvs)
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hrr' : ↑(interpolate s v) r = ↑(interpolate s v) r'
x✝ : ι
hi : x✝ ∈ s
⊢ r x✝ = r' x✝
[PROOFSTEP]
rw [← eval_interpolate_at_node r hvs hi, hrr', eval_interpolate_at_node r' hvs hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hrr' : ∀ (i : ι), i ∈ s → r i = r' i
i : ι
hi : i ∈ s
⊢ ↑C (r i) * Lagrange.basis s v i = ↑C (r' i) * Lagrange.basis s v i
[PROOFSTEP]
rw [hrr' _ hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card s)
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = r i
⊢ f = ↑(interpolate s v) r
[PROOFSTEP]
rw [eq_interpolate hvs degree_f_lt]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
degree_f_lt : degree f < ↑(card s)
eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = r i
⊢ (↑(interpolate s v) fun i => eval (v i) f) = ↑(interpolate s v) r
[PROOFSTEP]
exact interpolate_eq_of_values_eq_on _ _ eval_f
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
⊢ (degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i) ↔ f = ↑(interpolate s v) r
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
⊢ (degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i) → f = ↑(interpolate s v) r
[PROOFSTEP]
intro h
[GOAL]
case mpr
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
⊢ f = ↑(interpolate s v) r → degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i
[PROOFSTEP]
intro h
[GOAL]
case mp
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
h : degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i
⊢ f = ↑(interpolate s v) r
[PROOFSTEP]
exact eq_interpolate_of_eval_eq _ hvs h.1 h.2
[GOAL]
case mpr
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
h : f = ↑(interpolate s v) r
⊢ degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i
[PROOFSTEP]
rw [h]
[GOAL]
case mpr
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
h : f = ↑(interpolate s v) r
⊢ degree (↑(interpolate s v) r) < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) (↑(interpolate s v) r) = r i
[PROOFSTEP]
exact ⟨degree_interpolate_lt _ hvs, fun _ hi => eval_interpolate_at_node _ hvs hi⟩
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
c : F
f : { x // x ∈ degreeLT F (card s) }
⊢ ∀ (x : { x // x ∈ s }),
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
(c • f) x =
(↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
f)
x
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ Function.LeftInverse
(fun r =>
{ val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0,
property :=
(_ :
(↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈
degreeLT F (card s)) })
{
toAddHom :=
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) },
map_smul' :=
(_ :
∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }),
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
(c • f) =
↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
f) }.toAddHom.toFun
[PROOFSTEP]
rintro ⟨f, hf⟩
[GOAL]
case mk
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : f ∈ degreeLT F (card s)
⊢ (fun r =>
{ val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0,
property :=
(_ :
(↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈
degreeLT F (card s)) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) },
map_smul' :=
(_ :
∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }),
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
(c • f) =
↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
f) }.toAddHom
{ val := f, property := hf }) =
{ val := f, property := hf }
[PROOFSTEP]
simp only [Subtype.mk_eq_mk, Subtype.coe_mk, dite_eq_ite]
[GOAL]
case mk
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : f ∈ degreeLT F (card s)
⊢ (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f
[PROOFSTEP]
rw [mem_degreeLT] at hf
[GOAL]
case mk
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : degree f < ↑(card s)
⊢ (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f
[PROOFSTEP]
conv => rhs; rw [eq_interpolate hvs hf]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : degree f < ↑(card s)
| (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f
[PROOFSTEP]
rhs; rw [eq_interpolate hvs hf]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : degree f < ↑(card s)
| (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f
[PROOFSTEP]
rhs; rw [eq_interpolate hvs hf]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : degree f < ↑(card s)
| (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f
[PROOFSTEP]
rhs
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : degree f < ↑(card s)
| f
[PROOFSTEP]
rw [eq_interpolate hvs hf]
[GOAL]
case mk
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : F[X]
hf : degree f < ↑(card s)
⊢ (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = ↑(interpolate s v) fun i => eval (v i) f
[PROOFSTEP]
exact interpolate_eq_of_values_eq_on _ _ fun _ hi => if_pos hi
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
⊢ Function.RightInverse
(fun r =>
{ val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0,
property :=
(_ :
(↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈
degreeLT F (card s)) })
{
toAddHom :=
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) },
map_smul' :=
(_ :
∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }),
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
(c • f) =
↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
f) }.toAddHom.toFun
[PROOFSTEP]
intro f
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : { x // x ∈ s } → F
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) },
map_smul' :=
(_ :
∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }),
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
(c • f) =
↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
f) }.toAddHom
((fun r =>
{ val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0,
property :=
(_ :
(↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈
degreeLT F (card s)) })
f) =
f
[PROOFSTEP]
ext ⟨i, hi⟩
[GOAL]
case h.mk
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : { x // x ∈ s } → F
i : ι
hi : i ∈ s
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) },
map_smul' :=
(_ :
∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }),
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
(c • f) =
↑(RingHom.id F) c •
AddHom.toFun
{ toFun := fun f i => eval (v ↑i) ↑f,
map_add' :=
(_ :
∀ (f g : { x // x ∈ degreeLT F (card s) }),
(fun f i => eval (v ↑i) ↑f) (f + g) =
(fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }
f) }.toAddHom
((fun r =>
{ val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0,
property :=
(_ :
(↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈
degreeLT F (card s)) })
f)
{ val := i, property := hi } =
f { val := i, property := hi }
[PROOFSTEP]
simp only [Subtype.coe_mk, eval_interpolate_at_node _ hvs hi]
[GOAL]
case h.mk
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
f : { x // x ∈ s } → F
i : ι
hi : i ∈ s
⊢ (if hx : i ∈ s then f { val := i, property := hx } else 0) = f { val := i, property := hi }
[PROOFSTEP]
exact dif_pos hi
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
⊢ ↑(interpolate t v) r = ∑ i in s, ↑(interpolate (insert i (t \ s)) v) r * Lagrange.basis s v i
[PROOFSTEP]
symm
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
⊢ ∑ i in s, ↑(interpolate (insert i (t \ s)) v) r * Lagrange.basis s v i = ↑(interpolate t v) r
[PROOFSTEP]
refine' eq_interpolate_of_eval_eq _ hvt (lt_of_le_of_lt (degree_sum_le _ _) _) fun i hi => _
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
⊢ (sup s fun b => degree (↑(interpolate (insert b (t \ s)) v) r * Lagrange.basis s v b)) < ↑(card t)
[PROOFSTEP]
simp_rw [Nat.cast_withBot, Finset.sup_lt_iff (WithBot.bot_lt_coe t.card), degree_mul]
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
⊢ ∀ (b : ι), b ∈ s → degree (↑(interpolate (insert b (t \ s)) v) r) + degree (Lagrange.basis s v b) < ↑(card t)
[PROOFSTEP]
intro i hi
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)
[PROOFSTEP]
have hs : 1 ≤ s.card := Nonempty.card_pos ⟨_, hi⟩
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs✝ : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
hs : 1 ≤ card s
⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)
[PROOFSTEP]
have hst' : s.card ≤ t.card := card_le_of_subset hst
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs✝ : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
hs : 1 ≤ card s
hst' : card s ≤ card t
⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)
[PROOFSTEP]
have H : t.card = 1 + (t.card - s.card) + (s.card - 1) := by
rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'), Nat.succ_add_sub_one, zero_add]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs✝ : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
hs : 1 ≤ card s
hst' : card s ≤ card t
⊢ card t = 1 + (card t - card s) + (card s - 1)
[PROOFSTEP]
rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'), Nat.succ_add_sub_one, zero_add]
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs✝ : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
hs : 1 ≤ card s
hst' : card s ≤ card t
H : card t = 1 + (card t - card s) + (card s - 1)
⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)
[PROOFSTEP]
rw [degree_basis (Set.InjOn.mono hst hvt) hi, H, WithBot.coe_add, Nat.cast_withBot,
WithBot.add_lt_add_iff_right (@WithBot.coe_ne_bot _ (s.card - 1))]
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs✝ : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
hs : 1 ≤ card s
hst' : card s ≤ card t
H : card t = 1 + (card t - card s) + (card s - 1)
⊢ degree (↑(interpolate (insert i (t \ s)) v) r) < ↑(1 + (card t - card s))
[PROOFSTEP]
convert degree_interpolate_lt _ (hvt.mono (coe_subset.mpr (insert_subset_iff.mpr ⟨hst hi, sdiff_subset _ _⟩)))
[GOAL]
case h.e'_4.h.e'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs✝ : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ s
hs : 1 ≤ card s
hst' : card s ≤ card t
H : card t = 1 + (card t - card s) + (card s - 1)
⊢ 1 + (card t - card s) = card (insert i (t \ s))
[PROOFSTEP]
rw [card_insert_of_not_mem (not_mem_sdiff_of_mem_right hi), card_sdiff hst, add_comm]
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
⊢ eval (v i) (∑ i in s, ↑(interpolate (insert i (t \ s)) v) r * Lagrange.basis s v i) = r i
[PROOFSTEP]
simp_rw [eval_finset_sum, eval_mul]
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i
[PROOFSTEP]
by_cases hi' : i ∈ s
[GOAL]
case pos
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : i ∈ s
⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i
[PROOFSTEP]
rw [← add_sum_erase _ _ hi', eval_basis_self (hvt.mono hst) hi',
eval_interpolate_at_node _ (hvt.mono (coe_subset.mpr (insert_subset_iff.mpr ⟨hi, sdiff_subset _ _⟩)))
(mem_insert_self _ _),
mul_one, add_right_eq_self]
[GOAL]
case pos
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : i ∈ s
⊢ ∑ x in Finset.erase s i, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = 0
[PROOFSTEP]
refine' sum_eq_zero fun j hj => _
[GOAL]
case pos
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j✝ : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0
[PROOFSTEP]
rcases mem_erase.mp hj with ⟨hij, _⟩
[GOAL]
case pos.intro
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j✝ : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
hij : j ≠ i
right✝ : j ∈ s
⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0
[PROOFSTEP]
rw [eval_basis_of_ne hij hi', mul_zero]
[GOAL]
case neg
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : ¬i ∈ s
⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i
[PROOFSTEP]
have H : (∑ j in s, eval (v i) (Lagrange.basis s v j)) = 1 := by
rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : ¬i ∈ s
⊢ ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1
[PROOFSTEP]
rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one]
[GOAL]
case neg
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : ¬i ∈ s
H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1
⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i
[PROOFSTEP]
rw [← mul_one (r i), ← H, mul_sum]
[GOAL]
case neg
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : ¬i ∈ s
H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1
⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) =
∑ x in s, r i * eval (v i) (Lagrange.basis s v x)
[PROOFSTEP]
refine' sum_congr rfl fun j hj => _
[GOAL]
case neg
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j✝ : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : ¬i ∈ s
H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1
j : ι
hj : j ∈ s
⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) * eval (v i) (Lagrange.basis s v j) =
r i * eval (v i) (Lagrange.basis s v j)
[PROOFSTEP]
congr
[GOAL]
case neg.e_a
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i✝ j✝ : ι
v r r' : ι → F
hvt : Set.InjOn v ↑t
hs : Finset.Nonempty s
hst : s ⊆ t
i : ι
hi : i ∈ t
hi' : ¬i ∈ s
H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1
j : ι
hj : j ∈ s
⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) = r i
[PROOFSTEP]
exact
eval_interpolate_at_node _ (hvt.mono (insert_subset_iff.mpr ⟨hst hj, sdiff_subset _ _⟩))
(mem_insert.mpr (Or.inr (mem_sdiff.mpr ⟨hi, hi'⟩)))
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
hj : j ∈ s
hij : i ≠ j
⊢ ↑(interpolate s v) r =
↑(interpolate (Finset.erase s j) v) r * basisDivisor (v i) (v j) +
↑(interpolate (Finset.erase s i) v) r * basisDivisor (v j) (v i)
[PROOFSTEP]
rw [interpolate_eq_sum_interpolate_insert_sdiff _ hvs ⟨i, mem_insert_self i { j }⟩ _,
sum_insert (not_mem_singleton.mpr hij), sum_singleton, basis_pair_left hij, basis_pair_right hij,
sdiff_insert_insert_of_mem_of_not_mem hi (not_mem_singleton.mpr hij), sdiff_singleton_eq_erase, pair_comm,
sdiff_insert_insert_of_mem_of_not_mem hj (not_mem_singleton.mpr hij.symm), sdiff_singleton_eq_erase]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s t : Finset ι
i j : ι
v r r' : ι → F
hvs : Set.InjOn v ↑s
hi : i ∈ s
hj : j ∈ s
hij : i ≠ j
⊢ {i, j} ⊆ s
[PROOFSTEP]
exact insert_subset_iff.mpr ⟨hi, singleton_subset_iff.mpr hj⟩
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
⊢ nodal ∅ v = 1
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
⊢ degree (nodal s v) = ↑(card s)
[PROOFSTEP]
simp_rw [nodal, degree_prod, degree_X_sub_C, sum_const, Nat.smul_one_eq_coe]
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x✝ x : F
⊢ eval x (nodal s v) = ∏ i in s, (x - v i)
[PROOFSTEP]
simp_rw [nodal, eval_prod, eval_sub, eval_X, eval_C]
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
hi : i ∈ s
⊢ eval (v i) (nodal s v) = 0
[PROOFSTEP]
rw [eval_nodal, prod_eq_zero_iff]
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
hi : i ∈ s
⊢ ∃ a, a ∈ s ∧ v i - v a = 0
[PROOFSTEP]
exact ⟨i, hi, sub_eq_zero_of_eq rfl⟩
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
hx : ∀ (i : ι), i ∈ s → x ≠ v i
⊢ eval x (nodal s v) ≠ 0
[PROOFSTEP]
simp_rw [nodal, eval_prod, prod_ne_zero_iff, eval_sub, eval_X, eval_C, sub_ne_zero]
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
hx : ∀ (i : ι), i ∈ s → x ≠ v i
⊢ ∀ (a : ι), a ∈ s → x ≠ v a
[PROOFSTEP]
exact hx
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ nodal s v = (X - ↑C (v i)) * nodal (Finset.erase s i) v
[PROOFSTEP]
simp_rw [nodal, Finset.mul_prod_erase _ (fun x => X - C (v x)) hi]
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v✝ : ι → F
i : ι
r : ι → F
x : F
v : ι → F
hi : i ∈ s
⊢ nodal s v = (X - ↑C (v i)) * ?m.437432 v hi
[PROOFSTEP]
classical exact nodal_eq_mul_nodal_erase hi
[GOAL]
F : Type u_1
inst✝ : Field F
ι : Type u_2
s : Finset ι
v✝ : ι → F
i : ι
r : ι → F
x : F
v : ι → F
hi : i ∈ s
⊢ nodal s v = (X - ↑C (v i)) * ?m.437432 v hi
[PROOFSTEP]
exact nodal_eq_mul_nodal_erase hi
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ nodal (Finset.erase s i) v = nodal s v / (X - ↑C (v i))
[PROOFSTEP]
rw [nodal_eq_mul_nodal_erase hi, EuclideanDomain.mul_div_cancel_left]
[GOAL]
case a0
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ X - ↑C (v i) ≠ 0
[PROOFSTEP]
exact X_sub_C_ne_zero _
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : ¬i ∈ s
⊢ nodal (insert i s) v = (X - ↑C (v i)) * nodal s v
[PROOFSTEP]
simp_rw [nodal, prod_insert hi]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
⊢ ↑derivative (nodal s v) = ∑ i in s, nodal (Finset.erase s i) v
[PROOFSTEP]
refine' Finset.induction_on s _ fun _ _ hit IH => _
[GOAL]
case refine'_1
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
⊢ ↑derivative (nodal ∅ v) = ∑ i in ∅, nodal (Finset.erase ∅ i) v
[PROOFSTEP]
rw [nodal_empty, derivative_one, sum_empty]
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
x✝¹ : ι
x✝ : Finset ι
hit : ¬x✝¹ ∈ x✝
IH : ↑derivative (nodal x✝ v) = ∑ i in x✝, nodal (Finset.erase x✝ i) v
⊢ ↑derivative (nodal (insert x✝¹ x✝) v) = ∑ i in insert x✝¹ x✝, nodal (Finset.erase (insert x✝¹ x✝) i) v
[PROOFSTEP]
rw [nodal_insert_eq_nodal hit, derivative_mul, IH, derivative_sub, derivative_X, derivative_C, sub_zero, one_mul,
sum_insert hit, mul_sum, erase_insert hit, add_right_inj]
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
x✝¹ : ι
x✝ : Finset ι
hit : ¬x✝¹ ∈ x✝
IH : ↑derivative (nodal x✝ v) = ∑ i in x✝, nodal (Finset.erase x✝ i) v
⊢ ∑ x in x✝, (X - ↑C (v x✝¹)) * nodal (Finset.erase x✝ x) v = ∑ x in x✝, nodal (Finset.erase (insert x✝¹ x✝) x) v
[PROOFSTEP]
refine' sum_congr rfl fun j hjt => _
[GOAL]
case refine'_2
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
x✝¹ : ι
x✝ : Finset ι
hit : ¬x✝¹ ∈ x✝
IH : ↑derivative (nodal x✝ v) = ∑ i in x✝, nodal (Finset.erase x✝ i) v
j : ι
hjt : j ∈ x✝
⊢ (X - ↑C (v x✝¹)) * nodal (Finset.erase x✝ j) v = nodal (Finset.erase (insert x✝¹ x✝) j) v
[PROOFSTEP]
rw [nodal_erase_eq_nodal_div (mem_insert_of_mem hjt), nodal_insert_eq_nodal hit,
EuclideanDomain.mul_div_assoc _ (X_sub_C_dvd_nodal v hjt), nodal_erase_eq_nodal_div hjt]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ eval (v i) (↑derivative (nodal s v)) = eval (v i) (nodal (Finset.erase s i) v)
[PROOFSTEP]
rw [derivative_nodal, eval_finset_sum, ← add_sum_erase _ _ hi, add_right_eq_self]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ ∑ x in Finset.erase s i, eval (v i) (nodal (Finset.erase s x) v) = 0
[PROOFSTEP]
refine' sum_eq_zero fun j hj => _
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
⊢ eval (v i) (nodal (Finset.erase s j) v) = 0
[PROOFSTEP]
simp_rw [nodal, eval_prod, eval_sub, eval_X, eval_C, prod_eq_zero_iff, mem_erase]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
⊢ ∃ a, (a ≠ j ∧ a ∈ s) ∧ v i - v a = 0
[PROOFSTEP]
exact ⟨i, ⟨(mem_erase.mp hj).1.symm, hi⟩, sub_eq_zero_of_eq rfl⟩
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
⊢ nodalWeight s v i = (eval (v i) (nodal (Finset.erase s i) v))⁻¹
[PROOFSTEP]
rw [eval_nodal, nodalWeight, prod_inv_distrib]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ nodalWeight s v i = (eval (v i) (↑derivative (nodal s v)))⁻¹
[PROOFSTEP]
rw [eval_nodal_derivative_eval_node_eq hi, nodalWeight_eq_eval_nodal_erase_inv]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ nodalWeight s v i ≠ 0
[PROOFSTEP]
rw [nodalWeight, prod_ne_zero_iff]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
⊢ ∀ (a : ι), a ∈ Finset.erase s i → (v i - v a)⁻¹ ≠ 0
[PROOFSTEP]
intro j hj
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
hj : j ∈ Finset.erase s i
⊢ (v i - v j)⁻¹ ≠ 0
[PROOFSTEP]
rcases mem_erase.mp hj with ⟨hij, hj⟩
[GOAL]
case intro
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hi : i ∈ s
j : ι
hj✝ : j ∈ Finset.erase s i
hij : j ≠ i
hj : j ∈ s
⊢ (v i - v j)⁻¹ ≠ 0
[PROOFSTEP]
refine' inv_ne_zero (sub_ne_zero_of_ne (mt (hvs.eq_iff hi hj).mp hij.symm))
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
⊢ Lagrange.basis s v i = ↑C (nodalWeight s v i) * (nodal s v / (X - ↑C (v i)))
[PROOFSTEP]
simp_rw [Lagrange.basis, basisDivisor, nodalWeight, prod_mul_distrib, map_prod, ← nodal_erase_eq_nodal_div hi, nodal]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hi : i ∈ s
hxi : x ≠ v i
⊢ eval x (Lagrange.basis s v i) = eval x (nodal s v) * (nodalWeight s v i * (x - v i)⁻¹)
[PROOFSTEP]
rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hi, eval_mul, eval_C, ← nodal_erase_eq_nodal_div hi, eval_nodal,
eval_nodal, mul_assoc, ← mul_prod_erase _ _ hi, ← mul_assoc (x - v i)⁻¹, inv_mul_cancel (sub_ne_zero_of_ne hxi),
one_mul]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
j : ι
hj : j ∈ s
⊢ ↑C (r j) * Lagrange.basis s v j = ↑C (nodalWeight s v j) * (nodal s v / (X - ↑C (v j))) * ↑C (r j)
[PROOFSTEP]
rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hj]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hx : ∀ (i : ι), i ∈ s → x ≠ v i
⊢ eval x (↑(interpolate s v) r) = eval x (nodal s v) * ∑ i in s, nodalWeight s v i * (x - v i)⁻¹ * r i
[PROOFSTEP]
simp_rw [interpolate_apply, mul_sum, eval_finset_sum, eval_mul, eval_C]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hx : ∀ (i : ι), i ∈ s → x ≠ v i
⊢ ∑ x_1 in s, r x_1 * eval x (Lagrange.basis s v x_1) =
∑ x_1 in s, eval x (nodal s v) * (nodalWeight s v x_1 * (x - v x_1)⁻¹ * r x_1)
[PROOFSTEP]
refine' sum_congr rfl fun i hi => _
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i✝ : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hx : ∀ (i : ι), i ∈ s → x ≠ v i
i : ι
hi : i ∈ s
⊢ r i * eval x (Lagrange.basis s v i) = eval x (nodal s v) * (nodalWeight s v i * (x - v i)⁻¹ * r i)
[PROOFSTEP]
rw [← mul_assoc, mul_comm, eval_basis_not_at_node hi (hx _ hi)]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hx : ∀ (i : ι), i ∈ s → x ≠ v i
hs : Finset.Nonempty s
⊢ eval x (nodal s v) * ∑ i in s, nodalWeight s v i * (x - v i)⁻¹ = 1
[PROOFSTEP]
simpa only [Pi.one_apply, interpolate_one hvs hs, eval_one, mul_one] using (eval_interpolate_not_at_node 1 hx).symm
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
hx : ∀ (i : ι), i ∈ s → x ≠ v i
⊢ eval x (↑(interpolate s v) r) =
(∑ i in s, nodalWeight s v i * (x - v i)⁻¹ * r i) / ∑ i in s, nodalWeight s v i * (x - v i)⁻¹
[PROOFSTEP]
rw [← div_one (eval x (interpolate s v r)), ← @eval_one _ _ x, ← interpolate_one hvs hs,
eval_interpolate_not_at_node r hx, eval_interpolate_not_at_node 1 hx]
[GOAL]
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝ : DecidableEq ι
hvs : Set.InjOn v ↑s
hs : Finset.Nonempty s
hx : ∀ (i : ι), i ∈ s → x ≠ v i
⊢ (eval x (nodal s fun i => v i) * ∑ i in s, nodalWeight s (fun i => v i) i * (x - v i)⁻¹ * r i) /
(eval x (nodal s fun i => v i) * ∑ i in s, nodalWeight s (fun i => v i) i * (x - v i)⁻¹ * OfNat.ofNat 1 i) =
(∑ i in s, nodalWeight s v i * (x - v i)⁻¹ * r i) / ∑ i in s, nodalWeight s v i * (x - v i)⁻¹
[PROOFSTEP]
simp only [mul_div_mul_left _ _ (eval_nodal_not_at_node hx), Pi.one_apply, mul_one]
[GOAL]
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
⊢ nodal (Set.toFinset ↑G) Units.val = X ^ Fintype.card { x // x ∈ G } - 1
[PROOFSTEP]
have h : degree (1 : F[X]) < degree ((X : F[X]) ^ Fintype.card G) := by simp [Fintype.card_pos]
[GOAL]
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
⊢ degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
[PROOFSTEP]
simp [Fintype.card_pos]
[GOAL]
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ nodal (Set.toFinset ↑G) Units.val = X ^ Fintype.card { x // x ∈ G } - 1
[PROOFSTEP]
apply eq_of_degree_le_of_eval_index_eq (v := ((↑) : Fˣ → F)) (G : Set Fˣ).toFinset
[GOAL]
case hvs
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ Set.InjOn Units.val ↑(Set.toFinset ↑G)
[PROOFSTEP]
exact Set.injOn_of_injective Units.ext _
[GOAL]
case h_deg_le
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ degree (nodal (Set.toFinset ↑G) Units.val) ≤ ↑(card (Set.toFinset ↑G))
[PROOFSTEP]
simp
[GOAL]
case h_deg_eq
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ degree (nodal (Set.toFinset ↑G) Units.val) = degree (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
rw [degree_sub_eq_left_of_degree_lt h, degree_nodal, Set.toFinset_card, degree_pow, degree_X, nsmul_eq_mul, mul_one,
Nat.cast_inj]
[GOAL]
case h_deg_eq
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ Fintype.card ↑↑G = Fintype.card { x // x ∈ G }
[PROOFSTEP]
exact rfl
[GOAL]
case hlc
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ leadingCoeff (nodal (Set.toFinset ↑G) Units.val) = leadingCoeff (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
rw [nodal_monic, leadingCoeff_sub_of_degree_lt h, monic_X_pow]
[GOAL]
case h_eval
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
⊢ ∀ (i : Fˣ),
i ∈ Set.toFinset ↑G →
eval (↑i) (nodal (Set.toFinset ↑G) Units.val) = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
intros i hi
[GOAL]
case h_eval
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i✝ : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
i : Fˣ
hi : i ∈ Set.toFinset ↑G
⊢ eval (↑i) (nodal (Set.toFinset ↑G) Units.val) = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
rw [eval_nodal_at_node hi]
[GOAL]
case h_eval
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i✝ : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
i : Fˣ
hi : i ∈ Set.toFinset ↑G
⊢ 0 = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
replace hi : i ∈ G := by simpa using hi
[GOAL]
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i✝ : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
i : Fˣ
hi : i ∈ Set.toFinset ↑G
⊢ i ∈ G
[PROOFSTEP]
simpa using hi
[GOAL]
case h_eval
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i✝ : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
i : Fˣ
hi : i ∈ G
⊢ 0 = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
obtain ⟨g, rfl⟩ : ∃ g : G, g.val = i := ⟨⟨i, hi⟩, rfl⟩
[GOAL]
case h_eval.intro
F : Type u_1
inst✝² : Field F
ι : Type u_2
s : Finset ι
v : ι → F
i : ι
r : ι → F
x : F
inst✝¹ : DecidableEq ι
G : Subgroup Fˣ
inst✝ : Fintype { x // x ∈ G }
h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G })
g : { x // x ∈ G }
hi : ↑g ∈ G
⊢ 0 = eval (↑↑g) (X ^ Fintype.card { x // x ∈ G } - 1)
[PROOFSTEP]
simp [← Units.val_pow_eq_pow_val, ← Subgroup.coe_pow G]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Lagrange", "llama_tokens": 37701} |
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
src✝ : M →ₗ[R] M := ↑f
m : M
⊢ ↑(f.inv * ↑f) m = m
[PROOFSTEP]
erw [f.inv_val]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
src✝ : M →ₗ[R] M := ↑f
m : M
⊢ ↑1 m = m
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
src✝ : M →ₗ[R] M := ↑f
m : M
⊢ ↑(↑f * f.inv) m = m
[PROOFSTEP]
erw [f.val_inv]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
src✝ : M →ₗ[R] M := ↑f
m : M
⊢ ↑1 m = m
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
⊢ ofLinearEquiv (toLinearEquiv f) = f
[PROOFSTEP]
ext
[GOAL]
case a.h
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
x✝ : M
⊢ ↑↑(ofLinearEquiv (toLinearEquiv f)) x✝ = ↑↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : M ≃ₗ[R] M
⊢ toLinearEquiv (ofLinearEquiv f) = f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : M ≃ₗ[R] M
x✝ : M
⊢ ↑(toLinearEquiv (ofLinearEquiv f)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : GeneralLinearGroup R M
⊢ Equiv.toFun
{ toFun := toLinearEquiv, invFun := ofLinearEquiv,
left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f),
right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) }
(x * y) =
Equiv.toFun
{ toFun := toLinearEquiv, invFun := ofLinearEquiv,
left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f),
right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) }
x *
Equiv.toFun
{ toFun := toLinearEquiv, invFun := ofLinearEquiv,
left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f),
right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) }
y
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : GeneralLinearGroup R M
x✝ : M
⊢ ↑(Equiv.toFun
{ toFun := toLinearEquiv, invFun := ofLinearEquiv,
left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f),
right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) }
(x * y))
x✝ =
↑(Equiv.toFun
{ toFun := toLinearEquiv, invFun := ofLinearEquiv,
left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f),
right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) }
x *
Equiv.toFun
{ toFun := toLinearEquiv, invFun := ofLinearEquiv,
left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f),
right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) }
y)
x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
⊢ ↑(↑(generalLinearEquiv R M) f) = ↑f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : GeneralLinearGroup R M
x✝ : M
⊢ ↑↑(↑(generalLinearEquiv R M) f) x✝ = ↑↑f x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.LinearAlgebra.GeneralLinearGroup", "llama_tokens": 1779} |
[GOAL]
R : Type u_1
inst✝ : CommRing R
⊢ (Fin 3 → R) →ₗ[R] (Fin 3 → R) →ₗ[R] Fin 3 → R
[PROOFSTEP]
apply LinearMap.mk₂ R fun a b : Fin 3 → R => ![a 1 * b 2 - a 2 * b 1, a 2 * b 0 - a 0 * b 2, a 0 * b 1 - a 1 * b 0]
[GOAL]
case H1
R : Type u_1
inst✝ : CommRing R
⊢ ∀ (m₁ m₂ n : Fin 3 → R),
![(m₁ + m₂) 1 * n 2 - (m₁ + m₂) 2 * n 1, (m₁ + m₂) 2 * n 0 - (m₁ + m₂) 0 * n 2,
(m₁ + m₂) 0 * n 1 - (m₁ + m₂) 1 * n 0] =
![m₁ 1 * n 2 - m₁ 2 * n 1, m₁ 2 * n 0 - m₁ 0 * n 2, m₁ 0 * n 1 - m₁ 1 * n 0] +
![m₂ 1 * n 2 - m₂ 2 * n 1, m₂ 2 * n 0 - m₂ 0 * n 2, m₂ 0 * n 1 - m₂ 1 * n 0]
[PROOFSTEP]
intros
[GOAL]
case H1
R : Type u_1
inst✝ : CommRing R
m₁✝ m₂✝ n✝ : Fin 3 → R
⊢ ![(m₁✝ + m₂✝) 1 * n✝ 2 - (m₁✝ + m₂✝) 2 * n✝ 1, (m₁✝ + m₂✝) 2 * n✝ 0 - (m₁✝ + m₂✝) 0 * n✝ 2,
(m₁✝ + m₂✝) 0 * n✝ 1 - (m₁✝ + m₂✝) 1 * n✝ 0] =
![m₁✝ 1 * n✝ 2 - m₁✝ 2 * n✝ 1, m₁✝ 2 * n✝ 0 - m₁✝ 0 * n✝ 2, m₁✝ 0 * n✝ 1 - m₁✝ 1 * n✝ 0] +
![m₂✝ 1 * n✝ 2 - m₂✝ 2 * n✝ 1, m₂✝ 2 * n✝ 0 - m₂✝ 0 * n✝ 2, m₂✝ 0 * n✝ 1 - m₂✝ 1 * n✝ 0]
[PROOFSTEP]
simp_rw [vec3_add, Pi.add_apply]
[GOAL]
case H1
R : Type u_1
inst✝ : CommRing R
m₁✝ m₂✝ n✝ : Fin 3 → R
⊢ ![(m₁✝ 1 + m₂✝ 1) * n✝ 2 - (m₁✝ 2 + m₂✝ 2) * n✝ 1, (m₁✝ 2 + m₂✝ 2) * n✝ 0 - (m₁✝ 0 + m₂✝ 0) * n✝ 2,
(m₁✝ 0 + m₂✝ 0) * n✝ 1 - (m₁✝ 1 + m₂✝ 1) * n✝ 0] =
![m₁✝ 1 * n✝ 2 - m₁✝ 2 * n✝ 1 + (m₂✝ 1 * n✝ 2 - m₂✝ 2 * n✝ 1),
m₁✝ 2 * n✝ 0 - m₁✝ 0 * n✝ 2 + (m₂✝ 2 * n✝ 0 - m₂✝ 0 * n✝ 2),
m₁✝ 0 * n✝ 1 - m₁✝ 1 * n✝ 0 + (m₂✝ 0 * n✝ 1 - m₂✝ 1 * n✝ 0)]
[PROOFSTEP]
apply vec3_eq
[GOAL]
case H1.h₀
R : Type u_1
inst✝ : CommRing R
m₁✝ m₂✝ n✝ : Fin 3 → R
⊢ (m₁✝ 1 + m₂✝ 1) * n✝ 2 - (m₁✝ 2 + m₂✝ 2) * n✝ 1 = m₁✝ 1 * n✝ 2 - m₁✝ 2 * n✝ 1 + (m₂✝ 1 * n✝ 2 - m₂✝ 2 * n✝ 1)
[PROOFSTEP]
ring
[GOAL]
case H1.h₁
R : Type u_1
inst✝ : CommRing R
m₁✝ m₂✝ n✝ : Fin 3 → R
⊢ (m₁✝ 2 + m₂✝ 2) * n✝ 0 - (m₁✝ 0 + m₂✝ 0) * n✝ 2 = m₁✝ 2 * n✝ 0 - m₁✝ 0 * n✝ 2 + (m₂✝ 2 * n✝ 0 - m₂✝ 0 * n✝ 2)
[PROOFSTEP]
ring
[GOAL]
case H1.h₂
R : Type u_1
inst✝ : CommRing R
m₁✝ m₂✝ n✝ : Fin 3 → R
⊢ (m₁✝ 0 + m₂✝ 0) * n✝ 1 - (m₁✝ 1 + m₂✝ 1) * n✝ 0 = m₁✝ 0 * n✝ 1 - m₁✝ 1 * n✝ 0 + (m₂✝ 0 * n✝ 1 - m₂✝ 1 * n✝ 0)
[PROOFSTEP]
ring
[GOAL]
case H2
R : Type u_1
inst✝ : CommRing R
⊢ ∀ (c : R) (m n : Fin 3 → R),
![(c • m) 1 * n 2 - (c • m) 2 * n 1, (c • m) 2 * n 0 - (c • m) 0 * n 2, (c • m) 0 * n 1 - (c • m) 1 * n 0] =
c • ![m 1 * n 2 - m 2 * n 1, m 2 * n 0 - m 0 * n 2, m 0 * n 1 - m 1 * n 0]
[PROOFSTEP]
intros
[GOAL]
case H2
R : Type u_1
inst✝ : CommRing R
c✝ : R
m✝ n✝ : Fin 3 → R
⊢ ![(c✝ • m✝) 1 * n✝ 2 - (c✝ • m✝) 2 * n✝ 1, (c✝ • m✝) 2 * n✝ 0 - (c✝ • m✝) 0 * n✝ 2,
(c✝ • m✝) 0 * n✝ 1 - (c✝ • m✝) 1 * n✝ 0] =
c✝ • ![m✝ 1 * n✝ 2 - m✝ 2 * n✝ 1, m✝ 2 * n✝ 0 - m✝ 0 * n✝ 2, m✝ 0 * n✝ 1 - m✝ 1 * n✝ 0]
[PROOFSTEP]
simp_rw [smul_vec3, Pi.smul_apply, smul_sub, smul_mul_assoc]
[GOAL]
case H3
R : Type u_1
inst✝ : CommRing R
⊢ ∀ (m n₁ n₂ : Fin 3 → R),
![m 1 * (n₁ + n₂) 2 - m 2 * (n₁ + n₂) 1, m 2 * (n₁ + n₂) 0 - m 0 * (n₁ + n₂) 2,
m 0 * (n₁ + n₂) 1 - m 1 * (n₁ + n₂) 0] =
![m 1 * n₁ 2 - m 2 * n₁ 1, m 2 * n₁ 0 - m 0 * n₁ 2, m 0 * n₁ 1 - m 1 * n₁ 0] +
![m 1 * n₂ 2 - m 2 * n₂ 1, m 2 * n₂ 0 - m 0 * n₂ 2, m 0 * n₂ 1 - m 1 * n₂ 0]
[PROOFSTEP]
intros
[GOAL]
case H3
R : Type u_1
inst✝ : CommRing R
m✝ n₁✝ n₂✝ : Fin 3 → R
⊢ ![m✝ 1 * (n₁✝ + n₂✝) 2 - m✝ 2 * (n₁✝ + n₂✝) 1, m✝ 2 * (n₁✝ + n₂✝) 0 - m✝ 0 * (n₁✝ + n₂✝) 2,
m✝ 0 * (n₁✝ + n₂✝) 1 - m✝ 1 * (n₁✝ + n₂✝) 0] =
![m✝ 1 * n₁✝ 2 - m✝ 2 * n₁✝ 1, m✝ 2 * n₁✝ 0 - m✝ 0 * n₁✝ 2, m✝ 0 * n₁✝ 1 - m✝ 1 * n₁✝ 0] +
![m✝ 1 * n₂✝ 2 - m✝ 2 * n₂✝ 1, m✝ 2 * n₂✝ 0 - m✝ 0 * n₂✝ 2, m✝ 0 * n₂✝ 1 - m✝ 1 * n₂✝ 0]
[PROOFSTEP]
simp_rw [vec3_add, Pi.add_apply]
[GOAL]
case H3
R : Type u_1
inst✝ : CommRing R
m✝ n₁✝ n₂✝ : Fin 3 → R
⊢ ![m✝ 1 * (n₁✝ 2 + n₂✝ 2) - m✝ 2 * (n₁✝ 1 + n₂✝ 1), m✝ 2 * (n₁✝ 0 + n₂✝ 0) - m✝ 0 * (n₁✝ 2 + n₂✝ 2),
m✝ 0 * (n₁✝ 1 + n₂✝ 1) - m✝ 1 * (n₁✝ 0 + n₂✝ 0)] =
![m✝ 1 * n₁✝ 2 - m✝ 2 * n₁✝ 1 + (m✝ 1 * n₂✝ 2 - m✝ 2 * n₂✝ 1),
m✝ 2 * n₁✝ 0 - m✝ 0 * n₁✝ 2 + (m✝ 2 * n₂✝ 0 - m✝ 0 * n₂✝ 2),
m✝ 0 * n₁✝ 1 - m✝ 1 * n₁✝ 0 + (m✝ 0 * n₂✝ 1 - m✝ 1 * n₂✝ 0)]
[PROOFSTEP]
apply vec3_eq
[GOAL]
case H3.h₀
R : Type u_1
inst✝ : CommRing R
m✝ n₁✝ n₂✝ : Fin 3 → R
⊢ m✝ 1 * (n₁✝ 2 + n₂✝ 2) - m✝ 2 * (n₁✝ 1 + n₂✝ 1) = m✝ 1 * n₁✝ 2 - m✝ 2 * n₁✝ 1 + (m✝ 1 * n₂✝ 2 - m✝ 2 * n₂✝ 1)
[PROOFSTEP]
ring
[GOAL]
case H3.h₁
R : Type u_1
inst✝ : CommRing R
m✝ n₁✝ n₂✝ : Fin 3 → R
⊢ m✝ 2 * (n₁✝ 0 + n₂✝ 0) - m✝ 0 * (n₁✝ 2 + n₂✝ 2) = m✝ 2 * n₁✝ 0 - m✝ 0 * n₁✝ 2 + (m✝ 2 * n₂✝ 0 - m✝ 0 * n₂✝ 2)
[PROOFSTEP]
ring
[GOAL]
case H3.h₂
R : Type u_1
inst✝ : CommRing R
m✝ n₁✝ n₂✝ : Fin 3 → R
⊢ m✝ 0 * (n₁✝ 1 + n₂✝ 1) - m✝ 1 * (n₁✝ 0 + n₂✝ 0) = m✝ 0 * n₁✝ 1 - m✝ 1 * n₁✝ 0 + (m✝ 0 * n₂✝ 1 - m✝ 1 * n₂✝ 0)
[PROOFSTEP]
ring
[GOAL]
case H4
R : Type u_1
inst✝ : CommRing R
⊢ ∀ (c : R) (m n : Fin 3 → R),
![m 1 * (c • n) 2 - m 2 * (c • n) 1, m 2 * (c • n) 0 - m 0 * (c • n) 2, m 0 * (c • n) 1 - m 1 * (c • n) 0] =
c • ![m 1 * n 2 - m 2 * n 1, m 2 * n 0 - m 0 * n 2, m 0 * n 1 - m 1 * n 0]
[PROOFSTEP]
intros
[GOAL]
case H4
R : Type u_1
inst✝ : CommRing R
c✝ : R
m✝ n✝ : Fin 3 → R
⊢ ![m✝ 1 * (c✝ • n✝) 2 - m✝ 2 * (c✝ • n✝) 1, m✝ 2 * (c✝ • n✝) 0 - m✝ 0 * (c✝ • n✝) 2,
m✝ 0 * (c✝ • n✝) 1 - m✝ 1 * (c✝ • n✝) 0] =
c✝ • ![m✝ 1 * n✝ 2 - m✝ 2 * n✝ 1, m✝ 2 * n✝ 0 - m✝ 0 * n✝ 2, m✝ 0 * n✝ 1 - m✝ 1 * n✝ 0]
[PROOFSTEP]
simp_rw [smul_vec3, Pi.smul_apply, smul_sub, mul_smul_comm]
[GOAL]
R : Type u_1
inst✝ : CommRing R
v w : Fin 3 → R
⊢ -↑(↑crossProduct v) w = ↑(↑crossProduct w) v
[PROOFSTEP]
simp [cross_apply, mul_comm]
[GOAL]
R : Type u_1
inst✝ : CommRing R
v w : Fin 3 → R
⊢ ↑(↑crossProduct v) w + ↑(↑crossProduct w) v = 0
[PROOFSTEP]
rw [add_eq_zero_iff_eq_neg, cross_anticomm]
[GOAL]
R : Type u_1
inst✝ : CommRing R
v : Fin 3 → R
⊢ ↑(↑crossProduct v) v = 0
[PROOFSTEP]
simp_rw [cross_apply, mul_comm, cons_eq_zero_iff]
[GOAL]
R : Type u_1
inst✝ : CommRing R
v : Fin 3 → R
⊢ v 1 * v 2 - v 1 * v 2 = 0 ∧ v 0 * v 2 - v 0 * v 2 = 0 ∧ v 0 * v 1 - v 0 * v 1 = 0 ∧ ![] = 0
[PROOFSTEP]
exact ⟨sub_self _, sub_self _, sub_self _, zero_empty.symm⟩
[GOAL]
R : Type u_1
inst✝ : CommRing R
v w : Fin 3 → R
⊢ v ⬝ᵥ ↑(↑crossProduct v) w = 0
[PROOFSTEP]
rw [cross_apply, vec3_dotProduct]
[GOAL]
R : Type u_1
inst✝ : CommRing R
v w : Fin 3 → R
⊢ v 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 +
v 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 +
v 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 =
0
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
inst✝ : CommRing R
v w : Fin 3 → R
⊢ v 0 * (v 1 * w 2 - v 2 * w 1) + v 1 * (v 2 * w 0 - v 0 * w 2) + v 2 * (v 0 * w 1 - v 1 * w 0) = 0
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝ : CommRing R
v w : Fin 3 → R
⊢ w ⬝ᵥ ↑(↑crossProduct v) w = 0
[PROOFSTEP]
rw [← cross_anticomm, Matrix.dotProduct_neg, dot_self_cross, neg_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u ⬝ᵥ ↑(↑crossProduct v) w = v ⬝ᵥ ↑(↑crossProduct w) u
[PROOFSTEP]
simp_rw [cross_apply, vec3_dotProduct]
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 +
u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 +
u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 =
v 0 * vecCons (w 1 * u 2 - w 2 * u 1) ![w 2 * u 0 - w 0 * u 2, w 0 * u 1 - w 1 * u 0] 0 +
v 1 * vecCons (w 1 * u 2 - w 2 * u 1) ![w 2 * u 0 - w 0 * u 2, w 0 * u 1 - w 1 * u 0] 1 +
v 2 * vecCons (w 1 * u 2 - w 2 * u 1) ![w 2 * u 0 - w 0 * u 2, w 0 * u 1 - w 1 * u 0] 2
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 0 * (v 1 * w 2 - v 2 * w 1) + u 1 * (v 2 * w 0 - v 0 * w 2) + u 2 * (v 0 * w 1 - v 1 * w 0) =
v 0 * (w 1 * u 2 - w 2 * u 1) + v 1 * (w 2 * u 0 - w 0 * u 2) + v 2 * (w 0 * u 1 - w 1 * u 0)
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u ⬝ᵥ ↑(↑crossProduct v) w = det ![u, v, w]
[PROOFSTEP]
rw [vec3_dotProduct, cross_apply, det_fin_three]
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 +
u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 +
u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 =
vecCons u ![v, w] 0 0 * vecCons u ![v, w] 1 1 * vecCons u ![v, w] 2 2 -
vecCons u ![v, w] 0 0 * vecCons u ![v, w] 1 2 * vecCons u ![v, w] 2 1 -
vecCons u ![v, w] 0 1 * vecCons u ![v, w] 1 0 * vecCons u ![v, w] 2 2 +
vecCons u ![v, w] 0 1 * vecCons u ![v, w] 1 2 * vecCons u ![v, w] 2 0 +
vecCons u ![v, w] 0 2 * vecCons u ![v, w] 1 0 * vecCons u ![v, w] 2 1 -
vecCons u ![v, w] 0 2 * vecCons u ![v, w] 1 1 * vecCons u ![v, w] 2 0
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 0 * (v 1 * w 2 - v 2 * w 1) + u 1 * (v 2 * w 0 - v 0 * w 2) + u 2 * (v 0 * w 1 - v 1 * w 0) =
u 0 * v 1 * w 2 - u 0 * v 2 * w 1 - u 1 * v 0 * w 2 + u 1 * v 2 * w 0 + u 2 * v 0 * w 1 - u 2 * v 1 * w 0
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w x : Fin 3 → R
⊢ ↑(↑crossProduct u) v ⬝ᵥ ↑(↑crossProduct w) x = u ⬝ᵥ w * v ⬝ᵥ x - u ⬝ᵥ x * v ⬝ᵥ w
[PROOFSTEP]
simp_rw [cross_apply, vec3_dotProduct]
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w x : Fin 3 → R
⊢ vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 *
vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 0 +
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 *
vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 1 +
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 *
vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 2 =
(u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) -
(u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2)
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w x : Fin 3 → R
⊢ (u 1 * v 2 - u 2 * v 1) * (w 1 * x 2 - w 2 * x 1) + (u 2 * v 0 - u 0 * v 2) * (w 2 * x 0 - w 0 * x 2) +
(u 0 * v 1 - u 1 * v 0) * (w 0 * x 1 - w 1 * x 0) =
(u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) -
(u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2)
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ ↑(↑crossProduct u) (↑(↑crossProduct v) w) =
↑(↑crossProduct (↑(↑crossProduct u) v)) w + ↑(↑crossProduct v) (↑(↑crossProduct u) w)
[PROOFSTEP]
simp_rw [cross_apply, vec3_add]
[GOAL]
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ ![u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 -
u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1,
u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 -
u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2,
u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 -
u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0] =
![vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 2 -
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 1 +
(v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2 -
v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1),
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 0 -
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 2 +
(v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0 -
v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2),
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 1 -
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 0 +
(v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1 -
v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0)]
[PROOFSTEP]
apply vec3_eq
[GOAL]
case h₀
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 -
u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 =
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 2 -
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 1 +
(v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2 -
v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1)
[PROOFSTEP]
norm_num
[GOAL]
case h₁
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 -
u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 =
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 0 -
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 2 +
(v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0 -
v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2)
[PROOFSTEP]
norm_num
[GOAL]
case h₂
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 -
u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 =
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 1 -
vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 0 +
(v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1 -
v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0)
[PROOFSTEP]
norm_num
[GOAL]
case h₀
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 1 * (v 0 * w 1 - v 1 * w 0) - u 2 * (v 2 * w 0 - v 0 * w 2) =
(u 2 * v 0 - u 0 * v 2) * w 2 - (u 0 * v 1 - u 1 * v 0) * w 1 +
(v 1 * (u 0 * w 1 - u 1 * w 0) - v 2 * (u 2 * w 0 - u 0 * w 2))
[PROOFSTEP]
ring
[GOAL]
case h₁
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 2 * (v 1 * w 2 - v 2 * w 1) - u 0 * (v 0 * w 1 - v 1 * w 0) =
(u 0 * v 1 - u 1 * v 0) * w 0 - (u 1 * v 2 - u 2 * v 1) * w 2 +
(v 2 * (u 1 * w 2 - u 2 * w 1) - v 0 * (u 0 * w 1 - u 1 * w 0))
[PROOFSTEP]
ring
[GOAL]
case h₂
R : Type u_1
inst✝ : CommRing R
u v w : Fin 3 → R
⊢ u 0 * (v 2 * w 0 - v 0 * w 2) - u 1 * (v 1 * w 2 - v 2 * w 1) =
(u 1 * v 2 - u 2 * v 1) * w 1 - (u 2 * v 0 - u 0 * v 2) * w 0 +
(v 0 * (u 2 * w 0 - u 0 * w 2) - v 1 * (u 1 * w 2 - u 2 * w 1))
[PROOFSTEP]
ring
| {"mathlib_filename": "Mathlib.LinearAlgebra.CrossProduct", "llama_tokens": 10557} |
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v0 : R
v : Fin n → R
⊢ vandermonde (Fin.cons v0 v) = Fin.cons (fun j => v0 ^ ↑j) fun i => Fin.cons 1 fun j => v i * vandermonde v i j
[PROOFSTEP]
ext i j
[GOAL]
case a.h
R : Type u_1
inst✝ : CommRing R
n : ℕ
v0 : R
v : Fin n → R
i j : Fin (n + 1)
⊢ vandermonde (Fin.cons v0 v) i j =
Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) i j
[PROOFSTEP]
refine' Fin.cases (by simp) (fun i => _) i
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v0 : R
v : Fin n → R
i j : Fin (n + 1)
⊢ vandermonde (Fin.cons v0 v) 0 j =
Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) 0 j
[PROOFSTEP]
simp
[GOAL]
case a.h
R : Type u_1
inst✝ : CommRing R
n : ℕ
v0 : R
v : Fin n → R
i✝ j : Fin (n + 1)
i : Fin n
⊢ vandermonde (Fin.cons v0 v) (Fin.succ i) j =
Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) (Fin.succ i) j
[PROOFSTEP]
refine' Fin.cases (by simp) (fun j => _) j
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v0 : R
v : Fin n → R
i✝ j : Fin (n + 1)
i : Fin n
⊢ vandermonde (Fin.cons v0 v) (Fin.succ i) 0 =
Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) (Fin.succ i) 0
[PROOFSTEP]
simp
[GOAL]
case a.h
R : Type u_1
inst✝ : CommRing R
n : ℕ
v0 : R
v : Fin n → R
i✝ j✝ : Fin (n + 1)
i j : Fin n
⊢ vandermonde (Fin.cons v0 v) (Fin.succ i) (Fin.succ j) =
Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) (Fin.succ i) (Fin.succ j)
[PROOFSTEP]
simp [pow_succ]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin (Nat.succ n) → R
⊢ vandermonde v =
Fin.cons (fun j => v 0 ^ ↑j) fun i => Fin.cons 1 fun j => v (Fin.succ i) * vandermonde (Fin.tail v) i j
[PROOFSTEP]
conv_lhs => rw [← Fin.cons_self_tail v, vandermonde_cons]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin (Nat.succ n) → R
| vandermonde v
[PROOFSTEP]
rw [← Fin.cons_self_tail v, vandermonde_cons]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin (Nat.succ n) → R
| vandermonde v
[PROOFSTEP]
rw [← Fin.cons_self_tail v, vandermonde_cons]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin (Nat.succ n) → R
| vandermonde v
[PROOFSTEP]
rw [← Fin.cons_self_tail v, vandermonde_cons]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v w : Fin n → R
i j : Fin n
⊢ (vandermonde v * (vandermonde w)ᵀ) i j = ∑ k : Fin n, (v i * w j) ^ ↑k
[PROOFSTEP]
simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, mul_pow]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin n → R
i j : Fin n
⊢ ((vandermonde v)ᵀ * vandermonde v) i j = ∑ k : Fin n, v k ^ (↑i + ↑j)
[PROOFSTEP]
simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, pow_add]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin n → R
⊢ det (vandermonde v) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
[PROOFSTEP]
unfold vandermonde
[GOAL]
R : Type u_1
inst✝ : CommRing R
n : ℕ
v : Fin n → R
⊢ (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
v : Fin Nat.zero → R
⊢ (det fun i j => v i ^ ↑j) = ∏ i : Fin Nat.zero, ∏ j in Ioi i, (v j - v i)
[PROOFSTEP]
exact det_eq_one_of_card_eq_zero (Fintype.card_fin 0)
[GOAL]
case succ
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n), ∏ j in Ioi i, (v j - v i)
[PROOFSTEP]
calc
det (of fun i j : Fin n.succ => v i ^ (j : ℕ)) =
det
(of fun i j : Fin n.succ =>
Matrix.vecCons (v 0 ^ (j : ℕ)) (fun i => v (Fin.succ i) ^ (j : ℕ) - v 0 ^ (j : ℕ)) i) :=
det_eq_of_forall_row_eq_smul_add_const (Matrix.vecCons 0 1) 0 (Fin.cons_zero _ _) ?_
_ =
det
(of fun i j : Fin n =>
Matrix.vecCons (v 0 ^ (j.succ : ℕ)) (fun i : Fin n => v (Fin.succ i) ^ (j.succ : ℕ) - v 0 ^ (j.succ : ℕ))
(Fin.succAbove 0 i)) :=
by
simp_rw [det_succ_column_zero, Fin.sum_univ_succ, of_apply, Matrix.cons_val_zero, submatrix, of_apply,
Matrix.cons_val_succ, Fin.val_zero, pow_zero, one_mul, sub_self, mul_zero, zero_mul, Finset.sum_const_zero,
add_zero]
_ =
det
(of fun i j : Fin n =>
(v (Fin.succ i) - v 0) * ∑ k in Finset.range (j + 1 : ℕ), v i.succ ^ k * v 0 ^ (j - k : ℕ) :
Matrix _ _ R) :=
by
congr
ext i j
rw [Fin.succAbove_zero, Matrix.cons_val_succ, Fin.val_succ, mul_comm]
exact (geom_sum₂_mul (v i.succ) (v 0) (j + 1 : ℕ)).symm
_ =
(Finset.prod Finset.univ (fun i => v (Fin.succ i) - v 0)) *
det fun i j : Fin n => ∑ k in Finset.range (j + 1 : ℕ), v i.succ ^ k * v 0 ^ (j - k : ℕ) :=
(det_mul_column (fun i => v (Fin.succ i) - v 0) _)
_ = (Finset.prod Finset.univ (fun i => v (Fin.succ i) - v 0)) * det fun i j : Fin n => v (Fin.succ i) ^ (j : ℕ) :=
(congr_arg _ ?_)
_ = ∏ i : Fin n.succ, Finset.prod (Ioi i) (fun j => v j - v i) :=
by
simp_rw [Fin.prod_univ_succ, Fin.prod_Ioi_zero, Fin.prod_Ioi_succ]
have h := ih (v ∘ Fin.succ)
unfold Function.comp at h
rw [h]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ det (↑of fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) =
det
(↑of fun i j =>
vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j))
(Fin.succAbove 0 i))
[PROOFSTEP]
simp_rw [det_succ_column_zero, Fin.sum_univ_succ, of_apply, Matrix.cons_val_zero, submatrix, of_apply,
Matrix.cons_val_succ, Fin.val_zero, pow_zero, one_mul, sub_self, mul_zero, zero_mul, Finset.sum_const_zero, add_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ det
(↑of fun i j =>
vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j))
(Fin.succAbove 0 i)) =
det (↑of fun i j => (v (Fin.succ i) - v 0) * ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k))
[PROOFSTEP]
congr
[GOAL]
case e_M.h.e_6.h
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ (fun i j =>
vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j))
(Fin.succAbove 0 i)) =
fun i j => (v (Fin.succ i) - v 0) * ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)
[PROOFSTEP]
ext i j
[GOAL]
case e_M.h.e_6.h.h.h
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i j : Fin n
⊢ vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j)) (Fin.succAbove 0 i) =
(v (Fin.succ i) - v 0) * ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)
[PROOFSTEP]
rw [Fin.succAbove_zero, Matrix.cons_val_succ, Fin.val_succ, mul_comm]
[GOAL]
case e_M.h.e_6.h.h.h
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i j : Fin n
⊢ v (Fin.succ i) ^ (↑j + 1) - v 0 ^ (↑j + 1) =
(∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) * (v (Fin.succ i) - v 0)
[PROOFSTEP]
exact (geom_sum₂_mul (v i.succ) (v 0) (j + 1 : ℕ)).symm
[GOAL]
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) =
∏ i : Fin (Nat.succ n), ∏ j in Ioi i, (v j - v i)
[PROOFSTEP]
simp_rw [Fin.prod_univ_succ, Fin.prod_Ioi_zero, Fin.prod_Ioi_succ]
[GOAL]
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) =
(∏ j : Fin n, (v (Fin.succ j) - v 0)) * ∏ x : Fin n, ∏ j in Ioi x, (v (Fin.succ j) - v (Fin.succ x))
[PROOFSTEP]
have h := ih (v ∘ Fin.succ)
[GOAL]
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
h : (det fun i j => (v ∘ Fin.succ) i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, ((v ∘ Fin.succ) j - (v ∘ Fin.succ) i)
⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) =
(∏ j : Fin n, (v (Fin.succ j) - v 0)) * ∏ x : Fin n, ∏ j in Ioi x, (v (Fin.succ j) - v (Fin.succ x))
[PROOFSTEP]
unfold Function.comp at h
[GOAL]
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
h : (det fun i j => v (Fin.succ i) ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v (Fin.succ j) - v (Fin.succ i))
⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) =
(∏ j : Fin n, (v (Fin.succ j) - v 0)) * ∏ x : Fin n, ∏ j in Ioi x, (v (Fin.succ j) - v (Fin.succ x))
[PROOFSTEP]
rw [h]
[GOAL]
case succ.calc_1
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ ∀ (i j : Fin (Nat.succ n)),
↑of (fun i j => v i ^ ↑j) i j =
↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) i j +
vecCons 0 1 i * ↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) 0 j
[PROOFSTEP]
intro i j
[GOAL]
case succ.calc_1
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i j : Fin (Nat.succ n)
⊢ ↑of (fun i j => v i ^ ↑j) i j =
↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) i j +
vecCons 0 1 i * ↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) 0 j
[PROOFSTEP]
simp_rw [of_apply]
[GOAL]
case succ.calc_1
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i j : Fin (Nat.succ n)
⊢ v i ^ ↑j =
vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i +
vecCons 0 1 i * vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) 0
[PROOFSTEP]
rw [Matrix.cons_val_zero]
[GOAL]
case succ.calc_1
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i j : Fin (Nat.succ n)
⊢ v i ^ ↑j = vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i + vecCons 0 1 i * v 0 ^ ↑j
[PROOFSTEP]
refine' Fin.cases _ (fun i => _) i
[GOAL]
case succ.calc_1.refine'_1
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i j : Fin (Nat.succ n)
⊢ v 0 ^ ↑j = vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) 0 + vecCons 0 1 0 * v 0 ^ ↑j
[PROOFSTEP]
simp
[GOAL]
case succ.calc_1.refine'_2
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i✝ j : Fin (Nat.succ n)
i : Fin n
⊢ v (Fin.succ i) ^ ↑j =
vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) (Fin.succ i) + vecCons 0 1 (Fin.succ i) * v 0 ^ ↑j
[PROOFSTEP]
rw [Matrix.cons_val_succ, Matrix.cons_val_succ, Pi.one_apply]
[GOAL]
case succ.calc_1.refine'_2
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
i✝ j : Fin (Nat.succ n)
i : Fin n
⊢ v (Fin.succ i) ^ ↑j = v (Fin.succ i) ^ ↑j - v 0 ^ ↑j + 1 * v 0 ^ ↑j
[PROOFSTEP]
ring
[GOAL]
case succ.calc_2
R : Type u_1
inst✝ : CommRing R
n✝ : ℕ
v✝ : Fin n✝ → R
n : ℕ
ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ n) → R
⊢ (det fun i j => ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) = det fun i j => v (Fin.succ i) ^ ↑j
[PROOFSTEP]
cases n
[GOAL]
case succ.calc_2.zero
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
ih : ∀ (v : Fin Nat.zero → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin Nat.zero, ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ Nat.zero) → R
⊢ (det fun i j => ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) = det fun i j => v (Fin.succ i) ^ ↑j
[PROOFSTEP]
rw [det_eq_one_of_card_eq_zero (Fintype.card_fin 0), det_eq_one_of_card_eq_zero (Fintype.card_fin 0)]
[GOAL]
case succ.calc_2.succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
⊢ (det fun i j => ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) = det fun i j => v (Fin.succ i) ^ ↑j
[PROOFSTEP]
apply det_eq_of_forall_col_eq_smul_add_pred fun _ => v 0
[GOAL]
case succ.calc_2.succ.A_zero
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
⊢ ∀ (i : Fin (n✝ + 1)), ∑ k in range (↑0 + 1), v (Fin.succ i) ^ k * v 0 ^ (↑0 - k) = v (Fin.succ i) ^ ↑0
[PROOFSTEP]
intro j
[GOAL]
case succ.calc_2.succ.A_zero
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
j : Fin (n✝ + 1)
⊢ ∑ k in range (↑0 + 1), v (Fin.succ j) ^ k * v 0 ^ (↑0 - k) = v (Fin.succ j) ^ ↑0
[PROOFSTEP]
simp
[GOAL]
case succ.calc_2.succ.A_succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
⊢ ∀ (i : Fin (n✝ + 1)) (j : Fin n✝),
∑ k in range (↑(Fin.succ j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.succ j) - k) =
v (Fin.succ i) ^ ↑(Fin.succ j) +
v 0 * ∑ k in range (↑(Fin.castSucc j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.castSucc j) - k)
[PROOFSTEP]
intro i j
[GOAL]
case succ.calc_2.succ.A_succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
i : Fin (n✝ + 1)
j : Fin n✝
⊢ ∑ k in range (↑(Fin.succ j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.succ j) - k) =
v (Fin.succ i) ^ ↑(Fin.succ j) +
v 0 * ∑ k in range (↑(Fin.castSucc j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.castSucc j) - k)
[PROOFSTEP]
simp only [smul_eq_mul, Pi.add_apply, Fin.val_succ, Fin.coe_castSucc, Pi.smul_apply]
[GOAL]
case succ.calc_2.succ.A_succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
i : Fin (n✝ + 1)
j : Fin n✝
⊢ ∑ x in range (↑j + 1 + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j + 1 - x) =
v (Fin.succ i) ^ (↑j + 1) + v 0 * ∑ x in range (↑j + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j - x)
[PROOFSTEP]
rw [Finset.sum_range_succ, add_comm, tsub_self, pow_zero, mul_one, Finset.mul_sum]
[GOAL]
case succ.calc_2.succ.A_succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
i : Fin (n✝ + 1)
j : Fin n✝
⊢ v (Fin.succ i) ^ (↑j + 1) + ∑ x in range (↑j + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j + 1 - x) =
v (Fin.succ i) ^ (↑j + 1) + ∑ x in range (↑j + 1), v 0 * (v (Fin.succ i) ^ x * v 0 ^ (↑j - x))
[PROOFSTEP]
congr 1
[GOAL]
case succ.calc_2.succ.A_succ.e_a
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
i : Fin (n✝ + 1)
j : Fin n✝
⊢ ∑ x in range (↑j + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j + 1 - x) =
∑ x in range (↑j + 1), v 0 * (v (Fin.succ i) ^ x * v 0 ^ (↑j - x))
[PROOFSTEP]
refine' Finset.sum_congr rfl fun i' hi' => _
[GOAL]
case succ.calc_2.succ.A_succ.e_a
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
i : Fin (n✝ + 1)
j : Fin n✝
i' : ℕ
hi' : i' ∈ range (↑j + 1)
⊢ v (Fin.succ i) ^ i' * v 0 ^ (↑j + 1 - i') = v 0 * (v (Fin.succ i) ^ i' * v 0 ^ (↑j - i'))
[PROOFSTEP]
rw [mul_left_comm (v 0), Nat.succ_sub, pow_succ]
[GOAL]
case succ.calc_2.succ.A_succ.e_a
R : Type u_1
inst✝ : CommRing R
n : ℕ
v✝ : Fin n → R
n✝ : ℕ
ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i)
v : Fin (Nat.succ (Nat.succ n✝)) → R
i : Fin (n✝ + 1)
j : Fin n✝
i' : ℕ
hi' : i' ∈ range (↑j + 1)
⊢ i' ≤ ↑j
[PROOFSTEP]
exact Nat.lt_succ_iff.mp (Finset.mem_range.mp hi')
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ det (vandermonde v) = 0 ↔ ∃ i j, v i = v j ∧ i ≠ j
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ det (vandermonde v) = 0 → ∃ i j, v i = v j ∧ i ≠ j
[PROOFSTEP]
simp only [det_vandermonde v, Finset.prod_eq_zero_iff, sub_eq_zero, forall_exists_index]
[GOAL]
case mp
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ ∀ (x : Fin n), (x ∈ univ ∧ ∃ a, a ∈ Ioi x ∧ v a = v x) → ∃ i j, v i = v j ∧ i ≠ j
[PROOFSTEP]
rintro i ⟨_, j, h₁, h₂⟩
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
i : Fin n
left✝ : i ∈ univ
j : Fin n
h₁ : j ∈ Ioi i
h₂ : v j = v i
⊢ ∃ i j, v i = v j ∧ i ≠ j
[PROOFSTEP]
exact ⟨j, i, h₂, (mem_Ioi.mp h₁).ne'⟩
[GOAL]
case mpr
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ (∃ i j, v i = v j ∧ i ≠ j) → det (vandermonde v) = 0
[PROOFSTEP]
simp only [Ne.def, forall_exists_index, and_imp]
[GOAL]
case mpr
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ ∀ (x x_1 : Fin n), v x = v x_1 → ¬x = x_1 → det (vandermonde v) = 0
[PROOFSTEP]
refine' fun i j h₁ h₂ => Matrix.det_zero_of_row_eq h₂ (funext fun k => _)
[GOAL]
case mpr
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
i j : Fin n
h₁ : v i = v j
h₂ : ¬i = j
k : Fin n
⊢ vandermonde v i k = vandermonde v j k
[PROOFSTEP]
rw [vandermonde_apply, vandermonde_apply, h₁]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ det (vandermonde v) ≠ 0 ↔ Function.Injective v
[PROOFSTEP]
unfold Function.Injective
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
v : Fin n → R
⊢ det (vandermonde v) ≠ 0 ↔ ∀ ⦃a₁ a₂ : Fin n⦄, v a₁ = v a₂ → a₁ = a₂
[PROOFSTEP]
simp only [det_vandermonde_eq_zero_iff, Ne.def, not_exists, not_and, Classical.not_not]
[GOAL]
R✝ : Type u_1
inst✝² : CommRing R✝
R : Type u_2
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
f v : Fin n → R
hf : Function.Injective f
hfv : ∀ (j : Fin n), ∑ i : Fin n, v i * f j ^ ↑i = 0
⊢ v = 0
[PROOFSTEP]
apply eq_zero_of_forall_index_sum_pow_mul_eq_zero hf
[GOAL]
R✝ : Type u_1
inst✝² : CommRing R✝
R : Type u_2
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
f v : Fin n → R
hf : Function.Injective f
hfv : ∀ (j : Fin n), ∑ i : Fin n, v i * f j ^ ↑i = 0
⊢ ∀ (j : Fin n), ∑ i : Fin n, f j ^ ↑i * v i = 0
[PROOFSTEP]
simp_rw [mul_comm]
[GOAL]
R✝ : Type u_1
inst✝² : CommRing R✝
R : Type u_2
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ
f v : Fin n → R
hf : Function.Injective f
hfv : ∀ (j : Fin n), ∑ i : Fin n, v i * f j ^ ↑i = 0
⊢ ∀ (j : Fin n), ∑ x : Fin n, v x * f j ^ ↑x = 0
[PROOFSTEP]
exact hfv
| {"mathlib_filename": "Mathlib.LinearAlgebra.Vandermonde", "llama_tokens": 11556} |
[GOAL]
R : Type u_1
inst✝⁴ : StrictOrderedCommSemiring R
M : Type u_2
inst✝³ : AddCommMonoid M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
ι : Type u_4
⊢ map ι (LinearEquiv.refl R M) = Equiv.refl (Orientation R M ι)
[PROOFSTEP]
rw [Orientation.map, AlternatingMap.domLCongr_refl, Module.Ray.map_refl]
[GOAL]
R : Type u_1
inst✝⁶ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
N : Type u_3
inst✝³ : AddCommMonoid N
inst✝² : Module R N
ι : Type u_4
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
⊢ 1 ≠ AddMonoid.toZero.1
[PROOFSTEP]
exact one_ne_zero
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
x : Orientation R M ι
f : M ≃ₗ[R] M
⊢ ↑(map ι f) x = x
[PROOFSTEP]
induction' x using Module.Ray.ind with g hg
[GOAL]
case h
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
f : M ≃ₗ[R] M
g : AlternatingMap R M R ι
hg : g ≠ 0
⊢ ↑(map ι f) (rayOfNeZero R g hg) = rayOfNeZero R g hg
[PROOFSTEP]
rw [Orientation.map_apply]
[GOAL]
case h
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
f : M ≃ₗ[R] M
g : AlternatingMap R M R ι
hg : g ≠ 0
⊢ rayOfNeZero R (AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f))
(_ : ¬AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f) = 0) =
rayOfNeZero R g hg
[PROOFSTEP]
congr
[GOAL]
case h.e_v
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
f : M ≃ₗ[R] M
g : AlternatingMap R M R ι
hg : g ≠ 0
⊢ AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f) = g
[PROOFSTEP]
ext i
[GOAL]
case h.e_v.H
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
f : M ≃ₗ[R] M
g : AlternatingMap R M R ι
hg : g ≠ 0
i : ι → M
⊢ ↑(AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f)) i = ↑g i
[PROOFSTEP]
rw [AlternatingMap.compLinearMap_apply]
[GOAL]
case h.e_v.H
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
f : M ≃ₗ[R] M
g : AlternatingMap R M R ι
hg : g ≠ 0
i : ι → M
⊢ (↑g fun i_1 => ↑↑(LinearEquiv.symm f) (i i_1)) = ↑g i
[PROOFSTEP]
congr
[GOAL]
case h.e_v.H.h.e_6.h
R : Type u_1
inst✝⁵ : StrictOrderedCommSemiring R
M : Type u_2
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
ι : Type u_4
inst✝ : IsEmpty ι
f : M ≃ₗ[R] M
g : AlternatingMap R M R ι
hg : g ≠ 0
i : ι → M
⊢ (fun i_1 => ↑↑(LinearEquiv.symm f) (i i_1)) = i
[PROOFSTEP]
simp only [LinearEquiv.coe_coe, eq_iff_true_of_subsingleton]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
ι : Type u_4
inst✝ : Finite ι
e : Basis ι R M
x : Orientation R M ι
f : M ≃ₗ[R] M
⊢ ↑(Orientation.map ι f) x = (↑LinearEquiv.det f)⁻¹ • x
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
ι : Type u_4
inst✝ : Finite ι
e : Basis ι R M
x : Orientation R M ι
f : M ≃ₗ[R] M
val✝ : Fintype ι
⊢ ↑(Orientation.map ι f) x = (↑LinearEquiv.det f)⁻¹ • x
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
case intro
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
ι : Type u_4
inst✝ : Finite ι
e : Basis ι R M
x : Orientation R M ι
f : M ≃ₗ[R] M
val✝ : Fintype ι
this : DecidableEq ι := Classical.decEq ι
⊢ ↑(Orientation.map ι f) x = (↑LinearEquiv.det f)⁻¹ • x
[PROOFSTEP]
induction' x using Module.Ray.ind with g hg
[GOAL]
case intro.h
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
ι : Type u_4
inst✝ : Finite ι
e : Basis ι R M
f : M ≃ₗ[R] M
val✝ : Fintype ι
this : DecidableEq ι := Classical.decEq ι
g : AlternatingMap R M R ι
hg : g ≠ 0
⊢ ↑(Orientation.map ι f) (rayOfNeZero R g hg) = (↑LinearEquiv.det f)⁻¹ • rayOfNeZero R g hg
[PROOFSTEP]
rw [Orientation.map_apply, smul_rayOfNeZero, ray_eq_iff, Units.smul_def, (g.compLinearMap f.symm).eq_smul_basis_det e,
g.eq_smul_basis_det e, AlternatingMap.compLinearMap_apply, AlternatingMap.smul_apply,
show (fun i ↦ (LinearEquiv.symm f).toLinearMap (e i)) = (LinearEquiv.symm f).toLinearMap ∘ e by rfl, Basis.det_comp,
Basis.det_self, mul_one, smul_eq_mul, mul_comm, mul_smul, LinearEquiv.coe_inv_det]
[GOAL]
R : Type u_1
inst✝⁵ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
ι : Type u_4
inst✝ : Finite ι
e : Basis ι R M
f : M ≃ₗ[R] M
val✝ : Fintype ι
this : DecidableEq ι := Classical.decEq ι
g : AlternatingMap R M R ι
hg : g ≠ 0
⊢ (fun i => ↑↑(LinearEquiv.symm f) (↑e i)) = ↑↑(LinearEquiv.symm f) ∘ ↑e
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁷ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R M
inst✝³ : Module R N
ι : Type u_4
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
f : M ≃ₗ[R] N
⊢ Basis.orientation (Basis.map e f) = ↑(Orientation.map ι f) (Basis.orientation e)
[PROOFSTEP]
simp_rw [Basis.orientation, Orientation.map_apply, Basis.det_map']
[GOAL]
R : Type u_1
inst✝⁷ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R M
inst✝³ : Module R N
ι : Type u_4
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
w : ι → Rˣ
⊢ Basis.orientation (unitsSMul e w) = (∏ i : ι, w i)⁻¹ • Basis.orientation e
[PROOFSTEP]
rw [Basis.orientation, Basis.orientation, smul_rayOfNeZero, ray_eq_iff, e.det.eq_smul_basis_det (e.unitsSMul w),
det_unitsSMul_self, Units.smul_def, smul_smul]
[GOAL]
R : Type u_1
inst✝⁷ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R M
inst✝³ : Module R N
ι : Type u_4
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
w : ι → Rˣ
⊢ SameRay R (det (unitsSMul e w)) ((↑(∏ i : ι, w i)⁻¹ * ∏ i : ι, ↑(w i)) • det (unitsSMul e w))
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝⁷ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R M
inst✝³ : Module R N
ι : Type u_4
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
w : ι → Rˣ
⊢ SameRay R (det (unitsSMul e w)) (↑((∏ i : ι, w i)⁻¹ * ∏ i : ι, w i) • det (unitsSMul e w))
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁷ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R M
inst✝³ : Module R N
ι : Type u_4
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
w : ι → Rˣ
⊢ SameRay R (det (unitsSMul e w)) (det (unitsSMul e w))
[PROOFSTEP]
exact SameRay.rfl
[GOAL]
R : Type u_1
inst✝⁸ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup N
inst✝⁵ : Module R M
inst✝⁴ : Module R N
ι : Type u_4
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
b : Basis ι R M
⊢ Basis.orientation b = positiveOrientation
[PROOFSTEP]
rw [Basis.orientation]
[GOAL]
R : Type u_1
inst✝⁸ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup N
inst✝⁵ : Module R M
inst✝⁴ : Module R N
ι : Type u_4
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
b : Basis ι R M
⊢ rayOfNeZero R (det b) (_ : det b ≠ 0) = positiveOrientation
[PROOFSTEP]
congr
[GOAL]
case e_v
R : Type u_1
inst✝⁸ : StrictOrderedCommRing R
M : Type u_2
N : Type u_3
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup N
inst✝⁵ : Module R M
inst✝⁴ : Module R N
ι : Type u_4
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
b : Basis ι R M
⊢ det b = ↑AlternatingMap.constLinearEquivOfIsEmpty 1
[PROOFSTEP]
exact b.det_isEmpty
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
o : Orientation R M ι
⊢ o = positiveOrientation ∨ o = -positiveOrientation
[PROOFSTEP]
induction' o using Module.Ray.ind with x hx
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
⊢ rayOfNeZero R x hx = positiveOrientation ∨ rayOfNeZero R x hx = -positiveOrientation
[PROOFSTEP]
dsimp [positiveOrientation]
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
⊢ rayOfNeZero R x hx =
rayOfNeZero R (AlternatingMap.constOfIsEmpty R M ι 1)
(_ :
↑AlternatingMap.constLinearEquivOfIsEmpty 1 ≠ ↑AlternatingMap.constLinearEquivOfIsEmpty AddMonoid.toZero.1) ∨
rayOfNeZero R x hx =
rayOfNeZero R (-AlternatingMap.constOfIsEmpty R M ι 1) (_ : ¬-AlternatingMap.constOfIsEmpty R M ι 1 = 0)
[PROOFSTEP]
simp only [ray_eq_iff, sameRay_neg_swap]
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
⊢ SameRay R x (AlternatingMap.constOfIsEmpty R M ι 1) ∨ SameRay R x (-AlternatingMap.constOfIsEmpty R M ι 1)
[PROOFSTEP]
rw [sameRay_or_sameRay_neg_iff_not_linearIndependent]
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
⊢ ¬LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
[PROOFSTEP]
intro h
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
⊢ False
[PROOFSTEP]
set f : AlternatingMap R M R ι ≃ₗ[R] R := AlternatingMap.constLinearEquivOfIsEmpty.symm
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
⊢ False
[PROOFSTEP]
have H : LinearIndependent R ![f x, 1] := by
convert h.map' f.toLinearMap f.ker
ext i
fin_cases i <;> simp
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
⊢ LinearIndependent R ![↑f x, 1]
[PROOFSTEP]
convert h.map' f.toLinearMap f.ker
[GOAL]
case h.e'_4
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
⊢ ![↑f x, 1] = ↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1]
[PROOFSTEP]
ext i
[GOAL]
case h.e'_4.h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
i : Fin (Nat.succ (Nat.succ 0))
⊢ Matrix.vecCons (↑f x) ![1] i = (↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1]) i
[PROOFSTEP]
fin_cases i
[GOAL]
case h.e'_4.h.head
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
⊢ Matrix.vecCons (↑f x) ![1] { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) } =
(↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1]) { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) }
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.h.tail.head
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
⊢ Matrix.vecCons (↑f x) ![1] { val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) } =
(↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1])
{ val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) }
[PROOFSTEP]
simp
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
H : LinearIndependent R ![↑f x, 1]
⊢ False
[PROOFSTEP]
rw [linearIndependent_iff'] at H
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
H :
∀ (s : Finset (Fin (Nat.succ (Nat.succ 0)))) (g : Fin (Nat.succ (Nat.succ 0)) → R),
∑ i in s, g i • Matrix.vecCons (↑f x) ![1] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ s → g i = 0
⊢ False
[PROOFSTEP]
simpa using H Finset.univ ![1, -f x] (by simp [Fin.sum_univ_succ]) 0 (by simp)
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
H :
∀ (s : Finset (Fin (Nat.succ (Nat.succ 0)))) (g : Fin (Nat.succ (Nat.succ 0)) → R),
∑ i in s, g i • Matrix.vecCons (↑f x) ![1] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ s → g i = 0
⊢ ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons 1 ![-↑f x] i • Matrix.vecCons (↑f x) ![1] i = 0
[PROOFSTEP]
simp [Fin.sum_univ_succ]
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Nontrivial R
inst✝ : IsEmpty ι
x : AlternatingMap R M R ι
hx : x ≠ 0
h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1]
f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
H :
∀ (s : Finset (Fin (Nat.succ (Nat.succ 0)))) (g : Fin (Nat.succ (Nat.succ 0)) → R),
∑ i in s, g i • Matrix.vecCons (↑f x) ![1] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ s → g i = 0
⊢ 0 ∈ Finset.univ
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
e₁ e₂ : Basis ι R M
⊢ SameRay R (det e₁) (det e₂) ↔ SameRay R (↑(det e₁) ↑e₂ • det e₂) (det e₂)
[PROOFSTEP]
rw [← e₁.det.eq_smul_basis_det e₂]
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
e : Basis ι R M
x : Orientation R M ι
⊢ x = Basis.orientation e ∨ x = -Basis.orientation e
[PROOFSTEP]
induction' x using Module.Ray.ind with x hx
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
e : Basis ι R M
x : AlternatingMap R M R ι
hx : x ≠ 0
⊢ rayOfNeZero R x hx = Basis.orientation e ∨ rayOfNeZero R x hx = -Basis.orientation e
[PROOFSTEP]
rw [← x.map_basis_ne_zero_iff e] at hx
[GOAL]
case h
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
e : Basis ι R M
x : AlternatingMap R M R ι
hx✝ : x ≠ 0
hx : ↑x ↑e ≠ 0
⊢ rayOfNeZero R x hx✝ = Basis.orientation e ∨ rayOfNeZero R x hx✝ = -Basis.orientation e
[PROOFSTEP]
rwa [Basis.orientation, ray_eq_iff, neg_rayOfNeZero, ray_eq_iff, x.eq_smul_basis_det e,
sameRay_neg_smul_left_iff_of_ne e.det_ne_zero hx, sameRay_smul_left_iff_of_ne e.det_ne_zero hx, lt_or_lt_iff_ne,
ne_comm]
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
e : Basis ι R M
f : M ≃ₗ[R] M
⊢ Basis.orientation (Basis.map e f) = Basis.orientation e ↔ 0 < ↑LinearMap.det ↑f
[PROOFSTEP]
rw [orientation_map, e.map_orientation_eq_det_inv_smul, units_inv_smul, units_smul_eq_self_iff, LinearEquiv.coe_det]
[GOAL]
R : Type u_1
inst✝⁴ : LinearOrderedCommRing R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_3
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
e : Basis ι R M
f : M ≃ₗ[R] M
⊢ Basis.orientation (Basis.map e f) = -Basis.orientation e ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
rw [orientation_map, e.map_orientation_eq_det_inv_smul, units_inv_smul, units_smul_eq_neg_iff, LinearEquiv.coe_det]
[GOAL]
R : Type u_1
inst✝⁵ : LinearOrderedCommRing R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
ι : Type u_3
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
i : ι
⊢ Basis.orientation (unitsSMul e (Function.update 1 i (-1))) = -Basis.orientation e
[PROOFSTEP]
rw [orientation_unitsSMul, Finset.prod_update_of_mem (Finset.mem_univ _)]
[GOAL]
R : Type u_1
inst✝⁵ : LinearOrderedCommRing R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
ι : Type u_3
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial R
e : Basis ι R M
i : ι
⊢ (-1 * ∏ x in Finset.univ \ {i}, OfNat.ofNat 1 x)⁻¹ • Basis.orientation e = -Basis.orientation e
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
⊢ Basis.orientation (adjustToOrientation e x) = x
[PROOFSTEP]
rw [adjustToOrientation]
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
⊢ Basis.orientation
(if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) =
x
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h : Basis.orientation e = x
⊢ Basis.orientation e = x
[PROOFSTEP]
exact h
[GOAL]
case neg
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h : ¬Basis.orientation e = x
⊢ Basis.orientation (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = x
[PROOFSTEP]
rw [orientation_neg_single, eq_comm, ← orientation_ne_iff_eq_neg, ne_comm]
[GOAL]
case neg
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h : ¬Basis.orientation e = x
⊢ Basis.orientation e ≠ x
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
i : ι
⊢ ↑(adjustToOrientation e x) i = ↑e i ∨ ↑(adjustToOrientation e x) i = -↑e i
[PROOFSTEP]
rw [adjustToOrientation]
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
i : ι
⊢ ↑(if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨
↑(if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
i : ι
h : Basis.orientation e = x
⊢ ↑e i = ↑e i ∨ ↑e i = -↑e i
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
i : ι
h : ¬Basis.orientation e = x
⊢ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨
↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i
[PROOFSTEP]
by_cases hi : i = Classical.arbitrary ι
[GOAL]
case pos
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
i : ι
h : ¬Basis.orientation e = x
hi : i = Classical.arbitrary ι
⊢ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨
↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i
[PROOFSTEP]
simp [unitsSMul_apply, hi]
[GOAL]
case neg
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
i : ι
h : ¬Basis.orientation e = x
hi : ¬i = Classical.arbitrary ι
⊢ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨
↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i
[PROOFSTEP]
simp [unitsSMul_apply, hi]
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
⊢ det (adjustToOrientation e x) = det e ∨ det (adjustToOrientation e x) = -det e
[PROOFSTEP]
dsimp [Basis.adjustToOrientation]
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
⊢ det (if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = det e ∨
det (if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = -det e
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h✝ : Basis.orientation e = x
⊢ det e = det e ∨ det e = -det e
[PROOFSTEP]
left
[GOAL]
case pos.h
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h✝ : Basis.orientation e = x
⊢ det e = det e
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h✝ : ¬Basis.orientation e = x
⊢ det (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = det e ∨
det (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = -det e
[PROOFSTEP]
right
[GOAL]
case neg.h
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h✝ : ¬Basis.orientation e = x
⊢ det (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = -det e
[PROOFSTEP]
simp [e.det_unitsSMul, ← Units.coe_prod, Finset.prod_update_of_mem]
[GOAL]
case neg.h
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h✝ : ¬Basis.orientation e = x
⊢ -1 • det e = -det e
[PROOFSTEP]
ext
[GOAL]
case neg.h.H
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
h✝ : ¬Basis.orientation e = x
x✝ : ι → M
⊢ ↑(-1 • det e) x✝ = ↑(-det e) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
v : ι → M
⊢ |↑(det (adjustToOrientation e x)) v| = |↑(det e) v|
[PROOFSTEP]
cases' e.det_adjustToOrientation x with h h
[GOAL]
case inl
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
v : ι → M
h : det (adjustToOrientation e x) = det e
⊢ |↑(det (adjustToOrientation e x)) v| = |↑(det e) v|
[PROOFSTEP]
simp [h]
[GOAL]
case inr
R : Type u_1
inst✝⁶ : LinearOrderedCommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
ι : Type u_3
inst✝³ : Fintype ι
inst✝² : DecidableEq ι
inst✝¹ : Nontrivial R
inst✝ : Nonempty ι
e : Basis ι R M
x : Orientation R M ι
v : ι → M
h : det (adjustToOrientation e x) = -det e
⊢ |↑(det (adjustToOrientation e x)) v| = |↑(det e) v|
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
have e := (finBasis R M).reindex (Fintype.equivFinOfCardEq h).symm
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
have orientation_neg_neg : ∀ f : Basis ι R M, - -Basis.orientation f = Basis.orientation f := by simp
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
⊢ ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
rcases e.orientation_eq_or_eq_neg x₁ with (h₁ | h₁)
[GOAL]
case inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
h₁ : x₁ = Basis.orientation e
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
rcases e.orientation_eq_or_eq_neg x₂ with (h₂ | h₂)
[GOAL]
case inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
h₁ : x₁ = -Basis.orientation e
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
rcases e.orientation_eq_or_eq_neg x₂ with (h₂ | h₂)
[GOAL]
case inl.inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
h₁ : x₁ = Basis.orientation e
h₂ : x₂ = Basis.orientation e
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
simp [h₁, h₂, orientation_neg_neg]
[GOAL]
case inl.inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
h₁ : x₁ = Basis.orientation e
h₂ : x₂ = -Basis.orientation e
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
simp [h₁, h₂, orientation_neg_neg]
[GOAL]
case inr.inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
h₁ : x₁ = -Basis.orientation e
h₂ : x₂ = Basis.orientation e
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
simp [h₁, h₂, orientation_neg_neg]
[GOAL]
case inr.inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x₁ x₂ : Orientation R M ι
h : Fintype.card ι = finrank R M
e : Basis ι R M
this : DecidableEq ι := Classical.decEq ι
orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f
h₁ : x₁ = -Basis.orientation e
h₂ : x₂ = -Basis.orientation e
⊢ x₁ = x₂ ∨ x₁ = -x₂
[PROOFSTEP]
simp [h₁, h₂, orientation_neg_neg]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f
[PROOFSTEP]
have H : finrank R M = 0 := by
refine' h.symm.trans _
convert @Fintype.card_of_isEmpty ι _
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
⊢ finrank R M = 0
[PROOFSTEP]
refine' h.symm.trans _
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
⊢ Fintype.card ι = 0
[PROOFSTEP]
convert @Fintype.card_of_isEmpty ι _
[GOAL]
case inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
H : finrank R M = 0
⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f
[PROOFSTEP]
simp [LinearMap.det_eq_one_of_finrank_eq_zero H]
[GOAL]
case inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : Nonempty ι
⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f
[PROOFSTEP]
rw [map_eq_det_inv_smul _ _ h, units_inv_smul, units_smul_eq_self_iff, LinearEquiv.coe_det]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
have H : finrank R M = 0 := by
refine' h.symm.trans _
convert @Fintype.card_of_isEmpty ι _
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
⊢ finrank R M = 0
[PROOFSTEP]
refine' h.symm.trans _
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
⊢ Fintype.card ι = 0
[PROOFSTEP]
convert @Fintype.card_of_isEmpty ι _
[GOAL]
case inl
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : IsEmpty ι
H : finrank R M = 0
⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
simp [LinearMap.det_eq_one_of_finrank_eq_zero H, Module.Ray.ne_neg_self x]
[GOAL]
case inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : Nonempty ι
⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
have H : 0 < finrank R M := by
rw [← h]
exact Fintype.card_pos
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : Nonempty ι
⊢ 0 < finrank R M
[PROOFSTEP]
rw [← h]
[GOAL]
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : Nonempty ι
⊢ 0 < Fintype.card ι
[PROOFSTEP]
exact Fintype.card_pos
[GOAL]
case inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : Nonempty ι
H : 0 < finrank R M
⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
haveI : FiniteDimensional R M := finiteDimensional_of_finrank H
[GOAL]
case inr
R : Type u_1
inst✝³ : LinearOrderedField R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_3
inst✝ : Fintype ι
_i : FiniteDimensional R M
x : Orientation R M ι
f : M ≃ₗ[R] M
h : Fintype.card ι = finrank R M
h✝ : Nonempty ι
H : 0 < finrank R M
this : FiniteDimensional R M
⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0
[PROOFSTEP]
rw [map_eq_det_inv_smul _ _ h, units_inv_smul, units_smul_eq_neg_iff, LinearEquiv.coe_det]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Orientation", "llama_tokens": 19080} |
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A : Matrix n n α
⊢ A ∈ unitaryGroup n α ↔ A * star A = 1
[PROOFSTEP]
refine' ⟨And.right, fun hA => ⟨_, hA⟩⟩
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A : Matrix n n α
hA : A * star A = 1
⊢ star A * A = 1
[PROOFSTEP]
simpa only [mul_eq_one_comm] using hA
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A : Matrix n n α
⊢ A ∈ unitaryGroup n α ↔ star A * A = 1
[PROOFSTEP]
refine' ⟨And.left, fun hA => ⟨hA, _⟩⟩
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A : Matrix n n α
hA : star A * A = 1
⊢ A * star A = 1
[PROOFSTEP]
rwa [mul_eq_one_comm] at hA
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ A : Matrix n n α
hA : A ∈ unitaryGroup n α
⊢ det A ∈ unitary α
[PROOFSTEP]
constructor
[GOAL]
case left
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ A : Matrix n n α
hA : A ∈ unitaryGroup n α
⊢ star (det A) * det A = 1
[PROOFSTEP]
simpa [star, det_transpose] using congr_arg det hA.1
[GOAL]
case right
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ A : Matrix n n α
hA : A ∈ unitaryGroup n α
⊢ det A * star (det A) = 1
[PROOFSTEP]
simpa [star, det_transpose] using congr_arg det hA.2
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ : Matrix n n α
A : { x // x ∈ unitaryGroup n α }
src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A
x : n → α
⊢ ↑(comp (toLin' A⁻¹) (toLin' A)) x = ↑(toLin' (A⁻¹ * A)) x
[PROOFSTEP]
rw [← toLin'_mul]
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ : Matrix n n α
A : { x // x ∈ unitaryGroup n α }
src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A
x : n → α
⊢ ↑(toLin' (A⁻¹ * A)) x = x
[PROOFSTEP]
rw [mul_left_inv, toLin'_one, id_apply]
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ : Matrix n n α
A : { x // x ∈ unitaryGroup n α }
src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A
x : n → α
⊢ ↑(comp (toLin' A) (toLin' A⁻¹)) x = ↑(toLin' (A * A⁻¹)) x
[PROOFSTEP]
rw [← toLin'_mul]
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ : Matrix n n α
A : { x // x ∈ unitaryGroup n α }
src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A
x : n → α
⊢ ↑(toLin' (A * A⁻¹)) x = x
[PROOFSTEP]
rw [mul_right_inv, toLin'_one, id_apply]
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A : Matrix n n α
⊢ ↑(toGL 1) = ↑1
[PROOFSTEP]
simp only [coe_toGL, toLin'_one]
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A : Matrix n n α
⊢ LinearMap.id = ↑1
[PROOFSTEP]
rfl
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ : Matrix n n α
A B : { x // x ∈ unitaryGroup n α }
⊢ ↑(toGL (A * B)) = ↑(toGL A * toGL B)
[PROOFSTEP]
simp only [coe_toGL, toLin'_mul]
[GOAL]
n : Type u
inst✝³ : DecidableEq n
inst✝² : Fintype n
α : Type v
inst✝¹ : CommRing α
inst✝ : StarRing α
A✝ : Matrix n n α
A B : { x // x ∈ unitaryGroup n α }
⊢ comp (toLin' A) (toLin' B) = ↑(toGL A * toGL B)
[PROOFSTEP]
rfl
[GOAL]
n : Type u
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
α : Type v
inst✝² : CommRing α
inst✝¹ : StarRing α
A✝ : Matrix n n α
β : Type v
inst✝ : CommRing β
A : Matrix n n β
⊢ A ∈ orthogonalGroup n β ↔ A * star A = 1
[PROOFSTEP]
refine' ⟨And.right, fun hA => ⟨_, hA⟩⟩
[GOAL]
n : Type u
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
α : Type v
inst✝² : CommRing α
inst✝¹ : StarRing α
A✝ : Matrix n n α
β : Type v
inst✝ : CommRing β
A : Matrix n n β
hA : A * star A = 1
⊢ star A * A = 1
[PROOFSTEP]
simpa only [mul_eq_one_comm] using hA
[GOAL]
n : Type u
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
α : Type v
inst✝² : CommRing α
inst✝¹ : StarRing α
A✝ : Matrix n n α
β : Type v
inst✝ : CommRing β
A : Matrix n n β
⊢ A ∈ orthogonalGroup n β ↔ star A * A = 1
[PROOFSTEP]
refine' ⟨And.left, fun hA => ⟨hA, _⟩⟩
[GOAL]
n : Type u
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
α : Type v
inst✝² : CommRing α
inst✝¹ : StarRing α
A✝ : Matrix n n α
β : Type v
inst✝ : CommRing β
A : Matrix n n β
hA : star A * A = 1
⊢ A * star A = 1
[PROOFSTEP]
rwa [mul_eq_one_comm] at hA
| {"mathlib_filename": "Mathlib.LinearAlgebra.UnitaryGroup", "llama_tokens": 2497} |
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
⊢ OpenEmbedding ↑(ι D.toGlueData i).base
[PROOFSTEP]
rw [← show _ = (𝖣.ι i).base from 𝖣.ι_gluedIso_inv (PresheafedSpace.forget _) _]
-- Porting note : added this erewrite
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
⊢ OpenEmbedding ↑(ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv)
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
⊢ OpenEmbedding (↑(gluedIso D.toGlueData (forget C)).inv ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) i))
[PROOFSTEP]
refine
OpenEmbedding.comp (TopCat.homeoOfIso (𝖣.gluedIso (PresheafedSpace.forget _)).symm).openEmbedding
(D.toTopGlueData.ι_openEmbedding i)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
⊢ ↑pullback.snd.base '' (↑pullback.fst.base ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
have eq₁ : _ = (π₁ i, j, k).base := PreservesPullback.iso_hom_fst (forget C) _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
⊢ ↑pullback.snd.base '' (↑pullback.fst.base ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
have eq₂ : _ = (π₂ i, j, k).base := PreservesPullback.iso_hom_snd (forget C) _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ ↑pullback.snd.base '' (↑pullback.fst.base ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
rw [← eq₁, ← eq₂]
-- Porting note : `rw` to `erw` on `coe_comp`
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ ↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd) ''
(↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst) ⁻¹' S) =
↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ ↑pullback.snd ∘ ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ''
(↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst) ⁻¹' S) =
↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
rw [Set.image_comp]
-- Porting note : `rw` to `erw` on `coe_comp`
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ ↑pullback.snd ''
(↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ''
(↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst) ⁻¹' S)) =
↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ ↑pullback.snd ''
(↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ''
(↑pullback.fst ∘ ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ⁻¹' S)) =
↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
[PROOFSTEP]
rw [Set.preimage_comp, Set.image_preimage_eq, TopCat.pullback_snd_image_fst_preimage]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ ↑((forget C).map (f D.toGlueData i k)) ⁻¹' (↑((forget C).map (f D.toGlueData i j)) '' S) =
↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S)
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ Function.Surjective ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom
[PROOFSTEP]
rfl
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ Function.Surjective ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
S : Set ↑↑(V D.toGlueData (i, j))
eq₁ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base
eq₂ :
(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base
⊢ Epi (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))
[PROOFSTEP]
delta IsOpenImmersion.openFunctor
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
⊢ op
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd.base)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(f D.toGlueData i j).base)).obj U))
[PROOFSTEP]
dsimp only [Functor.op, IsOpenMap.functor, Opens.map, unop_op]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
⊢ op
{
carrier :=
↑pullback.snd.base ''
↑{ carrier := ↑pullback.fst.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑U)) },
is_open' :=
(_ :
IsOpen
(↑pullback.snd.base ''
↑{ carrier := ↑pullback.fst.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑U)) })) } =
op
{
carrier :=
↑(f D.toGlueData i k).base ⁻¹'
↑{ carrier := ↑(f D.toGlueData i j).base '' ↑U,
is_open' := (_ : IsOpen (↑(f D.toGlueData i j).base '' ↑U)) },
is_open' :=
(_ :
IsOpen
(↑(f D.toGlueData i k).base ⁻¹'
↑{ carrier := ↑(f D.toGlueData i j).base '' ↑U,
is_open' := (_ : IsOpen (↑(f D.toGlueData i j).base '' ↑U)) })) }
[PROOFSTEP]
congr
[GOAL]
case e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
⊢ ↑pullback.snd.base ''
↑{ carrier := ↑pullback.fst.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑U)) } =
↑(f D.toGlueData i k).base ⁻¹'
↑{ carrier := ↑(f D.toGlueData i j).base '' ↑U, is_open' := (_ : IsOpen (↑(f D.toGlueData i j).base '' ↑U)) }
[PROOFSTEP]
apply pullback_base
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i j)) U ≫
NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
NatTrans.app pullback.fst.c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (i, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))))
[PROOFSTEP]
have := PresheafedSpace.congr_app (@pullback.condition _ _ _ _ _ (D.f i j) (D.f i k) _)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (pullback.fst ≫ f D.toGlueData i j).c U =
NatTrans.app (pullback.snd ≫ f D.toGlueData i k).c U ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i j)) U ≫
NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
NatTrans.app pullback.fst.c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (i, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))))
[PROOFSTEP]
dsimp only [comp_c_app] at this
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (f D.toGlueData i j).c U ≫
NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) =
(NatTrans.app (f D.toGlueData i k).c U ≫
NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i j)) U ≫
NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
NatTrans.app pullback.fst.c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (i, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))))
[PROOFSTEP]
rw [← cancel_epi (inv ((D.f_open i j).invApp U)), IsIso.inv_hom_id_assoc, IsOpenImmersion.inv_invApp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (f D.toGlueData i j).c U ≫
NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) =
(NatTrans.app (f D.toGlueData i k).c U ≫
NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
(NatTrans.app (f D.toGlueData i j).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
op
((Opens.map (f D.toGlueData i j).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) =
op U))) ≫
NatTrans.app pullback.fst.c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (i, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (f D.toGlueData i j).c U ≫
NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) =
(NatTrans.app (f D.toGlueData i k).c U ≫
NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
NatTrans.app (f D.toGlueData i j).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
op
((Opens.map (f D.toGlueData i j).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) =
op U)) ≫
NatTrans.app pullback.fst.c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (i, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))))
[PROOFSTEP]
erw [(π₁ i, j, k).c.naturality_assoc, reassoc_of% this, ← Functor.map_comp_assoc, IsOpenImmersion.inv_naturality_assoc,
IsOpenImmersion.app_invApp_assoc, ← (D.V (i, k)).presheaf.map_comp, ← (D.V (i, k)).presheaf.map_comp]
-- Porting note : need to provide an explicit argument, otherwise Lean does not know which
-- category we are talking about
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (f D.toGlueData i j).c U ≫
NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) =
(NatTrans.app (f D.toGlueData i k).c U ≫
NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
NatTrans.app (f D.toGlueData i k).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) ≫
(V D.toGlueData (i, k)).presheaf.map
((homOfLE
(_ :
↑pullback.snd.base ''
(↑pullback.snd.base ⁻¹'
((Opens.map (f D.toGlueData i k).base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj
U)).unop).carrier) ⊆
((Opens.map (f D.toGlueData i k).base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj
U)).unop).carrier)).op ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).op.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))) ≫
(Opens.map pullback.fst.base).op.map
(eqToHom
(_ :
op
((Opens.map (f D.toGlueData i j).base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj
U)).unop) =
op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))))
[PROOFSTEP]
convert (Category.comp_id ((f D.toGlueData i k).c.app _)).symm
[GOAL]
case h.e'_3.h.h.e'_7
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (f D.toGlueData i j).c U ≫
NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) =
(NatTrans.app (f D.toGlueData i k).c U ≫
NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ (V D.toGlueData (i, k)).presheaf.map
((homOfLE
(_ :
↑pullback.snd.base ''
(↑pullback.snd.base ⁻¹'
((Opens.map (f D.toGlueData i k).base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj
U)).unop).carrier) ⊆
((Opens.map (f D.toGlueData i k).base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj
U)).unop).carrier)).op ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).op.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))) ≫
(Opens.map pullback.fst.base).op.map
(eqToHom
(_ :
op
((Opens.map (f D.toGlueData i j).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) =
op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData i k).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) =
𝟙
(((f D.toGlueData i k).base _* (V D.toGlueData (i, k)).presheaf).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))
[PROOFSTEP]
erw [(D.V (i, k)).presheaf.map_id]
[GOAL]
case h.e'_3.h.h.e'_7
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(V D.toGlueData (i, j))
this :
∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ),
NatTrans.app (f D.toGlueData i j).c U ≫
NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) =
(NatTrans.app (f D.toGlueData i k).c U ≫
NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫
(pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U =
(Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U))
⊢ 𝟙
((V D.toGlueData (i, k)).presheaf.obj
(op
((Opens.map (f D.toGlueData i k).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop))) =
𝟙
(((f D.toGlueData i k).base _* (V D.toGlueData (i, k)).presheaf).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ∃ eq,
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map (eqToHom eq) =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop
[PROOFSTEP]
fconstructor
-- Porting note: I don't know what the magic was in Lean3 proof, it just skipped the proof of `eq`
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ (Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop)
[PROOFSTEP]
delta IsOpenImmersion.openFunctor
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd.base)).obj U)) =
op
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.fst.base)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop)
[PROOFSTEP]
dsimp only [Functor.op, Opens.map, IsOpenMap.functor, unop_op, Opens.coe_mk]
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ op
{ carrier := ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData k i).base ⁻¹'
↑{ carrier := ↑pullback.snd.base '' ↑U, is_open' := (_ : IsOpen (↑pullback.snd.base '' ↑U)) })) } =
op
{ carrier := ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U),
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ''
↑{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑U,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)) })) }
[PROOFSTEP]
congr
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
have := (𝖣.t_fac k i j).symm
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : pullback.fst ≫ t D.toGlueData k i = t' D.toGlueData k i j ≫ pullback.snd
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
rw [← IsIso.inv_comp_eq] at this
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : inv (t' D.toGlueData k i j) ≫ pullback.fst ≫ t D.toGlueData k i = pullback.snd
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
replace this := (congr_arg ((PresheafedSpace.Hom.base ·)) this).symm
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : pullback.snd.base = (inv (t' D.toGlueData k i j) ≫ pullback.fst ≫ t D.toGlueData k i).base
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
replace this := congr_arg (ContinuousMap.toFun ·) this
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this :
(fun x => x.toFun) pullback.snd.base =
(fun x => x.toFun) (inv (t' D.toGlueData k i j) ≫ pullback.fst ≫ t D.toGlueData k i).base
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
dsimp at this
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = ↑((inv (t' D.toGlueData k i j)).base ≫ pullback.fst.base ≫ (t D.toGlueData k i).base)
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
rw [coe_comp, coe_comp] at this
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
rw [this, Set.image_comp, Set.image_comp, Set.preimage_image_eq]
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ ↑pullback.fst.base '' (↑(inv (t' D.toGlueData k i j)).base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
case w.e_x.e_carrier.h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ Function.Injective ↑(t D.toGlueData k i).base
[PROOFSTEP]
swap
[GOAL]
case w.e_x.e_carrier.h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ Function.Injective ↑(t D.toGlueData k i).base
[PROOFSTEP]
refine Function.HasLeftInverse.injective ⟨(D.t i k).base, fun x => ?_⟩
[GOAL]
case w.e_x.e_carrier.h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
x : ↑↑(V D.toGlueData (k, i))
⊢ ↑(t D.toGlueData i k).base (↑(t D.toGlueData k i).base x) = x
[PROOFSTEP]
rw [← comp_apply, ← comp_base, D.t_inv, id_base, id_apply]
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ ↑pullback.fst.base '' (↑(inv (t' D.toGlueData k i j)).base '' ↑U) =
↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)
[PROOFSTEP]
refine congr_arg (_ '' ·) ?_
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ ↑(inv (t' D.toGlueData k i j)).base '' ↑U = ↑(t' D.toGlueData k i j).base ⁻¹' ↑U
[PROOFSTEP]
refine congr_fun ?_ _
[GOAL]
case w.e_x.e_carrier
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ Set.image ↑(inv (t' D.toGlueData k i j)).base = Set.preimage ↑(t' D.toGlueData k i j).base
[PROOFSTEP]
refine Set.image_eq_preimage_of_inverse ?_ ?_
[GOAL]
case w.e_x.e_carrier.refine_1
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ Function.LeftInverse ↑(t' D.toGlueData k i j).base ↑(inv (t' D.toGlueData k i j)).base
[PROOFSTEP]
intro x
[GOAL]
case w.e_x.e_carrier.refine_1
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
x : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑(t' D.toGlueData k i j).base (↑(inv (t' D.toGlueData k i j)).base x) = x
[PROOFSTEP]
rw [← comp_apply, ← comp_base, IsIso.inv_hom_id, id_base, id_apply]
[GOAL]
case w.e_x.e_carrier.refine_2
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
⊢ Function.RightInverse ↑(t' D.toGlueData k i j).base ↑(inv (t' D.toGlueData k i j)).base
[PROOFSTEP]
intro x
[GOAL]
case w.e_x.e_carrier.refine_2
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base
x : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData k i) (f D.toGlueData k j))
⊢ ↑(inv (t' D.toGlueData k i j)).base (↑(t' D.toGlueData k i j).base x) = x
[PROOFSTEP]
rw [← comp_apply, ← comp_base, IsIso.hom_inv_id, id_base, id_apply]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop
[PROOFSTEP]
rw [← IsIso.eq_inv_comp, IsOpenImmersion.inv_invApp, Category.assoc, (D.t' k i j).c.naturality_assoc]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
NatTrans.app pullback.snd.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
NatTrans.app (t' D.toGlueData k i j).c
((Opens.map pullback.snd.base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))) ≫
((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) =
op U)) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
((NatTrans.app pullback.snd.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
NatTrans.app (t' D.toGlueData k i j).c
((Opens.map pullback.snd.base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) ≫
((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) =
op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) }
[PROOFSTEP]
erw [← comp_c_app]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
(NatTrans.app (t' D.toGlueData k i j ≫ pullback.snd).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) =
op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) }
[PROOFSTEP]
rw [congr_app (D.t_fac k i j), comp_c_app]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
(((NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
NatTrans.app pullback.fst.c
(op
((Opens.map (t D.toGlueData k i).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop))) ≫
(pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.fst ≫ t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
(Opens.map (t' D.toGlueData k i j ≫ pullback.snd).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))) ≫
((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) =
op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) }
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
NatTrans.app pullback.fst.c
(op
((Opens.map (t D.toGlueData k i).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop)) ≫
(pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf.map
(eqToHom
(_ :
(Opens.map (pullback.fst ≫ t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
(Opens.map (t' D.toGlueData k i j ≫ pullback.snd).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) ≫
((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) =
op U)) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) }
[PROOFSTEP]
erw [IsOpenImmersion.inv_naturality, IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.app_inv_app'_assoc]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
((Opens.map pullback.fst.base).obj
((Opens.map (t D.toGlueData k i).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop)) =
(Opens.map (t D.toGlueData k i).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop)).op ≫
(V D.toGlueData (k, i)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map (pullback.fst ≫ t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
(Opens.map (t' D.toGlueData k i j ≫ pullback.snd).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))) ≫
(V D.toGlueData (k, i)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (t' D.toGlueData k i j).base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) =
op U))))
case h.hU
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑((Opens.map (t D.toGlueData k i).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) ⊆
Set.range ↑pullback.fst.base
[PROOFSTEP]
simp_rw [← (𝖣.V (k, i)).presheaf.map_comp, eqToHom_map (Functor.op _), eqToHom_op, eqToHom_trans]
[GOAL]
case h.hU
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑((Opens.map (t D.toGlueData k i).base).obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) ⊆
Set.range ↑pullback.fst.base
[PROOFSTEP]
rintro x ⟨y, -, eq⟩
[GOAL]
case h.hU.intro.intro
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
x : ↑↑(V D.toGlueData (k, i))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
eq : ↑pullback.snd.base y = ↑(t D.toGlueData k i).base x
⊢ x ∈ Set.range ↑pullback.fst.base
[PROOFSTEP]
replace eq := ConcreteCategory.congr_arg (𝖣.t i k).base eq
[GOAL]
case h.hU.intro.intro
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
x : ↑↑(V D.toGlueData (k, i))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
eq : ↑(t D.toGlueData i k).base (↑pullback.snd.base y) = ↑(t D.toGlueData i k).base (↑(t D.toGlueData k i).base x)
⊢ x ∈ Set.range ↑pullback.fst.base
[PROOFSTEP]
change ((π₂ i, j, k) ≫ D.t i k).base y = (D.t k i ≫ D.t i k).base x at eq
[GOAL]
case h.hU.intro.intro
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
x : ↑↑(V D.toGlueData (k, i))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
eq : ↑(pullback.snd ≫ t D.toGlueData i k).base y = ↑(t D.toGlueData k i ≫ t D.toGlueData i k).base x
⊢ x ∈ Set.range ↑pullback.fst.base
[PROOFSTEP]
rw [𝖣.t_inv, id_base, TopCat.id_app] at eq
[GOAL]
case h.hU.intro.intro
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
x : ↑↑(V D.toGlueData (k, i))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
eq : ↑(pullback.snd ≫ t D.toGlueData i k).base y = x
⊢ x ∈ Set.range ↑pullback.fst.base
[PROOFSTEP]
subst eq
[GOAL]
case h.hU.intro.intro
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑(pullback.snd ≫ t D.toGlueData i k).base y ∈ Set.range ↑pullback.fst.base
[PROOFSTEP]
use(inv (D.t' k i j)).base y
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑pullback.fst.base (↑(inv (t' D.toGlueData k i j)).base y) = ↑(pullback.snd ≫ t D.toGlueData i k).base y
[PROOFSTEP]
change (inv (D.t' k i j) ≫ π₁ k, i, j).base y = _
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ ↑(inv (t' D.toGlueData k i j) ≫ pullback.fst).base y = ↑(pullback.snd ≫ t D.toGlueData i k).base y
[PROOFSTEP]
congr 2
[GOAL]
case h.e_a.e_self
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ inv (t' D.toGlueData k i j) ≫ pullback.fst = pullback.snd ≫ t D.toGlueData i k
[PROOFSTEP]
rw [IsIso.inv_comp_eq, 𝖣.t_fac_assoc, 𝖣.t_inv, Category.comp_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))
[PROOFSTEP]
have e := (D.snd_invApp_t_app' i j k U).choose_spec
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
e :
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))
[PROOFSTEP]
replace e := reassoc_of% e
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
e :
∀ {Z : C}
(h :
(V D.toGlueData (k, i)).presheaf.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop)) ⟶
Z),
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫
h =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } ≫
h
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))
[PROOFSTEP]
rw [← e]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData C
i j k : D.J
U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k))
e :
∀ {Z : C}
(h :
(V D.toGlueData (k, i)).presheaf.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop)) ⟶
Z),
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫
h =
NatTrans.app (t' D.toGlueData k i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } ≫
h
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫
NatTrans.app (t D.toGlueData k i).c
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫
(V D.toGlueData (k, i)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (t D.toGlueData k i).base).op.obj
(op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))
[PROOFSTEP]
simp [eqToHom_map]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U))
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) =
↑((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))
[PROOFSTEP]
dsimp only [Opens.map_coe, IsOpenMap.functor_obj_coe]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(ι D.toGlueData j).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
rw [← show _ = (𝖣.ι i).base from 𝖣.ι_gluedIso_inv (PresheafedSpace.forget _) i, ←
show _ = (𝖣.ι j).base from 𝖣.ι_gluedIso_inv (PresheafedSpace.forget _) j]
-- Porting note : change `rw` to `erw` on `coe_comp`
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(ι (mapGlueData D.toGlueData (forget C)) j ≫ (gluedIso D.toGlueData (forget C)).inv) ⁻¹'
(↑(ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv) '' ↑U) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
erw [coe_comp, coe_comp, coe_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (↑(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv ∘
↑(HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv) ∘
↑(ι (mapGlueData D.toGlueData (forget C)) j) ⁻¹'
(↑(gluedIso D.toGlueData (forget C)).inv ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) i) '' ↑U) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
rw [Set.image_comp, Set.preimage_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(ι (mapGlueData D.toGlueData (forget C)) j) ⁻¹'
(↑(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv ∘
↑(HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv ⁻¹'
(↑(gluedIso D.toGlueData (forget C)).inv '' (↑(ι (mapGlueData D.toGlueData (forget C)) i) '' ↑U))) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
erw [Set.preimage_image_eq]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(ι (mapGlueData D.toGlueData (forget C)) j) ⁻¹' (↑(ι (mapGlueData D.toGlueData (forget C)) i) '' ↑U) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
refine' Eq.trans (D.toTopGlueData.preimage_image_eq_image' _ _ _) _
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(t (toTopGlueData D).toGlueData i j ≫ f (toTopGlueData D).toGlueData j i) ''
(↑(f (toTopGlueData D).toGlueData i j) ⁻¹' ↑U) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑((t D.toGlueData i j).base ≫ (f D.toGlueData j i).base) '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
rw [coe_comp, Set.image_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) =
↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U))
[PROOFSTEP]
refine congr_arg (_ '' ·) ?_
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) =
↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)
[PROOFSTEP]
rw [Set.eq_preimage_iff_image_eq, ← Set.image_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(t D.toGlueData j i).base ∘ ↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) =
↑(f D.toGlueData i j).base ⁻¹' ↑U
case h.hf
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Function.Bijective ↑(t D.toGlueData j i).base
[PROOFSTEP]
swap
[GOAL]
case h.hf
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Function.Bijective ↑(t D.toGlueData j i).base
[PROOFSTEP]
apply CategoryTheory.ConcreteCategory.bijective_of_isIso
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(t D.toGlueData j i).base ∘ ↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) =
↑(f D.toGlueData i j).base ⁻¹' ↑U
[PROOFSTEP]
change (D.t i j ≫ D.t j i).base '' _ = _
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(t D.toGlueData i j ≫ t D.toGlueData j i).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) =
↑(f D.toGlueData i j).base ⁻¹' ↑U
[PROOFSTEP]
rw [𝖣.t_inv]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(𝟙 (V D.toGlueData (i, j))).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(f D.toGlueData i j).base ⁻¹' ↑U
[PROOFSTEP]
simp
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Function.Injective
(↑(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv ∘
↑(HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv)
[PROOFSTEP]
rw [← coe_comp, ← TopCat.mono_iff_injective]
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
((HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv ≫
(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ∃ eq,
opensImagePreimageMap D i j U ≫
NatTrans.app (f D.toGlueData j k).c
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom eq)
[PROOFSTEP]
constructor
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ opensImagePreimageMap D i j U ≫
NatTrans.app (f D.toGlueData j k).c
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
delta opensImagePreimageMap
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (NatTrans.app (f D.toGlueData i j).c (op U) ≫
NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData j i))
{
unop :=
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) } }.unop ≫
(CategoryTheory.GlueData.U D.toGlueData j).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj
((Opens.map (f D.toGlueData i j).base).obj U)))).op) ≫
NatTrans.app (f D.toGlueData j k).c
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (f D.toGlueData i j).c (op U) ≫
NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData j i))
{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) } ≫
(CategoryTheory.GlueData.U D.toGlueData j).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData j k).c
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
rw [(D.f j k).c.naturality, f_invApp_f_app_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (f D.toGlueData i j).c (op U) ≫
NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫
NatTrans.app pullback.fst.c
(op
{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })))) ≫
((f D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj
((Opens.map (f D.toGlueData i j).base).obj U)))).op =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (f D.toGlueData i j).c (op U) ≫
NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫
NatTrans.app pullback.fst.c
(op
{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫
(Opens.map (f D.toGlueData j k).base).op.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj
((Opens.map (f D.toGlueData i j).base).obj U)))).op) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (((NatTrans.app (f D.toGlueData i j).c (op U) ≫
NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U))) ≫
NatTrans.app pullback.fst.c
(op
{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) }) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫
(Opens.map (f D.toGlueData j k).base).op.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) =
(NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }) ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
erw [← comp_c_app, ← comp_c_app]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) }) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫
(Opens.map (f D.toGlueData j k).base).op.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) =
(NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }) ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑(op
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj
(op U)).unop)) }).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫
(Opens.map (f D.toGlueData j k).base).op.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj
((Opens.map (f D.toGlueData i j).base).obj U)))).op) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
dsimp only [Functor.op, unop_op, Quiver.Hom.unop_op]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑pullback.fst.base ⁻¹'
↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) }) =
op
((Opens.map (f D.toGlueData j k).base).obj
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫
((Opens.map (f D.toGlueData j k).base).map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj
((Opens.map (f D.toGlueData i j).base).obj U))))).op) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U,
is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U)) } ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
rw [eqToHom_map (Opens.map _), eqToHom_op, eqToHom_trans]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
carrier :=
↑pullback.fst.base ⁻¹'
↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑pullback.fst.base ⁻¹'
↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.fst.base ⁻¹'
↑{
carrier :=
↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData j i).base ⁻¹'
↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) }) =
op
((Opens.map (f D.toGlueData j k).base).obj
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U,
is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U)) } ≫
(V D.toGlueData (j, k)).presheaf.map (eqToHom ?w)
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
congr
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j k : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X' : C
f' :
((f D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ⟶
X'
⊢ opensImagePreimageMap D i j U ≫
NatTrans.app (f D.toGlueData j k).c
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
f' =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
f'
[PROOFSTEP]
simpa only [Category.assoc] using congr_arg (· ≫ f') (opensImagePreimageMap_app D i j k U)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U) ⟶ (diagramOverOpen D U).obj (op j)
[PROOFSTEP]
rcases j with (⟨j, k⟩ | j)
[GOAL]
case left.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U) ⟶
(diagramOverOpen D U).obj (op (WalkingMultispan.left (j, k)))
[PROOFSTEP]
refine' D.opensImagePreimageMap i j U ≫ (D.f j k).c.app _ ≫ (D.V (j, k)).presheaf.map (eqToHom _)
[GOAL]
case left.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
[PROOFSTEP]
rw [Functor.op_obj]
[GOAL]
case left.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ op
((Opens.map (f D.toGlueData j k).base).obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
[PROOFSTEP]
congr 1
[GOAL]
case left.mk.e_x
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (Opens.map (f D.toGlueData j k).base).obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop =
(Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)
[PROOFSTEP]
ext1
[GOAL]
case left.mk.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ↑((Opens.map (f D.toGlueData j k).base).obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop) =
↑((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
[PROOFSTEP]
dsimp only [Functor.op_obj, Opens.map_coe, unop_op, IsOpenMap.functor_obj_coe]
[GOAL]
case left.mk.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ↑(f D.toGlueData j k).base ⁻¹' (↑(ι D.toGlueData j).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U)) =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base ⁻¹'
(↑(ι D.toGlueData i).base '' ↑U)
[PROOFSTEP]
rw [Set.preimage_preimage]
[GOAL]
case left.mk.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (fun x => ↑(ι D.toGlueData j).base (↑(f D.toGlueData j k).base x)) ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base ⁻¹'
(↑(ι D.toGlueData i).base '' ↑U)
[PROOFSTEP]
change
(D.f j k ≫ 𝖣.ι j).base ⁻¹' _ =
_
-- Porting note : used to be `congr 3`
[GOAL]
case left.mk.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ↑(f D.toGlueData j k ≫ ι D.toGlueData j).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base ⁻¹'
(↑(ι D.toGlueData i).base '' ↑U)
[PROOFSTEP]
refine congr_arg (· ⁻¹' _) ?_
[GOAL]
case left.mk.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ↑(f D.toGlueData j k ≫ ι D.toGlueData j).base =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base
[PROOFSTEP]
convert congr_arg (ContinuousMap.toFun (α := D.V ⟨j, k⟩) (β := D.glued) ·) ?_
[GOAL]
case left.mk.e_x.h.convert_3
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (f D.toGlueData j k ≫ ι D.toGlueData j).base =
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base
[PROOFSTEP]
refine congr_arg (PresheafedSpace.Hom.base (C := C) ·) ?_
[GOAL]
case left.mk.e_x.h.convert_3
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ f D.toGlueData j k ≫ ι D.toGlueData j =
colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))
[PROOFSTEP]
exact colimit.w 𝖣.diagram.multispan (WalkingMultispan.Hom.fst (j, k))
[GOAL]
case right
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : (diagram D.toGlueData).R
⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U) ⟶
(diagramOverOpen D U).obj (op (WalkingMultispan.right j))
[PROOFSTEP]
exact D.opensImagePreimageMap i j U
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ
f' : X ⟶ Y
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) Y =
(fun j => ιInvAppπApp D U j.unop) X ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
induction X using Opposite.rec' with
| h X => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ
f' : X ⟶ Y
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) Y =
(fun j => ιInvAppπApp D U j.unop) X ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
induction X using Opposite.rec' with
| h X => ?_
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ
X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f' : op X ⟶ Y
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) Y =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
induction Y using Opposite.rec' with
| h Y => ?_
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ
X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f' : op X ⟶ Y
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) Y =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
induction Y using Opposite.rec' with
| h Y => ?_
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f' : op X ⟶ op Y
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) (op Y) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
let f : Y ⟶ X := f'.unop
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f' : op X ⟶ op Y
f : Y ⟶ X := f'.unop
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) (op Y) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
have : f' = f.op := rfl
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f' : op X ⟶ op Y
f : Y ⟶ X := f'.unop
this : f' = f.op
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) (op Y) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
clear_value f
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f' : op X ⟶ op Y
f : Y ⟶ X
this : f' = f.op
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f' ≫
(fun j => ιInvAppπApp D U j.unop) (op Y) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f'
[PROOFSTEP]
subst this
[GOAL]
case h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
f : Y ⟶ X
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
f.op ≫
(fun j => ιInvAppπApp D U j.unop) (op Y) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f.op
[PROOFSTEP]
rcases f with (_ | ⟨j, k⟩ | ⟨j, k⟩)
[GOAL]
case h.h.id
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
(WalkingMultispan.Hom.id X).op ≫
(fun j => ιInvAppπApp D U j.unop) (op X) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map (WalkingMultispan.Hom.id X).op
[PROOFSTEP]
erw [Category.id_comp, CategoryTheory.Functor.map_id]
[GOAL]
case h.h.id
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
⊢ (fun j => ιInvAppπApp D U j.unop) (op X) =
(fun j => ιInvAppπApp D U j.unop) (op X) ≫ 𝟙 ((diagramOverOpen D U).obj (op X))
[PROOFSTEP]
rw [Category.comp_id]
[GOAL]
case h.h.fst.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
(WalkingMultispan.Hom.fst (j, k)).op ≫
(fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) =
(fun j => ιInvAppπApp D U j.unop)
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) ≫
(diagramOverOpen D U).map (WalkingMultispan.Hom.fst (j, k)).op
[PROOFSTEP]
erw [Category.id_comp]
[GOAL]
case h.h.fst.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) =
(fun j => ιInvAppπApp D U j.unop)
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) ≫
(diagramOverOpen D U).map (WalkingMultispan.Hom.fst (j, k)).op
[PROOFSTEP]
congr 1
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj
((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map
(WalkingMultispan.Hom.snd (j, k)).op ≫
(fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) =
(fun j => ιInvAppπApp D U j.unop)
(op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))) ≫
(diagramOverOpen D U).map (WalkingMultispan.Hom.snd (j, k)).op
[PROOFSTEP]
erw [Category.id_comp]
-- It remains to show that the blue is equal to red + green in the original diagram.
-- The proof strategy is illustrated in ![this diagram](https://i.imgur.com/mBzV1Rx.png)
-- where we prove red = pink = light-blue = green = blue.
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) =
(fun j => ιInvAppπApp D U j.unop)
(op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))) ≫
(diagramOverOpen D U).map (WalkingMultispan.Hom.snd (j, k)).op
[PROOFSTEP]
change
D.opensImagePreimageMap i j U ≫ (D.f j k).c.app _ ≫ (D.V (j, k)).presheaf.map (eqToHom _) =
D.opensImagePreimageMap _ _ _ ≫ ((D.f k j).c.app _ ≫ (D.t j k).c.app _) ≫ (D.V (j, k)).presheaf.map (eqToHom _)
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ opensImagePreimageMap D i j U ≫
NatTrans.app (f D.toGlueData j k).c
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
opensImagePreimageMap D i k U ≫
(NatTrans.app (f D.toGlueData k j).c
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
NatTrans.app (t D.toGlueData j k).c
((Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [opensImagePreimageMap_app_assoc]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
opensImagePreimageMap D i k U ≫
(NatTrans.app (f D.toGlueData k j).c
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
NatTrans.app (t D.toGlueData j k).c
((Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
opensImagePreimageMap D i k U ≫
NatTrans.app (f D.toGlueData k j).c
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
NatTrans.app (t D.toGlueData j k).c
((Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [opensImagePreimageMap_app_assoc, (D.t j k).c.naturality_assoc]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop ≫
NatTrans.app (t D.toGlueData j k).c
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rw [snd_invApp_t_app_assoc]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫
NatTrans.app (t' D.toGlueData j k i).c
(op
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← PresheafedSpace.comp_c_app_assoc]
-- light-blue = green is relatively easy since the part that differs does not involve
-- partial inverses.
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
have : D.t' j k i ≫ (π₁ k, i, j) ≫ D.t k i ≫ 𝖣.f i k = (pullbackSymmetry _ _).hom ≫ (π₁ j, i, k) ≫ D.t j i ≫ D.f i j :=
by
rw [← 𝖣.t_fac_assoc, 𝖣.t'_comp_eq_pullbackSymmetry_assoc, pullbackSymmetry_hom_comp_snd_assoc, pullback.condition,
𝖣.t_fac_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
[PROOFSTEP]
rw [← 𝖣.t_fac_assoc, 𝖣.t'_comp_eq_pullbackSymmetry_assoc, pullbackSymmetry_hom_comp_snd_assoc, pullback.condition,
𝖣.t_fac_assoc]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rw [congr_app this]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(NatTrans.app
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c
(op U) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [PresheafedSpace.comp_c_app_assoc (pullbackSymmetry _ _).hom]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c
(op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h.h.snd.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫
NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c
(op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
congr 1
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c
(op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rw [← IsIso.eq_inv_comp]
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
inv
(IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd)
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }) ≫
NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c
(op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [IsOpenImmersion.inv_invApp]
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(NatTrans.app pullback.snd.c
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
(pullback (f D.toGlueData j i) (f D.toGlueData j k)).presheaf.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))) ≫
NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c
(op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app pullback.snd.c
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
(pullback (f D.toGlueData j i) (f D.toGlueData j k)).presheaf.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c
(op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫
f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [NatTrans.naturality_assoc, ← PresheafedSpace.comp_c_app_assoc, congr_app (pullbackSymmetry_hom_comp_snd _ _)]
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(NatTrans.app pullback.fst.c
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base _*
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
NatTrans.app pullback.fst.c
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base _*
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf).map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫
(pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst)
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) }).unop)) } ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫
f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.inv_naturality_assoc,
IsOpenImmersion.app_invApp_assoc]
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
repeat'
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop)))) ≫
(V D.toGlueData (j, k)).presheaf.map
((Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U)))) ≫
(V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop))) ≫
(Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop))) ≫
(Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))))) ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop))) ≫
(Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
(homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(V D.toGlueData (j, k)).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop))) ≫
(Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
((homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop))) ≫
(Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [← (D.V (j, k)).presheaf.map_comp]
-- Porting note : was just `congr`
[GOAL]
case h.h.snd.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
this :
t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k =
(pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j
⊢ (V D.toGlueData (j, k)).presheaf.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData j k).base).op.obj
(op
((Opens.map (ι D.toGlueData j).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(V D.toGlueData (j, k)).presheaf.map
((homOfLE
(_ :
↑pullback.fst.base ''
(↑pullback.fst.base ⁻¹'
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier) ⊆
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }).carrier)).op ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map pullback.fst.base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) =
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map
(eqToHom
(_ :
op
((Opens.map pullback.snd.base).obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) })).unop) =
op
{ carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹'
↑(op U).unop)) }))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map
(eqToHom
(_ :
(Opens.map
((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫
pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj
(op U) =
(Opens.map
(t' D.toGlueData j k i ≫
pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj
(op U))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj
{
unop :=
{
carrier :=
↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop,
is_open' :=
(_ :
IsOpen
(↑(t' D.toGlueData j k i).base ⁻¹'
↑(op
{
unop :=
{
carrier :=
↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫
t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop).unop)) } }.unop) =
(Opens.map (t D.toGlueData j k).base).op.obj
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop))) ≫
(Opens.map (t D.toGlueData j k).base).op.map
(eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj
{
unop :=
{
carrier :=
↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹'
↑(op U).unop)) } }.unop) =
(Opens.map (f D.toGlueData k j).base).op.obj
(op
((Opens.map (ι D.toGlueData k).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫
eqToHom
(_ :
(Opens.map
((MultispanIndex.multispan (diagram D.toGlueData)).map
(WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (j, k))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
exact congr_arg ((D.V (j, k)).presheaf.map ·) rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ∃ eq, ιInvApp D U ≫ diagramOverOpenπ D U i = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom eq)
[PROOFSTEP]
fconstructor
-- Porting note: I don't know what the magic was in Lean3 proof, it just skipped the proof of `eq`
[GOAL]
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
[PROOFSTEP]
congr
[GOAL]
case w.e_x
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ U =
(Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)
[PROOFSTEP]
ext1
[GOAL]
case w.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑U =
↑((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
[PROOFSTEP]
change _ = _ ⁻¹' (_ '' _)
[GOAL]
case w.e_x.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑U =
(fun x =>
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base x) ⁻¹'
((fun a => ↑(ι D.toGlueData i).base a) '' ↑U)
[PROOFSTEP]
ext1 x
[GOAL]
case w.e_x.h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ x ∈ ↑U ↔
x ∈
(fun x =>
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base
x) ⁻¹'
((fun a => ↑(ι D.toGlueData i).base a) '' ↑U)
[PROOFSTEP]
simp only [SetLike.mem_coe, diagram_l, diagram_r, unop_op, Set.mem_preimage, Set.mem_image]
[GOAL]
case w.e_x.h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ x ∈ U ↔
∃ x_1,
x_1 ∈ U ∧
↑(ι D.toGlueData i).base x_1 =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
[PROOFSTEP]
refine ⟨fun h => ⟨_, h, rfl⟩, ?_⟩
[GOAL]
case w.e_x.h.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (∃ x_1,
x_1 ∈ U ∧
↑(ι D.toGlueData i).base x_1 =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x) →
x ∈ U
[PROOFSTEP]
rintro ⟨y, h1, h2⟩
[GOAL]
case w.e_x.h.h.intro.intro
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(ι D.toGlueData i).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
⊢ x ∈ U
[PROOFSTEP]
convert h1 using 1
[GOAL]
case h.e'_4.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(ι D.toGlueData i).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ x = y
[PROOFSTEP]
delta ι Multicoequalizer.π at h2
[GOAL]
case h.e'_4.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ x = y
[PROOFSTEP]
apply_fun (D.ι _).base
[GOAL]
case h.e'_4.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑(ι D.toGlueData i).base x = ↑(ι D.toGlueData i).base y
[PROOFSTEP]
exact h2.symm
[GOAL]
case h.e'_4.h.inj
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Function.Injective ↑(ι D.toGlueData i).base
[PROOFSTEP]
have := D.ι_gluedIso_inv (PresheafedSpace.forget _) i
[GOAL]
case h.e'_4.h.inj
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
this :
ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (forget C).map (ι D.toGlueData i)
⊢ Function.Injective ↑(ι D.toGlueData i).base
[PROOFSTEP]
dsimp at this
[GOAL]
case h.e'_4.h.inj
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base
⊢ Function.Injective ↑(ι D.toGlueData i).base
[PROOFSTEP]
rw [← this, coe_comp]
[GOAL]
case h.e'_4.h.inj
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base
⊢ Function.Injective (↑(gluedIso D.toGlueData (forget C)).inv ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) i))
[PROOFSTEP]
refine Function.Injective.comp ?_ (TopCat.GlueData.ι_injective D.toTopGlueData i)
[GOAL]
case h.e'_4.h.inj
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base
⊢ Function.Injective ↑(gluedIso D.toGlueData (forget C)).inv
[PROOFSTEP]
rw [← TopCat.mono_iff_injective]
[GOAL]
case h.e'_4.h.inj
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
h1 : y ∈ U
h2 :
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y =
↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x
e_1✝ :
↑↑(CategoryTheory.GlueData.U D.toGlueData i) =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i)
this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base
⊢ Mono (gluedIso D.toGlueData (forget C)).inv
[PROOFSTEP]
infer_instance
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ιInvApp D U ≫ diagramOverOpenπ D U i =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
delta ιInvApp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ limit.lift (diagramOverOpen D U)
{ pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U),
π := NatTrans.mk fun j => ιInvAppπApp D U j.unop } ≫
diagramOverOpenπ D U i =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rw [limit.lift_π]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app
{ pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U),
π := NatTrans.mk fun j => ιInvAppπApp D U j.unop }.π
(op (WalkingMultispan.right i)) =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
change D.opensImagePreimageMap i i U = _
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ opensImagePreimageMap D i i U =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
dsimp [opensImagePreimageMap]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (f D.toGlueData i i).c (op U) ≫
NatTrans.app (t D.toGlueData i i).c (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
{ carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rw [congr_app (D.t_id _), id_c_app, ← Functor.map_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ NatTrans.app (f D.toGlueData i i).c (op U) ≫
(V D.toGlueData (i, i)).presheaf.map
(𝟙 (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)) =
(Opens.map (t D.toGlueData i i).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
{ carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).obj U),
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
erw [IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.app_inv_app'_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (f D.toGlueData i i).base).obj U) =
U)).op ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
(op ((Opens.map (f D.toGlueData i i).base).obj U)) =
(Opens.map (t D.toGlueData i i).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U))))) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
simp only [eqToHom_op, eqToHom_trans, eqToHom_map (Functor.op _), ← Functor.map_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (f D.toGlueData i i).base).obj U))) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
(op ((Opens.map (f D.toGlueData i i).base).obj U)) =
(Opens.map (t D.toGlueData i i).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)))) ≫
eqToHom
(_ :
op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U))) =
op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rfl
[GOAL]
case h.hU
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑U ⊆ Set.range ↑(f D.toGlueData i i).base
[PROOFSTEP]
rw [Set.range_iff_surjective.mpr _]
[GOAL]
case h.hU
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ↑U ⊆ Set.univ
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Function.Surjective ↑(f D.toGlueData i i).base
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Epi (f D.toGlueData i i).base
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ diagramOverOpenπ D U j = diagramOverOpenπ D U j
[PROOFSTEP]
rw [←
@cancel_mono (f :=
(componentwiseDiagram 𝖣.diagram.multispan _).map (Quiver.Hom.op (WalkingMultispan.Hom.snd (i, j))) ≫ 𝟙 _) _ _
(by
rw [Category.comp_id]
apply (config := { allowSynthFailures := true }) mono_comp
change Mono ((_ ≫ D.f j i).c.app _)
rw [comp_c_app]
apply (config := { allowSynthFailures := true }) mono_comp
erw [D.ι_image_preimage_eq i j U]
· infer_instance
· have : IsIso (D.t i j).c := by apply c_isIso_of_iso
infer_instance)]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.snd (i, j)).op ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j)))))
[PROOFSTEP]
rw [Category.comp_id]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.snd (i, j)).op)
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) mono_comp
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (i, j)).op.unop).c
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
change Mono ((_ ≫ D.f j i).c.app _)
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app (t D.toGlueData i j ≫ f D.toGlueData j i).c
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
[PROOFSTEP]
rw [comp_c_app]
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app (f D.toGlueData j i).c
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
NatTrans.app (t D.toGlueData i j).c
(op
((Opens.map (f D.toGlueData j i).base).obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop)))
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) mono_comp
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app (f D.toGlueData j i).c
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app (t D.toGlueData i j).c
(op
((Opens.map (f D.toGlueData j i).base).obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop)))
[PROOFSTEP]
erw [D.ι_image_preimage_eq i j U]
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app (f D.toGlueData j i).c
(op
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj
((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))))
[PROOFSTEP]
infer_instance
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ Mono
(NatTrans.app (t D.toGlueData i j).c
(op
((Opens.map (f D.toGlueData j i).base).obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop)))
[PROOFSTEP]
have : IsIso (D.t i j).c := by apply c_isIso_of_iso
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ IsIso (t D.toGlueData i j).c
[PROOFSTEP]
apply c_isIso_of_iso
[GOAL]
case inst
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
this : IsIso (t D.toGlueData i j).c
⊢ Mono
(NatTrans.app (t D.toGlueData i j).c
(op
((Opens.map (f D.toGlueData j i).base).obj
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op
(WalkingMultispan.right
(MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop)))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ diagramOverOpenπ D U j) ≫
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.snd (i, j)).op ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j)))) =
diagramOverOpenπ D U j ≫
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.snd (i, j)).op ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
ιInvApp D U ≫
diagramOverOpenπ D U j ≫
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.snd (i, j)).op ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j)))) =
diagramOverOpenπ D U j ≫
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.snd (i, j)).op ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j))))
[PROOFSTEP]
rw [limit.w_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
ιInvApp D U ≫
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j))))
[PROOFSTEP]
erw [limit.lift_π_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
NatTrans.app
{ pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U),
π := NatTrans.mk fun j => ιInvAppπApp D U j.unop }.π
(op (WalkingMultispan.left (i, j))) ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) ≫
𝟙
((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj
(op (WalkingMultispan.left (i, j))))
[PROOFSTEP]
rw [Category.comp_id, Category.comp_id]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
NatTrans.app
{ pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U),
π := NatTrans.mk fun j => ιInvAppπApp D U j.unop }.π
(op (WalkingMultispan.left (i, j))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
change _ ≫ _ ≫ (_ ≫ _) ≫ _ = _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
(NatTrans.app (f D.toGlueData i i).c (op U) ≫
NatTrans.app (t D.toGlueData i i).c ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
{
unop :=
{
carrier :=
↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData i i).base ⁻¹'
↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } }.unop ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
rw [congr_app (D.t_id _), id_c_app]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
(NatTrans.app (f D.toGlueData i i).c (op U) ≫
((V D.toGlueData (i, i)).presheaf.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U))) ≫
(V D.toGlueData (i, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
{
unop :=
{
carrier :=
↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData i i).base ⁻¹'
↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } }.unop ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
NatTrans.app (f D.toGlueData i i).c (op U) ≫
(V D.toGlueData (i, i)).presheaf.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U))) ≫
(V D.toGlueData (i, i)).presheaf.map
(eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
{
carrier :=
↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData i i).base ⁻¹'
↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
rw [← Functor.map_comp_assoc]
-- Porting note : change `rw` to `erw`
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
NatTrans.app (f D.toGlueData i i).c (op U) ≫
(V D.toGlueData (i, i)).presheaf.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)))) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
{ carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop,
is_open' :=
(_ :
IsOpen
(↑(t D.toGlueData i i).base ⁻¹'
↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
erw [IsOpenImmersion.inv_naturality_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
NatTrans.app (f D.toGlueData i i).c (op U) ≫
IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i))
((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
erw [IsOpenImmersion.app_invApp_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
iterate 3 rw [← Functor.map_comp_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
rw [← Functor.map_comp_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((eqToIso
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫
(homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
rw [← Functor.map_comp_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(((eqToIso
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫
(homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
rw [← Functor.map_comp_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
((((eqToIso
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫
(homOfLE
(_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
rw [NatTrans.naturality_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
((f D.toGlueData i j).base _* (V D.toGlueData (i, j)).presheaf).map
((((eqToIso
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫
(homOfLE
(_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫
(V D.toGlueData (i, j)).presheaf.map
(eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
erw [← (D.V (i, j)).presheaf.map_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫
NatTrans.app (f D.toGlueData i j).c
(op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫
(V D.toGlueData (i, j)).presheaf.map
((Opens.map (f D.toGlueData i j).base).op.map
((((eqToIso
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫
(homOfLE
(_ :
↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map
(𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫
eqToHom
(_ :
(Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U)) =
(Opens.map (t D.toGlueData i i).base).op.obj
((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫
(eqToHom
(_ :
(Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) =
(IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj
((Opens.map (t D.toGlueData i i).base).obj
((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫
eqToHom
(_ :
(Opens.map (f D.toGlueData i j).base).op.obj
(op
((Opens.map (ι D.toGlueData i).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.left (i, j))).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j)))
[PROOFSTEP]
convert limit.w (componentwiseDiagram 𝖣.diagram.multispan _) (Quiver.Hom.op (WalkingMultispan.Hom.fst (i, j)))
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U = 𝟙 (limit (diagramOverOpen D U))
[PROOFSTEP]
ext j
[GOAL]
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) j =
𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) j
[PROOFSTEP]
induction j using Opposite.rec' with
| h j => ?_
[GOAL]
case w
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) j =
𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) j
[PROOFSTEP]
induction j using Opposite.rec' with
| h j => ?_
[GOAL]
case w.h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) (op j) =
𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op j)
[PROOFSTEP]
rcases j with (⟨j, k⟩ | ⟨j⟩)
[GOAL]
case w.h.left.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫
limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (j, k))) =
𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (j, k)))
[PROOFSTEP]
rw [← limit.w (componentwiseDiagram 𝖣.diagram.multispan _) (Quiver.Hom.op (WalkingMultispan.Hom.fst (j, k))), ←
Category.assoc, Category.id_comp]
[GOAL]
case w.h.left.mk
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ ((diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k))))) ≫
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.fst (j, k)).op =
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) ≫
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map
(WalkingMultispan.Hom.fst (j, k)).op
[PROOFSTEP]
congr 1
[GOAL]
case w.h.left.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) =
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k))))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case w.h.left.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j k : D.J
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫
ιInvApp D U ≫
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) =
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k))))
[PROOFSTEP]
apply π_ιInvApp_π
[GOAL]
case w.h.right
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : (diagram D.toGlueData).R
⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫
limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) =
𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j))
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case w.h.right
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : (diagram D.toGlueData).R
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫ ιInvApp D U ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) =
𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j))
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case w.h.right
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
j : (diagram D.toGlueData).R
⊢ diagramOverOpenπ D U i ≫
ιInvAppπEqMap D U ≫ ιInvApp D U ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) =
limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j))
[PROOFSTEP]
apply π_ιInvApp_π
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ IsIso (diagramOverOpenπ D U i)
[PROOFSTEP]
use D.ιInvAppπEqMap U ≫ D.ιInvApp U
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U = 𝟙 (limit (diagramOverOpen D U)) ∧
(ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ diagramOverOpenπ D U i =
𝟙 ((diagramOverOpen D U).obj (op (WalkingMultispan.right i)))
[PROOFSTEP]
constructor
[GOAL]
case h.left
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U = 𝟙 (limit (diagramOverOpen D U))
[PROOFSTEP]
apply π_ιInvApp_eq_id
[GOAL]
case h.right
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ (ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ diagramOverOpenπ D U i =
𝟙 ((diagramOverOpen D U).obj (op (WalkingMultispan.right i)))
[PROOFSTEP]
rw [Category.assoc, (D.ιInvApp_π _).choose_spec]
[GOAL]
case h.right
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ ιInvAppπEqMap D U ≫
(CategoryTheory.GlueData.U D.toGlueData i).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map
(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData))
(op (WalkingMultispan.right i)).unop).base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) =
𝟙 ((diagramOverOpen D U).obj (op (WalkingMultispan.right i)))
[PROOFSTEP]
exact Iso.inv_hom_id ((D.U i).presheaf.mapIso (eqToIso _))
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ IsIso (NatTrans.app (ι D.toGlueData i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))
[PROOFSTEP]
erw [← colimitPresheafObjIsoComponentwiseLimit_hom_π]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i : D.J
U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i)
⊢ IsIso
((colimitPresheafObjIsoComponentwiseLimit (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).hom ≫
limit.π
(componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData))
((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))
(op (WalkingMultispan.right i)))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ { l //
l ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s ∧
l ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt},
m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s →
m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s → m = l }
[PROOFSTEP]
refine' ⟨_, _, _, _⟩
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ s.pt ⟶ (vPullbackCone D.toGlueData i j).pt
[PROOFSTEP]
refine' PresheafedSpace.IsOpenImmersion.lift (D.f i j) s.fst _
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base
[PROOFSTEP]
erw [← D.toTopGlueData.preimage_range j i]
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ Set.range ↑(PullbackCone.fst s).base ⊆
↑(ι (toTopGlueData D).toGlueData i) ⁻¹' Set.range ↑(ι (toTopGlueData D).toGlueData j)
[PROOFSTEP]
have : s.fst.base ≫ D.toTopGlueData.ι i = s.snd.base ≫ D.toTopGlueData.ι j :=
by
rw [← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _, ← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _]
have := congr_arg PresheafedSpace.Hom.base s.condition
rw [comp_base, comp_base] at this
replace this := reassoc_of% this
exact this _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ (PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i =
(PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j
[PROOFSTEP]
rw [← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _, ← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom =
(PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom
[PROOFSTEP]
have := congr_arg PresheafedSpace.Hom.base s.condition
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this : (PullbackCone.fst s ≫ ι D.toGlueData i).base = (PullbackCone.snd s ≫ ι D.toGlueData j).base
⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom =
(PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom
[PROOFSTEP]
rw [comp_base, comp_base] at this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this : (PullbackCone.fst s).base ≫ (ι D.toGlueData i).base = (PullbackCone.snd s).base ≫ (ι D.toGlueData j).base
⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom =
(PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom
[PROOFSTEP]
replace this := reassoc_of% this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this :
∀ {Z : TopCat} (h : ↑(glued D.toGlueData) ⟶ Z),
(PullbackCone.fst s).base ≫ (ι D.toGlueData i).base ≫ h = (PullbackCone.snd s).base ≫ (ι D.toGlueData j).base ≫ h
⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom =
(PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom
[PROOFSTEP]
exact this _
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this :
(PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i =
(PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j
⊢ Set.range ↑(PullbackCone.fst s).base ⊆
↑(ι (toTopGlueData D).toGlueData i) ⁻¹' Set.range ↑(ι (toTopGlueData D).toGlueData j)
[PROOFSTEP]
rw [← Set.image_subset_iff, ← Set.image_univ, ← Set.image_comp, Set.image_univ]
-- Porting note : change `rw` to `erw`
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this :
(PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i =
(PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j
⊢ Set.range (↑(ι (toTopGlueData D).toGlueData i) ∘ ↑(PullbackCone.fst s).base) ⊆
Set.range ↑(ι (toTopGlueData D).toGlueData j)
[PROOFSTEP]
erw [← coe_comp]
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this :
(PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i =
(PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j
⊢ Set.range ↑((PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i) ⊆
Set.range ↑(ι (toTopGlueData D).toGlueData j)
[PROOFSTEP]
rw [this, coe_comp, ← Set.image_univ, Set.image_comp]
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
this :
(PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i =
(PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j
⊢ ↑(ι (toTopGlueData D).toGlueData j) '' (↑(PullbackCone.snd s).base '' Set.univ) ⊆
Set.range ↑(ι (toTopGlueData D).toGlueData j)
[PROOFSTEP]
exact Set.image_subset_range _ _
[GOAL]
case refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫
PullbackCone.fst (vPullbackCone D.toGlueData i j) =
PullbackCone.fst s
[PROOFSTEP]
apply IsOpenImmersion.lift_fac
[GOAL]
case refine'_3
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫
PullbackCone.snd (vPullbackCone D.toGlueData i j) =
PullbackCone.snd s
[PROOFSTEP]
rw [← cancel_mono (𝖣.ι j), Category.assoc, ← (𝖣.vPullbackCone i j).condition]
[GOAL]
case refine'_3
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫
PullbackCone.fst (vPullbackCone D.toGlueData i j) ≫ ι D.toGlueData i =
PullbackCone.snd s ≫ ι D.toGlueData j
[PROOFSTEP]
conv_rhs => rw [← s.condition]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
| PullbackCone.snd s ≫ ι D.toGlueData j
[PROOFSTEP]
rw [← s.condition]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
| PullbackCone.snd s ≫ ι D.toGlueData j
[PROOFSTEP]
rw [← s.condition]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
| PullbackCone.snd s ≫ ι D.toGlueData j
[PROOFSTEP]
rw [← s.condition]
[GOAL]
case refine'_3
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫
PullbackCone.fst (vPullbackCone D.toGlueData i j) ≫ ι D.toGlueData i =
PullbackCone.fst s ≫ ι D.toGlueData i
[PROOFSTEP]
erw [IsOpenImmersion.lift_fac_assoc]
[GOAL]
case refine'_4
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
⊢ ∀ {m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt},
m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s →
m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s →
m =
IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base)
[PROOFSTEP]
intro m e₁ _
[GOAL]
case refine'_4
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt
e₁ : m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s
a✝ : m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s
⊢ m =
IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base)
[PROOFSTEP]
rw [← cancel_mono (D.f i j)]
[GOAL]
case refine'_4
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt
e₁ : m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s
a✝ : m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s
⊢ m ≫ f D.toGlueData i j =
IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫
f D.toGlueData i j
[PROOFSTEP]
erw [e₁]
[GOAL]
case refine'_4
C : Type u
inst✝¹ : Category.{v, u} C
D : GlueData C
inst✝ : HasLimits C
i j : D.J
s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j)
m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt
e₁ : m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s
a✝ : m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s
⊢ PullbackCone.fst s =
IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s)
(_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫
f D.toGlueData i j
[PROOFSTEP]
rw [IsOpenImmersion.lift_fac]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasProducts C
D : GlueData C
inst✝ : HasLimits C
i : D.J
⊢ IsOpenImmersion (ι D.toGlueData i)
[PROOFSTEP]
rw [← D.ι_isoPresheafedSpace_inv]
-- Porting note : was `inferInstance`
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasProducts C
D : GlueData C
inst✝ : HasLimits C
i : D.J
⊢ IsOpenImmersion (ι (toPresheafedSpaceGlueData D).toGlueData i ≫ (isoPresheafedSpace D).inv)
[PROOFSTEP]
refine PresheafedSpace.IsOpenImmersion.comp (hf := ?_) (hg := inferInstance)
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasProducts C
D : GlueData C
inst✝ : HasLimits C
i : D.J
⊢ PresheafedSpace.IsOpenImmersion (ι (toPresheafedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
apply PresheafedSpace.GlueData.ιIsOpenImmersion
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData
i : D.J
⊢ IsOpenImmersion (ι D.toGlueData i)
[PROOFSTEP]
delta IsOpenImmersion
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData
i : D.J
⊢ SheafedSpace.IsOpenImmersion (ι D.toGlueData i).val
[PROOFSTEP]
rw [← D.ι_isoSheafedSpace_inv]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
D : GlueData
i : D.J
⊢ SheafedSpace.IsOpenImmersion (ι (toSheafedSpaceGlueData D).toGlueData i ≫ (isoSheafedSpace D).inv)
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp
[GOAL]
case hf
C : Type u
inst✝ : Category.{v, u} C
D : GlueData
i : D.J
⊢ PresheafedSpace.IsOpenImmersion (ι (toSheafedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
exact (D.toSheafedSpaceGlueData).ιIsOpenImmersion i
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PresheafedSpace.Gluing", "llama_tokens": 183876} |
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
⊢ ↑(trans e (dualMap (symm (flip e)))) = Dual.eval R N
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
x✝¹ : N
x✝ : Dual R N
⊢ ↑(↑↑(trans e (dualMap (symm (flip e)))) x✝¹) x✝ = ↑(↑(Dual.eval R N) x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
⊢ IsReflexive R N
[PROOFSTEP]
constructor
[GOAL]
case bijective_dual_eval'
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
⊢ Function.Bijective ↑(Dual.eval R N)
[PROOFSTEP]
rw [← trans_dualMap_symm_flip e]
[GOAL]
case bijective_dual_eval'
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
⊢ Function.Bijective ↑↑(trans e (dualMap (symm (flip e))))
[PROOFSTEP]
exact LinearEquiv.bijective _
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
h : optParam (IsReflexive R N) (_ : IsReflexive R N)
⊢ flip (flip e) = e
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsReflexive R M
e : N ≃ₗ[R] Dual R M
h : optParam (IsReflexive R N) (_ : IsReflexive R N)
x✝¹ : N
x✝ : M
⊢ ↑(↑(flip (flip e)) x✝¹) x✝ = ↑(↑e x✝¹) x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.LinearAlgebra.PerfectPairing", "llama_tokens": 1109} |
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
x : M₂
⊢ IsOrtho B 0 x
[PROOFSTEP]
dsimp only [IsOrtho]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
x : M₂
⊢ ↑(↑B 0) x = 0
[PROOFSTEP]
rw [map_zero B, zero_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
x y : M₁
⊢ IsOrtho B x y ↔ IsOrtho (flip B) y x
[PROOFSTEP]
simp_rw [isOrtho_def, flip_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
⊢ IsOrthoᵢ B v ↔ IsOrthoᵢ (flip B) v
[PROOFSTEP]
simp_rw [isOrthoᵢ_def]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
⊢ (∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0) ↔ ∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
⊢ (∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0) → ∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0
[PROOFSTEP]
intro h i j hij
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
⊢ (∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0) → ∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0
[PROOFSTEP]
intro h i j hij
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
h : ∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0
i j : n
hij : i ≠ j
⊢ ↑(↑(flip B) (v i)) (v j) = 0
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
h : ∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0
i j : n
hij : i ≠ j
⊢ ↑(↑B (v j)) (v i) = 0
[PROOFSTEP]
exact h j i (Ne.symm hij)
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
h : ∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0
i j : n
hij : i ≠ j
⊢ ↑(↑B (v i)) (v j) = 0
[PROOFSTEP]
simp_rw [flip_apply] at h
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R
v : n → M₁
h : ∀ (i j : n), i ≠ j → ↑(↑B (v j)) (v i) = 0
i j : n
hij : i ≠ j
⊢ ↑(↑B (v i)) (v j) = 0
[PROOFSTEP]
exact h j i (Ne.symm hij)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
⊢ IsOrtho B x y ↔ IsOrtho B (a • x) y
[PROOFSTEP]
dsimp only [IsOrtho]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
⊢ ↑(↑B x) y = 0 ↔ ↑(↑B (a • x)) y = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
⊢ ↑(↑B x) y = 0 → ↑(↑B (a • x)) y = 0
[PROOFSTEP]
intro H
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
⊢ ↑(↑B (a • x)) y = 0 → ↑(↑B x) y = 0
[PROOFSTEP]
intro H
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
H : ↑(↑B x) y = 0
⊢ ↑(↑B (a • x)) y = 0
[PROOFSTEP]
rw [map_smulₛₗ₂, H, smul_zero]
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
H : ↑(↑B (a • x)) y = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
rw [map_smulₛₗ₂, smul_eq_zero] at H
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
H : ↑I₁ a = 0 ∨ ↑(↑B x) y = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
cases' H with H H
[GOAL]
case mpr.inl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
H : ↑I₁ a = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
rw [map_eq_zero I₁] at H
[GOAL]
case mpr.inl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
H : a = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
trivial
[GOAL]
case mpr.inr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₁
ha : a ≠ 0
H : ↑(↑B x) y = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
exact H
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
⊢ IsOrtho B x y ↔ IsOrtho B x (a • y)
[PROOFSTEP]
dsimp only [IsOrtho]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
⊢ ↑(↑B x) y = 0 ↔ ↑(↑B x) (a • y) = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
⊢ ↑(↑B x) y = 0 → ↑(↑B x) (a • y) = 0
[PROOFSTEP]
intro H
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
⊢ ↑(↑B x) (a • y) = 0 → ↑(↑B x) y = 0
[PROOFSTEP]
intro H
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : ↑(↑B x) y = 0
⊢ ↑(↑B x) (a • y) = 0
[PROOFSTEP]
rw [map_smulₛₗ, H, smul_zero]
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : ↑(↑B x) (a • y) = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
rw [map_smulₛₗ, smul_eq_zero] at H
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : ↑I₂ a = 0 ∨ ↑(↑B x) y = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
cases' H with H H
[GOAL]
case mpr.inl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : ↑I₂ a = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
simp at H
[GOAL]
case mpr.inl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : a = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
exfalso
[GOAL]
case mpr.inl.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : a = 0
⊢ False
[PROOFSTEP]
exact ha H
[GOAL]
case mpr.inr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K
x : V₁
y : V₂
a : K₂
ha : a ≠ 0
H : ↑(↑B x) y = 0
⊢ ↑(↑B x) y = 0
[PROOFSTEP]
exact H
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
⊢ LinearIndependent K₁ v
[PROOFSTEP]
classical
rw [linearIndependent_iff']
intro s w hs i hi
have : B (s.sum fun i : n ↦ w i • v i) (v i) = 0 := by rw [hs, map_zero, zero_apply]
have hsum : (s.sum fun j : n ↦ I₁ (w j) * B (v j) (v i)) = I₁ (w i) * B (v i) (v i) :=
by
apply Finset.sum_eq_single_of_mem i hi
intro j _hj hij
rw [isOrthoᵢ_def.1 hv₁ _ _ hij, mul_zero]
simp_rw [B.map_sum₂, map_smulₛₗ₂, smul_eq_mul, hsum] at this
apply (map_eq_zero I₁).mp
exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
⊢ LinearIndependent K₁ v
[PROOFSTEP]
rw [linearIndependent_iff']
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
⊢ ∀ (s : Finset n) (g : n → K₁), ∑ i in s, g i • v i = 0 → ∀ (i : n), i ∈ s → g i = 0
[PROOFSTEP]
intro s w hs i hi
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
⊢ w i = 0
[PROOFSTEP]
have : B (s.sum fun i : n ↦ w i • v i) (v i) = 0 := by rw [hs, map_zero, zero_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
⊢ ↑(↑B (∑ i in s, w i • v i)) (v i) = 0
[PROOFSTEP]
rw [hs, map_zero, zero_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0
⊢ w i = 0
[PROOFSTEP]
have hsum : (s.sum fun j : n ↦ I₁ (w j) * B (v j) (v i)) = I₁ (w i) * B (v i) (v i) :=
by
apply Finset.sum_eq_single_of_mem i hi
intro j _hj hij
rw [isOrthoᵢ_def.1 hv₁ _ _ hij, mul_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0
⊢ ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i)
[PROOFSTEP]
apply Finset.sum_eq_single_of_mem i hi
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0
⊢ ∀ (b : n), b ∈ s → b ≠ i → ↑I₁ (w b) * ↑(↑B (v b)) (v i) = 0
[PROOFSTEP]
intro j _hj hij
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0
j : n
_hj : j ∈ s
hij : j ≠ i
⊢ ↑I₁ (w j) * ↑(↑B (v j)) (v i) = 0
[PROOFSTEP]
rw [isOrthoᵢ_def.1 hv₁ _ _ hij, mul_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0
hsum : ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i)
⊢ w i = 0
[PROOFSTEP]
simp_rw [B.map_sum₂, map_smulₛₗ₂, smul_eq_mul, hsum] at this
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
hsum : ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i)
this : ↑I₁ (w i) * ↑(↑B (v i)) (v i) = 0
⊢ w i = 0
[PROOFSTEP]
apply (map_eq_zero I₁).mp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : Field K
inst✝⁵ : Field K₁
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K₁ V₁
inst✝² : Field K₂
inst✝¹ : AddCommGroup V₂
inst✝ : Module K₂ V₂
I₁ : K₁ →+* K
I₂ : K₂ →+* K
I₁' : K₁ →+* K
J₁ J₂ : K →+* K
B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K
v : n → V₁
hv₁ : IsOrthoᵢ B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K₁
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
hsum : ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i)
this : ↑I₁ (w i) * ↑(↑B (v i)) (v i) = 0
⊢ ↑I₁ (w i) = 0
[PROOFSTEP]
exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
p : Submodule R₁ M₁
x✝¹ x✝ : { x // x ∈ p }
⊢ ↑(↑(domRestrict₁₂ B p p) x✝¹) x✝ = 0 → ↑(↑(domRestrict₁₂ B p p) x✝) x✝¹ = 0
[PROOFSTEP]
simp_rw [domRestrict₁₂_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
p : Submodule R₁ M₁
x✝¹ x✝ : { x // x ∈ p }
⊢ ↑(↑B ↑x✝¹) ↑x✝ = 0 → ↑(↑B ↑x✝) ↑x✝¹ = 0
[PROOFSTEP]
exact H _ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
h : ker B = ⊥
⊢ ker (flip B) = ⊥
[PROOFSTEP]
refine' ker_eq_bot'.mpr fun _ hx ↦ ker_eq_bot'.mp h _ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
h : ker B = ⊥
x✝ : M₁
hx : ↑(flip B) x✝ = 0
⊢ ↑B x✝ = 0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
h : ker B = ⊥
x✝¹ : M₁
hx : ↑(flip B) x✝¹ = 0
x✝ : M₁
⊢ ↑(↑B x✝¹) x✝ = ↑0 x✝
[PROOFSTEP]
exact H _ _ (LinearMap.congr_fun hx _)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
⊢ ker B = ⊥ ↔ ker (flip B) = ⊥
[PROOFSTEP]
refine' ⟨ker_flip_eq_bot H, fun h ↦ _⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommSemiring R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H✝ H : IsRefl B
h : ker (flip B) = ⊥
⊢ ker B = ⊥
[PROOFSTEP]
exact (congr_arg _ B.flip_flip.symm).trans (ker_flip_eq_bot (flip_isRefl_iff.mpr H) h)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B : M →ₛₗ[I] M →ₗ[R] R
H : IsSymm B
x y : M
H1 : ↑(↑B x) y = 0
⊢ ↑(↑B y) x = 0
[PROOFSTEP]
rw [← H.eq]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B : M →ₛₗ[I] M →ₗ[R] R
H : IsSymm B
x y : M
H1 : ↑(↑B x) y = 0
⊢ ↑I (↑(↑B x) y) = 0
[PROOFSTEP]
simp [H1]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B : M →ₛₗ[I] M →ₗ[R] R
H : IsSymm B
p : Submodule R M
x✝¹ x✝ : { x // x ∈ p }
⊢ ↑I (↑(↑(domRestrict₁₂ B p p) x✝¹) x✝) = ↑(↑(domRestrict₁₂ B p p) x✝) x✝¹
[PROOFSTEP]
simp_rw [domRestrict₁₂_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B : M →ₛₗ[I] M →ₗ[R] R
H : IsSymm B
p : Submodule R M
x✝¹ x✝ : { x // x ∈ p }
⊢ ↑I (↑(↑B ↑x✝¹) ↑x✝) = ↑(↑B ↑x✝) ↑x✝¹
[PROOFSTEP]
exact H _ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
⊢ IsSymm B ↔ B = flip B
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
⊢ IsSymm B → B = flip B
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
⊢ B = flip B → IsSymm B
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : IsSymm B
⊢ B = flip B
[PROOFSTEP]
ext
[GOAL]
case mp.h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : IsSymm B
x✝¹ x✝ : M
⊢ ↑(↑B x✝¹) x✝ = ↑(↑(flip B) x✝¹) x✝
[PROOFSTEP]
rw [← h, flip_apply, RingHom.id_apply]
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : B = flip B
⊢ IsSymm B
[PROOFSTEP]
intro x y
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : B = flip B
x y : M
⊢ ↑(RingHom.id R) (↑(↑B x) y) = ↑(↑B y) x
[PROOFSTEP]
conv_lhs => rw [h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : B = flip B
x y : M
| ↑(RingHom.id R) (↑(↑B x) y)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : B = flip B
x y : M
| ↑(RingHom.id R) (↑(↑B x) y)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I : R →+* R
B✝ : M →ₛₗ[I] M →ₗ[R] R
B : M →ₗ[R] M →ₗ[R] R
h : B = flip B
x y : M
| ↑(RingHom.id R) (↑(↑B x) y)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H : IsAlt B
x y : M₁
⊢ -↑(↑B x) y = ↑(↑B y) x
[PROOFSTEP]
have H1 : B (y + x) (y + x) = 0 := self_eq_zero H (y + x)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H : IsAlt B
x y : M₁
H1 : ↑(↑B (y + x)) (y + x) = 0
⊢ -↑(↑B x) y = ↑(↑B y) x
[PROOFSTEP]
simp [map_add, self_eq_zero H] at H1
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H : IsAlt B
x y : M₁
H1 : ↑(↑B x) y + ↑(↑B y) x = 0
⊢ -↑(↑B x) y = ↑(↑B y) x
[PROOFSTEP]
rw [add_eq_zero_iff_neg_eq] at H1
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H : IsAlt B
x y : M₁
H1 : -↑(↑B x) y = ↑(↑B y) x
⊢ -↑(↑B x) y = ↑(↑B y) x
[PROOFSTEP]
exact H1
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H : IsAlt B
⊢ IsRefl B
[PROOFSTEP]
intro x y h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : CommSemiring R₁
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
H : IsAlt B
x y : M₁
h : ↑(↑B x) y = 0
⊢ ↑(↑B y) x = 0
[PROOFSTEP]
rw [← neg H, h, neg_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
⊢ IsAlt B ↔ B = -flip B
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
⊢ IsAlt B → B = -flip B
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
⊢ B = -flip B → IsAlt B
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : IsAlt B
⊢ B = -flip B
[PROOFSTEP]
ext
[GOAL]
case mp.h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : IsAlt B
x✝¹ x✝ : M₁
⊢ ↑(↑B x✝¹) x✝ = ↑(↑(-flip B) x✝¹) x✝
[PROOFSTEP]
simp_rw [neg_apply, flip_apply]
[GOAL]
case mp.h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : IsAlt B
x✝¹ x✝ : M₁
⊢ ↑(↑B x✝¹) x✝ = -↑(↑B x✝) x✝¹
[PROOFSTEP]
exact (h.neg _ _).symm
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : B = -flip B
⊢ IsAlt B
[PROOFSTEP]
intro x
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : B = -flip B
x : M₁
⊢ ↑(↑B x) x = 0
[PROOFSTEP]
let h' := congr_fun₂ h x x
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : B = -flip B
x : M₁
h' : ↑(↑B x) x = ↑(↑(-flip B) x) x := congr_fun₂ h x x
⊢ ↑(↑B x) x = 0
[PROOFSTEP]
simp only [neg_apply, flip_apply, ← add_eq_zero_iff_eq_neg] at h'
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : CommRing R
inst✝⁴ : CommSemiring R₁
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
I₁ I₂ I : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R
h : B = -flip B
x : M₁
h' : ↑(↑B x) x + ↑(↑B x) x = 0
⊢ ↑(↑B x) x = 0
[PROOFSTEP]
exact add_self_eq_zero.mp h'
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n✝ : Type u_18
inst✝³ : CommRing R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
N : Submodule R₁ M₁
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
a✝ b✝ : M₁
hx : a✝ ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m}
hy : b✝ ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m}
n : M₁
hn : n ∈ N
⊢ LinearMap.IsOrtho B n (a✝ + b✝)
[PROOFSTEP]
rw [LinearMap.IsOrtho, map_add, show B n _ = 0 from hx n hn, show B n _ = 0 from hy n hn, zero_add]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n✝ : Type u_18
inst✝³ : CommRing R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M₁
inst✝ : Module R₁ M₁
I₁ I₂ : R₁ →+* R
B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
N : Submodule R₁ M₁
B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R
c : R₁
x : M₁
hx :
x ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m},
add_mem' :=
(_ :
∀ {a b : M₁},
a ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m} →
b ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m} →
∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n (a + b)) },
zero_mem' := (_ : ∀ (x : M₁), x ∈ N → LinearMap.IsOrtho B x 0) }.toAddSubsemigroup.carrier
n : M₁
hn : n ∈ N
⊢ LinearMap.IsOrtho B n (c • x)
[PROOFSTEP]
rw [LinearMap.IsOrtho, LinearMap.map_smulₛₗ, show B n x = 0 from hx n hn, smul_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
⊢ Submodule.span K₁ {x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ {x}) B = ⊥
[PROOFSTEP]
rw [← Finset.coe_singleton]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
⊢ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B = ⊥
[PROOFSTEP]
refine' eq_bot_iff.2 fun y h ↦ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
y : V₁
h : y ∈ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B
⊢ y ∈ ⊥
[PROOFSTEP]
rcases mem_span_finset.1 h.1 with ⟨μ, rfl⟩
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : ∑ i in {x}, μ i • i ∈ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B
⊢ ∑ i in {x}, μ i • i ∈ ⊥
[PROOFSTEP]
replace h := h.2 x (by simp [Submodule.mem_span] : x ∈ Submodule.span K₁ ({ x } : Finset V₁))
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : ∑ i in {x}, μ i • i ∈ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B
⊢ x ∈ Submodule.span K₁ ↑{x}
[PROOFSTEP]
simp [Submodule.mem_span]
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : IsOrtho B x (∑ i in {x}, μ i • i)
⊢ ∑ i in {x}, μ i • i ∈ ⊥
[PROOFSTEP]
rw [Finset.sum_singleton] at h ⊢
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : IsOrtho B x (μ x • x)
⊢ μ x • x ∈ ⊥
[PROOFSTEP]
suffices hμzero : μ x = 0
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : IsOrtho B x (μ x • x)
hμzero : μ x = 0
⊢ μ x • x ∈ ⊥
[PROOFSTEP]
rw [hμzero, zero_smul, Submodule.mem_bot]
[GOAL]
case hμzero
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : IsOrtho B x (μ x • x)
⊢ μ x = 0
[PROOFSTEP]
rw [isOrtho_def, map_smulₛₗ, smul_eq_mul] at h
[GOAL]
case hμzero
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : ↑J₁' (μ x) * ↑(↑B x) x = 0
⊢ μ x = 0
[PROOFSTEP]
exact Or.elim (zero_eq_mul.mp h.symm) (fun y ↦ by simpa using y) (fun hfalse ↦ False.elim $ hx hfalse)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K
x : V₁
hx : ¬IsOrtho B x x
μ : V₁ → K₁
h : ↑J₁' (μ x) * ↑(↑B x) x = 0
y : ↑J₁' (μ x) = 0
⊢ μ x = 0
[PROOFSTEP]
simpa using y
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x : V
⊢ Submodule.orthogonalBilin (Submodule.span K {x}) B = ker (↑B x)
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x y : V
⊢ y ∈ Submodule.orthogonalBilin (Submodule.span K {x}) B ↔ y ∈ ker (↑B x)
[PROOFSTEP]
simp_rw [Submodule.mem_orthogonalBilin_iff, LinearMap.mem_ker, Submodule.mem_span_singleton]
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x y : V
⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) ↔ ↑(↑B x) y = 0
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x y : V
⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) → ↑(↑B x) y = 0
[PROOFSTEP]
exact fun h ↦ h x ⟨1, one_smul _ _⟩
[GOAL]
case h.mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x y : V
⊢ ↑(↑B x) y = 0 → ∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y
[PROOFSTEP]
rintro h _ ⟨z, rfl⟩
[GOAL]
case h.mpr.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x y : V
h : ↑(↑B x) y = 0
z : K
⊢ IsOrtho B (z • x) y
[PROOFSTEP]
rw [isOrtho_def, map_smulₛₗ₂, smul_eq_zero]
[GOAL]
case h.mpr.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₛₗ[J] K
x y : V
h : ↑(↑B x) y = 0
z : K
⊢ ↑(RingHom.id K) z = 0 ∨ ↑(↑B x) y = 0
[PROOFSTEP]
exact Or.intro_right _ h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₗ[K] K
x : V
hx : ¬IsOrtho B x x
⊢ Submodule.span K {x} ⊔ Submodule.orthogonalBilin (Submodule.span K {x}) B = ⊤
[PROOFSTEP]
rw [orthogonal_span_singleton_eq_to_lin_ker]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : Field K₁
inst✝¹ : AddCommGroup V₁
inst✝ : Module K₁ V₁
J : K →+* K
J₁ J₁' : K₁ →+* K
B : V →ₗ[K] V →ₗ[K] K
x : V
hx : ¬IsOrtho B x x
⊢ Submodule.span K {x} ⊔ ker (↑B x) = ⊤
[PROOFSTEP]
exact (B x).span_singleton_sup_ker_eq_top hx
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
⊢ IsAdjointPair B B' f g ↔ comp B' f = compl₂ B g
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
⊢ IsAdjointPair B B' f g → comp B' f = compl₂ B g
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
⊢ comp B' f = compl₂ B g → IsAdjointPair B B' f g
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : IsAdjointPair B B' f g
⊢ comp B' f = compl₂ B g
[PROOFSTEP]
ext x y
[GOAL]
case mp.h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : IsAdjointPair B B' f g
x : M
y : M₁
⊢ ↑(↑(comp B' f) x) y = ↑(↑(compl₂ B g) x) y
[PROOFSTEP]
rw [comp_apply, compl₂_apply]
[GOAL]
case mp.h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : IsAdjointPair B B' f g
x : M
y : M₁
⊢ ↑(↑B' (↑f x)) y = ↑(↑B x) (↑g y)
[PROOFSTEP]
exact h x y
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : comp B' f = compl₂ B g
⊢ IsAdjointPair B B' f g
[PROOFSTEP]
intro _ _
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : comp B' f = compl₂ B g
x✝ : M
y✝ : M₁
⊢ ↑(↑B' (↑f x✝)) y✝ = ↑(↑B x✝) (↑g y✝)
[PROOFSTEP]
rw [← compl₂_apply, ← comp_apply, h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
x✝¹ : M
x✝ : M₁
⊢ ↑(↑B' (↑0 x✝¹)) x✝ = ↑(↑B x✝¹) (↑0 x✝)
[PROOFSTEP]
simp only [zero_apply, map_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : IsAdjointPair B B' f g
h' : IsAdjointPair B B' f' g'
x : M
x✝ : M₁
⊢ ↑(↑B' (↑(f + f') x)) x✝ = ↑(↑B x) (↑(g + g') x✝)
[PROOFSTEP]
rw [f.add_apply, g.add_apply, B'.map_add₂, (B x).map_add, h, h']
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
I : R →+* R
B F : M →ₗ[R] M →ₛₗ[I] R
B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R
B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R
f f'✝ : M →ₗ[R] M₁
g g'✝ : M₁ →ₗ[R] M
f' : M₁ →ₗ[R] M₂
g' : M₂ →ₗ[R] M₁
h : IsAdjointPair B B' f g
h' : IsAdjointPair B' B'' f' g'
x✝¹ : M
x✝ : M₂
⊢ ↑(↑B'' (↑(LinearMap.comp f' f) x✝¹)) x✝ = ↑(↑B x✝¹) (↑(LinearMap.comp g g') x✝)
[PROOFSTEP]
rw [LinearMap.comp_apply, LinearMap.comp_apply, h', h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
B' : M₁ →ₗ[R] M₁ →ₗ[R] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
h : IsAdjointPair B B' f g
h' : IsAdjointPair B B' f' g'
x : M
x✝ : M₁
⊢ ↑(↑B' (↑(f - f') x)) x✝ = ↑(↑B x) (↑(g - g') x✝)
[PROOFSTEP]
rw [f.sub_apply, g.sub_apply, B'.map_sub₂, (B x).map_sub, h, h']
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
B' : M₁ →ₗ[R] M₁ →ₗ[R] R
f f' : M →ₗ[R] M₁
g g' : M₁ →ₗ[R] M
c : R
h : IsAdjointPair B B' f g
x✝¹ : M
x✝ : M₁
⊢ ↑(↑B' (↑(c • f) x✝¹)) x✝ = ↑(↑B x✝¹) (↑(c • g) x✝)
[PROOFSTEP]
simp [h _]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
⊢ IsPairSelfAdjoint B F f ↔
IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
have hₗ :
(F.compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M)).comp (e.symm.conj f) =
(F.comp f).compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M) :=
by
ext
simp only [LinearEquiv.symm_conj_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply, LinearEquiv.apply_symm_apply,
Function.comp_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
⊢ comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
x✝¹ x✝ : M₁
⊢ ↑(↑(comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝¹) x✝ =
↑(↑(compl₁₂ (comp F f) ↑e ↑e) x✝¹) x✝
[PROOFSTEP]
simp only [LinearEquiv.symm_conj_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply, LinearEquiv.apply_symm_apply,
Function.comp_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e
⊢ IsPairSelfAdjoint B F f ↔
IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
have hᵣ :
(B.compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M)).compl₂ (e.symm.conj f) =
(B.compl₂ f).compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M) :=
by
ext
simp only [LinearEquiv.symm_conj_apply, compl₂_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply,
LinearEquiv.apply_symm_apply, Function.comp_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e
⊢ compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (compl₂ B f) ↑e ↑e
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e
x✝¹ x✝ : M₁
⊢ ↑(↑(compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝¹) x✝ =
↑(↑(compl₁₂ (compl₂ B f) ↑e ↑e) x✝¹) x✝
[PROOFSTEP]
simp only [LinearEquiv.symm_conj_apply, compl₂_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply,
LinearEquiv.apply_symm_apply, Function.comp_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e
hᵣ : compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (compl₂ B f) ↑e ↑e
⊢ IsPairSelfAdjoint B F f ↔
IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
have he : Function.Surjective (⇑(↑e : M₁ →ₗ[R] M) : M₁ → M) := e.surjective
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
e : M₁ ≃ₗ[R] M
f : Module.End R M
hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e
hᵣ : compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (compl₂ B f) ↑e ↑e
he : Function.Surjective ↑↑e
⊢ IsPairSelfAdjoint B F f ↔
IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
simp_rw [IsPairSelfAdjoint, isAdjointPair_iff_comp_eq_compl₂, hₗ, hᵣ, compl₁₂_inj he he]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
f : Module.End R M
⊢ (∀ (x y : M), ↑(↑B (↑f x)) y = ↑(↑B x) (↑(-f) y)) ↔ ∀ (x y : M), ↑(↑B (↑f x)) y = ↑(↑(-B) x) (↑f y)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
f : Module.End R M
⊢ f ∈ skewAdjointSubmodule B ↔ IsSkewAdjoint B f
[PROOFSTEP]
rw [isSkewAdjoint_iff_neg_self_adjoint]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
B F : M →ₗ[R] M →ₗ[R] R
f : Module.End R M
⊢ f ∈ skewAdjointSubmodule B ↔ IsAdjointPair (-B) B f f
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft B
⊢ SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft B
x : Mₗ₁'
hx : ∀ (y : Mₗ₂'), ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) y = 0
⊢ x = 0
[PROOFSTEP]
rw [← e₁.symm.map_eq_zero_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft B
x : Mₗ₁'
hx : ∀ (y : Mₗ₂'), ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) y = 0
⊢ ↑(LinearEquiv.symm e₁) x = 0
[PROOFSTEP]
refine' h (e₁.symm x) fun y ↦ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft B
x : Mₗ₁'
hx : ∀ (y : Mₗ₂'), ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) y = 0
y : Mₗ₂
⊢ ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0
[PROOFSTEP]
specialize hx (e₂ y)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft B
x : Mₗ₁'
y : Mₗ₂
hx : ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) (↑e₂ y) = 0
⊢ ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0
[PROOFSTEP]
simp only [LinearEquiv.arrowCongr_apply, LinearEquiv.symm_apply_apply, LinearEquiv.map_eq_zero_iff] at hx
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft B
x : Mₗ₁'
y : Mₗ₂
hx : ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0
⊢ ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0
[PROOFSTEP]
exact hx
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B)
⊢ SeparatingLeft B
[PROOFSTEP]
convert h.congr e₁.symm e₂.symm
[GOAL]
case h.e'_15
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B)
⊢ B =
↑(LinearEquiv.arrowCongr (LinearEquiv.symm e₁)
(LinearEquiv.arrowCongr (LinearEquiv.symm e₂) (LinearEquiv.refl R R)))
(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B)
[PROOFSTEP]
ext x y
[GOAL]
case h.e'_15.h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝¹⁴ : CommSemiring R
inst✝¹³ : CommSemiring R₁
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : Module R₁ M₁
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
inst✝⁷ : AddCommMonoid Mₗ₁
inst✝⁶ : AddCommMonoid Mₗ₂
inst✝⁵ : AddCommMonoid Mₗ₁'
inst✝⁴ : AddCommMonoid Mₗ₂'
inst✝³ : Module R Mₗ₁
inst✝² : Module R Mₗ₂
inst✝¹ : Module R Mₗ₁'
inst✝ : Module R Mₗ₂'
B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R
e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁'
e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂'
h : SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B)
x : Mₗ₁
y : Mₗ₂
⊢ ↑(↑B x) y =
↑(↑(↑(LinearEquiv.arrowCongr (LinearEquiv.symm e₁)
(LinearEquiv.arrowCongr (LinearEquiv.symm e₂) (LinearEquiv.refl R R)))
(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B))
x)
y
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
⊢ SeparatingLeft (flip B) ↔ SeparatingRight B
[PROOFSTEP]
rw [← flip_separatingRight, flip_flip]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
⊢ SeparatingLeft B ↔ ∀ (x : M₁), ↑B x = 0 → x = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
⊢ SeparatingLeft B → ∀ (x : M₁), ↑B x = 0 → x = 0
[PROOFSTEP]
intro h x hB
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
⊢ (∀ (x : M₁), ↑B x = 0 → x = 0) → SeparatingLeft B
[PROOFSTEP]
intro h x hB
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
h : SeparatingLeft B
x : M₁
hB : ↑B x = 0
⊢ x = 0
[PROOFSTEP]
simpa only [hB, zero_apply, eq_self_iff_true, forall_const] using h x
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
h : ∀ (x : M₁), ↑B x = 0 → x = 0
x : M₁
hB : ∀ (y : M₂), ↑(↑B x) y = 0
⊢ x = 0
[PROOFSTEP]
have h' : B x = 0 := by
ext
rw [zero_apply]
exact hB _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
h : ∀ (x : M₁), ↑B x = 0 → x = 0
x : M₁
hB : ∀ (y : M₂), ↑(↑B x) y = 0
⊢ ↑B x = 0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
h : ∀ (x : M₁), ↑B x = 0 → x = 0
x : M₁
hB : ∀ (y : M₂), ↑(↑B x) y = 0
x✝ : M₂
⊢ ↑(↑B x) x✝ = ↑0 x✝
[PROOFSTEP]
rw [zero_apply]
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
h : ∀ (x : M₁), ↑B x = 0 → x = 0
x : M₁
hB : ∀ (y : M₂), ↑(↑B x) y = 0
x✝ : M₂
⊢ ↑(↑B x) x✝ = 0
[PROOFSTEP]
exact hB _
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
h : ∀ (x : M₁), ↑B x = 0 → x = 0
x : M₁
hB : ∀ (y : M₂), ↑(↑B x) y = 0
h' : ↑B x = 0
⊢ x = 0
[PROOFSTEP]
exact h x h'
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
⊢ SeparatingRight B ↔ ∀ (y : M₂), ↑(flip B) y = 0 → y = 0
[PROOFSTEP]
rw [← flip_separatingLeft, separatingLeft_iff_linear_nontrivial]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M₁
inst✝³ : Module R₁ M₁
inst✝² : CommSemiring R₂
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
I₁ : R₁ →+* R
I₂ : R₂ →+* R
I₁' : R₁ →+* R
B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R
⊢ SeparatingRight B ↔ ker (flip B) = ⊥
[PROOFSTEP]
rw [← flip_separatingLeft, separatingLeft_iff_ker_eq_bot]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
hB' : SeparatingLeft B
⊢ Nondegenerate B
[PROOFSTEP]
refine' ⟨hB', _⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
hB' : SeparatingLeft B
⊢ SeparatingRight B
[PROOFSTEP]
rw [separatingRight_iff_flip_ker_eq_bot, hB.ker_eq_bot_iff_ker_flip_eq_bot.mp]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
hB' : SeparatingLeft B
⊢ ker B = ⊥
[PROOFSTEP]
rwa [← separatingLeft_iff_ker_eq_bot]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
hB' : SeparatingRight B
⊢ Nondegenerate B
[PROOFSTEP]
refine' ⟨_, hB'⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
hB' : SeparatingRight B
⊢ SeparatingLeft B
[PROOFSTEP]
rw [separatingLeft_iff_ker_eq_bot, hB.ker_eq_bot_iff_ker_flip_eq_bot.mpr]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
hB' : SeparatingRight B
⊢ ker (flip B) = ⊥
[PROOFSTEP]
rwa [← separatingRight_iff_flip_ker_eq_bot]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
⊢ Nondegenerate (domRestrict₁₂ B W W)
[PROOFSTEP]
refine' (hB.domRestrict W).nondegenerate_of_separatingLeft _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
⊢ SeparatingLeft (domRestrict₁₂ B W W)
[PROOFSTEP]
rintro ⟨x, hx⟩ b₁
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
x : M
hx : x ∈ W
b₁ : ∀ (y : { x // x ∈ W }), ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) y = 0
⊢ { val := x, property := hx } = 0
[PROOFSTEP]
rw [Submodule.mk_eq_zero, ← Submodule.mem_bot R]
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
x : M
hx : x ∈ W
b₁ : ∀ (y : { x // x ∈ W }), ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) y = 0
⊢ x ∈ ⊥
[PROOFSTEP]
refine' hW.le_bot ⟨hx, fun y hy ↦ _⟩
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
x : M
hx : x ∈ W
b₁ : ∀ (y : { x // x ∈ W }), ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) y = 0
y : M
hy : y ∈ W
⊢ IsOrtho B y x
[PROOFSTEP]
specialize b₁ ⟨y, hy⟩
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
x : M
hx : x ∈ W
y : M
hy : y ∈ W
b₁ : ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) { val := y, property := hy } = 0
⊢ IsOrtho B y x
[PROOFSTEP]
simp_rw [domRestrict₁₂_apply] at b₁
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
x : M
hx : x ∈ W
y : M
hy : y ∈ W
b₁ : ↑(↑B x) y = 0
⊢ IsOrtho B y x
[PROOFSTEP]
rw [hB.ortho_comm]
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I I' : R →+* R
B : M →ₗ[R] M →ₗ[R] R
hB : IsRefl B
W : Submodule R M
hW : Disjoint W (Submodule.orthogonalBilin W B)
x : M
hx : x ∈ W
y : M
hy : y ∈ W
b₁ : ↑(↑B x) y = 0
⊢ IsOrtho B x y
[PROOFSTEP]
exact b₁
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
⊢ ¬IsOrtho B (↑v i) (↑v i)
[PROOFSTEP]
intro ho
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
⊢ False
[PROOFSTEP]
refine' v.ne_zero i (hB (v i) fun m ↦ _)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
m : M
⊢ ↑(↑B (↑v i)) m = 0
[PROOFSTEP]
obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ ↑(↑B (↑v i)) (↑(LinearEquiv.symm v.repr) vi) = 0
[PROOFSTEP]
rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, map_sum]
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ ∑ i_1 in vi.support, ↑(↑B (↑v i)) (↑vi i_1 • ↑v i_1) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ ∀ (x : n), x ∈ vi.support → ↑(↑B (↑v i)) (↑vi x • ↑v x) = 0
[PROOFSTEP]
rintro j -
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
⊢ ↑(↑B (↑v i)) (↑vi j • ↑v j) = 0
[PROOFSTEP]
rw [map_smulₛₗ]
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
⊢ ↑I' (↑vi j) • ↑(↑B (↑v i)) (↑v j) = 0
[PROOFSTEP]
suffices : B (v i) (v j) = 0
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
this : ↑(↑B (↑v i)) (↑v j) = 0
⊢ ↑I' (↑vi j) • ↑(↑B (↑v i)) (↑v j) = 0
[PROOFSTEP]
rw [this, smul_eq_mul, mul_zero]
[GOAL]
case this
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
⊢ ↑(↑B (↑v i)) (↑v j) = 0
[PROOFSTEP]
obtain rfl | hij := eq_or_ne i j
[GOAL]
case this.inl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ ↑(↑B (↑v i)) (↑v i) = 0
[PROOFSTEP]
exact ho
[GOAL]
case this.inr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingLeft B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
hij : i ≠ j
⊢ ↑(↑B (↑v i)) (↑v j) = 0
[PROOFSTEP]
exact h hij
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ B ↑v
hB : SeparatingRight B
i : n
⊢ ¬IsOrtho B (↑v i) (↑v i)
[PROOFSTEP]
rw [isOrthoᵢ_flip] at h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ (flip B) ↑v
hB : SeparatingRight B
i : n
⊢ ¬IsOrtho B (↑v i) (↑v i)
[PROOFSTEP]
rw [isOrtho_flip]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : Nontrivial R
B : M →ₛₗ[I] M →ₛₗ[I'] R
v : Basis n R M
h : IsOrthoᵢ (flip B) ↑v
hB : SeparatingRight B
i : n
⊢ ¬IsOrtho (flip B) (↑v i) (↑v i)
[PROOFSTEP]
exact h.not_isOrtho_basis_self_of_separatingLeft (flip_separatingLeft.mpr hB) i
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
⊢ SeparatingLeft B
[PROOFSTEP]
intro m hB
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
m : M
hB : ∀ (y : M), ↑(↑B m) y = 0
⊢ m = 0
[PROOFSTEP]
obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0
⊢ ↑(LinearEquiv.symm v.repr) vi = 0
[PROOFSTEP]
rw [LinearEquiv.map_eq_zero_iff]
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0
⊢ vi = 0
[PROOFSTEP]
ext i
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0
i : n
⊢ ↑vi i = ↑0 i
[PROOFSTEP]
rw [Finsupp.zero_apply]
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0
i : n
⊢ ↑vi i = 0
[PROOFSTEP]
specialize hB (v i)
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) (↑v i) = 0
⊢ ↑vi i = 0
[PROOFSTEP]
simp_rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, map_sum₂, map_smulₛₗ₂, smul_eq_mul] at hB
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
⊢ ↑vi i = 0
[PROOFSTEP]
rw [Finset.sum_eq_single i] at hB
[GOAL]
case intro.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0
⊢ ↑vi i = 0
[PROOFSTEP]
exact eq_zero_of_ne_zero_of_mul_right_eq_zero (h i) hB
[GOAL]
case intro.h.h₀
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
⊢ ∀ (b : n), b ∈ vi.support → b ≠ i → ↑(RingHom.id R) (↑vi b) * ↑(↑B (↑v b)) (↑v i) = 0
[PROOFSTEP]
intro j _hj hij
[GOAL]
case intro.h.h₀
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
j : n
_hj : j ∈ vi.support
hij : j ≠ i
⊢ ↑(RingHom.id R) (↑vi j) * ↑(↑B (↑v j)) (↑v i) = 0
[PROOFSTEP]
replace hij : B (v j) (v i) = 0 := hO hij
[GOAL]
case intro.h.h₀
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
j : n
_hj : j ∈ vi.support
hij : ↑(↑B (↑v j)) (↑v i) = 0
⊢ ↑(RingHom.id R) (↑vi j) * ↑(↑B (↑v j)) (↑v i) = 0
[PROOFSTEP]
rw [hij, RingHom.id_apply, mul_zero]
[GOAL]
case intro.h.h₁
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
⊢ ¬i ∈ vi.support → ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0
[PROOFSTEP]
intro hi
[GOAL]
case intro.h.h₁
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
hi : ¬i ∈ vi.support
⊢ ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0
[PROOFSTEP]
replace hi : vi i = 0 := Finsupp.not_mem_support_iff.mp hi
[GOAL]
case intro.h.h₁
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0
hi : ↑vi i = 0
⊢ ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0
[PROOFSTEP]
rw [hi, RingHom.id_apply, zero_mul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ B ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
⊢ SeparatingRight B
[PROOFSTEP]
rw [isOrthoᵢ_flip] at hO
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ (flip B) ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
⊢ SeparatingRight B
[PROOFSTEP]
rw [← flip_separatingLeft]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ (flip B) ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
⊢ SeparatingLeft (flip B)
[PROOFSTEP]
refine' IsOrthoᵢ.separatingLeft_of_not_isOrtho_basis_self v hO fun i ↦ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ (flip B) ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
i : n
⊢ ¬IsOrtho (flip B) (↑v i) (↑v i)
[PROOFSTEP]
rw [isOrtho_flip]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
M : Type u_5
M₁ : Type u_6
M₂ : Type u_7
Mₗ₁ : Type u_8
Mₗ₁' : Type u_9
Mₗ₂ : Type u_10
Mₗ₂' : Type u_11
K : Type u_12
K₁ : Type u_13
K₂ : Type u_14
V : Type u_15
V₁ : Type u_16
V₂ : Type u_17
n : Type u_18
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
I I' : R →+* R
inst✝ : NoZeroDivisors R
B : M →ₗ[R] M →ₗ[R] R
v : Basis n R M
hO : IsOrthoᵢ (flip B) ↑v
h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
i : n
⊢ ¬IsOrtho (flip (flip B)) (↑v i) (↑v i)
[PROOFSTEP]
exact h i
| {"mathlib_filename": "Mathlib.LinearAlgebra.SesquilinearForm", "llama_tokens": 73350} |
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
ιι : Type u_3
ι : ιι → Type u_4
ai : ιι
a : ⨂[R] (x : ι ai), M
bi : ιι
b : ⨂[R] (x : ι bi), M
hi : ai = bi
h : ↑(reindex R M (Equiv.cast (_ : ι { fst := ai, snd := a }.fst = ι { fst := bi, snd := b }.fst))) a = b
⊢ { fst := ai, snd := a } = { fst := bi, snd := b }
[PROOFSTEP]
subst hi
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
ιι : Type u_3
ι : ιι → Type u_4
ai : ιι
a b : ⨂[R] (x : ι ai), M
h : ↑(reindex R M (Equiv.cast (_ : ι { fst := ai, snd := a }.fst = ι { fst := ai, snd := b }.fst))) a = b
⊢ { fst := ai, snd := a } = { fst := ai, snd := b }
[PROOFSTEP]
simp_all
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a b : GradedMonoid fun n => ⨂[R] (x : Fin n), M
h : a.fst = b.fst
h2 : ↑(cast R M h) a.snd = b.snd
⊢ a = b
[PROOFSTEP]
refine' gradedMonoid_eq_of_reindex_cast h _
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a b : GradedMonoid fun n => ⨂[R] (x : Fin n), M
h : a.fst = b.fst
h2 : ↑(cast R M h) a.snd = b.snd
⊢ ↑(reindex R M (Equiv.cast (_ : Fin a.fst = Fin b.fst))) a.snd = b.snd
[PROOFSTEP]
rw [cast] at h2
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a b : GradedMonoid fun n => ⨂[R] (x : Fin n), M
h : a.fst = b.fst
h2 : ↑(reindex R M (Fin.castIso h).toEquiv) a.snd = b.snd
⊢ ↑(reindex R M (Equiv.cast (_ : Fin a.fst = Fin b.fst))) a.snd = b.snd
[PROOFSTEP]
rw [← Fin.castIso_to_equiv, ← h2]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
i j : ℕ
h : i = j
⊢ ↑(cast R M h) = _root_.cast (_ : (⨂[R]^i) M = (⨂[R]^j) M)
[PROOFSTEP]
subst h
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
i : ℕ
⊢ ↑(cast R M (_ : i = i)) = _root_.cast (_ : (⨂[R]^i) M = (⨂[R]^i) M)
[PROOFSTEP]
rw [cast_refl]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
i : ℕ
⊢ ↑(LinearEquiv.refl R ((⨂[R]^i) M)) = _root_.cast (_ : (⨂[R]^i) M = (⨂[R]^i) M)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ GradedMonoid.GMul.mul (↑(tprod R) a) (↑(tprod R) b) = ↑(tprod R) (Fin.append a b)
[PROOFSTEP]
dsimp [gMul_def, mulEquiv]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ ↑(reindex R M finSumFinEquiv) (↑(tmulEquiv R M) (↑(tprod R) a ⊗ₜ[R] ↑(tprod R) b)) = ↑(tprod R) (Fin.append a b)
[PROOFSTEP]
rw [tmulEquiv_apply R M a b]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ ↑(reindex R M finSumFinEquiv) (⨂ₜ[R] (i : Fin na ⊕ Fin nb), Sum.elim a b i) = ↑(tprod R) (Fin.append a b)
[PROOFSTEP]
refine' (reindex_tprod _ _).trans _
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ (⨂ₜ[R] (i : Fin (na + nb)), Sum.elim a b (↑finSumFinEquiv.symm i)) = ↑(tprod R) (Fin.append a b)
[PROOFSTEP]
congr 1
[GOAL]
case h.e_6.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ (fun i => Sum.elim a b (↑finSumFinEquiv.symm i)) = Fin.append a b
[PROOFSTEP]
dsimp only [Fin.append, finSumFinEquiv, Equiv.coe_fn_symm_mk]
[GOAL]
case h.e_6.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ (fun i => Sum.elim a b (Fin.addCases Sum.inl Sum.inr i)) = Fin.addCases a b
[PROOFSTEP]
apply funext
[GOAL]
case h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ ∀ (x : Fin (na + nb)), Sum.elim a b (Fin.addCases Sum.inl Sum.inr x) = Fin.addCases a b x
[PROOFSTEP]
apply Fin.addCases
[GOAL]
case h.e_6.h.h.left
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ ∀ (i : Fin na), Sum.elim a b (Fin.addCases Sum.inl Sum.inr (Fin.castAdd nb i)) = Fin.addCases a b (Fin.castAdd nb i)
[PROOFSTEP]
simp
[GOAL]
case h.e_6.h.h.right
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb : ℕ
a : Fin na → M
b : Fin nb → M
⊢ ∀ (i : Fin nb), Sum.elim a b (Fin.addCases Sum.inl Sum.inr (Fin.natAdd na i)) = Fin.addCases a b (Fin.natAdd na i)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
a : (⨂[R]^n) M
⊢ ↑(cast R M (_ : 0 + n = n)) (GradedMonoid.GMul.mul GradedMonoid.GOne.one a) = a
[PROOFSTEP]
rw [gMul_def, gOne_def]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
a : (⨂[R]^n) M
⊢ ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] a)) = a
[PROOFSTEP]
induction' a using PiTensorProduct.induction_on with r a x y hx hy
[GOAL]
case C1
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
⊢ ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] (r • ↑(tprod R) a))) = r • ↑(tprod R) a
[PROOFSTEP]
rw [TensorProduct.tmul_smul, LinearEquiv.map_smul, LinearEquiv.map_smul, ← gMul_def, tprod_mul_tprod, cast_tprod]
[GOAL]
case C1
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
⊢ r • ↑(tprod R) (Fin.append Fin.elim0' a ∘ ↑(Fin.castIso (_ : n = 0 + n))) = r • ↑(tprod R) a
[PROOFSTEP]
congr 2 with i
[GOAL]
case C1.e_a.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
i : Fin n
⊢ (Fin.append Fin.elim0' a ∘ ↑(Fin.castIso (_ : n = 0 + n))) i = a i
[PROOFSTEP]
rw [Fin.elim0'_append]
[GOAL]
case C1.e_a.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
i : Fin n
⊢ ((a ∘ ↑(Fin.castIso (_ : 0 + n = n))) ∘ ↑(Fin.castIso (_ : n = 0 + n))) i = a i
[PROOFSTEP]
refine' congr_arg a (Fin.ext _)
[GOAL]
case C1.e_a.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
i : Fin n
⊢ ↑(↑(Fin.castIso (_ : 0 + n = n)) (↑(Fin.castIso (_ : n = 0 + n)) i)) = ↑i
[PROOFSTEP]
simp
[GOAL]
case Cp
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
x y : ⨂[R] (i : Fin n), M
hx : ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] x)) = x
hy : ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] y)) = y
⊢ ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] (x + y))) = x + y
[PROOFSTEP]
rw [TensorProduct.tmul_add, map_add, map_add, hx, hy]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
a : (⨂[R]^n) M
⊢ ↑(cast R M (_ : n + 0 = n)) (GradedMonoid.GMul.mul a GradedMonoid.GOne.one) = a
[PROOFSTEP]
rw [gMul_def, gOne_def]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
a : (⨂[R]^n) M
⊢ ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv (a ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = a
[PROOFSTEP]
induction' a using PiTensorProduct.induction_on with r a x y hx hy
[GOAL]
case C1
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
⊢ ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv ((r • ↑(tprod R) a) ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = r • ↑(tprod R) a
[PROOFSTEP]
rw [← TensorProduct.smul_tmul', LinearEquiv.map_smul, LinearEquiv.map_smul, ← gMul_def, tprod_mul_tprod R a _,
cast_tprod]
[GOAL]
case C1
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
⊢ r • ↑(tprod R) (Fin.append a Fin.elim0' ∘ ↑(Fin.castIso (_ : n = n + 0))) = r • ↑(tprod R) a
[PROOFSTEP]
congr 2 with i
[GOAL]
case C1.e_a.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
i : Fin n
⊢ (Fin.append a Fin.elim0' ∘ ↑(Fin.castIso (_ : n = n + 0))) i = a i
[PROOFSTEP]
rw [Fin.append_elim0']
[GOAL]
case C1.e_a.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
i : Fin n
⊢ ((a ∘ ↑(Fin.castIso (_ : n + 0 = n))) ∘ ↑(Fin.castIso (_ : n = n + 0))) i = a i
[PROOFSTEP]
refine' congr_arg a (Fin.ext _)
[GOAL]
case C1.e_a.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : Fin n → M
i : Fin n
⊢ ↑(↑(Fin.castIso (_ : n + 0 = n)) (↑(Fin.castIso (_ : n = n + 0)) i)) = ↑i
[PROOFSTEP]
simp
[GOAL]
case Cp
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
x y : ⨂[R] (i : Fin n), M
hx : ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv (x ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = x
hy : ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv (y ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = y
⊢ ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv ((x + y) ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = x + y
[PROOFSTEP]
rw [TensorProduct.add_tmul, map_add, map_add, hx, hy]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
let mul : ∀ n m : ℕ, (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m =>
(TensorProduct.mk R _ _).compr₂
↑(mulEquiv : _ ≃ₗ[R] (⨂[R]^(n + m)) M)
-- replace `a`, `b`, `c` with `tprod R a`, `tprod R b`, `tprod R c`
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
let e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (add_assoc _ _ _)
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
let lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
(LinearMap.llcomp R _ _ _ ((mul _ nc).compr₂ e.toLinearMap)).comp (mul na nb)
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
have lhs_eq : ∀ a b c, lhs a b c = e (a ₜ* b ₜ* c) := fun _ _ _ => rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
let rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
(LinearMap.llcomp R _ _ _ (LinearMap.lflip (R := R)) <|
(LinearMap.llcomp R _ _ _ (mul na _).flip).comp (mul nb nc)).flip
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
have rhs_eq : ∀ a b c, rhs a b c = a ₜ* (b ₜ* c) := fun _ _ _ => rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
[PROOFSTEP]
suffices : lhs = rhs
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
this : lhs = rhs
⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) =
GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
case this
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
⊢ lhs = rhs
[PROOFSTEP]
exact LinearMap.congr_fun (LinearMap.congr_fun (LinearMap.congr_fun this a) b) c
[GOAL]
case this
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a : (⨂[R]^na) M
b : (⨂[R]^nb) M
c : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
⊢ lhs = rhs
[PROOFSTEP]
ext a b c
[GOAL]
case this.H.H.H.H.H.H
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a✝ : (⨂[R]^na) M
b✝ : (⨂[R]^nb) M
c✝ : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
a : Fin na → M
b : Fin nb → M
c : Fin nc → M
⊢ ↑(LinearMap.compMultilinearMap
(↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap lhs (tprod R)) a) (tprod R)) b) (tprod R))
c =
↑(LinearMap.compMultilinearMap
(↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap rhs (tprod R)) a) (tprod R)) b) (tprod R))
c
[PROOFSTEP]
simp only [LinearMap.compMultilinearMap_apply, lhs_eq, rhs_eq, tprod_mul_tprod, cast_tprod]
[GOAL]
case this.H.H.H.H.H.H
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a✝ : (⨂[R]^na) M
b✝ : (⨂[R]^nb) M
c✝ : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
a : Fin na → M
b : Fin nb → M
c : Fin nc → M
⊢ ↑(tprod R) (Fin.append (Fin.append a b) c ∘ ↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc))) =
↑(tprod R) (Fin.append a (Fin.append b c))
[PROOFSTEP]
congr with j
[GOAL]
case this.H.H.H.H.H.H.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a✝ : (⨂[R]^na) M
b✝ : (⨂[R]^nb) M
c✝ : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
a : Fin na → M
b : Fin nb → M
c : Fin nc → M
j : Fin (na + (nb + nc))
⊢ (Fin.append (Fin.append a b) c ∘ ↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc))) j =
Fin.append a (Fin.append b c) j
[PROOFSTEP]
rw [Fin.append_assoc]
[GOAL]
case this.H.H.H.H.H.H.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a✝ : (⨂[R]^na) M
b✝ : (⨂[R]^nb) M
c✝ : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
a : Fin na → M
b : Fin nb → M
c : Fin nc → M
j : Fin (na + (nb + nc))
⊢ ((Fin.append a (Fin.append b c) ∘ ↑(Fin.castIso (_ : na + nb + nc = na + (nb + nc)))) ∘
↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc)))
j =
Fin.append a (Fin.append b c) j
[PROOFSTEP]
refine' congr_arg (Fin.append a (Fin.append b c)) (Fin.ext _)
[GOAL]
case this.H.H.H.H.H.H.h.e_6.h.h
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
na nb nc : ℕ
a✝ : (⨂[R]^na) M
b✝ : (⨂[R]^nb) M
c✝ : (⨂[R]^nc) M
mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M :=
fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv
e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc))
lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.compr₂ (mul (na + nb) nc) ↑e))
(mul na nb)
lhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c)
rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M :=
LinearMap.flip
(↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)
((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
LinearMap.lflip)
(LinearMap.comp
(↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M))
(LinearMap.flip (mul na (nb + nc))))
(mul nb nc)))
rhs_eq :
∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M),
↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c)
a : Fin na → M
b : Fin nb → M
c : Fin nc → M
j : Fin (na + (nb + nc))
⊢ ↑(↑(Fin.castIso (_ : na + nb + nc = na + (nb + nc))) (↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc)) j)) = ↑j
[PROOFSTEP]
rw [Fin.coe_castIso, Fin.coe_castIso]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
⊢ ↑algebraMap₀ r = r • GradedMonoid.GOne.one
[PROOFSTEP]
simp [algebraMap₀]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
⊢ r • ↑(tprod R) isEmptyElim = r • GradedMonoid.GOne.one
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : (⨂[R]^n) M
⊢ ↑(cast R M (_ : 0 + n = n)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) a) = r • a
[PROOFSTEP]
rw [gMul_eq_coe_linearMap, algebraMap₀_eq_smul_one, LinearMap.map_smul₂, LinearEquiv.map_smul, ← gMul_eq_coe_linearMap,
one_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
r : R
a : (⨂[R]^n) M
⊢ ↑(cast R M (_ : n + 0 = n)) (GradedMonoid.GMul.mul a (↑algebraMap₀ r)) = r • a
[PROOFSTEP]
rw [gMul_eq_coe_linearMap, algebraMap₀_eq_smul_one, LinearMap.map_smul, LinearEquiv.map_smul, ← gMul_eq_coe_linearMap,
mul_one]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
⊢ ↑(cast R M (_ : 0 + 0 = 0)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) (↑algebraMap₀ s)) = ↑algebraMap₀ (r * s)
[PROOFSTEP]
rw [← smul_eq_mul, LinearEquiv.map_smul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
⊢ ↑(cast R M (_ : 0 + 0 = 0)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) (↑algebraMap₀ s)) = r • ↑algebraMap₀ s
[PROOFSTEP]
exact algebraMap₀_mul r (@algebraMap₀ R M _ _ _ s)
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : GradedMonoid.GMonoid fun i => (⨂[R]^i) M := gmonoid
⊢ (fun n => ↑algebraMap₀ ↑n) 0 = 0
[PROOFSTEP]
simp only [Nat.cast_zero, map_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : GradedMonoid.GMonoid fun i => (⨂[R]^i) M := gmonoid
n : ℕ
⊢ (fun n => ↑algebraMap₀ ↑n) (n + 1) = (fun n => ↑algebraMap₀ ↑n) n + GradedMonoid.GOne.one
[PROOFSTEP]
simp only [Nat.cast_succ, map_add, algebraMap₀_one]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ Semiring (⨁ (n : ℕ), (⨂[R]^n) M)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
⊢ ↑(cast R M
(_ :
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst =
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst))
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).snd =
{ fst := 0 + 0,
snd :=
GradedMonoid.GMul.mul (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)
(↑(LinearMap.toAddMonoidHom ↑algebraMap₀) s) }.snd
[PROOFSTEP]
rw [← LinearEquiv.eq_symm_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).snd =
↑(LinearEquiv.symm
(cast R M
(_ :
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst =
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst)))
{ fst := 0 + 0,
snd :=
GradedMonoid.GMul.mul (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)
(↑(LinearMap.toAddMonoidHom ↑algebraMap₀) s) }.snd
[PROOFSTEP]
have := algebraMap₀_mul_algebraMap₀ (M := M) r s
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
this : ↑(cast R M (_ : 0 + 0 = 0)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) (↑algebraMap₀ s)) = ↑algebraMap₀ (r * s)
⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).snd =
↑(LinearEquiv.symm
(cast R M
(_ :
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst =
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst)))
{ fst := 0 + 0,
snd :=
GradedMonoid.GMul.mul (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)
(↑(LinearMap.toAddMonoidHom ↑algebraMap₀) s) }.snd
[PROOFSTEP]
exact this.symm
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
x : GradedMonoid fun i => (⨂[R]^i) M
⊢ ↑(cast R M
(_ :
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst + x.fst =
x.fst + (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst))
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd =
(x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd
[PROOFSTEP]
have := (algebraMap₀_mul r x.snd).trans (mul_algebraMap₀ r x.snd).symm
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
x : GradedMonoid fun i => (⨂[R]^i) M
this :
↑(cast R M (_ : 0 + x.fst = x.fst)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) x.snd) =
↑(cast R M (_ : x.fst + 0 = x.fst)) (GradedMonoid.GMul.mul x.snd (↑algebraMap₀ r))
⊢ ↑(cast R M
(_ :
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst + x.fst =
x.fst + (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst))
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd =
(x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd
[PROOFSTEP]
rw [← LinearEquiv.eq_symm_apply, cast_symm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
x : GradedMonoid fun i => (⨂[R]^i) M
this :
↑(cast R M (_ : 0 + x.fst = x.fst)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) x.snd) =
↑(cast R M (_ : x.fst + 0 = x.fst)) (GradedMonoid.GMul.mul x.snd (↑algebraMap₀ r))
⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd =
↑(cast R M
(_ :
(x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).fst =
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).fst))
(x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd
[PROOFSTEP]
rw [← LinearEquiv.eq_symm_apply, cast_symm, cast_cast] at this
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
x : GradedMonoid fun i => (⨂[R]^i) M
this :
GradedMonoid.GMul.mul (↑algebraMap₀ r) x.snd =
↑(cast R M (_ : x.fst + 0 = 0 + x.fst)) (GradedMonoid.GMul.mul x.snd (↑algebraMap₀ r))
⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd =
↑(cast R M
(_ :
(x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).fst =
(GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).fst))
(x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd
[PROOFSTEP]
exact this
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
x : GradedMonoid fun i => (⨂[R]^i) M
⊢ ↑(cast R M (_ : x.fst = 0 + x.fst)) (GradedMonoid.mk x.fst (r • x.snd)).snd =
({ fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r } * x).snd
[PROOFSTEP]
rw [← LinearEquiv.eq_symm_apply, cast_symm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r : R
x : GradedMonoid fun i => (⨂[R]^i) M
⊢ (GradedMonoid.mk x.fst (r • x.snd)).snd =
↑(cast R M
(_ :
({ fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r } * x).fst =
(GradedMonoid.mk x.fst (r • x.snd)).fst))
({ fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r } * x).snd
[PROOFSTEP]
exact (algebraMap₀_mul r x.snd).symm
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ Algebra R (⨁ (n : ℕ), (⨂[R]^n) M)
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.LinearAlgebra.TensorPower", "llama_tokens": 22477} |
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
A : Action V G
⊢ ↑A.ρ 1 = 𝟙 A.V
[PROOFSTEP]
rw [MonoidHom.map_one]
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
A : Action V G
⊢ 1 = 𝟙 A.V
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : GroupCat
A : Action V (MonCat.of ↑G)
g : ↑G
⊢ ↑A.ρ (g⁻¹ * g) = 𝟙 A.V
[PROOFSTEP]
rw [inv_mul_self, ρ_one]
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : GroupCat
A : Action V (MonCat.of ↑G)
g : ↑G
⊢ ↑A.ρ (g * g⁻¹) = 𝟙 A.V
[PROOFSTEP]
rw [mul_inv_self, ρ_one]
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
M N : Action V G
f : M.V ≅ N.V
comm : autoParam (∀ (g : ↑G), ↑M.ρ g ≫ f.hom = f.hom ≫ ↑N.ρ g) _auto✝
g : ↑G
⊢ ↑N.ρ g ≫ f.inv = f.inv ≫ ↑M.ρ g
[PROOFSTEP]
have w := comm g =≫ f.inv
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
M N : Action V G
f : M.V ≅ N.V
comm : autoParam (∀ (g : ↑G), ↑M.ρ g ≫ f.hom = f.hom ≫ ↑N.ρ g) _auto✝
g : ↑G
w : (↑M.ρ g ≫ f.hom) ≫ f.inv = (f.hom ≫ ↑N.ρ g) ≫ f.inv
⊢ ↑N.ρ g ≫ f.inv = f.inv ≫ ↑M.ρ g
[PROOFSTEP]
simp at w
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
M N : Action V G
f : M.V ≅ N.V
comm : autoParam (∀ (g : ↑G), ↑M.ρ g ≫ f.hom = f.hom ≫ ↑N.ρ g) _auto✝
g : ↑G
w : ↑M.ρ g = f.hom ≫ ↑N.ρ g ≫ f.inv
⊢ ↑N.ρ g ≫ f.inv = f.inv ≫ ↑M.ρ g
[PROOFSTEP]
simp [w]
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
M N : Action V G
f : M ≅ N
g : ↑G
⊢ ↑N.ρ g = ↑(Iso.conj ((forget V G).mapIso f)) (↑M.ρ g)
[PROOFSTEP]
rw [Iso.conj_apply, Iso.eq_inv_comp]
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
M N : Action V G
f : M ≅ N
g : ↑G
⊢ ((forget V G).mapIso f).hom ≫ ↑N.ρ g = ↑M.ρ g ≫ ((forget V G).mapIso f).hom
[PROOFSTEP]
simp [f.hom.comm]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : HasZeroMorphisms V
X Y : Action V G
⊢ ∀ (g : ↑G), ↑X.ρ g ≫ 0 = 0 ≫ ↑Y.ρ g
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
f g : X ⟶ Y
⊢ ∀ (g_1 : ↑G), ↑X.ρ g_1 ≫ (f.hom + g.hom) = (f.hom + g.hom) ≫ ↑Y.ρ g_1
[PROOFSTEP]
simp [f.comm, g.comm]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
⊢ ∀ (a b c : X ⟶ Y), a + b + c = a + (b + c)
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ b✝ c✝ : X ⟶ Y
⊢ a✝ + b✝ + c✝ = a✝ + (b✝ + c✝)
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ b✝ c✝ : X ⟶ Y
⊢ (a✝ + b✝ + c✝).hom = (a✝ + (b✝ + c✝)).hom
[PROOFSTEP]
exact add_assoc _ _ _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
⊢ ∀ (a : X ⟶ Y), 0 + a = a
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ : X ⟶ Y
⊢ 0 + a✝ = a✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ : X ⟶ Y
⊢ (0 + a✝).hom = a✝.hom
[PROOFSTEP]
exact zero_add _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
⊢ ∀ (a : X ⟶ Y), a + 0 = a
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ : X ⟶ Y
⊢ a✝ + 0 = a✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ : X ⟶ Y
⊢ (a✝ + 0).hom = a✝.hom
[PROOFSTEP]
exact add_zero _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
f : X ⟶ Y
⊢ ∀ (g : ↑G), ↑X.ρ g ≫ (-f.hom) = (-f.hom) ≫ ↑Y.ρ g
[PROOFSTEP]
simp [f.comm]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
⊢ ∀ (a : X ⟶ Y), -a + a = 0
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ : X ⟶ Y
⊢ -a✝ + a✝ = 0
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ : X ⟶ Y
⊢ (-a✝ + a✝).hom = 0.hom
[PROOFSTEP]
exact add_left_neg _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
⊢ ∀ (a b : X ⟶ Y), a + b = b + a
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ b✝ : X ⟶ Y
⊢ a✝ + b✝ = b✝ + a✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
X Y : Action V G
a✝ b✝ : X ⟶ Y
⊢ (a✝ + b✝).hom = (b✝ + a✝).hom
[PROOFSTEP]
exact add_comm _ _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
⊢ ∀ (P Q R : Action V G) (f f' : P ⟶ Q) (g : Q ⟶ R), (f + f') ≫ g = f ≫ g + f' ≫ g
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
P✝ Q✝ R✝ : Action V G
f✝ f'✝ : P✝ ⟶ Q✝
g✝ : Q✝ ⟶ R✝
⊢ (f✝ + f'✝) ≫ g✝ = f✝ ≫ g✝ + f'✝ ≫ g✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
P✝ Q✝ R✝ : Action V G
f✝ f'✝ : P✝ ⟶ Q✝
g✝ : Q✝ ⟶ R✝
⊢ ((f✝ + f'✝) ≫ g✝).hom = (f✝ ≫ g✝ + f'✝ ≫ g✝).hom
[PROOFSTEP]
exact Preadditive.add_comp _ _ _ _ _ _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
⊢ ∀ (P Q R : Action V G) (f : P ⟶ Q) (g g' : Q ⟶ R), f ≫ (g + g') = f ≫ g + f ≫ g'
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
P✝ Q✝ R✝ : Action V G
f✝ : P✝ ⟶ Q✝
g✝ g'✝ : Q✝ ⟶ R✝
⊢ f✝ ≫ (g✝ + g'✝) = f✝ ≫ g✝ + f✝ ≫ g'✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : Preadditive V
P✝ Q✝ R✝ : Action V G
f✝ : P✝ ⟶ Q✝
g✝ g'✝ : Q✝ ⟶ R✝
⊢ (f✝ ≫ (g✝ + g'✝)).hom = (f✝ ≫ g✝ + f✝ ≫ g'✝).hom
[PROOFSTEP]
exact Preadditive.comp_add _ _ _ _ _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
r : R
f : X ⟶ Y
⊢ ∀ (g : ↑G), ↑X.ρ g ≫ (r • f.hom) = (r • f.hom) ≫ ↑Y.ρ g
[PROOFSTEP]
simp [f.comm]
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
⊢ ∀ (b : X ⟶ Y), 1 • b = b
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
b✝ : X ⟶ Y
⊢ 1 • b✝ = b✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
b✝ : X ⟶ Y
⊢ (1 • b✝).hom = b✝.hom
[PROOFSTEP]
exact one_smul _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
⊢ ∀ (x y : R) (b : X ⟶ Y), (x * y) • b = x • y • b
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
x✝ y✝ : R
b✝ : X ⟶ Y
⊢ (x✝ * y✝) • b✝ = x✝ • y✝ • b✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
x✝ y✝ : R
b✝ : X ⟶ Y
⊢ ((x✝ * y✝) • b✝).hom = (x✝ • y✝ • b✝).hom
[PROOFSTEP]
exact mul_smul _ _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
⊢ ∀ (a : R), a • 0 = 0
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
a✝ : R
⊢ a✝ • 0 = 0
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
a✝ : R
⊢ (a✝ • 0).hom = 0.hom
[PROOFSTEP]
exact smul_zero _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
⊢ ∀ (a : R) (x y : X ⟶ Y), a • (x + y) = a • x + a • y
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
a✝ : R
x✝ y✝ : X ⟶ Y
⊢ a✝ • (x✝ + y✝) = a✝ • x✝ + a✝ • y✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
a✝ : R
x✝ y✝ : X ⟶ Y
⊢ (a✝ • (x✝ + y✝)).hom = (a✝ • x✝ + a✝ • y✝).hom
[PROOFSTEP]
exact smul_add _ _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
⊢ ∀ (r s : R) (x : X ⟶ Y), (r + s) • x = r • x + s • x
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
r✝ s✝ : R
x✝ : X ⟶ Y
⊢ (r✝ + s✝) • x✝ = r✝ • x✝ + s✝ • x✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
r✝ s✝ : R
x✝ : X ⟶ Y
⊢ ((r✝ + s✝) • x✝).hom = (r✝ • x✝ + s✝ • x✝).hom
[PROOFSTEP]
exact add_smul _ _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
⊢ ∀ (x : X ⟶ Y), 0 • x = 0
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
x✝ : X ⟶ Y
⊢ 0 • x✝ = 0
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X Y : Action V G
x✝ : X ⟶ Y
⊢ (0 • x✝).hom = 0.hom
[PROOFSTEP]
exact zero_smul _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
⊢ ∀ (X Y Z : Action V G) (r : R) (f : X ⟶ Y) (g : Y ⟶ Z), (r • f) ≫ g = r • f ≫ g
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X✝ Y✝ Z✝ : Action V G
r✝ : R
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ (r✝ • f✝) ≫ g✝ = r✝ • f✝ ≫ g✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X✝ Y✝ Z✝ : Action V G
r✝ : R
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ ((r✝ • f✝) ≫ g✝).hom = (r✝ • f✝ ≫ g✝).hom
[PROOFSTEP]
exact Linear.smul_comp _ _ _ _ _ _
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
⊢ ∀ (X Y Z : Action V G) (f : X ⟶ Y) (r : R) (g : Y ⟶ Z), f ≫ (r • g) = r • f ≫ g
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X✝ Y✝ Z✝ : Action V G
f✝ : X✝ ⟶ Y✝
r✝ : R
g✝ : Y✝ ⟶ Z✝
⊢ f✝ ≫ (r✝ • g✝) = r✝ • f✝ ≫ g✝
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G : MonCat
inst✝² : Preadditive V
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Linear R V
X✝ Y✝ Z✝ : Action V G
f✝ : X✝ ⟶ Y✝
r✝ : R
g✝ : Y✝ ⟶ Z✝
⊢ (f✝ ≫ (r✝ • g✝)).hom = (r✝ • f✝ ≫ g✝).hom
[PROOFSTEP]
exact Linear.comp_smul _ _ _ _ _ _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X Y Z : Action V G
⊢ (α_ X Y Z).hom.hom = (α_ X.V Y.V Z.V).hom
[PROOFSTEP]
dsimp [Monoidal.transport_associator]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X Y Z : Action V G
⊢ (𝟙 (X.V ⊗ Y.V) ⊗ 𝟙 Z.V) ≫ (α_ X.V Y.V Z.V).hom ≫ (𝟙 X.V ⊗ 𝟙 (Y.V ⊗ Z.V)) = (α_ X.V Y.V Z.V).hom
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X Y Z : Action V G
⊢ (α_ X Y Z).inv.hom = (α_ X.V Y.V Z.V).inv
[PROOFSTEP]
dsimp [Monoidal.transport_associator]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X Y Z : Action V G
⊢ ((𝟙 X.V ⊗ 𝟙 (Y.V ⊗ Z.V)) ≫ (α_ X.V Y.V Z.V).inv) ≫ (𝟙 (X.V ⊗ Y.V) ⊗ 𝟙 Z.V) = (α_ X.V Y.V Z.V).inv
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ (λ_ X).hom.hom = (λ_ X.V).hom
[PROOFSTEP]
dsimp [Monoidal.transport_leftUnitor]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ ((𝟙 (𝟙_ V) ⊗ 𝟙 X.V) ≫ (λ_ X.V).hom) ≫ 𝟙 X.V = (λ_ X.V).hom
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ (λ_ X).inv.hom = (λ_ X.V).inv
[PROOFSTEP]
dsimp [Monoidal.transport_leftUnitor]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ 𝟙 X.V ≫ (λ_ X.V).inv ≫ (𝟙 (𝟙_ V) ⊗ 𝟙 X.V) = (λ_ X.V).inv
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ (ρ_ X).hom.hom = (ρ_ X.V).hom
[PROOFSTEP]
dsimp [Monoidal.transport_rightUnitor]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ ((𝟙 X.V ⊗ 𝟙 (𝟙_ V)) ≫ (ρ_ X.V).hom) ≫ 𝟙 X.V = (ρ_ X.V).hom
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ (ρ_ X).inv.hom = (ρ_ X.V).inv
[PROOFSTEP]
dsimp [Monoidal.transport_rightUnitor]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : Action V G
⊢ 𝟙 X.V ≫ (ρ_ X.V).inv ≫ (𝟙 X.V ⊗ 𝟙 (𝟙_ V)) = (ρ_ X.V).inv
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
X : V
f : 𝟙_ V ≅ X
x✝ : ↑G
⊢ ↑(𝟙_ (Action V G)).ρ x✝ ≫ f.hom = f.hom ≫ ↑{ V := X, ρ := 1 }.ρ x✝
[PROOFSTEP]
simp only [MonoidHom.one_apply, End.one_def, Category.id_comp f.hom, tensorUnit_rho, MonCat.oneHom_apply, MonCat.one_of,
Category.comp_id]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ Faithful (forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor
[PROOFSTEP]
change Faithful (forget V G)
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ Faithful (forget V G)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
inst✝ : BraidedCategory V
X Y : Action V G
g : ↑G
⊢ ↑(X ⊗ Y).ρ g ≫
(β_ (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj X).obj PUnit.unit)
(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj Y).obj PUnit.unit)).hom =
(β_ (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj X).obj PUnit.unit)
(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj Y).obj PUnit.unit)).hom ≫
↑(Y ⊗ X).ρ g
[PROOFSTEP]
simp [FunctorCategoryEquivalence.inverse]
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
inst✝ : BraidedCategory V
⊢ ∀ (X Y : Action V G),
LaxMonoidalFunctor.μ (forgetMonoidal V G).toLaxMonoidalFunctor X Y ≫
(forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor.map
((fun X Y =>
mkIso
(β_
(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj X).obj PUnit.unit)
(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj Y).obj
PUnit.unit)))
X Y).hom =
(β_ ((forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor.obj X)
((forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor.obj Y)).hom ≫
LaxMonoidalFunctor.μ (forgetMonoidal V G).toLaxMonoidalFunctor Y X
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
inst✝ : BraidedCategory V
⊢ Faithful (forgetBraided V G).toMonoidalFunctor.toLaxMonoidalFunctor.toFunctor
[PROOFSTEP]
change Faithful (forget V G)
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
inst✝ : BraidedCategory V
⊢ Faithful (forget V G)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ IsEquivalence (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor
[PROOFSTEP]
change IsEquivalence (Action.functorCategoryEquivalence _ _).functor
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ IsEquivalence (functorCategoryEquivalence V G).functor
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app (LaxMonoidalFunctor.μ (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor A B) PUnit.unit =
𝟙
(((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj A ⊗
(functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj B).obj
PUnit.unit)
[PROOFSTEP]
dsimp only [functorCategoryMonoidalEquivalence]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app
(LaxMonoidalFunctor.μ
(Monoidal.fromTransported
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor
A B)
PUnit.unit =
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A ⊗
(Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
simp only [Monoidal.fromTransported_toLaxMonoidalFunctor_μ, NatTrans.comp_app]
-- porting note: Lean3 was able to see through some defeq, as the mathlib3 proof was
-- show (𝟙 A.V ⊗ 𝟙 B.V) ≫ 𝟙 (A.V ⊗ B.V) ≫ (𝟙 A.V ⊗ 𝟙 B.V) = 𝟙 (A.V ⊗ B.V)
-- simp only [monoidal_category.tensor_id, category.comp_id]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app
(NatTrans.app (Equivalence.unit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj
A ⊗
(Functor.asEquivalence
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj
B))
PUnit.unit ≫
NatTrans.app
(inv
((Functor.asEquivalence
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.map
((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor.map
(NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj
A) ⊗
NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj
B)))))
PUnit.unit ≫
NatTrans.app
((Functor.asEquivalence
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.map
((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor.map
((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
A) ⊗
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
B))))
PUnit.unit =
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A ⊗
(Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
dsimp [Equivalence.unit]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ 𝟙
(((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A).obj PUnit.unit ⊗
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B).obj PUnit.unit) ≫
NatTrans.app
(inv
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A) ⊗
NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B)))))
PUnit.unit ≫
NatTrans.app
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(FunctorCategoryEquivalence.functor.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
A) ⊗
FunctorCategoryEquivalence.functor.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
B))))
PUnit.unit =
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A).obj
PUnit.unit ⊗
((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
erw [Category.id_comp]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app
(inv
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A) ⊗
NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B)))))
PUnit.unit ≫
NatTrans.app
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(FunctorCategoryEquivalence.functor.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
A) ⊗
FunctorCategoryEquivalence.functor.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
B))))
PUnit.unit =
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A).obj
PUnit.unit ⊗
((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
rw [NatIso.isIso_inv_app, IsIso.inv_comp_eq]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(FunctorCategoryEquivalence.functor.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) A) ⊗
FunctorCategoryEquivalence.functor.map
(NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
B))))
PUnit.unit =
NatTrans.app
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A) ⊗
NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B))))
PUnit.unit ≫
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A).obj
PUnit.unit ⊗
((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
erw [MonoidalCategory.tensor_id]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(𝟙
(FunctorCategoryEquivalence.functor.obj
(FunctorCategoryEquivalence.inverse.obj
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A)) ⊗
FunctorCategoryEquivalence.functor.obj
(FunctorCategoryEquivalence.inverse.obj
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B))))))
PUnit.unit =
NatTrans.app
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map
(FunctorCategoryEquivalence.inverse.map
(𝟙
(FunctorCategoryEquivalence.functor.obj
(FunctorCategoryEquivalence.inverse.obj
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A)) ⊗
FunctorCategoryEquivalence.functor.obj
(FunctorCategoryEquivalence.inverse.obj
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B))))))
PUnit.unit ≫
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A).obj
PUnit.unit ⊗
((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
erw [(functorCategoryEquivalence V G).inverse.map_id, (functorCategoryEquivalence V G).functor.map_id, Category.id_comp]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app
(𝟙
((functorCategoryEquivalence V G).functor.obj
(FunctorCategoryEquivalence.inverse.obj
(FunctorCategoryEquivalence.functor.obj
(FunctorCategoryEquivalence.inverse.obj
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A)) ⊗
FunctorCategoryEquivalence.functor.obj
(FunctorCategoryEquivalence.inverse.obj
((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B))))))
PUnit.unit =
𝟙
(((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
A).obj
PUnit.unit ⊗
((Monoidal.fromTransported
(CategoryTheory.Equivalence.symm
(functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj
B).obj
PUnit.unit)
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ NatTrans.app (MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).inv PUnit.unit =
𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit)
[PROOFSTEP]
rw [← NatIso.app_inv, ← IsIso.Iso.inv_hom]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ inv ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom =
𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit)
[PROOFSTEP]
refine' IsIso.inv_eq_of_hom_inv_id _
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
A B : Action V G
⊢ ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom ≫
𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit) =
𝟙
(((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj A ⊗
(functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj B).obj
PUnit.unit)
[PROOFSTEP]
rw [Category.comp_id, NatIso.app_hom, MonoidalFunctor.μIso_hom, functorCategoryMonoidalEquivalence.μ_app]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ NatTrans.app (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.ε PUnit.unit =
𝟙 ((𝟙_ (SingleObj ↑G ⥤ V)).obj PUnit.unit)
[PROOFSTEP]
dsimp only [functorCategoryMonoidalEquivalence]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ NatTrans.app
(Monoidal.fromTransported
(CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.ε
PUnit.unit =
𝟙 ((𝟙_ (SingleObj ↑G ⥤ V)).obj PUnit.unit)
[PROOFSTEP]
simp only [Monoidal.fromTransported_toLaxMonoidalFunctor_ε]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
G : MonCat
inst✝ : MonoidalCategory V
⊢ NatTrans.app
(NatTrans.app (Equivalence.unit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)))
(𝟙_ (SingleObj ↑G ⥤ V)))
PUnit.unit =
𝟙 ((𝟙_ (SingleObj ↑G ⥤ V)).obj PUnit.unit)
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
inst✝ : RightRigidCategory V
⊢ RightRigidCategory (SingleObj ↑((forget₂ GroupCat MonCat).obj H) ⥤ V)
[PROOFSTEP]
change RightRigidCategory (SingleObj H ⥤ V)
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
inst✝ : RightRigidCategory V
⊢ RightRigidCategory (SingleObj ↑H ⥤ V)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
inst✝ : LeftRigidCategory V
⊢ LeftRigidCategory (SingleObj ↑((forget₂ GroupCat MonCat).obj H) ⥤ V)
[PROOFSTEP]
change LeftRigidCategory (SingleObj H ⥤ V)
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
inst✝ : LeftRigidCategory V
⊢ LeftRigidCategory (SingleObj ↑H ⥤ V)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
inst✝ : RigidCategory V
⊢ RigidCategory (SingleObj ↑((forget₂ GroupCat MonCat).obj H) ⥤ V)
[PROOFSTEP]
change RigidCategory (SingleObj H ⥤ V)
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
inst✝ : RigidCategory V
⊢ RigidCategory (SingleObj ↑H ⥤ V)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : RightRigidCategory V
h : ↑H
⊢ ↑Xᘁ.ρ h = ↑X.ρ h⁻¹ᘁ
[PROOFSTEP]
rw [← SingleObj.inv_as_inv]
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : RightRigidCategory V
h : ↑H
⊢ ↑Xᘁ.ρ h = ↑X.ρ (inv h)ᘁ
case x
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : RightRigidCategory V
h : ↑H
⊢ SingleObj H.1
case y
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : RightRigidCategory V
h : ↑H
⊢ SingleObj H.1
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : LeftRigidCategory V
h : ↑H
⊢ ↑(ᘁX).ρ h = ᘁ↑X.ρ h⁻¹
[PROOFSTEP]
rw [← SingleObj.inv_as_inv]
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : LeftRigidCategory V
h : ↑H
⊢ ↑(ᘁX).ρ h = ᘁ↑X.ρ (inv h)
case x
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : LeftRigidCategory V
h : ↑H
⊢ SingleObj H.1
case y
V : Type (u + 1)
inst✝² : LargeCategory V
G : MonCat
inst✝¹ : MonoidalCategory V
H : GroupCat
X : Action V ((forget₂ GroupCat MonCat).obj H)
inst✝ : LeftRigidCategory V
h : ↑H
⊢ SingleObj H.1
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
X✝ Y✝ : V
f : X✝ ⟶ Y✝
x✝ : ↑(MonCat.of PUnit)
⊢ ↑((fun X => { V := X, ρ := 1 }) X✝).ρ PUnit.unit ≫ f = f ≫ ↑((fun X => { V := X, ρ := 1 }) Y✝).ρ PUnit.unit
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
X : Action V (MonCat.of PUnit)
x✝ : ↑(MonCat.of PUnit)
⊢ ↑((𝟭 (Action V (MonCat.of PUnit))).obj X).ρ PUnit.unit ≫ (Iso.refl ((𝟭 (Action V (MonCat.of PUnit))).obj X).V).hom =
(Iso.refl ((𝟭 (Action V (MonCat.of PUnit))).obj X).V).hom ≫
↑((forget V (MonCat.of PUnit) ⋙
CategoryTheory.Functor.mk { obj := fun X => { V := X, ρ := 1 }, map := fun {X Y} f => Hom.mk f }).obj
X).ρ
PUnit.unit
[PROOFSTEP]
simp only [MonCat.oneHom_apply, MonCat.one_of, End.one_def, id_eq, Functor.comp_obj, forget_obj, Iso.refl_hom,
Category.comp_id]
[GOAL]
V : Type (u + 1)
inst✝ : LargeCategory V
G : MonCat
X : Action V (MonCat.of PUnit)
x✝ : ↑(MonCat.of PUnit)
⊢ ↑((𝟭 (Action V (MonCat.of PUnit))).obj X).ρ PUnit.unit = 𝟙 ((𝟭 (Action V (MonCat.of PUnit))).obj X).V
[PROOFSTEP]
exact ρ_one X
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H✝ : MonCat
f : G✝ ⟶ H✝
R : Type u_1
inst✝² : Semiring R
G H : Type u
inst✝¹ : Monoid G
inst✝ : MulAction G H
⊢ MulAction (↑(MonCat.of G)) H
[PROOFSTEP]
assumption
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
g : ↑(MonCat.of G)
⊢ (↑s.pt.ρ g ≫ fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) =
(fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) ≫
↑{ pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt.ρ g
[PROOFSTEP]
ext x
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
g : ↑(MonCat.of G)
x : s.pt.V
⊢ (↑s.pt.ρ g ≫ fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) x =
((fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) ≫
↑{ pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt.ρ g)
x
[PROOFSTEP]
funext j
[GOAL]
case h.h
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
g : ↑(MonCat.of G)
x : s.pt.V
j : ι
⊢ (↑s.pt.ρ g ≫ fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) x j =
((fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) ≫
↑{ pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt.ρ g)
x j
[PROOFSTEP]
exact congr_fun ((s.π.app ⟨j⟩).comm g) x
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f✝ : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt
h :
∀ (j : Discrete ι),
f ≫
NatTrans.app { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.π
j =
NatTrans.app s.π j
⊢ f = (fun s => Hom.mk fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) s
[PROOFSTEP]
ext x
[GOAL]
case h.h
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f✝ : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt
h :
∀ (j : Discrete ι),
f ≫
NatTrans.app { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.π
j =
NatTrans.app s.π j
x : s.pt.V
⊢ Hom.hom f x = Hom.hom ((fun s => Hom.mk fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) s) x
[PROOFSTEP]
funext j
[GOAL]
case h.h.h
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f✝ : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt
h :
∀ (j : Discrete ι),
f ≫
NatTrans.app { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.π
j =
NatTrans.app s.π j
x : s.pt.V
j : ι
⊢ Hom.hom f x j = Hom.hom ((fun s => Hom.mk fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) s) x j
[PROOFSTEP]
dsimp at *
[GOAL]
case h.h.h
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f✝ : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt
h : ∀ (j : Discrete ι), (f ≫ Hom.mk fun x => x j.as) = NatTrans.app s.π j
x : s.pt.V
j : ι
⊢ Hom.hom f x j = Hom.hom (NatTrans.app s.π { as := j }) x
[PROOFSTEP]
rw [← h ⟨j⟩]
[GOAL]
case h.h.h
V : Type (u + 1)
inst✝³ : LargeCategory V
G✝ H : MonCat
f✝ : G✝ ⟶ H
R : Type u_1
inst✝² : Semiring R
ι : Type v
G : Type (max v u)
inst✝¹ : Monoid G
F : ι → Type (max v u)
inst✝ : (i : ι) → MulAction G (F i)
s : Cone (Discrete.functor fun i => ofMulAction G (F i))
f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt
h : ∀ (j : Discrete ι), (f ≫ Hom.mk fun x => x j.as) = NatTrans.app s.π j
x : s.pt.V
j : ι
⊢ Hom.hom f x j = Hom.hom (f ≫ Hom.mk fun x => x { as := j }.as) x
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g : G
⊢ (↑(leftRegular G ⊗ X).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) =
(fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ ↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g
[PROOFSTEP]
funext ⟨(x₁ : G), (x₂ : X.V)⟩
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ (↑(leftRegular G ⊗ X).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) (x₁, x₂) =
((fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ ↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g) (x₁, x₂)
[PROOFSTEP]
refine' Prod.ext rfl _
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ ((↑(leftRegular G ⊗ X).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) (x₁, x₂)).snd =
(((fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ ↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g) (x₁, x₂)).snd
[PROOFSTEP]
change (X.ρ ((g * x₁)⁻¹ : G) * X.ρ g) x₂ = X.ρ _ _
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ (↑X.ρ (g * x₁)⁻¹ * ↑X.ρ g) x₂ = ↑X.ρ (x₁, x₂).fst⁻¹ (x₁, x₂).snd
[PROOFSTEP]
rw [mul_inv_rev, ← X.ρ.map_mul, inv_mul_cancel_right]
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g : G
⊢ (↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) =
(fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ ↑(leftRegular G ⊗ X).ρ g
[PROOFSTEP]
funext ⟨(x₁ : G), (x₂ : X.V)⟩
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ (↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) (x₁, x₂) =
((fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ ↑(leftRegular G ⊗ X).ρ g) (x₁, x₂)
[PROOFSTEP]
refine' Prod.ext rfl _
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ ((↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) (x₁, x₂)).snd =
(((fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ ↑(leftRegular G ⊗ X).ρ g) (x₁, x₂)).snd
[PROOFSTEP]
erw [tensor_rho, tensor_rho]
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ (((↑(leftRegular G).ρ g ⊗ ↑{ V := X.V, ρ := 1 }.ρ g) ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) (x₁, x₂)).snd =
(((fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ (↑(leftRegular G).ρ g ⊗ ↑X.ρ g)) (x₁, x₂)).snd
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ ↑X.ρ (↑(leftRegular G).ρ g x₁) x₂ = ↑X.ρ g (↑X.ρ x₁ x₂)
[PROOFSTEP]
rw [leftRegular_ρ_apply]
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ ↑X.ρ (g • x₁) x₂ = ↑X.ρ g (↑X.ρ x₁ x₂)
[PROOFSTEP]
erw [map_mul]
[GOAL]
case h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
g x₁ : G
x₂ : X.V
⊢ (↑X.ρ g * ↑X.ρ x₁) x₂ = ↑X.ρ g (↑X.ρ x₁ x₂)
[PROOFSTEP]
rfl
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) = 𝟙 (leftRegular G ⊗ X)
[PROOFSTEP]
apply Hom.ext
[GOAL]
case hom
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)).hom =
(𝟙 (leftRegular G ⊗ X)).hom
[PROOFSTEP]
funext x
[GOAL]
case hom.h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
x : (leftRegular G ⊗ X).V
⊢ Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) x =
Hom.hom (𝟙 (leftRegular G ⊗ X)) x
[PROOFSTEP]
refine' Prod.ext rfl _
[GOAL]
case hom.h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
x : (leftRegular G ⊗ X).V
⊢ (Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) x).snd =
(Hom.hom (𝟙 (leftRegular G ⊗ X)) x).snd
[PROOFSTEP]
change (X.ρ x.1 * X.ρ (x.1⁻¹ : G)) x.2 = x.2
[GOAL]
case hom.h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
x : (leftRegular G ⊗ X).V
⊢ (↑X.ρ x.fst * ↑X.ρ x.fst⁻¹) x.snd = x.snd
[PROOFSTEP]
rw [← X.ρ.map_mul, mul_inv_self, X.ρ.map_one, MonCat.one_of, End.one_def, types_id_apply]
[GOAL]
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) =
𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })
[PROOFSTEP]
apply Hom.ext
[GOAL]
case hom
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)).hom =
(𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })).hom
[PROOFSTEP]
funext x
[GOAL]
case hom.h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
x : (leftRegular G ⊗ { V := X.V, ρ := 1 }).V
⊢ Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) x =
Hom.hom (𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })) x
[PROOFSTEP]
refine' Prod.ext rfl _
[GOAL]
case hom.h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
x : (leftRegular G ⊗ { V := X.V, ρ := 1 }).V
⊢ (Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) x).snd =
(Hom.hom (𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })) x).snd
[PROOFSTEP]
change (X.ρ (x.1⁻¹ : G) * X.ρ x.1) x.2 = x.2
[GOAL]
case hom.h
V : Type (u + 1)
inst✝² : LargeCategory V
G✝ H : MonCat
f : G✝ ⟶ H
R : Type u_1
inst✝¹ : Semiring R
G : Type u
inst✝ : Group G
X : Action (Type u) (MonCat.of G)
x : (leftRegular G ⊗ { V := X.V, ρ := 1 }).V
⊢ (↑X.ρ x.fst⁻¹ * ↑X.ρ x.fst) x.snd = x.snd
[PROOFSTEP]
rw [← X.ρ.map_mul, inv_mul_self, X.ρ.map_one, MonCat.one_of, End.one_def, types_id_apply]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
M : Action V G
⊢ (fun g => F.map (↑M.ρ g)) 1 = 1
[PROOFSTEP]
simp only [End.one_def, Action.ρ_one, F.map_id, MonCat.one_of]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
M : Action V G
g h : ↑G
⊢ OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) =
OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g *
OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h
[PROOFSTEP]
dsimp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
M : Action V G
g h : ↑G
⊢ F.map (↑M.ρ (g * h)) = F.map (↑M.ρ g) * F.map (↑M.ρ h)
[PROOFSTEP]
rw [map_mul, MonCat.mul_of, End.mul_def, End.mul_def, F.map_comp]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
X✝ Y✝ : Action V G
f : X✝ ⟶ Y✝
g : ↑G
⊢ ↑((fun M =>
{ V := F.obj M.V,
ρ :=
{
toOneHom :=
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } })
X✝).ρ
g ≫
F.map f.hom =
F.map f.hom ≫
↑((fun M =>
{ V := F.obj M.V,
ρ :=
{
toOneHom :=
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } })
Y✝).ρ
g
[PROOFSTEP]
dsimp
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
X✝ Y✝ : Action V G
f : X✝ ⟶ Y✝
g : ↑G
⊢ F.map (↑X✝.ρ g) ≫ F.map f.hom = F.map f.hom ≫ F.map (↑Y✝.ρ g)
[PROOFSTEP]
rw [← F.map_comp, f.comm, F.map_comp]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
M : Action V G
⊢ {
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
(𝟙 M) =
𝟙
({
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.obj
M)
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
M : Action V G
⊢ ({
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
(𝟙 M)).hom =
(𝟙
({
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{
toOneHom :=
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.obj
M)).hom
[PROOFSTEP]
simp only [Action.id_hom, F.map_id]
[GOAL]
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
X✝ Y✝ Z✝ : Action V G
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ {
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
(f ≫ g) =
{
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
f ≫
{
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
g
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝¹ : LargeCategory V
W : Type (u + 1)
inst✝ : LargeCategory W
F : V ⥤ W
G : MonCat
X✝ Y✝ Z✝ : Action V G
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ ({
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{ toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
(f ≫ g)).hom =
({
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{
toOneHom :=
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
f ≫
{
obj := fun M =>
{ V := F.obj M.V,
ρ :=
{
toOneHom :=
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) },
map_mul' :=
(_ :
∀ (g h : ↑G),
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
(g * h) =
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
g *
OneHom.toFun
{ toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }
h) } },
map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map
g).hom
[PROOFSTEP]
simp only [Action.comp_hom, F.map_comp]
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
g : ↑G
⊢ ↑(MonoidalCategory.tensorUnit (Action W G)).ρ g ≫ F.ε =
F.ε ≫ ↑((Functor.mk src✝.toPrefunctor).obj (MonoidalCategory.tensorUnit (Action V G))).ρ g
[PROOFSTEP]
dsimp [FunctorCategoryEquivalence.inverse, Functor.mapAction]
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
g : ↑G
⊢ 𝟙 (MonoidalCategory.tensorUnit W) ≫ F.ε = F.ε ≫ F.map (𝟙 (MonoidalCategory.tensorUnit V))
[PROOFSTEP]
rw [Category.id_comp, F.map_id, Category.comp_id]
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
⊢ ∀ {X Y X' Y' : Action V G} (f : X ⟶ Y) (g : X' ⟶ Y'),
MonoidalCategory.tensorHom ((Functor.mk src✝.toPrefunctor).map f) ((Functor.mk src✝.toPrefunctor).map g) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y Y' =
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X X' ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.tensorHom f g)
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ Y✝ X'✝ Y'✝ : Action V G
f✝ : X✝ ⟶ Y✝
g✝ : X'✝ ⟶ Y'✝
⊢ MonoidalCategory.tensorHom ((Functor.mk src✝.toPrefunctor).map f✝) ((Functor.mk src✝.toPrefunctor).map g✝) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Y'✝ =
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ X'✝ ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.tensorHom f✝ g✝)
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ Y✝ X'✝ Y'✝ : Action V G
f✝ : X✝ ⟶ Y✝
g✝ : X'✝ ⟶ Y'✝
⊢ (MonoidalCategory.tensorHom ((Functor.mk src✝.toPrefunctor).map f✝) ((Functor.mk src✝.toPrefunctor).map g✝) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Y'✝).hom =
((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ X'✝ ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.tensorHom f✝ g✝)).hom
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
⊢ ∀ (X Y Z : Action V G),
MonoidalCategory.tensorHom ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X Y)
(𝟙 ((Functor.mk src✝.toPrefunctor).obj Z)) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorObj X Y) Z ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.associator X Y Z).hom =
(MonoidalCategory.associator ((Functor.mk src✝.toPrefunctor).obj X) ((Functor.mk src✝.toPrefunctor).obj Y)
((Functor.mk src✝.toPrefunctor).obj Z)).hom ≫
MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X))
((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y Z) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X (MonoidalCategory.tensorObj Y Z)
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ Y✝ Z✝ : Action V G
⊢ MonoidalCategory.tensorHom ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ Y✝)
(𝟙 ((Functor.mk src✝.toPrefunctor).obj Z✝)) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorObj X✝ Y✝) Z✝ ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.associator X✝ Y✝ Z✝).hom =
(MonoidalCategory.associator ((Functor.mk src✝.toPrefunctor).obj X✝) ((Functor.mk src✝.toPrefunctor).obj Y✝)
((Functor.mk src✝.toPrefunctor).obj Z✝)).hom ≫
MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝))
((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Z✝) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ (MonoidalCategory.tensorObj Y✝ Z✝)
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ Y✝ Z✝ : Action V G
⊢ (MonoidalCategory.tensorHom ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ Y✝)
(𝟙 ((Functor.mk src✝.toPrefunctor).obj Z✝)) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorObj X✝ Y✝)
Z✝ ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.associator X✝ Y✝ Z✝).hom).hom =
((MonoidalCategory.associator ((Functor.mk src✝.toPrefunctor).obj X✝) ((Functor.mk src✝.toPrefunctor).obj Y✝)
((Functor.mk src✝.toPrefunctor).obj Z✝)).hom ≫
MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝))
((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Z✝) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝
(MonoidalCategory.tensorObj Y✝ Z✝)).hom
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
⊢ ∀ (X : Action V G),
(MonoidalCategory.leftUnitor ((Functor.mk src✝.toPrefunctor).obj X)).hom =
MonoidalCategory.tensorHom (Hom.mk F.ε) (𝟙 ((Functor.mk src✝.toPrefunctor).obj X)) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V))
(MonoidalCategory.tensorUnit (Action V G)) X ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.leftUnitor X).hom
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ : Action V G
⊢ (MonoidalCategory.leftUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom =
MonoidalCategory.tensorHom (Hom.mk F.ε) (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V))
(MonoidalCategory.tensorUnit (Action V G)) X✝ ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.leftUnitor X✝).hom
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ : Action V G
⊢ (MonoidalCategory.leftUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom.hom =
(MonoidalCategory.tensorHom (Hom.mk F.ε) (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V))
(MonoidalCategory.tensorUnit (Action V G)) X✝ ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.leftUnitor X✝).hom).hom
[PROOFSTEP]
simp
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
⊢ ∀ (X : Action V G),
(MonoidalCategory.rightUnitor ((Functor.mk src✝.toPrefunctor).obj X)).hom =
MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X)) (Hom.mk F.ε) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X
(MonoidalCategory.tensorUnit (Action V G)) ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.rightUnitor X).hom
[PROOFSTEP]
intros
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ : Action V G
⊢ (MonoidalCategory.rightUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom =
MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) (Hom.mk F.ε) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝
(MonoidalCategory.tensorUnit (Action V G)) ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.rightUnitor X✝).hom
[PROOFSTEP]
ext
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ : Action V G
⊢ (MonoidalCategory.rightUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom.hom =
(MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) (Hom.mk F.ε) ≫
(fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝
(MonoidalCategory.tensorUnit (Action V G)) ≫
(Functor.mk src✝.toPrefunctor).map (MonoidalCategory.rightUnitor X✝).hom).hom
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ : Action V G
⊢ (MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) (𝟙 (MonoidalCategory.tensorUnit W)) ≫
(MonoidalCategory.rightUnitor (F.obj X✝.V)).hom) ≫
𝟙 (F.obj X✝.V) =
MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) F.ε ≫
LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X✝.V (MonoidalCategory.tensorUnit V) ≫
F.map
((MonoidalCategory.tensorHom (𝟙 X✝.V) (𝟙 (MonoidalCategory.tensorUnit V)) ≫
(MonoidalCategory.rightUnitor X✝.V).hom) ≫
𝟙 X✝.V)
[PROOFSTEP]
simp only [MonoidalCategory.rightUnitor_conjugation, LaxMonoidalFunctor.right_unitality, Category.id_comp,
Category.assoc, LaxMonoidalFunctor.right_unitality_inv_assoc, Category.comp_id, Iso.hom_inv_id]
[GOAL]
case h
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
X✝ : Action V G
⊢ MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) F.ε ≫
LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X✝.V (MonoidalCategory.tensorUnit V) ≫
F.map (MonoidalCategory.rightUnitor X✝.V).hom ≫
F.map (MonoidalCategory.rightUnitor X✝.V).inv ≫ F.map (MonoidalCategory.rightUnitor X✝.V).hom =
MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) F.ε ≫
LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X✝.V (MonoidalCategory.tensorUnit V) ≫
F.map (MonoidalCategory.rightUnitor X✝.V).hom
[PROOFSTEP]
rw [← F.map_comp, Iso.inv_hom_id, F.map_id, Category.comp_id]
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
⊢ IsIso
(LaxMonoidalFunctor.mk (Functor.mk src✝.toPrefunctor) (Hom.mk F.ε) fun X Y =>
Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)).ε
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G
⊢ ∀ (X Y : Action V G),
IsIso
(LaxMonoidalFunctor.μ
(LaxMonoidalFunctor.mk (Functor.mk src✝.toPrefunctor) (Hom.mk F.ε) fun X Y =>
Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V))
X Y)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
⊢ (inv (mapAction F G).toLaxMonoidalFunctor.ε).hom = inv F.ε
[PROOFSTEP]
rw [← cancel_mono F.ε, IsIso.inv_hom_id, ← F.mapAction_toLaxMonoidalFunctor_ε_hom G, ← Action.comp_hom,
IsIso.inv_hom_id, Action.id_hom]
[GOAL]
V : Type (u + 1)
inst✝³ : LargeCategory V
W : Type (u + 1)
inst✝² : LargeCategory W
inst✝¹ : MonoidalCategory V
inst✝ : MonoidalCategory W
F : MonoidalFunctor V W
G : MonCat
X Y : Action V G
⊢ (inv (LaxMonoidalFunctor.μ (mapAction F G).toLaxMonoidalFunctor X Y)).hom =
inv (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)
[PROOFSTEP]
rw [← cancel_mono (F.μ X.V Y.V), IsIso.inv_hom_id, ← F.mapAction_toLaxMonoidalFunctor_μ_hom G, ← Action.comp_hom,
IsIso.inv_hom_id, Action.id_hom]
| {"mathlib_filename": "Mathlib.RepresentationTheory.Action", "llama_tokens": 35489} |
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ ¬r ∈ (toΓSpecFun X x).asIdeal ↔ IsUnit (↑(ΓToStalk X x) r)
[PROOFSTEP]
erw [LocalRing.mem_maximalIdeal, Classical.not_not]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ toΓSpecFun X ⁻¹' (basicOpen r).carrier = (RingedSpace.basicOpen (toRingedSpace X) r).carrier
[PROOFSTEP]
ext
[GOAL]
case h
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x✝ : ↑(toTopCat X)
⊢ x✝ ∈ toΓSpecFun X ⁻¹' (basicOpen r).carrier ↔ x✝ ∈ (RingedSpace.basicOpen (toRingedSpace X) r).carrier
[PROOFSTEP]
erw [X.toRingedSpace.mem_top_basicOpen]
[GOAL]
case h
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x✝ : ↑(toTopCat X)
⊢ x✝ ∈ toΓSpecFun X ⁻¹' (basicOpen r).carrier ↔
IsUnit (↑(germ (toRingedSpace X).toPresheafedSpace.presheaf { val := x✝, property := (_ : x✝ ∈ ⊤) }) r)
[PROOFSTEP]
apply not_mem_prime_iff_unit_in_stalk
[GOAL]
X : LocallyRingedSpace
⊢ Continuous (toΓSpecFun X)
[PROOFSTEP]
apply isTopologicalBasis_basic_opens.continuous
[GOAL]
case hf
X : LocallyRingedSpace
⊢ ∀ (s : Set (PrimeSpectrum ↑(Γ.obj (op X)))), (s ∈ Set.range fun r => ↑(basicOpen r)) → IsOpen (toΓSpecFun X ⁻¹' s)
[PROOFSTEP]
rintro _ ⟨r, rfl⟩
[GOAL]
case hf.intro
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ IsOpen (toΓSpecFun X ⁻¹' (fun r => ↑(basicOpen r)) r)
[PROOFSTEP]
erw [X.toΓSpec_preim_basicOpen_eq r]
[GOAL]
case hf.intro
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ IsOpen (RingedSpace.basicOpen (toRingedSpace X) r).carrier
[PROOFSTEP]
exact (X.toRingedSpace.basicOpen r).2
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ IsUnit (↑(toToΓSpecMapBasicOpen X r) r)
[PROOFSTEP]
convert
(X.presheaf.map <| (eqToHom <| X.toΓSpecMapBasicOpen_eq r).op).isUnit_map
(X.toRingedSpace.isUnit_res_basicOpen r)
-- Porting note : `rw [comp_apply]` to `erw [comp_apply]`
[GOAL]
case h.e'_3
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ ↑(toToΓSpecMapBasicOpen X r) r =
↑(X.presheaf.map (eqToHom (_ : toΓSpecMapBasicOpen X r = RingedSpace.basicOpen (toRingedSpace X) r)).op)
(↑((toRingedSpace X).toPresheafedSpace.presheaf.map
(homOfLE (_ : RingedSpace.basicOpen (toRingedSpace X) r ≤ ⊤)).op)
r)
[PROOFSTEP]
erw [← comp_apply, ← Functor.map_comp]
[GOAL]
case h.e'_3
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ ↑(toToΓSpecMapBasicOpen X r) r =
↑((toRingedSpace X).toPresheafedSpace.presheaf.map
((homOfLE (_ : RingedSpace.basicOpen (toRingedSpace X) r ≤ ⊤)).op ≫
(eqToHom (_ : toΓSpecMapBasicOpen X r = RingedSpace.basicOpen (toRingedSpace X) r)).op))
r
[PROOFSTEP]
congr
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = toToΓSpecMapBasicOpen X r ↔ f = toΓSpecCApp X r
[PROOFSTEP]
have loc_inst := IsLocalization.to_basicOpen (Γ.obj (op X)) r
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = toToΓSpecMapBasicOpen X r ↔ f = toΓSpecCApp X r
[PROOFSTEP]
rw [← @IsLocalization.Away.AwayMap.lift_comp _ _ _ _ _ _ _ r loc_inst _ (X.isUnit_res_toΓSpecMapBasicOpen r)]
--pick_goal 5; exact is_localization.to_basic_open _ r
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f =
RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r)))
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) ↔
f = toΓSpecCApp X r
[PROOFSTEP]
constructor
[GOAL]
case mp
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f =
RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r)))
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) →
f = toΓSpecCApp X r
[PROOFSTEP]
intro h
[GOAL]
case mp
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
h :
toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f =
RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r)))
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))))
⊢ f = toΓSpecCApp X r
[PROOFSTEP]
refine' @IsLocalization.ringHom_ext _ _ _ _ _ _ _ _ loc_inst _ _ _
[GOAL]
case mp
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
h :
toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f =
RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r)))
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))))
⊢ RingHom.comp f (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) =
RingHom.comp (toΓSpecCApp X r)
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))))
[PROOFSTEP]
exact h
[GOAL]
case mpr
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
⊢ f = toΓSpecCApp X r →
toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f =
RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r)))
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))))
[PROOFSTEP]
apply congr_arg
[GOAL]
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ
f : r ⟶ s
⊢ ((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f ≫ (fun r => toΓSpecCApp X r.unop) s =
(fun r => toΓSpecCApp X r.unop) r ≫
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f
[PROOFSTEP]
apply (StructureSheaf.to_basicOpen_epi (Γ.obj (op X)) r.unop).1
[GOAL]
case a
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ
f : r ⟶ s
⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫
((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f ≫ (fun r => toΓSpecCApp X r.unop) s =
toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫
(fun r => toΓSpecCApp X r.unop) r ≫
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f
[PROOFSTEP]
simp only [← Category.assoc]
[GOAL]
case a
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ
f : r ⟶ s
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫
((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f) ≫
toΓSpecCApp X s.unop =
(toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫ toΓSpecCApp X r.unop) ≫
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f
[PROOFSTEP]
erw [X.toΓSpecCApp_spec r.unop]
[GOAL]
case a
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ
f : r ⟶ s
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫
((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f) ≫
toΓSpecCApp X s.unop =
toToΓSpecMapBasicOpen X r.unop ≫
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f
[PROOFSTEP]
convert X.toΓSpecCApp_spec s.unop
[GOAL]
case h.e'_3.h
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ
f : r ⟶ s
e_1✝ :
(CommRingCat.of ↑(Γ.obj (op X)) ⟶
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).obj s) =
(CommRingCat.of ↑(Γ.obj (op X)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X s.unop)))
⊢ toToΓSpecMapBasicOpen X r.unop ≫
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f =
toToΓSpecMapBasicOpen X s.unop
[PROOFSTEP]
symm
[GOAL]
case h.e'_3.h
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ
f : r ⟶ s
e_1✝ :
(CommRingCat.of ↑(Γ.obj (op X)) ⟶
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).obj s) =
(CommRingCat.of ↑(Γ.obj (op X)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X s.unop)))
⊢ toToΓSpecMapBasicOpen X s.unop =
toToΓSpecMapBasicOpen X r.unop ≫
((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f
[PROOFSTEP]
apply X.presheaf.map_comp
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = toΓSpecCApp X r
[PROOFSTEP]
have :=
TopCat.Sheaf.extend_hom_app (Spec.toSheafedSpace.obj (op (Γ.obj (op X)))).presheaf
((TopCat.Sheaf.pushforward X.toΓSpecBase).obj X.𝒪) isBasis_basic_opens X.toΓSpecCBasicOpens r
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
this :
NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (Spec.toSheafedSpace.obj (op (Γ.obj (op X)))).presheaf
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r)) =
NatTrans.app (toΓSpecCBasicOpens X) (op r)
⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = toΓSpecCApp X r
[PROOFSTEP]
dsimp at this
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
this :
NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r)) =
toΓSpecCApp X r
⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = toΓSpecCApp X r
[PROOFSTEP]
rw [← this]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
this :
NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r)) =
toΓSpecCApp X r
⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) =
NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r))
[PROOFSTEP]
dsimp
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
this :
NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r)) =
toΓSpecCApp X r
⊢ NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r)) =
NatTrans.app
(↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val
((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen)))
(toΓSpecCBasicOpens X))
(op (basicOpen r))
[PROOFSTEP]
congr
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ toStalk (↑(op (Γ.obj (op X))).unop) (↑(toΓSpecSheafedSpace X).base x) ≫
PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x =
ΓToStalk X x
[PROOFSTEP]
rw [PresheafedSpace.stalkMap]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ toStalk (↑(op (Γ.obj (op X))).unop) (↑(toΓSpecSheafedSpace X).base x) ≫
(stalkFunctor CommRingCat (↑(toΓSpecSheafedSpace X).base x)).map (toΓSpecSheafedSpace X).c ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
ΓToStalk X x
[PROOFSTEP]
erw [← toOpen_germ _ (basicOpen (1 : Γ.obj (op X))) ⟨X.toΓSpecFun x, by rw [basicOpen_one]; trivial⟩]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ toΓSpecFun X x ∈ basicOpen 1
[PROOFSTEP]
rw [basicOpen_one]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ toΓSpecFun X x ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫
germ (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X))))
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫
(stalkFunctor CommRingCat (↑(toΓSpecSheafedSpace X).base x)).map (toΓSpecSheafedSpace X).c ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
ΓToStalk X x
[PROOFSTEP]
rw [← Category.assoc, Category.assoc (toOpen _ _)]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫
germ (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X))))
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) } ≫
(stalkFunctor CommRingCat (↑(toΓSpecSheafedSpace X).base x)).map (toΓSpecSheafedSpace X).c) ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
ΓToStalk X x
[PROOFSTEP]
erw [stalkFunctor_map_germ]
-- Porting note : was `rw [←assoc, toΓSpecSheafedSpace_app_spec]`, but Lean did not like it.
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫
NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen 1)) ≫
germ ((toΓSpecSheafedSpace X).base _* X.presheaf)
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
ΓToStalk X x
[PROOFSTEP]
rw [toΓSpecSheafedSpace_app_spec_assoc]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toToΓSpecMapBasicOpen X 1 ≫
germ ((toΓSpecSheafedSpace X).base _* X.presheaf)
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
ΓToStalk X x
[PROOFSTEP]
unfold ΓToStalk
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toToΓSpecMapBasicOpen X 1 ≫
germ ((toΓSpecSheafedSpace X).base _* X.presheaf)
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
germ X.presheaf { val := x, property := trivial }
[PROOFSTEP]
rw [← stalkPushforward_germ _ X.toΓSpecBase X.presheaf ⊤]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toToΓSpecMapBasicOpen X 1 ≫
germ ((toΓSpecSheafedSpace X).base _* X.presheaf)
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫
stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x =
germ (toΓSpecBase X _* X.presheaf)
{ val := ↑(toΓSpecBase X) ↑{ val := x, property := trivial },
property := (_ : ↑{ val := x, property := trivial } ∈ (Opens.map (toΓSpecBase X)).obj ⊤) } ≫
stalkPushforward CommRingCat (toΓSpecBase X) X.presheaf ↑{ val := x, property := trivial }
[PROOFSTEP]
congr 1
[GOAL]
case e_a
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ toToΓSpecMapBasicOpen X 1 ≫
germ ((toΓSpecSheafedSpace X).base _* X.presheaf)
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) } =
germ (toΓSpecBase X _* X.presheaf)
{ val := ↑(toΓSpecBase X) ↑{ val := x, property := trivial },
property := (_ : ↑{ val := x, property := trivial } ∈ (Opens.map (toΓSpecBase X)).obj ⊤) }
[PROOFSTEP]
change (X.toΓSpecBase _* X.presheaf).map le_top.hom.op ≫ _ = _
[GOAL]
case e_a
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑(toTopCat X)
⊢ (toΓSpecBase X _* X.presheaf).map
(LE.le.hom
(_ :
{ carrier := {x | ¬1 ∈ x.asIdeal}, is_open' := (_ : ∃ y, zeroLocus y = {x | ¬1 ∈ x.asIdeal}ᶜ) } ≤ ⊤)).op ≫
germ ((toΓSpecSheafedSpace X).base _* X.presheaf)
{ val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) } =
germ (toΓSpecBase X _* X.presheaf)
{ val := ↑(toΓSpecBase X) ↑{ val := x, property := trivial },
property := (_ : ↑{ val := x, property := trivial } ∈ (Opens.map (toΓSpecBase X)).obj ⊤) }
[PROOFSTEP]
apply germ_res
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ ∀ (x : ↑↑X.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x)
[PROOFSTEP]
intro x
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x)
[PROOFSTEP]
let p : PrimeSpectrum (Γ.obj (op X)) := X.toΓSpecFun x
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x)
[PROOFSTEP]
constructor
-- show stalk map is local hom ↓
[GOAL]
case map_nonunit
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
⊢ ∀
(a :
↑(PresheafedSpace.stalk (Spec.locallyRingedSpaceObj (Γ.obj (op X))).toSheafedSpace.toPresheafedSpace
(↑(toΓSpecSheafedSpace X).base x))),
IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) a) → IsUnit a
[PROOFSTEP]
let S := (structureSheaf _).presheaf.stalk p
[GOAL]
case map_nonunit
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
⊢ ∀
(a :
↑(PresheafedSpace.stalk (Spec.locallyRingedSpaceObj (Γ.obj (op X))).toSheafedSpace.toPresheafedSpace
(↑(toΓSpecSheafedSpace X).base x))),
IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) a) → IsUnit a
[PROOFSTEP]
rintro (t : S) ht
[GOAL]
case map_nonunit
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
⊢ IsUnit t
[PROOFSTEP]
obtain ⟨⟨r, s⟩, he⟩ := IsLocalization.surj p.asIdeal.primeCompl t
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
he : t * ↑(algebraMap ↑(Γ.obj (op X)) ↑S) ↑(r, s).snd = ↑(algebraMap ↑(Γ.obj (op X)) ↑S) (r, s).fst
⊢ IsUnit t
[PROOFSTEP]
dsimp at he
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
he :
t * ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s =
↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit t
[PROOFSTEP]
set t' := _
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
he :
t * ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s =
↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
t' : ?m.142259 := ?m.142260
⊢ IsUnit t
[PROOFSTEP]
change t * t' = _ at he
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit t
[PROOFSTEP]
apply isUnit_of_mul_isUnit_left (y := t')
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit (t * t')
[PROOFSTEP]
rw [he]
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit (↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r)
[PROOFSTEP]
refine' IsLocalization.map_units S (⟨r, _⟩ : p.asIdeal.primeCompl)
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ r ∈ Ideal.primeCompl p.asIdeal
[PROOFSTEP]
apply (not_mem_prime_iff_unit_in_stalk _ _ _).mpr
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit (↑(ΓToStalk X x) r)
[PROOFSTEP]
rw [← toStalk_stalkMap_toΓSpec]
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit
(↑(toStalk (↑(op (Γ.obj (op X))).unop) (↑(toΓSpecSheafedSpace X).base x) ≫
PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x)
r)
[PROOFSTEP]
erw [comp_apply, ← he]
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) (t * t'))
[PROOFSTEP]
rw [RingHom.map_mul]
-- Porting note : `IsLocalization.map_units` and the goal needs to be simplified before Lean
-- realize it is useful
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
⊢ IsUnit
(↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t * ↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t')
[PROOFSTEP]
have := IsLocalization.map_units (R := Γ.obj (op X)) S s
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
this : IsUnit (↑(algebraMap ↑(Γ.obj (op X)) ↑S) ↑s)
⊢ IsUnit
(↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t * ↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t')
[PROOFSTEP]
dsimp at this ⊢
[GOAL]
case map_nonunit.intro.mk
X : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X))
x : ↑↑X.toPresheafedSpace
p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x
S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p
t : ↑S
ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t)
r : ↑(Γ.obj (op X))
s : { x // x ∈ Ideal.primeCompl p.asIdeal }
t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s
he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r
this : IsUnit (↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s)
⊢ IsUnit
(↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t *
↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) (↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s))
[PROOFSTEP]
refine ht.mul <| this.map _
[GOAL]
X✝ : LocallyRingedSpace
r : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
w : (toΓSpec X).val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
⊢ toΓSpec X ≫ Spec.locallyRingedSpaceMap f = β
[PROOFSTEP]
ext1
-- Porting note : need more hand holding here
[GOAL]
case h
X✝ : LocallyRingedSpace
r : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
w : (toΓSpec X).val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
⊢ (toΓSpec X ≫ Spec.locallyRingedSpaceMap f).val = β.val
[PROOFSTEP]
change (X.toΓSpec.1 ≫ _).base = _ at w
[GOAL]
case h
X✝ : LocallyRingedSpace
r : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
⊢ (toΓSpec X ≫ Spec.locallyRingedSpaceMap f).val = β.val
[PROOFSTEP]
apply Spec.basicOpen_hom_ext w
[GOAL]
case h
X✝ : LocallyRingedSpace
r : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
⊢ ∀ (r : ↑R),
let U := basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) =
(Opens.map β.val.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.val.c (op U)
[PROOFSTEP]
intro r U
[GOAL]
case h
X✝ : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
r : ↑R
U : Opens (PrimeSpectrum ↑R) := basicOpen r
⊢ (toOpen (↑R) U ≫ NatTrans.app ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) =
(Opens.map β.val.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.val.c (op U)
[PROOFSTEP]
erw [LocallyRingedSpace.comp_val_c_app]
[GOAL]
case h
X✝ : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
r : ↑R
U : Opens (PrimeSpectrum ↑R) := basicOpen r
⊢ (toOpen (↑R) U ≫
NatTrans.app (Spec.locallyRingedSpaceMap f).val.c (op U) ≫
NatTrans.app (toΓSpec X).val.c (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (op U).unop))) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) =
(Opens.map β.val.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.val.c (op U)
[PROOFSTEP]
erw [toOpen_comp_comap_assoc]
[GOAL]
case h
X✝ : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
r : ↑R
U : Opens (PrimeSpectrum ↑R) := basicOpen r
⊢ (CommRingCat.ofHom f ≫
toOpen (↑(Γ.obj (op X))) (↑(Opens.comap (PrimeSpectrum.comap f)) U) ≫
NatTrans.app (toΓSpec X).val.c (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (op U).unop))) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) =
(Opens.map β.val.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.val.c (op U)
[PROOFSTEP]
rw [Category.assoc]
[GOAL]
case h
X✝ : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
r : ↑R
U : Opens (PrimeSpectrum ↑R) := basicOpen r
⊢ CommRingCat.ofHom f ≫
(toOpen (↑(Γ.obj (op X))) (↑(Opens.comap (PrimeSpectrum.comap f)) U) ≫
NatTrans.app (toΓSpec X).val.c (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (op U).unop))) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) =
(Opens.map β.val.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.val.c (op U)
[PROOFSTEP]
erw [toΓSpecSheafedSpace_app_spec, ← X.presheaf.map_comp]
[GOAL]
case h
X✝ : LocallyRingedSpace
r✝ : ↑(Γ.obj (op X✝))
X : LocallyRingedSpace
R : CommRingCat
f : R ⟶ Γ.obj (op X)
β : X ⟶ Spec.locallyRingedSpaceObj R
h :
∀ (r : ↑R),
f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r))
w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base
r : ↑R
U : Opens (PrimeSpectrum ↑R) := basicOpen r
⊢ CommRingCat.ofHom f ≫
X.presheaf.map
((Opens.leTop (toΓSpecMapBasicOpen X (↑f r))).op ≫
eqToHom
(_ :
(Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) =
(Opens.map β.val.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.val.c (op U)
[PROOFSTEP]
convert h r using 1
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ toSpecΓ (Γ.obj (op X)) ≫ NatTrans.app (toΓSpec X).val.c (op ⊤) = 𝟙 (Γ.obj (op X))
[PROOFSTEP]
unfold toSpecΓ
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ toOpen ↑(Γ.obj (op X)) ⊤ ≫ NatTrans.app (toΓSpec X).val.c (op ⊤) = 𝟙 (Γ.obj (op X))
[PROOFSTEP]
rw [← toOpen_res _ (basicOpen (1 : Γ.obj (op X))) ⊤ (eqToHom basicOpen_one.symm)]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫
(structureSheaf ↑(Γ.obj (op X))).val.map (eqToHom (_ : ⊤ = basicOpen 1)).op) ≫
NatTrans.app (toΓSpec X).val.c (op ⊤) =
𝟙 (Γ.obj (op X))
[PROOFSTEP]
erw [Category.assoc]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫
(structureSheaf ↑(Γ.obj (op X))).val.map (eqToHom (_ : ⊤ = basicOpen 1)).op ≫
NatTrans.app (toΓSpec X).val.c (op ⊤) =
𝟙 (Γ.obj (op X))
[PROOFSTEP]
rw [NatTrans.naturality, ← Category.assoc]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ NatTrans.app (toΓSpec X).val.c (op (basicOpen 1))) ≫
((toΓSpec X).val.base _* X.presheaf).map (eqToHom (_ : ⊤ = basicOpen 1)).op =
𝟙 (Γ.obj (op X))
[PROOFSTEP]
erw [X.toΓSpecSheafedSpace_app_spec 1, ← Functor.map_comp]
[GOAL]
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ X.presheaf.map
((Opens.leTop (toΓSpecMapBasicOpen X 1)).op ≫
(Opens.map (toΓSpec X).val.base).op.map (eqToHom (_ : ⊤ = basicOpen 1)).op) =
𝟙 (Γ.obj (op X))
[PROOFSTEP]
convert eqToHom_map X.presheaf _
[GOAL]
case convert_3
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
⊢ op ⊤ = (Opens.map (toΓSpec X).val.base).op.obj (op ⊤)
[PROOFSTEP]
rfl
[GOAL]
X Y : LocallyRingedSpace
f : X ⟶ Y
⊢ (𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y = toΓSpec X ≫ (Γ.rightOp ⋙ Spec.toLocallyRingedSpace).map f
[PROOFSTEP]
symm
[GOAL]
X Y : LocallyRingedSpace
f : X ⟶ Y
⊢ toΓSpec X ≫ (Γ.rightOp ⋙ Spec.toLocallyRingedSpace).map f = (𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y
[PROOFSTEP]
apply LocallyRingedSpace.comp_ring_hom_ext
[GOAL]
case w
X Y : LocallyRingedSpace
f : X ⟶ Y
⊢ (toΓSpec ((𝟭 LocallyRingedSpace).obj X)).val.base ≫ (Spec.locallyRingedSpaceMap (Γ.rightOp.map f).unop).val.base =
((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base
[PROOFSTEP]
ext1 x
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑((toΓSpec ((𝟭 LocallyRingedSpace).obj X)).val.base ≫ (Spec.locallyRingedSpaceMap (Γ.rightOp.map f).unop).val.base)
x =
↑((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base x
[PROOFSTEP]
dsimp [Spec.topMap, LocallyRingedSpace.toΓSpecFun]
--Porting Note: Had to add the next four lines
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑(toΓSpecBase X ≫ PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) x = ↑(f.val.base ≫ toΓSpecBase Y) x
[PROOFSTEP]
rw [comp_apply, comp_apply]
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (↑(toΓSpecBase X) x) = ↑(toΓSpecBase Y) (↑f.val.base x)
[PROOFSTEP]
dsimp [toΓSpecBase]
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (↑(ContinuousMap.mk (toΓSpecFun X)) x) =
↑(ContinuousMap.mk (toΓSpecFun Y)) (↑f.val.base x)
[PROOFSTEP]
rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk]
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (toΓSpecFun X x) = toΓSpecFun Y (↑f.val.base x)
[PROOFSTEP]
dsimp [toΓSpecFun]
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤)))
(↑(PrimeSpectrum.comap (ΓToStalk X x)) (LocalRing.closedPoint ↑(TopCat.Presheaf.stalk X.presheaf x))) =
↑(PrimeSpectrum.comap (ΓToStalk Y (↑f.val.base x)))
(LocalRing.closedPoint ↑(TopCat.Presheaf.stalk Y.presheaf (↑f.val.base x)))
[PROOFSTEP]
rw [← LocalRing.comap_closedPoint (PresheafedSpace.stalkMap f.val x), ← PrimeSpectrum.comap_comp_apply, ←
PrimeSpectrum.comap_comp_apply]
[GOAL]
case w.w
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ ↑(PrimeSpectrum.comap (RingHom.comp (ΓToStalk X x) (NatTrans.app f.val.c (op ⊤))))
(LocalRing.closedPoint ↑(TopCat.Presheaf.stalk X.presheaf x)) =
↑(PrimeSpectrum.comap (RingHom.comp (PresheafedSpace.stalkMap f.val x) (ΓToStalk Y (↑f.val.base x))))
(LocalRing.closedPoint ↑(PresheafedSpace.stalk X.toPresheafedSpace x))
[PROOFSTEP]
congr 2
[GOAL]
case w.w.e_a.e_f
X Y : LocallyRingedSpace
f : X ⟶ Y
x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace
⊢ RingHom.comp (ΓToStalk X x) (NatTrans.app f.val.c (op ⊤)) =
RingHom.comp (PresheafedSpace.stalkMap f.val x) (ΓToStalk Y (↑f.val.base x))
[PROOFSTEP]
exact (PresheafedSpace.stalkMap_germ f.1 ⊤ ⟨x, trivial⟩).symm
[GOAL]
case h
X Y : LocallyRingedSpace
f : X ⟶ Y
⊢ ∀ (r : ↑(Γ.rightOp.obj Y).unop),
(Γ.rightOp.map f).unop ≫
((𝟭 LocallyRingedSpace).obj X).presheaf.map
(homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑(Γ.rightOp.obj Y).unop) (basicOpen r) ≫
NatTrans.app ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.c (op (basicOpen r))
[PROOFSTEP]
intro r
[GOAL]
case h
X Y : LocallyRingedSpace
f : X ⟶ Y
r : ↑(Γ.rightOp.obj Y).unop
⊢ (Γ.rightOp.map f).unop ≫
((𝟭 LocallyRingedSpace).obj X).presheaf.map
(homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op =
toOpen (↑(Γ.rightOp.obj Y).unop) (basicOpen r) ≫
NatTrans.app ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.c (op (basicOpen r))
[PROOFSTEP]
rw [LocallyRingedSpace.comp_val_c_app, ← Category.assoc]
[GOAL]
case h
X Y : LocallyRingedSpace
f : X ⟶ Y
r : ↑(Γ.rightOp.obj Y).unop
⊢ (Γ.rightOp.map f).unop ≫
((𝟭 LocallyRingedSpace).obj X).presheaf.map
(homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op =
(toOpen (↑(Γ.rightOp.obj Y).unop) (basicOpen r) ≫ NatTrans.app (toΓSpec Y).val.c (op (basicOpen r))) ≫
NatTrans.app ((𝟭 LocallyRingedSpace).map f).val.c
(op ((Opens.map (toΓSpec Y).val.base).obj (op (basicOpen r)).unop))
[PROOFSTEP]
erw [Y.toΓSpecSheafedSpace_app_spec, f.1.c.naturality]
[GOAL]
case h
X Y : LocallyRingedSpace
f : X ⟶ Y
r : ↑(Γ.rightOp.obj Y).unop
⊢ (Γ.rightOp.map f).unop ≫
((𝟭 LocallyRingedSpace).obj X).presheaf.map
(homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op =
NatTrans.app f.val.c (op ⊤) ≫ (f.val.base _* X.presheaf).map (Opens.leTop (toΓSpecMapBasicOpen Y r)).op
[PROOFSTEP]
rfl
[GOAL]
R : CommRingCat
⊢ NatTrans.app identityToΓSpec (Spec.toLocallyRingedSpace.obj (op R)) ≫
Spec.toLocallyRingedSpace.map (NatTrans.app SpecΓIdentity.inv R).op =
𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))
[PROOFSTEP]
apply LocallyRingedSpace.comp_ring_hom_ext
[GOAL]
case w
R : CommRingCat
⊢ (toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫
(Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base =
(𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base
[PROOFSTEP]
ext (p : PrimeSpectrum R)
[GOAL]
case w.w
R : CommRingCat
p : PrimeSpectrum ↑R
⊢ ↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫
(Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base)
p =
↑(𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base p
[PROOFSTEP]
change _ = p
[GOAL]
case w.w
R : CommRingCat
p : PrimeSpectrum ↑R
⊢ ↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫
(Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base)
p =
p
[PROOFSTEP]
ext x
[GOAL]
case w.w.asIdeal.h
R : CommRingCat
p : PrimeSpectrum ↑R
x : ↑(op ((𝟭 CommRingCat).obj R)).unop
⊢ x ∈
(↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫
(Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base)
p).asIdeal ↔
x ∈ p.asIdeal
[PROOFSTEP]
erw [← IsLocalization.AtPrime.to_map_mem_maximal_iff ((structureSheaf R).presheaf.stalk p) p.asIdeal x]
[GOAL]
case w.w.asIdeal.h
R : CommRingCat
p : PrimeSpectrum ↑R
x : ↑(op ((𝟭 CommRingCat).obj R)).unop
⊢ x ∈
(↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫
(Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base)
p).asIdeal ↔
↑(algebraMap ↑R ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑R)) p)) x ∈
LocalRing.maximalIdeal ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑R)) p)
[PROOFSTEP]
rfl
[GOAL]
case h
R : CommRingCat
⊢ ∀ (r : ↑(op ((𝟭 CommRingCat).obj R)).unop),
(NatTrans.app SpecΓIdentity.inv R).op.unop ≫
((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R))).presheaf.map
(homOfLE
(_ :
(Opens.map (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base).obj
(basicOpen r) ≤
⊤)).op =
toOpen (↑(op ((𝟭 CommRingCat).obj R)).unop) (basicOpen r) ≫
NatTrans.app (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.c (op (basicOpen r))
[PROOFSTEP]
intro r
[GOAL]
case h
R : CommRingCat
r : ↑(op ((𝟭 CommRingCat).obj R)).unop
⊢ (NatTrans.app SpecΓIdentity.inv R).op.unop ≫
((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R))).presheaf.map
(homOfLE
(_ :
(Opens.map (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base).obj
(basicOpen r) ≤
⊤)).op =
toOpen (↑(op ((𝟭 CommRingCat).obj R)).unop) (basicOpen r) ≫
NatTrans.app (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.c (op (basicOpen r))
[PROOFSTEP]
apply toOpen_res
[GOAL]
⊢ whiskerRight identityToΓSpec Γ.rightOp ≫
(Functor.associator Γ.rightOp Spec.toLocallyRingedSpace Γ.rightOp).hom ≫
whiskerLeft Γ.rightOp (NatIso.op SpecΓIdentity).inv =
NatTrans.id (𝟭 LocallyRingedSpace ⋙ Γ.rightOp)
[PROOFSTEP]
ext X
[GOAL]
case w.h
X : LocallyRingedSpace
⊢ NatTrans.app
(whiskerRight identityToΓSpec Γ.rightOp ≫
(Functor.associator Γ.rightOp Spec.toLocallyRingedSpace Γ.rightOp).hom ≫
whiskerLeft Γ.rightOp (NatIso.op SpecΓIdentity).inv)
X =
NatTrans.app (NatTrans.id (𝟭 LocallyRingedSpace ⋙ Γ.rightOp)) X
[PROOFSTEP]
erw [Category.id_comp]
[GOAL]
case w.h
X : LocallyRingedSpace
⊢ NatTrans.app (whiskerRight identityToΓSpec Γ.rightOp ≫ whiskerLeft Γ.rightOp (NatIso.op SpecΓIdentity).inv) X =
NatTrans.app (NatTrans.id (𝟭 LocallyRingedSpace ⋙ Γ.rightOp)) X
[PROOFSTEP]
exact congr_arg Quiver.Hom.op (left_triangle X)
[GOAL]
⊢ whiskerLeft Spec.toLocallyRingedSpace identityToΓSpec ≫
(Functor.associator Spec.toLocallyRingedSpace Γ.rightOp Spec.toLocallyRingedSpace).inv ≫
whiskerRight (NatIso.op SpecΓIdentity).inv Spec.toLocallyRingedSpace =
NatTrans.id (Spec.toLocallyRingedSpace ⋙ 𝟭 LocallyRingedSpace)
[PROOFSTEP]
ext R : 2
-- Porting note : a little bit hand holding
[GOAL]
case w.h
R : CommRingCatᵒᵖ
⊢ NatTrans.app
(whiskerLeft Spec.toLocallyRingedSpace identityToΓSpec ≫
(Functor.associator Spec.toLocallyRingedSpace Γ.rightOp Spec.toLocallyRingedSpace).inv ≫
whiskerRight (NatIso.op SpecΓIdentity).inv Spec.toLocallyRingedSpace)
R =
NatTrans.app (NatTrans.id (Spec.toLocallyRingedSpace ⋙ 𝟭 LocallyRingedSpace)) R
[PROOFSTEP]
change identityToΓSpec.app _ ≫ 𝟙 _ ≫ Spec.toLocallyRingedSpace.map _ = 𝟙 _
[GOAL]
case w.h
R : CommRingCatᵒᵖ
⊢ NatTrans.app identityToΓSpec (Spec.locallyRingedSpaceObj R.unop) ≫
𝟙 ((Γ.rightOp ⋙ Spec.toLocallyRingedSpace).obj (Spec.locallyRingedSpaceObj R.unop)) ≫
Spec.toLocallyRingedSpace.map (NatTrans.app (NatIso.op SpecΓIdentity).inv R) =
𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.locallyRingedSpaceObj R.unop))
[PROOFSTEP]
simp_rw [Category.id_comp, show (NatIso.op SpecΓIdentity).inv.app R = (SpecΓIdentity.inv.app R.unop).op from rfl]
[GOAL]
case w.h
R : CommRingCatᵒᵖ
⊢ NatTrans.app identityToΓSpec (Spec.locallyRingedSpaceObj R.unop) ≫
Spec.toLocallyRingedSpace.map (NatTrans.app SpecΓIdentity.inv R.unop).op =
𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.locallyRingedSpaceObj R.unop))
[PROOFSTEP]
exact right_triangle R.unop
[GOAL]
X : Scheme
R : CommRingCatᵒᵖ
f : op (Scheme.Γ.obj (op X)) ⟶ R
⊢ ↑(Adjunction.homEquiv adjunction X R) f =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) f
[PROOFSTEP]
dsimp [adjunction, Adjunction.restrictFullyFaithful]
[GOAL]
X : Scheme
R : CommRingCatᵒᵖ
f : op (Scheme.Γ.obj (op X)) ⟶ R
⊢ ↑(equivOfFullyFaithful Scheme.forgetToLocallyRingedSpace).symm
(𝟙 X.toLocallyRingedSpace ≫
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R)
(𝟙 (op (X.presheaf.obj (op ⊤))) ≫ ↑(equivOfFullyFaithful (𝟭 CommRingCatᵒᵖ)) f ≫ 𝟙 R) ≫
𝟙 (Spec.locallyRingedSpaceObj R.unop)) =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) f
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp]
[GOAL]
X : Scheme
R : CommRingCatᵒᵖ
f : op (Scheme.Γ.obj (op X)) ⟶ R
⊢ ↑(equivOfFullyFaithful Scheme.forgetToLocallyRingedSpace).symm
(↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R)
(↑(equivOfFullyFaithful (𝟭 CommRingCatᵒᵖ)) f)) =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) f
[PROOFSTEP]
rfl
--Porting Note: Added
[GOAL]
X : Scheme
R : CommRingCatᵒᵖ
f : X ⟶ Scheme.Spec.obj R
⊢ ↑(Adjunction.homEquiv adjunction X R).symm f =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R).symm f
[PROOFSTEP]
rw [adjunction_homEquiv]
[GOAL]
X : Scheme
R : CommRingCatᵒᵖ
f : X ⟶ Scheme.Spec.obj R
⊢ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R).symm f =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R).symm f
[PROOFSTEP]
rfl
[GOAL]
R : CommRingCatᵒᵖ
⊢ NatTrans.app adjunction.counit R = NatTrans.app locallyRingedSpaceAdjunction.counit R
[PROOFSTEP]
rw [← Adjunction.homEquiv_symm_id, ← Adjunction.homEquiv_symm_id, adjunction_homEquiv_symm_apply]
[GOAL]
R : CommRingCatᵒᵖ
⊢ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction (Scheme.Spec.obj R).toLocallyRingedSpace R).symm
(𝟙 (Scheme.Spec.obj R)) =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction (Spec.toLocallyRingedSpace.obj R) R).symm
(𝟙 (Spec.toLocallyRingedSpace.obj R))
[PROOFSTEP]
rfl
[GOAL]
X : Scheme
⊢ NatTrans.app adjunction.unit X = NatTrans.app locallyRingedSpaceAdjunction.unit X.toLocallyRingedSpace
[PROOFSTEP]
rw [← Adjunction.homEquiv_id, ← Adjunction.homEquiv_id, adjunction_homEquiv_apply]
[GOAL]
X : Scheme
⊢ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace (Scheme.Γ.rightOp.obj X))
(𝟙 (Scheme.Γ.rightOp.obj X)) =
↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace (Γ.rightOp.obj X.toLocallyRingedSpace))
(𝟙 (Γ.rightOp.obj X.toLocallyRingedSpace))
[PROOFSTEP]
rfl
[GOAL]
⊢ IsIso locallyRingedSpaceAdjunction.counit
[PROOFSTEP]
dsimp only [locallyRingedSpaceAdjunction, Adjunction.mkOfUnitCounit_counit]
-- Porting Note: `dsimp` was unnecessary and had to make this explicit
[GOAL]
⊢ IsIso (NatIso.op SpecΓIdentity).inv
[PROOFSTEP]
convert IsIso.of_iso_inv (NatIso.op SpecΓIdentity) using 1
[GOAL]
⊢ IsIso adjunction.counit
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) NatIso.isIso_of_isIso_app
[GOAL]
case inst
⊢ ∀ (X : CommRingCatᵒᵖ), IsIso (NatTrans.app adjunction.counit X)
[PROOFSTEP]
intro R
[GOAL]
case inst
R : CommRingCatᵒᵖ
⊢ IsIso (NatTrans.app adjunction.counit R)
[PROOFSTEP]
rw [adjunction_counit_app]
[GOAL]
case inst
R : CommRingCatᵒᵖ
⊢ IsIso (NatTrans.app locallyRingedSpaceAdjunction.counit R)
[PROOFSTEP]
infer_instance
[GOAL]
X : Scheme
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤))
[PROOFSTEP]
have := congr_app ΓSpec.adjunction.left_triangle X
[GOAL]
X : Scheme
this :
NatTrans.app (whiskerRight adjunction.unit Scheme.Γ.rightOp ≫ whiskerLeft Scheme.Γ.rightOp adjunction.counit) X =
NatTrans.app (𝟙 (𝟭 Scheme ⋙ Scheme.Γ.rightOp)) X
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤))
[PROOFSTEP]
dsimp at this
[GOAL]
X : Scheme
this :
(NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤)).op ≫
NatTrans.app adjunction.counit (op (X.presheaf.obj (op ⊤))) =
𝟙 (op (X.presheaf.obj (op ⊤)))
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤))
[PROOFSTEP]
rw [← IsIso.eq_comp_inv] at this
[GOAL]
X : Scheme
this :
(NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤)).op =
𝟙 (op (X.presheaf.obj (op ⊤))) ≫ inv (NatTrans.app adjunction.counit (op (X.presheaf.obj (op ⊤))))
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤))
[PROOFSTEP]
simp only [adjunction_counit_app, locallyRingedSpaceAdjunction_counit, NatIso.op_inv, NatTrans.op_app, unop_op,
Functor.id_obj, Functor.comp_obj, Functor.rightOp_obj, Spec.toLocallyRingedSpace_obj, Γ_obj,
Spec.locallyRingedSpaceObj_toSheafedSpace, Spec.sheafedSpaceObj_carrier, Spec.sheafedSpaceObj_presheaf,
SpecΓIdentity_inv_app, Category.id_comp] at this
[GOAL]
X : Scheme
this : (NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤)).op = inv (toSpecΓ (X.presheaf.obj (op ⊤))).op
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤))
[PROOFSTEP]
rw [← op_inv, Quiver.Hom.op_inj.eq_iff] at this
[GOAL]
X : Scheme
this : NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = inv (toSpecΓ (X.presheaf.obj (op ⊤)))
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤))
[PROOFSTEP]
rw [SpecΓIdentity_hom_app]
[GOAL]
X : Scheme
this : NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = inv (toSpecΓ (X.presheaf.obj (op ⊤)))
⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = inv (toSpecΓ (X.presheaf.obj (op ⊤)))
[PROOFSTEP]
convert this using 1
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "llama_tokens": 25179} |
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
c : R
f : Π₀ (i : ι), M i
⊢ AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
c : R
f : Π₀ (i : ι), M i
⊢ ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • f) =
c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) f
[PROOFSTEP]
apply DFinsupp.induction f
[GOAL]
case h0
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
c : R
f : Π₀ (i : ι), M i
⊢ ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • 0) =
c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) 0
[PROOFSTEP]
rw [smul_zero, AddMonoidHom.map_zero, smul_zero]
[GOAL]
case ha
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
c : R
f : Π₀ (i : ι), M i
⊢ ∀ (i : ι) (b : M i) (f : Π₀ (i : ι), M i),
↑f i = 0 →
b ≠ 0 →
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • f) =
c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) f →
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • (single i b + f)) =
c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (single i b + f)
[PROOFSTEP]
intro a b f _ _ hf
[GOAL]
case ha
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
c : R
f✝ : Π₀ (i : ι), M i
a : ι
b : M a
f : Π₀ (i : ι), M i
a✝¹ : ↑f a = 0
a✝ : b ≠ 0
hf :
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • f) =
c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) f
⊢ ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • (single a b + f)) =
c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (single a b + f)
[PROOFSTEP]
rw [smul_add, AddMonoidHom.map_add, AddMonoidHom.map_add, smul_add, hf, ← single_smul, sumAddHom_single,
sumAddHom_single, LinearMap.toAddMonoidHom_coe, LinearMap.map_smul]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F G : (i : ι) → M i →ₗ[R] N
⊢ (fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G
[PROOFSTEP]
refine DFinsupp.lhom_ext' (fun i ↦ ?_)
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F G : (i : ι) → M i →ₗ[R] N
i : ι
⊢ LinearMap.comp
((fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G))
(lsingle i) =
LinearMap.comp
((fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G)
(lsingle i)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F G : (i : ι) → M i →ₗ[R] N
i : ι
x✝ : M i
⊢ ↑(LinearMap.comp
((fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G))
(lsingle i))
x✝ =
↑(LinearMap.comp
((fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G)
(lsingle i))
x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
c : S
F : (i : ι) → M i →ₗ[R] N
⊢ AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) }
(c • F) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) }
F
[PROOFSTEP]
refine DFinsupp.lhom_ext' (fun i ↦ ?_)
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
c : S
F : (i : ι) → M i →ₗ[R] N
i : ι
⊢ LinearMap.comp
(AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) }
(c • F))
(lsingle i) =
LinearMap.comp
(↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) }
F)
(lsingle i)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
c : S
F : (i : ι) → M i →ₗ[R] N
i : ι
x✝ : M i
⊢ ↑(LinearMap.comp
(AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) }
(c • F))
(lsingle i))
x✝ =
↑(LinearMap.comp
(↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) }
F)
(lsingle i))
x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
⊢ (fun F i => LinearMap.comp F (lsingle i))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) },
map_smul' :=
(_ :
∀ (c : S) (F : (i : ι) → M i →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
(c • F) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
F) }.toAddHom
F) =
F
[PROOFSTEP]
ext
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
x✝¹ : ι
x✝ : M x✝¹
⊢ ↑((fun F i => LinearMap.comp F (lsingle i))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) },
map_smul' :=
(_ :
∀ (c : S) (F : (i : ι) → M i →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
(c • F) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun :=
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun :=
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
F) }.toAddHom
F)
x✝¹)
x✝ =
↑(F x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (Π₀ (i : ι), M i) →ₗ[R] N
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) },
map_smul' :=
(_ :
∀ (c : S) (F : (i : ι) → M i →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
(c • F) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
F) }.toAddHom
((fun F i => LinearMap.comp F (lsingle i)) F) =
F
[PROOFSTEP]
refine DFinsupp.lhom_ext' (fun i ↦ ?_)
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (Π₀ (i : ι), M i) →ₗ[R] N
i : ι
⊢ LinearMap.comp
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) },
map_smul' :=
(_ :
∀ (c : S) (F : (i : ι) → M i →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
(c • F) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
F) }.toAddHom
((fun F i => LinearMap.comp F (lsingle i)) F))
(lsingle i) =
LinearMap.comp F (lsingle i)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (Π₀ (i : ι), M i) →ₗ[R] N
i : ι
x✝ : M i
⊢ ↑(LinearMap.comp
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) })
G) },
map_smul' :=
(_ :
∀ (c : S) (F : (i : ι) → M i →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
(c • F) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }
f) },
map_add' :=
(_ :
∀ (F G : (i : ι) → M i →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun :=
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
F +
(fun F =>
{
toAddHom :=
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a +
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : Π₀ (i : ι), M i),
AddHom.toFun
{ toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun :=
↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)),
map_add' :=
(_ :
∀ (a b : Π₀ (i : ι), M i),
↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i))
(a + b) =
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
a +
↑(↑liftAddHom fun i =>
LinearMap.toAddMonoidHom (F i))
b) }
f) })
G) }
F) }.toAddHom
((fun F i => LinearMap.comp F (lsingle i)) F))
(lsingle i))
x✝ =
↑(LinearMap.comp F (lsingle i)) x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁷ : Semiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M i)
inst✝⁵ : (i : ι) → Module R (M i)
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : Semiring S
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (i : ι) → M i →ₗ[R] N
i : ι
x : M i
⊢ ↑(↑(lsum S) F) (single i x) = ↑(F i) x
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → Module R (M i)
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁵ : (i : ι) → AddCommMonoid (β i)
inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)
inst✝³ : (i : ι) → AddCommMonoid (β₂ i)
inst✝² : (i : ι) → Module R (β i)
inst✝¹ : (i : ι) → Module R (β₁ i)
inst✝ : (i : ι) → Module R (β₂ i)
f : (i : ι) → β₁ i → β₂ i
hf : ∀ (i : ι), f i 0 = 0
r : R
hf' : ∀ (i : ι) (x : β₁ i), f i (r • x) = r • f i x
g : Π₀ (i : ι), β₁ i
⊢ mapRange f hf (r • g) = r • mapRange f hf g
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → Module R (M i)
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁵ : (i : ι) → AddCommMonoid (β i)
inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)
inst✝³ : (i : ι) → AddCommMonoid (β₂ i)
inst✝² : (i : ι) → Module R (β i)
inst✝¹ : (i : ι) → Module R (β₁ i)
inst✝ : (i : ι) → Module R (β₂ i)
f : (i : ι) → β₁ i → β₂ i
hf : ∀ (i : ι), f i 0 = 0
r : R
hf' : ∀ (i : ι) (x : β₁ i), f i (r • x) = r • f i x
g : Π₀ (i : ι), β₁ i
i✝ : ι
⊢ ↑(mapRange f hf (r • g)) i✝ = ↑(r • mapRange f hf g) i✝
[PROOFSTEP]
simp only [mapRange_apply f, coe_smul, Pi.smul_apply, hf']
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → Module R (M i)
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁵ : (i : ι) → AddCommMonoid (β i)
inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)
inst✝³ : (i : ι) → AddCommMonoid (β₂ i)
inst✝² : (i : ι) → Module R (β i)
inst✝¹ : (i : ι) → Module R (β₁ i)
inst✝ : (i : ι) → Module R (β₂ i)
⊢ (linearMap fun i => LinearMap.id) = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h.h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → Module R (M i)
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁵ : (i : ι) → AddCommMonoid (β i)
inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)
inst✝³ : (i : ι) → AddCommMonoid (β₂ i)
inst✝² : (i : ι) → Module R (β i)
inst✝¹ : (i : ι) → Module R (β₁ i)
inst✝ : (i : ι) → Module R (β₂ i)
i✝¹ : ι
x✝ : β₂ i✝¹
i✝ : ι
⊢ ↑(↑(LinearMap.comp (linearMap fun i => LinearMap.id) (lsingle i✝¹)) x✝) i✝ =
↑(↑(LinearMap.comp LinearMap.id (lsingle i✝¹)) x✝) i✝
[PROOFSTEP]
simp [linearMap]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → Module R (M i)
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁵ : (i : ι) → AddCommMonoid (β i)
inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)
inst✝³ : (i : ι) → AddCommMonoid (β₂ i)
inst✝² : (i : ι) → Module R (β i)
inst✝¹ : (i : ι) → Module R (β₁ i)
inst✝ : (i : ι) → Module R (β₂ i)
f : (i : ι) → β₁ i →ₗ[R] β₂ i
f₂ : (i : ι) → β i →ₗ[R] β₁ i
⊢ ∀ (i : ι), ((fun i x => ↑(f i) x) i ∘ (fun i x => ↑(f₂ i) x) i) 0 = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹² : Semiring R
inst✝¹¹ : (i : ι) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → Module R (M i)
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁷ : (i : ι) → AddCommMonoid (β i)
inst✝⁶ : (i : ι) → AddCommMonoid (β₁ i)
inst✝⁵ : (i : ι) → AddCommMonoid (β₂ i)
inst✝⁴ : (i : ι) → Module R (β i)
inst✝³ : (i : ι) → Module R (β₁ i)
inst✝² : (i : ι) → Module R (β₂ i)
inst✝¹ : (i : ι) → (x : β₁ i) → Decidable (x ≠ 0)
inst✝ : (i : ι) → (x : β₂ i) → Decidable (x ≠ 0)
f : (i : ι) → β₁ i →ₗ[R] β₂ i
h : (i : ι) → β₂ i →ₗ[R] N
l : Π₀ (i : ι), β₁ i
⊢ ↑(↑(lsum ℕ) h) (↑(mapRange.linearMap f) l) = ↑(↑(lsum ℕ) fun i => LinearMap.comp (h i) (f i)) l
[PROOFSTEP]
simpa [DFinsupp.sumAddHom_apply] using sum_mapRange_index fun i => by simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹² : Semiring R
inst✝¹¹ : (i : ι) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → Module R (M i)
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁷ : (i : ι) → AddCommMonoid (β i)
inst✝⁶ : (i : ι) → AddCommMonoid (β₁ i)
inst✝⁵ : (i : ι) → AddCommMonoid (β₂ i)
inst✝⁴ : (i : ι) → Module R (β i)
inst✝³ : (i : ι) → Module R (β₁ i)
inst✝² : (i : ι) → Module R (β₂ i)
inst✝¹ : (i : ι) → (x : β₁ i) → Decidable (x ≠ 0)
inst✝ : (i : ι) → (x : β₂ i) → Decidable (x ≠ 0)
f : (i : ι) → β₁ i →ₗ[R] β₂ i
h : (i : ι) → β₂ i →ₗ[R] N
l : Π₀ (i : ι), β₁ i
i : ι
⊢ ↑(h i) 0 = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → Module R (M i)
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
β : ι → Type u_6
β₁ : ι → Type u_7
β₂ : ι → Type u_8
inst✝⁵ : (i : ι) → AddCommMonoid (β i)
inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)
inst✝³ : (i : ι) → AddCommMonoid (β₂ i)
inst✝² : (i : ι) → Module R (β i)
inst✝¹ : (i : ι) → Module R (β₁ i)
inst✝ : (i : ι) → Module R (β₂ i)
f : (i : ι) → β i ≃ₗ[R] β₁ i
f₂ : (i : ι) → β₁ i ≃ₗ[R] β₂ i
⊢ ∀ (i : ι), ((fun i x => ↑(f₂ i) x) i ∘ (fun i x => ↑(f i) x) i) 0 = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝⁶ : Semiring R
inst✝⁵ : (i : ι) → AddCommMonoid (M i)
inst✝⁴ : (i : ι) → Module R (M i)
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : DecidableEq ι
inst✝ : (x : N) → Decidable (x ≠ 0)
f : (i : ι) → M i →ₗ[R] N
i : ι
x : M i
⊢ ↑(coprodMap f) (single i x) = ↑(f i) x
[PROOFSTEP]
simp [coprodMap_apply]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
⊢ iSup p = LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
⊢ iSup p ≤ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
apply iSup_le _
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
⊢ ∀ (i : ι), p i ≤ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
intro i y hy
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
i : ι
y : N
hy : y ∈ p i
⊢ y ∈ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
simp only [LinearMap.mem_range, lsum_apply_apply]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
i : ι
y : N
hy : y ∈ p i
⊢ ∃ y_1, ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (Submodule.subtype (p i))) y_1 = y
[PROOFSTEP]
exact ⟨DFinsupp.single i ⟨y, hy⟩, DFinsupp.sumAddHom_single _ _ _⟩
[GOAL]
case a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
⊢ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i)) ≤ iSup p
[PROOFSTEP]
rintro x ⟨v, rfl⟩
[GOAL]
case a.intro
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
v : Π₀ (i : ι), { x // x ∈ p i }
⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) v ∈ iSup p
[PROOFSTEP]
exact dfinsupp_sumAddHom_mem _ v _ fun i _ => (le_iSup p i : p i ≤ _) (v i).2
[GOAL]
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
⊢ ⨆ (i : ι) (_ : p i), S i =
LinearMap.range
(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p))
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
⊢ ⨆ (i : ι) (_ : p i), S i ≤
LinearMap.range
(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p))
[PROOFSTEP]
refine' iSup₂_le fun i hi y hy => ⟨DFinsupp.single i ⟨y, hy⟩, _⟩
[GOAL]
case a
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
i : ι
hi : p i
y : N
hy : y ∈ S i
⊢ ↑(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p))
(single i { val := y, property := hy }) =
y
[PROOFSTEP]
rw [LinearMap.comp_apply, filterLinearMap_apply, filter_single_pos _ _ hi]
[GOAL]
case a
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
i : ι
hi : p i
y : N
hy : y ∈ S i
⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (S i)) (single i { val := y, property := hy }) = y
[PROOFSTEP]
simp only [lsum_apply_apply, sumAddHom_single, LinearMap.toAddMonoidHom_coe, coeSubtype]
[GOAL]
case a
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
⊢ LinearMap.range
(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) ≤
⨆ (i : ι) (_ : p i), S i
[PROOFSTEP]
rintro x ⟨v, rfl⟩
[GOAL]
case a.intro
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
v : Π₀ (i : ι), { x // x ∈ S i }
⊢ ↑(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) v ∈
⨆ (i : ι) (_ : p i), S i
[PROOFSTEP]
refine' dfinsupp_sumAddHom_mem _ _ _ fun i _ => _
[GOAL]
case a.intro
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
v : Π₀ (i : ι), { x // x ∈ S i }
i : ι
x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0
⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i)
(↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈
⨆ (i : ι) (_ : p i), S i
[PROOFSTEP]
refine' mem_iSup_of_mem i _
[GOAL]
case a.intro
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
v : Π₀ (i : ι), { x // x ∈ S i }
i : ι
x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0
⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i)
(↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈
⨆ (_ : p i), S i
[PROOFSTEP]
by_cases hp : p i
[GOAL]
case pos
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
v : Π₀ (i : ι), { x // x ∈ S i }
i : ι
x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0
hp : p i
⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i)
(↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈
⨆ (_ : p i), S i
[PROOFSTEP]
simp [hp]
[GOAL]
case neg
ι : Type u_1
R : Type u_2
S✝ : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Prop
inst✝ : DecidablePred p
S : ι → Submodule R N
v : Π₀ (i : ι), { x // x ∈ S i }
i : ι
x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0
hp : ¬p i
⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i)
(↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈
⨆ (_ : p i), S i
[PROOFSTEP]
simp [hp]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Submodule R N
inst✝ : (i : ι) → (x : { x // x ∈ p i }) → Decidable (x ≠ 0)
x : N
⊢ x ∈ iSup p ↔ ∃ f, (sum f fun i xi => ↑xi) = x
[PROOFSTEP]
rw [mem_iSup_iff_exists_dfinsupp]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
p : ι → Submodule R N
inst✝ : (i : ι) → (x : { x // x ∈ p i }) → Decidable (x ≠ 0)
x : N
⊢ (∃ f, ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) f = x) ↔ ∃ f, (sum f fun i xi => ↑xi) = x
[PROOFSTEP]
simp_rw [DFinsupp.lsum_apply_apply, DFinsupp.sumAddHom_apply, LinearMap.toAddMonoidHom_coe, coeSubtype]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
⊢ a ∈ ⨆ (i : ι) (_ : i ∈ s), p i ↔ ∃ μ, ∑ i in s, ↑(μ i) = a
[PROOFSTEP]
classical
rw [Submodule.mem_iSup_iff_exists_dfinsupp']
constructor <;> rintro ⟨μ, hμ⟩
· use fun i => ⟨μ i, (iSup_const_le : _ ≤ p i) (coe_mem <| μ i)⟩
rw [← hμ]
symm
apply Finset.sum_subset
· intro x
contrapose
intro hx
rw [mem_support_iff, not_ne_iff]
ext
rw [coe_zero, ← mem_bot R]
suffices : ⊥ = ⨆ (_ : x ∈ s), p x
· exact this.symm ▸ coe_mem (μ x)
exact (iSup_neg hx).symm
· intro x _ hx
rw [mem_support_iff, not_ne_iff] at hx
rw [hx]
rfl
· refine' ⟨DFinsupp.mk s _, _⟩
· rintro ⟨i, hi⟩
refine' ⟨μ i, _⟩
rw [iSup_pos]
· exact coe_mem _
· exact hi
simp only [DFinsupp.sum]
rw [Finset.sum_subset support_mk_subset, ← hμ]
exact Finset.sum_congr rfl fun x hx => congr_arg Subtype.val <| mk_of_mem hx
· intro x _ hx
rw [mem_support_iff, not_ne_iff] at hx
rw [hx]
rfl
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
⊢ a ∈ ⨆ (i : ι) (_ : i ∈ s), p i ↔ ∃ μ, ∑ i in s, ↑(μ i) = a
[PROOFSTEP]
rw [Submodule.mem_iSup_iff_exists_dfinsupp']
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
⊢ (∃ f, (sum f fun i xi => ↑xi) = a) ↔ ∃ μ, ∑ i in s, ↑(μ i) = a
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
⊢ (∃ f, (sum f fun i xi => ↑xi) = a) → ∃ μ, ∑ i in s, ↑(μ i) = a
[PROOFSTEP]
rintro ⟨μ, hμ⟩
[GOAL]
case mpr
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
⊢ (∃ μ, ∑ i in s, ↑(μ i) = a) → ∃ f, (sum f fun i xi => ↑xi) = a
[PROOFSTEP]
rintro ⟨μ, hμ⟩
[GOAL]
case mp.intro
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
⊢ ∃ μ, ∑ i in s, ↑(μ i) = a
[PROOFSTEP]
use fun i => ⟨μ i, (iSup_const_le : _ ≤ p i) (coe_mem <| μ i)⟩
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
⊢ ∑ i in s, ↑{ val := ↑(↑μ i), property := (_ : ↑(↑μ i) ∈ p i) } = a
[PROOFSTEP]
rw [← hμ]
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
⊢ ∑ i in s, ↑{ val := ↑(↑μ i), property := (_ : ↑(↑μ i) ∈ p i) } = sum μ fun i xi => ↑xi
[PROOFSTEP]
symm
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
⊢ (sum μ fun i xi => ↑xi) = ∑ i in s, ↑{ val := ↑(↑μ i), property := (_ : ↑(↑μ i) ∈ p i) }
[PROOFSTEP]
apply Finset.sum_subset
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
⊢ support μ ⊆ s
[PROOFSTEP]
intro x
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
⊢ x ∈ support μ → x ∈ s
[PROOFSTEP]
contrapose
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
⊢ ¬x ∈ s → ¬x ∈ support μ
[PROOFSTEP]
intro hx
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
hx : ¬x ∈ s
⊢ ¬x ∈ support μ
[PROOFSTEP]
rw [mem_support_iff, not_ne_iff]
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
hx : ¬x ∈ s
⊢ ↑μ x = 0
[PROOFSTEP]
ext
[GOAL]
case h.h.a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
hx : ¬x ∈ s
⊢ ↑(↑μ x) = ↑0
[PROOFSTEP]
rw [coe_zero, ← mem_bot R]
[GOAL]
case h.h.a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
hx : ¬x ∈ s
⊢ ↑(↑μ x) ∈ ⊥
[PROOFSTEP]
suffices : ⊥ = ⨆ (_ : x ∈ s), p x
[GOAL]
case h.h.a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
hx : ¬x ∈ s
this : ⊥ = ⨆ (_ : x ∈ s), p x
⊢ ↑(↑μ x) ∈ ⊥
[PROOFSTEP]
exact this.symm ▸ coe_mem (μ x)
[GOAL]
case this
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
hx : ¬x ∈ s
⊢ ⊥ = ⨆ (_ : x ∈ s), p x
[PROOFSTEP]
exact (iSup_neg hx).symm
[GOAL]
case h.hf
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
⊢ ∀ (x : ι), x ∈ s → ¬x ∈ support μ → (fun i xi => ↑xi) x (↑μ x) = 0
[PROOFSTEP]
intro x _ hx
[GOAL]
case h.hf
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
a✝ : x ∈ s
hx : ¬x ∈ support μ
⊢ (fun i xi => ↑xi) x (↑μ x) = 0
[PROOFSTEP]
rw [mem_support_iff, not_ne_iff] at hx
[GOAL]
case h.hf
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
a✝ : x ∈ s
hx : ↑μ x = 0
⊢ (fun i xi => ↑xi) x (↑μ x) = 0
[PROOFSTEP]
rw [hx]
[GOAL]
case h.hf
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i }
hμ : (sum μ fun i xi => ↑xi) = a
x : ι
a✝ : x ∈ s
hx : ↑μ x = 0
⊢ (fun i xi => ↑xi) x 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case mpr.intro
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ ∃ f, (sum f fun i xi => ↑xi) = a
[PROOFSTEP]
refine' ⟨DFinsupp.mk s _, _⟩
[GOAL]
case mpr.intro.refine'_1
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ (i : ↑↑s) → { x // x ∈ ⨆ (_ : ↑i ∈ s), p ↑i }
[PROOFSTEP]
rintro ⟨i, hi⟩
[GOAL]
case mpr.intro.refine'_1.mk
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
i : ι
hi : i ∈ ↑s
⊢ { x // x ∈ ⨆ (_ : ↑{ val := i, property := hi } ∈ s), p ↑{ val := i, property := hi } }
[PROOFSTEP]
refine' ⟨μ i, _⟩
[GOAL]
case mpr.intro.refine'_1.mk
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
i : ι
hi : i ∈ ↑s
⊢ ↑(μ i) ∈ ⨆ (_ : ↑{ val := i, property := hi } ∈ s), p ↑{ val := i, property := hi }
[PROOFSTEP]
rw [iSup_pos]
[GOAL]
case mpr.intro.refine'_1.mk
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
i : ι
hi : i ∈ ↑s
⊢ ↑(μ i) ∈ p ↑{ val := i, property := hi }
[PROOFSTEP]
exact coe_mem _
[GOAL]
case mpr.intro.refine'_1.mk
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
i : ι
hi : i ∈ ↑s
⊢ ↑{ val := i, property := hi } ∈ s
[PROOFSTEP]
exact hi
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ (sum
(DFinsupp.mk s fun i =>
Subtype.casesOn i fun i hi =>
{ val := ↑(μ i),
property := (_ : ↑(μ i) ∈ ⨆ (_ : ↑{ val := i, property := hi } ∈ s), p ↑{ val := i, property := hi }) })
fun i xi => ↑xi) =
a
[PROOFSTEP]
simp only [DFinsupp.sum]
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ ∑ x in
support
(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }),
↑(↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x) =
a
[PROOFSTEP]
rw [Finset.sum_subset support_mk_subset, ← hμ]
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ ∑ x in s,
↑(↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x) =
∑ i in s, ↑(μ i)
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ ∀ (x : ι),
x ∈ s →
¬x ∈
support
(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) →
↑(↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x) =
0
[PROOFSTEP]
exact Finset.sum_congr rfl fun x hx => congr_arg Subtype.val <| mk_of_mem hx
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
⊢ ∀ (x : ι),
x ∈ s →
¬x ∈
support
(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) →
↑(↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x) =
0
[PROOFSTEP]
intro x _ hx
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
x : ι
a✝ : x ∈ s
hx :
¬x ∈
support
(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
⊢ ↑(↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x) =
0
[PROOFSTEP]
rw [mem_support_iff, not_ne_iff] at hx
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
x : ι
a✝ : x ∈ s
hx :
↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x =
0
⊢ ↑(↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s),
p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x) =
0
[PROOFSTEP]
rw [hx]
[GOAL]
case mpr.intro.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset ι
p : ι → Submodule R N
a : N
μ : (i : ι) → { x // x ∈ p i }
hμ : ∑ i in s, ↑(μ i) = a
x : ι
a✝ : x ∈ s
hx :
↑(DFinsupp.mk s fun i =>
{ val := ↑(μ ↑i),
property :=
(_ :
↑(μ ↑i) ∈
⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) })
x =
0
⊢ ↑0 = 0
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
⊢ Independent p ↔
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
[PROOFSTEP]
simp_rw [CompleteLattice.independent_def, Submodule.disjoint_def, Submodule.mem_biSup_iff_exists_dfinsupp, exists_imp,
filter_ne_eq_erase]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
⊢ (∀ (i : ι) (x : N),
x ∈ p i →
∀ (x_1 : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i x_1) = x → x = 0) ↔
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
[PROOFSTEP]
refine' forall_congr' fun i => Subtype.forall'.trans _
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
i : ι
⊢ (∀ (x : { a // a ∈ p i }) (x_1 : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i x_1) = ↑x → ↑x = 0) ↔
∀ (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
[PROOFSTEP]
simp_rw [Submodule.coe_eq_zero]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
⊢ Independent p
[PROOFSTEP]
rw [independent_iff_forall_dfinsupp]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
⊢ ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
[PROOFSTEP]
intro i x v hv
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
i : ι
x : { x // x ∈ p i }
v : Π₀ (i : ι), { x // x ∈ p i }
hv : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x
⊢ x = 0
[PROOFSTEP]
replace hv :
lsum ℕ (M := fun i ↦ ↥(p i)) (fun i => (p i).subtype) (erase i v) =
lsum ℕ (M := fun i ↦ ↥(p i)) (fun i => (p i).subtype) (single i x)
[GOAL]
case hv
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
i : ι
x : { x // x ∈ p i }
v : Π₀ (i : ι), { x // x ∈ p i }
hv : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x
⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (single i x)
[PROOFSTEP]
simpa only [lsum_single] using hv
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
i : ι
x : { x // x ∈ p i }
v : Π₀ (i : ι), { x // x ∈ p i }
hv :
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (single i x)
⊢ x = 0
[PROOFSTEP]
have := FunLike.ext_iff.mp (h hv) i
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → Submodule R N
h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
i : ι
x : { x // x ∈ p i }
v : Π₀ (i : ι), { x // x ∈ p i }
hv :
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (single i x)
this : ↑(erase i v) i = ↑(single i x) i
⊢ x = 0
[PROOFSTEP]
simpa [eq_comm] using this
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → AddSubmonoid N
h : Function.Injective ↑(sumAddHom fun i => AddSubmonoid.subtype (p i))
⊢ Independent p
[PROOFSTEP]
rw [← independent_map_orderIso_iff (AddSubmonoid.toNatSubmodule : AddSubmonoid N ≃o _)]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Semiring R
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
p : ι → AddSubmonoid N
h : Function.Injective ↑(sumAddHom fun i => AddSubmonoid.subtype (p i))
⊢ Independent (↑AddSubmonoid.toNatSubmodule ∘ p)
[PROOFSTEP]
exact independent_of_dfinsupp_lsum_injective _ h
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
inst✝ : (m : R) → Decidable (m ≠ 0)
p : ι → Submodule R N
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
⊢ LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (p i))
(LinearMap.comp
(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
↑(finsuppLequivDFinsupp R)) =
Finsupp.total ι N R v
[PROOFSTEP]
ext
[GOAL]
case h.h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
inst✝ : (m : R) → Decidable (m ≠ 0)
p : ι → Submodule R N
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
a✝ : ι
⊢ ↑(LinearMap.comp
(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (p i))
(LinearMap.comp
(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
↑(finsuppLequivDFinsupp R)))
(Finsupp.lsingle a✝))
1 =
↑(LinearMap.comp (Finsupp.total ι N R v) (Finsupp.lsingle a✝)) 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → AddSubgroup N
h : Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i))
⊢ Independent p
[PROOFSTEP]
rw [← independent_map_orderIso_iff (AddSubgroup.toIntSubmodule : AddSubgroup N ≃o _)]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → AddSubgroup N
h : Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i))
⊢ Independent (↑AddSubgroup.toIntSubmodule ∘ p)
[PROOFSTEP]
exact independent_of_dfinsupp_lsum_injective _ h
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h : Independent p
⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
rw [independent_iff_forall_dfinsupp] at h
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
suffices LinearMap.ker (lsum ℕ (M := fun i ↦ ↥(p i)) fun i => (p i).subtype) = ⊥ by
-- Lean can't find this without our help
letI thisI : AddCommGroup (Π₀ i, p i) := inferInstance
rw [LinearMap.ker_eq_bot] at this
exact this
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
this : LinearMap.ker (↑(lsum ℕ) fun i => Submodule.subtype (p i)) = ⊥
⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
letI thisI : AddCommGroup (Π₀ i, p i) := inferInstance
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
this : LinearMap.ker (↑(lsum ℕ) fun i => Submodule.subtype (p i)) = ⊥
thisI : AddCommGroup (Π₀ (i : ι), { x // x ∈ p i }) := inferInstance
⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
rw [LinearMap.ker_eq_bot] at this
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
thisI : AddCommGroup (Π₀ (i : ι), { x // x ∈ p i }) := inferInstance
this : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i))
[PROOFSTEP]
exact this
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
⊢ LinearMap.ker (↑(lsum ℕ) fun i => Submodule.subtype (p i)) = ⊥
[PROOFSTEP]
rw [LinearMap.ker_eq_bot']
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
⊢ ∀ (m : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0 → m = 0
[PROOFSTEP]
intro m hm
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
m : Π₀ (i : ι), { x // x ∈ p i }
hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0
⊢ m = 0
[PROOFSTEP]
ext i : 1
-- split `m` into the piece at `i` and the pieces elsewhere, to match `h`
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
m : Π₀ (i : ι), { x // x ∈ p i }
hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0
i : ι
⊢ ↑m i = ↑0 i
[PROOFSTEP]
rw [DFinsupp.zero_apply, ← neg_eq_zero]
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
m : Π₀ (i : ι), { x // x ∈ p i }
hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0
i : ι
⊢ -↑m i = 0
[PROOFSTEP]
refine' h i (-m i) m _
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → Submodule R N
h✝ : Independent p
h :
∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }),
↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0
m : Π₀ (i : ι), { x // x ∈ p i }
hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0
i : ι
⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i m) = ↑(-↑m i)
[PROOFSTEP]
rwa [← erase_add_single i m, LinearMap.map_add, lsum_single, Submodule.subtype_apply, add_eq_zero_iff_eq_neg, ←
Submodule.coe_neg] at hm
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → AddSubgroup N
h : Independent p
⊢ Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i))
[PROOFSTEP]
rw [← independent_map_orderIso_iff (AddSubgroup.toIntSubmodule : AddSubgroup N ≃o _)] at h
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝² : Ring R
inst✝¹ : AddCommGroup N
inst✝ : Module R N
p : ι → AddSubgroup N
h : Independent (↑AddSubgroup.toIntSubmodule ∘ p)
⊢ Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i))
[PROOFSTEP]
exact h.dfinsupp_lsum_injective
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
⊢ LinearIndependent R v
[PROOFSTEP]
let _ := Classical.decEq ι
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝ : DecidableEq ι := Classical.decEq ι
⊢ LinearIndependent R v
[PROOFSTEP]
let _ := Classical.decEq R
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
⊢ LinearIndependent R v
[PROOFSTEP]
rw [linearIndependent_iff]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
⊢ ∀ (l : ι →₀ R), ↑(Finsupp.total ι N R v) l = 0 → l = 0
[PROOFSTEP]
intro l hl
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
⊢ l = 0
[PROOFSTEP]
let a := DFinsupp.mapRange.linearMap (fun i => LinearMap.toSpanSingleton R (p i) ⟨v i, hv i⟩) l.toDFinsupp
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
⊢ l = 0
[PROOFSTEP]
have ha : a = 0 := by
apply hp.dfinsupp_lsum_injective
rwa [← lsum_comp_mapRange_toSpanSingleton _ hv] at hl
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
⊢ a = 0
[PROOFSTEP]
apply hp.dfinsupp_lsum_injective
[GOAL]
case a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) a = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) 0
[PROOFSTEP]
rwa [← lsum_comp_mapRange_toSpanSingleton _ hv] at hl
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
ha : a = 0
⊢ l = 0
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
ha : a = 0
i : ι
⊢ ↑l i = ↑0 i
[PROOFSTEP]
apply smul_left_injective R (hv' i)
[GOAL]
case h.a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
ha : a = 0
i : ι
⊢ (fun c => c • v i) (↑l i) = (fun c => c • v i) (↑0 i)
[PROOFSTEP]
have : l i • v i = a i := rfl
[GOAL]
case h.a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
ha : a = 0
i : ι
this : ↑l i • v i = ↑(↑a i)
⊢ (fun c => c • v i) (↑l i) = (fun c => c • v i) (↑0 i)
[PROOFSTEP]
simp only [coe_zero, Pi.zero_apply, ZeroMemClass.coe_zero, smul_eq_zero, ha] at this
[GOAL]
case h.a
ι : Type u_1
R : Type u_2
S : Type u_3
M : ι → Type u_4
N : Type u_5
dec_ι : DecidableEq ι
inst✝³ : Ring R
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : NoZeroSMulDivisors R N
p : ι → Submodule R N
hp : Independent p
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
hv' : ∀ (i : ι), v i ≠ 0
x✝¹ : DecidableEq ι := Classical.decEq ι
x✝ : DecidableEq R := Classical.decEq R
l : ι →₀ R
hl : ↑(Finsupp.total ι N R v) l = 0
a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) :=
↑(mapRange.linearMap fun i =>
LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) })
(Finsupp.toDFinsupp l)
ha : a = 0
i : ι
this : ↑l i = 0 ∨ v i = 0
⊢ (fun c => c • v i) (↑l i) = (fun c => c • v i) (↑0 i)
[PROOFSTEP]
simpa
| {"mathlib_filename": "Mathlib.LinearAlgebra.DFinsupp", "llama_tokens": 90178} |
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : f.domain = g.domain
h' : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
⊢ f = g
[PROOFSTEP]
rcases f with ⟨f_dom, f⟩
[GOAL]
case mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : E →ₗ.[R] F
f_dom : Submodule R E
f : { x // x ∈ f_dom } →ₗ[R] F
h : { domain := f_dom, toFun := f }.domain = g.domain
h' :
∀ ⦃x : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄,
↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑g y
⊢ { domain := f_dom, toFun := f } = g
[PROOFSTEP]
rcases g with ⟨g_dom, g⟩
[GOAL]
case mk.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f_dom : Submodule R E
f : { x // x ∈ f_dom } →ₗ[R] F
g_dom : Submodule R E
g : { x // x ∈ g_dom } →ₗ[R] F
h : { domain := f_dom, toFun := f }.domain = { domain := g_dom, toFun := g }.domain
h' :
∀ ⦃x : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄ ⦃y : { x // x ∈ { domain := g_dom, toFun := g }.domain }⦄,
↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑{ domain := g_dom, toFun := g } y
⊢ { domain := f_dom, toFun := f } = { domain := g_dom, toFun := g }
[PROOFSTEP]
obtain rfl : f_dom = g_dom := h
[GOAL]
case mk.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f_dom : Submodule R E
f g : { x // x ∈ f_dom } →ₗ[R] F
h' :
∀ ⦃x : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄ ⦃y : { x // x ∈ { domain := f_dom, toFun := g }.domain }⦄,
↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑{ domain := f_dom, toFun := g } y
⊢ { domain := f_dom, toFun := f } = { domain := f_dom, toFun := g }
[PROOFSTEP]
obtain rfl : f = g := LinearMap.ext fun x => h' rfl
[GOAL]
case mk.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f_dom : Submodule R E
f : { x // x ∈ f_dom } →ₗ[R] F
h' :
∀ ⦃x y : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄,
↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑{ domain := f_dom, toFun := f } y
⊢ { domain := f_dom, toFun := f } = { domain := f_dom, toFun := f }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
EQ : f = g
x y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ ↑f x = ↑f y
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
EQ : f = g
x y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ x = y
[PROOFSTEP]
exact_mod_cast h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
⊢ ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y
[PROOFSTEP]
intro c₁ c₂ h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c₁ c₂ : R
h : c₁ • x = c₂ • x
⊢ c₁ • y = c₂ • y
[PROOFSTEP]
rw [← sub_eq_zero, ← sub_smul] at h ⊢
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c₁ c₂ : R
h✝ : c₁ • x = c₂ • x
h : (c₁ - c₂) • x = 0
⊢ (c₁ - c₂) • y = 0
[PROOFSTEP]
exact H _ h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y✝ : F
H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝
y z : { x_1 // x_1 ∈ span R {x} }
⊢ (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y✝) (y + z) =
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y✝) y + (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y✝) z
[PROOFSTEP]
dsimp only []
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y✝ : F
H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝
y z : { x_1 // x_1 ∈ span R {x} }
⊢ Classical.choose (_ : ∃ a, a • x = ↑(y + z)) • y✝ =
Classical.choose (_ : ∃ a, a • x = ↑y) • y✝ + Classical.choose (_ : ∃ a, a • x = ↑z) • y✝
[PROOFSTEP]
rw [← add_smul]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y✝ : F
H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝
y z : { x_1 // x_1 ∈ span R {x} }
⊢ Classical.choose (_ : ∃ a, a • x = ↑(y + z)) • y✝ =
(Classical.choose (_ : ∃ a, a • x = ↑y) + Classical.choose (_ : ∃ a, a • x = ↑z)) • y✝
[PROOFSTEP]
apply H
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y✝ : F
H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝
y z : { x_1 // x_1 ∈ span R {x} }
⊢ Classical.choose (_ : ∃ a, a • x = ↑(y + z)) • x =
(Classical.choose (_ : ∃ a, a • x = ↑y) + Classical.choose (_ : ∃ a, a • x = ↑z)) • x
[PROOFSTEP]
simp only [add_smul, sub_smul, fun w : R ∙ x => Classical.choose_spec (mem_span_singleton.1 w.prop)]
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y✝ : F
H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝
y z : { x_1 // x_1 ∈ span R {x} }
⊢ ↑(y + z) = ↑y + ↑z
[PROOFSTEP]
apply coe_add
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H✝ : ∀ (c : R), c • x = 0 → c • y = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y
c : R
z : { x_1 // x_1 ∈ span R {x} }
⊢ AddHom.toFun
{ toFun := fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y,
map_add' :=
(_ :
∀ (y_1 z : { x_1 // x_1 ∈ span R {x} }),
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) (y_1 + z) =
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) y_1 +
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) z) }
(c • z) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y,
map_add' :=
(_ :
∀ (y_1 z : { x_1 // x_1 ∈ span R {x} }),
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) (y_1 + z) =
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) y_1 +
(fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) z) }
z
[PROOFSTEP]
dsimp only []
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H✝ : ∀ (c : R), c • x = 0 → c • y = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y
c : R
z : { x_1 // x_1 ∈ span R {x} }
⊢ Classical.choose (_ : ∃ a, a • x = ↑(c • z)) • y = ↑(RingHom.id R) c • Classical.choose (_ : ∃ a, a • x = ↑z) • y
[PROOFSTEP]
rw [smul_smul]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H✝ : ∀ (c : R), c • x = 0 → c • y = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y
c : R
z : { x_1 // x_1 ∈ span R {x} }
⊢ Classical.choose (_ : ∃ a, a • x = ↑(c • z)) • y = (↑(RingHom.id R) c * Classical.choose (_ : ∃ a, a • x = ↑z)) • y
[PROOFSTEP]
apply H
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H✝ : ∀ (c : R), c • x = 0 → c • y = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y
c : R
z : { x_1 // x_1 ∈ span R {x} }
⊢ Classical.choose (_ : ∃ a, a • x = ↑(c • z)) • x = (↑(RingHom.id R) c * Classical.choose (_ : ∃ a, a • x = ↑z)) • x
[PROOFSTEP]
simp only [mul_smul, fun w : R ∙ x => Classical.choose_spec (mem_span_singleton.1 w.prop)]
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H✝ : ∀ (c : R), c • x = 0 → c • y = 0
H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y
c : R
z : { x_1 // x_1 ∈ span R {x} }
⊢ ↑(c • z) = ↑(RingHom.id R) c • ↑z
[PROOFSTEP]
apply coe_smul
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c : R
h : c • x ∈ (mkSpanSingleton' x y H).domain
⊢ ↑(mkSpanSingleton' x y H) { val := c • x, property := h } = c • y
[PROOFSTEP]
dsimp [mkSpanSingleton']
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c : R
h : c • x ∈ (mkSpanSingleton' x y H).domain
⊢ Classical.choose (_ : ∃ a, a • x = c • x) • y = c • y
[PROOFSTEP]
rw [← sub_eq_zero, ← sub_smul]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c : R
h : c • x ∈ (mkSpanSingleton' x y H).domain
⊢ (Classical.choose (_ : ∃ a, a • x = c • x) - c) • y = 0
[PROOFSTEP]
apply H
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c : R
h : c • x ∈ (mkSpanSingleton' x y H).domain
⊢ (Classical.choose (_ : ∃ a, a • x = c • x) - c) • x = 0
[PROOFSTEP]
simp only [sub_smul, one_smul, sub_eq_zero]
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
c : R
h : c • x ∈ (mkSpanSingleton' x y H).domain
⊢ Classical.choose (_ : ∃ a, a • x = c • x) • x = c • x
[PROOFSTEP]
apply Classical.choose_spec (mem_span_singleton.1 h)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
h : x ∈ (mkSpanSingleton' x y H).domain
⊢ ↑(mkSpanSingleton' x y H) { val := x, property := h } = y
[PROOFSTEP]
have := by refine mkSpanSingleton'_apply x y H 1 ?_; rwa [one_smul]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
h : x ∈ (mkSpanSingleton' x y H).domain
⊢ ?m.88594
[PROOFSTEP]
refine mkSpanSingleton'_apply x y H 1 ?_
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
h : x ∈ (mkSpanSingleton' x y H).domain
⊢ 1 • x ∈ (mkSpanSingleton' x y H).domain
[PROOFSTEP]
rwa [one_smul]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
h : x ∈ (mkSpanSingleton' x y H).domain
this : ↑(mkSpanSingleton' x y H) { val := 1 • x, property := (_ : 1 • x ∈ (mkSpanSingleton' x y H).domain) } = 1 • y
⊢ ↑(mkSpanSingleton' x y H) { val := x, property := h } = y
[PROOFSTEP]
convert this
[GOAL]
case h.e'_2.h.e'_10.h.e'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
h : x ∈ (mkSpanSingleton' x y H).domain
this : ↑(mkSpanSingleton' x y H) { val := 1 • x, property := (_ : 1 • x ∈ (mkSpanSingleton' x y H).domain) } = 1 • y
⊢ x = 1 • x
[PROOFSTEP]
rw [one_smul]
[GOAL]
case h.e'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
x : E
y : F
H : ∀ (c : R), c • x = 0 → c • y = 0
h : x ∈ (mkSpanSingleton' x y H).domain
this : ↑(mkSpanSingleton' x y H) { val := 1 • x, property := (_ : 1 • x ∈ (mkSpanSingleton' x y H).domain) } = 1 • y
⊢ y = 1 • y
[PROOFSTEP]
rw [one_smul]
[GOAL]
R : Type u_1
inst✝¹¹ : Ring R
E✝ : Type u_2
inst✝¹⁰ : AddCommGroup E✝
inst✝⁹ : Module R E✝
F✝ : Type u_3
inst✝⁸ : AddCommGroup F✝
inst✝⁷ : Module R F✝
G : Type u_4
inst✝⁶ : AddCommGroup G
inst✝⁵ : Module R G
K : Type u_5
E : Type u_6
F : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup E
inst✝² : Module K E
inst✝¹ : AddCommGroup F
inst✝ : Module K F
x : E
y : F
hx : x ≠ 0
c : K
hc✝ : c • x = 0
hc : c = 0
⊢ c • y = 0
[PROOFSTEP]
rw [hc, zero_smul]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x y : E
x✝¹ : x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}
x✝ : y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}
hfx : x ∈ f.domain
hgx : x ∈ g.domain
hx : ↑f { val := x, property := hfx } = ↑g { val := x, property := hgx }
hfy : y ∈ f.domain
hgy : y ∈ g.domain
hy : ↑f { val := y, property := hfy } = ↑g { val := y, property := hgy }
⊢ ↑f { val := x + y, property := (_ : x + y ∈ f.domain) } = ↑g { val := x + y, property := (_ : x + y ∈ g.domain) }
[PROOFSTEP]
erw [f.map_add ⟨x, hfx⟩ ⟨y, hfy⟩, g.map_add ⟨x, hgx⟩ ⟨y, hgy⟩, hx, hy]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
⊢ ∀ (c : R) {x : E},
x ∈
{
toAddSubsemigroup :=
{ carrier := {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }},
add_mem' :=
(_ :
∀ {x y : E},
x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} →
y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} →
x + y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}) },
zero_mem' :=
(_ :
∃ hf hg,
↑f { val := 0, property := hf } = ↑g { val := 0, property := hg }) }.toAddSubsemigroup.carrier →
c • x ∈
{
toAddSubsemigroup :=
{ carrier := {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }},
add_mem' :=
(_ :
∀ {x y : E},
x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} →
y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} →
x + y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}) },
zero_mem' :=
(_ :
∃ hf hg,
↑f { val := 0, property := hf } = ↑g { val := 0, property := hg }) }.toAddSubsemigroup.carrier
[PROOFSTEP]
rintro c x ⟨hfx, hgx, hx⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
c : R
x : E
hfx : x ∈ f.domain
hgx : x ∈ g.domain
hx : ↑f { val := x, property := hfx } = ↑g { val := x, property := hgx }
⊢ c • x ∈
{
toAddSubsemigroup :=
{ carrier := {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }},
add_mem' :=
(_ :
∀ {x y : E},
x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} →
y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} →
x + y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}) },
zero_mem' :=
(_ : ∃ hf hg, ↑f { val := 0, property := hf } = ↑g { val := 0, property := hg }) }.toAddSubsemigroup.carrier
[PROOFSTEP]
exact ⟨smul_mem _ c hfx, smul_mem _ c hgx, by erw [f.map_smul c ⟨x, hfx⟩, g.map_smul c ⟨x, hgx⟩, hx]⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
c : R
x : E
hfx : x ∈ f.domain
hgx : x ∈ g.domain
hx : ↑f { val := x, property := hfx } = ↑g { val := x, property := hgx }
⊢ ↑f { val := c • x, property := (_ : c • x ∈ f.domain) } = ↑g { val := c • x, property := (_ : c • x ∈ g.domain) }
[PROOFSTEP]
erw [f.map_smul c ⟨x, hfx⟩, g.map_smul c ⟨x, hgx⟩, hx]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
⊢ ∀ (a b c : E →ₗ.[R] F), a ≤ b → a ≤ c → a ≤ b ⊓ c
[PROOFSTEP]
rintro f g h ⟨fg_le, fg_eq⟩ ⟨fh_le, fh_eq⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
⊢ f ≤ g ⊓ h
[PROOFSTEP]
exact
⟨fun x hx =>
⟨fg_le hx, fh_le hx, by
-- Porting note: `[exact ⟨x, hx⟩, rfl, rfl]` → `[skip, exact ⟨x, hx⟩, skip] <;> rfl`refine'
(fg_eq _).symm.trans (fh_eq _) <;>
[skip; exact ⟨x, hx⟩; skip] <;>
rfl⟩,
fun x ⟨y, yg, hy⟩ h => by
apply fg_eq
exact h⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ ↑g { val := x, property := (_ : x ∈ g.domain) } = ↑h { val := x, property := (_ : x ∈ h.domain) }
[PROOFSTEP]
refine' (fg_eq _).symm.trans (fh_eq _) <;> [skip; exact ⟨x, hx⟩; skip]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ ↑g { val := x, property := (_ : x ∈ g.domain) } = ↑h { val := x, property := (_ : x ∈ h.domain) }
[PROOFSTEP]
refine' (fg_eq _).symm.trans (fh_eq _)
[GOAL]
case refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ ↑?refine'_2 = ↑{ val := x, property := (_ : x ∈ g.domain) }
[PROOFSTEP]
skip
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ { x // x ∈ f.domain }
[PROOFSTEP]
exact ⟨x, hx⟩
[GOAL]
case refine'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ ↑{ val := x, property := hx } = ↑{ val := x, property := (_ : x ∈ h.domain) }
[PROOFSTEP]
skip
[GOAL]
case refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ ↑{ val := x, property := hx } = ↑{ val := x, property := (_ : x ∈ g.domain) }
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y
x : E
hx : x ∈ f.domain
⊢ ↑{ val := x, property := hx } = ↑{ val := x, property := (_ : x ∈ h.domain) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h✝ : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h✝.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h✝.domain }⦄, ↑x = ↑y → ↑f x = ↑h✝ y
x : { x // x ∈ f.domain }
x✝ : { x // x ∈ (g ⊓ h✝).domain }
y : E
yg : y ∈ g.domain
hy : ∃ hg, ↑g { val := y, property := yg } = ↑h✝ { val := y, property := hg }
h : ↑x = ↑{ val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) }
⊢ ↑f x =
↑(g ⊓ h✝)
{ val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) }
[PROOFSTEP]
apply fg_eq
[GOAL]
case _h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h✝ : E →ₗ.[R] F
fg_le : f.domain ≤ g.domain
fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
fh_le : f.domain ≤ h✝.domain
fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h✝.domain }⦄, ↑x = ↑y → ↑f x = ↑h✝ y
x : { x // x ∈ f.domain }
x✝ : { x // x ∈ (g ⊓ h✝).domain }
y : E
yg : y ∈ g.domain
hy : ∃ hg, ↑g { val := y, property := yg } = ↑h✝ { val := y, property := hg }
h : ↑x = ↑{ val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) }
⊢ ↑x =
↑(↑(ofLe (_ : ∀ (_x : E), _x ∈ eqLocus g h✝ → _x ∈ g.domain))
{ val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) })
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ ⊥.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ ↑⊥ x = ↑f y
[PROOFSTEP]
have hx : x = 0 := Subtype.eq ((mem_bot R).1 x.2)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ ⊥.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
hx : x = 0
⊢ ↑⊥ x = ↑f y
[PROOFSTEP]
have hy : y = 0 := Subtype.eq (h.symm.trans (congr_arg _ hx))
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ ⊥.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
hx : x = 0
hy : y = 0
⊢ ↑⊥ x = ↑f y
[PROOFSTEP]
rw [hx, hy, map_zero, map_zero]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
⊢ ∃ fg,
∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }),
↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y
[PROOFSTEP]
choose x hx y hy hxy using fun z : ↥(f.domain ⊔ g.domain) => mem_sup.1 z.prop
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
⊢ ∃ fg,
∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }),
↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y
[PROOFSTEP]
set fg := fun z => f ⟨x z, hx z⟩ + g ⟨y z, hy z⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
⊢ ∃ fg,
∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }),
↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y
[PROOFSTEP]
have fg_eq :
∀ (x' : f.domain) (y' : g.domain) (z' : ↥(f.domain ⊔ g.domain)) (_H : (x' : E) + y' = z'), fg z' = f x' + g y' :=
by
intro x' y' z' H
dsimp
rw [add_comm, ← sub_eq_sub_iff_add_eq_add, eq_comm, ← map_sub, ← map_sub]
apply h
simp only [← eq_sub_iff_add_eq] at hxy
simp only [AddSubgroupClass.coe_sub, coe_mk, coe_mk, hxy, ← sub_add, ← sub_sub, sub_self, zero_sub, ← H]
apply neg_add_eq_sub
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
⊢ ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
[PROOFSTEP]
intro x' y' z' H
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
x' : { x // x ∈ f.domain }
y' : { x // x ∈ g.domain }
z' : { x // x ∈ f.domain ⊔ g.domain }
H : ↑x' + ↑y' = ↑z'
⊢ fg z' = ↑f x' + ↑g y'
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
x' : { x // x ∈ f.domain }
y' : { x // x ∈ g.domain }
z' : { x // x ∈ f.domain ⊔ g.domain }
H : ↑x' + ↑y' = ↑z'
⊢ ↑f { val := x z', property := (_ : x z' ∈ f.domain) } + ↑g { val := y z', property := (_ : y z' ∈ g.domain) } =
↑f x' + ↑g y'
[PROOFSTEP]
rw [add_comm, ← sub_eq_sub_iff_add_eq_add, eq_comm, ← map_sub, ← map_sub]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
x' : { x // x ∈ f.domain }
y' : { x // x ∈ g.domain }
z' : { x // x ∈ f.domain ⊔ g.domain }
H : ↑x' + ↑y' = ↑z'
⊢ ↑f (x' - { val := x z', property := (_ : x z' ∈ f.domain) }) =
↑g ({ val := y z', property := (_ : y z' ∈ g.domain) } - y')
[PROOFSTEP]
apply h
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
x' : { x // x ∈ f.domain }
y' : { x // x ∈ g.domain }
z' : { x // x ∈ f.domain ⊔ g.domain }
H : ↑x' + ↑y' = ↑z'
⊢ ↑(x' - { val := x z', property := (_ : x z' ∈ f.domain) }) =
↑({ val := y z', property := (_ : y z' ∈ g.domain) } - y')
[PROOFSTEP]
simp only [← eq_sub_iff_add_eq] at hxy
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
x' : { x // x ∈ f.domain }
y' : { x // x ∈ g.domain }
z' : { x // x ∈ f.domain ⊔ g.domain }
H : ↑x' + ↑y' = ↑z'
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z = ↑z - y z
⊢ ↑(x' - { val := x z', property := (_ : x z' ∈ f.domain) }) =
↑({ val := y z', property := (_ : y z' ∈ g.domain) } - y')
[PROOFSTEP]
simp only [AddSubgroupClass.coe_sub, coe_mk, coe_mk, hxy, ← sub_add, ← sub_sub, sub_self, zero_sub, ← H]
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
x' : { x // x ∈ f.domain }
y' : { x // x ∈ g.domain }
z' : { x // x ∈ f.domain ⊔ g.domain }
H : ↑x' + ↑y' = ↑z'
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z = ↑z - y z
⊢ -↑y' + y z' = y z' - ↑y'
[PROOFSTEP]
apply neg_add_eq_sub
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
⊢ ∃ fg,
∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }),
↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y
[PROOFSTEP]
refine' ⟨{ toFun := fg .. }, fg_eq⟩
[GOAL]
case refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
⊢ ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y
[PROOFSTEP]
rintro ⟨z₁, hz₁⟩ ⟨z₂, hz₂⟩
[GOAL]
case refine'_1.mk.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
z₁ : E
hz₁ : z₁ ∈ f.domain ⊔ g.domain
z₂ : E
hz₂ : z₂ ∈ f.domain ⊔ g.domain
⊢ fg ({ val := z₁, property := hz₁ } + { val := z₂, property := hz₂ }) =
fg { val := z₁, property := hz₁ } + fg { val := z₂, property := hz₂ }
[PROOFSTEP]
rw [← add_assoc, add_right_comm (f _), ← map_add, add_assoc, ← map_add]
[GOAL]
case refine'_1.mk.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
z₁ : E
hz₁ : z₁ ∈ f.domain ⊔ g.domain
z₂ : E
hz₂ : z₂ ∈ f.domain ⊔ g.domain
⊢ fg ({ val := z₁, property := hz₁ } + { val := z₂, property := hz₂ }) =
↑f
({ val := x { val := z₁, property := hz₁ }, property := (_ : x { val := z₁, property := hz₁ } ∈ f.domain) } +
{ val := x { val := z₂, property := hz₂ }, property := (_ : x { val := z₂, property := hz₂ } ∈ f.domain) }) +
↑g
({ val := y { val := z₁, property := hz₁ }, property := (_ : y { val := z₁, property := hz₁ } ∈ g.domain) } +
{ val := y { val := z₂, property := hz₂ }, property := (_ : y { val := z₂, property := hz₂ } ∈ g.domain) })
[PROOFSTEP]
apply fg_eq
[GOAL]
case refine'_1.mk.mk._H
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
z₁ : E
hz₁ : z₁ ∈ f.domain ⊔ g.domain
z₂ : E
hz₂ : z₂ ∈ f.domain ⊔ g.domain
⊢ ↑({ val := x { val := z₁, property := hz₁ }, property := (_ : x { val := z₁, property := hz₁ } ∈ f.domain) } +
{ val := x { val := z₂, property := hz₂ }, property := (_ : x { val := z₂, property := hz₂ } ∈ f.domain) }) +
↑({ val := y { val := z₁, property := hz₁ }, property := (_ : y { val := z₁, property := hz₁ } ∈ g.domain) } +
{ val := y { val := z₂, property := hz₂ }, property := (_ : y { val := z₂, property := hz₂ } ∈ g.domain) }) =
↑({ val := z₁, property := hz₁ } + { val := z₂, property := hz₂ })
[PROOFSTEP]
simp only [coe_add, coe_mk, ← add_assoc]
[GOAL]
case refine'_1.mk.mk._H
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
z₁ : E
hz₁ : z₁ ∈ f.domain ⊔ g.domain
z₂ : E
hz₂ : z₂ ∈ f.domain ⊔ g.domain
⊢ x { val := z₁, property := hz₁ } + x { val := z₂, property := hz₂ } + y { val := z₁, property := hz₁ } +
y { val := z₂, property := hz₂ } =
z₁ + z₂
[PROOFSTEP]
rw [add_right_comm (x _), hxy, add_assoc, hxy, coe_mk, coe_mk]
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
⊢ ∀ (r : R) (x_1 : { x // x ∈ f.domain ⊔ g.domain }),
AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) }
(r • x_1) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } x_1
[PROOFSTEP]
intro c z
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
c : R
z : { x // x ∈ f.domain ⊔ g.domain }
⊢ AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) }
(c • z) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } z
[PROOFSTEP]
rw [smul_add, ← map_smul, ← map_smul]
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
c : R
z : { x // x ∈ f.domain ⊔ g.domain }
⊢ AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) }
(c • z) =
↑f (↑(RingHom.id R) c • { val := x z, property := (_ : x z ∈ f.domain) }) +
↑g (↑(RingHom.id R) c • { val := y z, property := (_ : y z ∈ g.domain) })
[PROOFSTEP]
apply fg_eq
[GOAL]
case refine'_2._H
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
x : { x // x ∈ f.domain ⊔ g.domain } → E
hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain
y : { x // x ∈ f.domain ⊔ g.domain } → E
hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain
hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z
fg : { x // x ∈ f.domain ⊔ g.domain } → F :=
fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) }
fg_eq :
∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }),
↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y'
c : R
z : { x // x ∈ f.domain ⊔ g.domain }
⊢ ↑(↑(RingHom.id R) c • { val := x z, property := (_ : x z ∈ f.domain) }) +
↑(↑(RingHom.id R) c • { val := y z, property := (_ : y z ∈ g.domain) }) =
↑(c • z)
[PROOFSTEP]
simp only [coe_smul, coe_mk, ← smul_add, hxy, RingHom.id_apply]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
⊢ f ≤ LinearPMap.sup f g h
[PROOFSTEP]
refine' ⟨le_sup_left, fun z₁ z₂ hz => _⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
z₁ : { x // x ∈ f.domain }
z₂ : { x // x ∈ (LinearPMap.sup f g h).domain }
hz : ↑z₁ = ↑z₂
⊢ ↑f z₁ = ↑(LinearPMap.sup f g h) z₂
[PROOFSTEP]
rw [← add_zero (f _), ← g.map_zero]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
z₁ : { x // x ∈ f.domain }
z₂ : { x // x ∈ (LinearPMap.sup f g h).domain }
hz : ↑z₁ = ↑z₂
⊢ ↑f z₁ + ↑g 0 = ↑(LinearPMap.sup f g h) z₂
[PROOFSTEP]
refine' (sup_apply h _ _ _ _).symm
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
z₁ : { x // x ∈ f.domain }
z₂ : { x // x ∈ (LinearPMap.sup f g h).domain }
hz : ↑z₁ = ↑z₂
⊢ ↑z₁ + ↑0 = ↑z₂
[PROOFSTEP]
simpa
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
⊢ g ≤ LinearPMap.sup f g h
[PROOFSTEP]
refine' ⟨le_sup_right, fun z₁ z₂ hz => _⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
z₁ : { x // x ∈ g.domain }
z₂ : { x // x ∈ (LinearPMap.sup f g h).domain }
hz : ↑z₁ = ↑z₂
⊢ ↑g z₁ = ↑(LinearPMap.sup f g h) z₂
[PROOFSTEP]
rw [← zero_add (g _), ← f.map_zero]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
z₁ : { x // x ∈ g.domain }
z₂ : { x // x ∈ (LinearPMap.sup f g h).domain }
hz : ↑z₁ = ↑z₂
⊢ ↑f 0 + ↑g z₁ = ↑(LinearPMap.sup f g h) z₂
[PROOFSTEP]
refine' (sup_apply h _ _ _ _).symm
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y
z₁ : { x // x ∈ g.domain }
z₂ : { x // x ∈ (LinearPMap.sup f g h).domain }
hz : ↑z₁ = ↑z₂
⊢ ↑0 + ↑z₁ = ↑z₂
[PROOFSTEP]
simpa
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : Disjoint f.domain g.domain
x : { x // x ∈ f.domain }
y : { x // x ∈ g.domain }
hxy : ↑x = ↑y
⊢ ↑f x = ↑g y
[PROOFSTEP]
rw [disjoint_def] at h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : E), x ∈ f.domain → x ∈ g.domain → x = 0
x : { x // x ∈ f.domain }
y : { x // x ∈ g.domain }
hxy : ↑x = ↑y
⊢ ↑f x = ↑g y
[PROOFSTEP]
have hy : y = 0 := Subtype.eq (h y (hxy ▸ x.2) y.2)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : E), x ∈ f.domain → x ∈ g.domain → x = 0
x : { x // x ∈ f.domain }
y : { x // x ∈ g.domain }
hxy : ↑x = ↑y
hy : y = 0
⊢ ↑f x = ↑g y
[PROOFSTEP]
have hx : x = 0 := Subtype.eq (hxy.trans <| congr_arg _ hy)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h : ∀ (x : E), x ∈ f.domain → x ∈ g.domain → x = 0
x : { x // x ∈ f.domain }
y : { x // x ∈ g.domain }
hxy : ↑x = ↑y
hy : y = 0
hx : x = 0
⊢ ↑f x = ↑g y
[PROOFSTEP]
simp [*]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ - -f = f
[PROOFSTEP]
ext x y hxy
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ x ∈ (- -f).domain ↔ x ∈ f.domain
[PROOFSTEP]
rfl
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ (- -f).domain }
y : { x // x ∈ f.domain }
hxy : ↑x = ↑y
⊢ ↑(- -f) x = ↑f y
[PROOFSTEP]
simp only [neg_apply, neg_neg]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ (- -f).domain }
y : { x // x ∈ f.domain }
hxy : ↑x = ↑y
⊢ ↑f x = ↑f y
[PROOFSTEP]
cases x
[GOAL]
case h'.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
y : { x // x ∈ f.domain }
val✝ : E
property✝ : val✝ ∈ (- -f).domain
hxy : ↑{ val := val✝, property := property✝ } = ↑y
⊢ ↑f { val := val✝, property := property✝ } = ↑f y
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
⊢ f + g + h = f + (g + h)
[PROOFSTEP]
ext x y hxy
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
x : E
⊢ x ∈ (f + g + h).domain ↔ x ∈ (f + (g + h)).domain
[PROOFSTEP]
simp only [add_domain, inf_assoc]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g h : E →ₗ.[R] F
x : { x // x ∈ (f + g + h).domain }
y : { x // x ∈ (f + (g + h)).domain }
hxy : ↑x = ↑y
⊢ ↑(f + g + h) x = ↑(f + (g + h)) y
[PROOFSTEP]
simp only [add_apply, hxy, add_assoc]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ 0 + f = f
[PROOFSTEP]
ext x y hxy
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ x ∈ (0 + f).domain ↔ x ∈ f.domain
[PROOFSTEP]
simp [add_domain]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ (0 + f).domain }
y : { x // x ∈ f.domain }
hxy : ↑x = ↑y
⊢ ↑(0 + f) x = ↑f y
[PROOFSTEP]
simp only [add_apply, hxy, zero_apply, zero_add]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ f + 0 = f
[PROOFSTEP]
ext x y hxy
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ x ∈ (f + 0).domain ↔ x ∈ f.domain
[PROOFSTEP]
simp [add_domain]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ (f + 0).domain }
y : { x // x ∈ f.domain }
hxy : ↑x = ↑y
⊢ ↑(f + 0) x = ↑f y
[PROOFSTEP]
simp only [add_apply, hxy, zero_apply, add_zero]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ 0 + f = f
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
⊢ ∀ (a : E →ₗ.[R] F), a + 0 = a
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
⊢ f + g = g + f
[PROOFSTEP]
ext x y hxy
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : E
⊢ x ∈ (f + g).domain ↔ x ∈ (g + f).domain
[PROOFSTEP]
simp only [add_domain, inf_comm]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (f + g).domain }
y : { x // x ∈ (g + f).domain }
hxy : ↑x = ↑y
⊢ ↑(f + g) x = ↑(g + f) y
[PROOFSTEP]
simp only [add_apply, hxy, add_comm]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
⊢ f - g = f + -g
[PROOFSTEP]
ext x y h
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : E
⊢ x ∈ (f - g).domain ↔ x ∈ (f + -g).domain
[PROOFSTEP]
rfl
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (f - g).domain }
y : { x // x ∈ (f + -g).domain }
h : ↑x = ↑y
⊢ ↑(f - g) x = ↑(f + -g) y
[PROOFSTEP]
simp [sub_apply, add_apply, neg_apply, ← sub_eq_add_neg, h]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
⊢ -(f + g) = -g + -f
[PROOFSTEP]
ext x y h
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : E
⊢ x ∈ (-(f + g)).domain ↔ x ∈ (-g + -f).domain
[PROOFSTEP]
simp [add_domain, sub_domain, neg_domain, And.comm]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-(f + g)).domain }
y : { x // x ∈ (-g + -f).domain }
h : ↑x = ↑y
⊢ ↑(-(f + g)) x = ↑(-g + -f) y
[PROOFSTEP]
simp [sub_apply, add_apply, neg_apply, ← sub_eq_add_neg, h]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : f + g = 0
⊢ -f = g
[PROOFSTEP]
ext x y h
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : f + g = 0
x : E
⊢ x ∈ (-f).domain ↔ x ∈ g.domain
[PROOFSTEP]
have : (0 : E →ₗ.[R] F).domain = ⊤ := zero_domain
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : f + g = 0
x : E
this : 0.domain = ⊤
⊢ x ∈ (-f).domain ↔ x ∈ g.domain
[PROOFSTEP]
simp only [← h', add_domain, ge_iff_le, inf_eq_top_iff] at this
[GOAL]
case h.h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : f + g = 0
x : E
this : f.domain = ⊤ ∧ g.domain = ⊤
⊢ x ∈ (-f).domain ↔ x ∈ g.domain
[PROOFSTEP]
rw [neg_domain, this.1, this.2]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : f + g = 0
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
⊢ ↑(-f) x = ↑g y
[PROOFSTEP]
simp only [inf_coe, neg_domain, Eq.ndrec, Int.ofNat_eq_coe, neg_apply]
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : f + g = 0
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
⊢ -↑f x = ↑g y
[PROOFSTEP]
rw [ext_iff] at h'
[GOAL]
case h'
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
h' : ∃ _domain_eq, ∀ ⦃x : { x // x ∈ (f + g).domain }⦄ ⦃y : { x // x ∈ 0.domain }⦄, ↑x = ↑y → ↑(f + g) x = ↑0 y
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
⊢ -↑f x = ↑g y
[PROOFSTEP]
rcases h' with ⟨hdom, h'⟩
[GOAL]
case h'.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
hdom : (f + g).domain = 0.domain
h' : ∀ ⦃x : { x // x ∈ (f + g).domain }⦄ ⦃y : { x // x ∈ 0.domain }⦄, ↑x = ↑y → ↑(f + g) x = ↑0 y
⊢ -↑f x = ↑g y
[PROOFSTEP]
rw [zero_domain] at hdom
[GOAL]
case h'.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
hdom : (f + g).domain = ⊤
h' : ∀ ⦃x : { x // x ∈ (f + g).domain }⦄ ⦃y : { x // x ∈ 0.domain }⦄, ↑x = ↑y → ↑(f + g) x = ↑0 y
⊢ -↑f x = ↑g y
[PROOFSTEP]
simp only [inf_coe, neg_domain, Eq.ndrec, Int.ofNat_eq_coe, zero_domain, top_coe, zero_apply, Subtype.forall, mem_top,
forall_true_left, forall_eq'] at h'
[GOAL]
case h'.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
hdom : (f + g).domain = ⊤
h' : ∀ (a : E) (b : a ∈ (f + g).domain), ↑(f + g) { val := a, property := b } = 0
⊢ -↑f x = ↑g y
[PROOFSTEP]
specialize h' x.1 (by simp [hdom])
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
hdom : (f + g).domain = ⊤
h' : ∀ (a : E) (b : a ∈ (f + g).domain), ↑(f + g) { val := a, property := b } = 0
⊢ ↑x ∈ (f + g).domain
[PROOFSTEP]
simp [hdom]
[GOAL]
case h'.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
hdom : (f + g).domain = ⊤
h' : ↑(f + g) { val := ↑x, property := (_ : ↑x ∈ (f + g).domain) } = 0
⊢ -↑f x = ↑g y
[PROOFSTEP]
simp only [inf_coe, neg_domain, Eq.ndrec, Int.ofNat_eq_coe, add_apply, Subtype.coe_eta, ← neg_eq_iff_add_eq_zero] at h'
[GOAL]
case h'.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f g : E →ₗ.[R] F
x : { x // x ∈ (-f).domain }
y : { x // x ∈ g.domain }
h : ↑x = ↑y
hdom : (f + g).domain = ⊤
h' : -↑f x = ↑g { val := ↑x, property := (_ : ↑{ val := ↑x, property := (_ : ↑x ∈ (f + g).domain) } ∈ ↑g.domain) }
⊢ -↑f x = ↑g y
[PROOFSTEP]
rw [h', h]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
K : Type u_5
inst✝² : DivisionRing K
inst✝¹ : Module K E
inst✝ : Module K F
f : E →ₗ.[K] F
x : E
y : F
hx : ¬x ∈ f.domain
⊢ Disjoint f.domain (mkSpanSingleton x y (_ : x = 0 → False)).domain
[PROOFSTEP]
simp [disjoint_span_singleton]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
K : Type u_5
inst✝² : DivisionRing K
inst✝¹ : Module K E
inst✝ : Module K F
f : E →ₗ.[K] F
x : E
y : F
hx : ¬x ∈ f.domain
⊢ x ∈ f.domain → x = 0
[PROOFSTEP]
exact fun h => False.elim <| hx h
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
K : Type u_5
inst✝² : DivisionRing K
inst✝¹ : Module K E
inst✝ : Module K F
f : E →ₗ.[K] F
x : E
y : F
hx : ¬x ∈ f.domain
x' : E
hx' : x' ∈ f.domain
c : K
⊢ ↑(supSpanSingleton f x y hx)
{ val := x' + c • x,
property := (_ : x' + c • x ∈ f.domain ⊔ (mkSpanSingleton x y (_ : x = 0 → False)).domain) } =
↑f { val := x', property := hx' } + c • y
[PROOFSTEP]
erw [sup_apply _ ⟨x', hx'⟩ ⟨c • x, _⟩, mkSpanSingleton'_apply]
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
K : Type u_5
inst✝² : DivisionRing K
inst✝¹ : Module K E
inst✝ : Module K F
f : E →ₗ.[K] F
x : E
y : F
hx : ¬x ∈ f.domain
x' : E
hx' : x' ∈ f.domain
c : K
⊢ c • x ∈ (mkSpanSingleton' x y (_ : ∀ (c : K), c • x = 0 → c • y = 0)).domain
[PROOFSTEP]
exact mem_span_singleton.2 ⟨c, rfl⟩
[GOAL]
case hz
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
K : Type u_5
inst✝² : DivisionRing K
inst✝¹ : Module K E
inst✝ : Module K F
f : E →ₗ.[K] F
x : E
y : F
hx : ¬x ∈ f.domain
x' : E
hx' : x' ∈ f.domain
c : K
⊢ ↑{ val := x', property := hx' } + ↑{ val := c • x, property := (_ : c • x ∈ span K {x}) } =
↑{ val := x' + c • x, property := (_ : x' + c • x ∈ f.domain ⊔ (mkSpanSingleton x y (_ : x = 0 → False)).domain) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
cases' c.eq_empty_or_nonempty with ceq cne
[GOAL]
case inl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
ceq : c = ∅
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
subst c
[GOAL]
case inl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
hc : DirectedOn (fun x x_1 => x ≤ x_1) ∅
⊢ ∃ f, { domain := sSup (domain '' ∅), toFun := f } ∈ upperBounds ∅
[PROOFSTEP]
simp
[GOAL]
case inr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
have hdir : DirectedOn (· ≤ ·) (domain '' c) := directedOn_image.2 (hc.mono @(domain_mono.monotone))
[GOAL]
case inr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
have P : ∀ x : ↥(sSup (domain '' c)), { p : c // (x : E) ∈ p.val.domain } :=
by
rintro x
apply Classical.indefiniteDescription
have :=
(mem_sSup_of_directed (cne.image _) hdir).1
x.2
-- Porting note: + `← bex_def`
rwa [bex_image_iff, ← bex_def, SetCoe.exists'] at this
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
⊢ (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
[PROOFSTEP]
rintro x
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
x : { x // x ∈ sSup (domain '' c) }
⊢ { p // ↑x ∈ (↑p).domain }
[PROOFSTEP]
apply Classical.indefiniteDescription
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
x : { x // x ∈ sSup (domain '' c) }
⊢ ∃ x_1, ↑x ∈ (↑x_1).domain
[PROOFSTEP]
have :=
(mem_sSup_of_directed (cne.image _) hdir).1
x.2
-- Porting note: + `← bex_def`
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
x : { x // x ∈ sSup (domain '' c) }
this : ∃ y, y ∈ domain '' c ∧ ↑x ∈ y
⊢ ∃ x_1, ↑x ∈ (↑x_1).domain
[PROOFSTEP]
rwa [bex_image_iff, ← bex_def, SetCoe.exists'] at this
[GOAL]
case inr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
set f : ↥(sSup (domain '' c)) → F := fun x => (P x).val.val ⟨x, (P x).property⟩
[GOAL]
case inr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
have f_eq : ∀ (p : c) (x : ↥(sSup (domain '' c))) (y : p.1.1) (_hxy : (x : E) = y), f x = p.1 y :=
by
intro p x y hxy
rcases hc (P x).1.1 (P x).1.2 p.1 p.2 with
⟨q, _hqc, hxq, hpq⟩
-- Porting note: `refine' ..; exacts [ofLe hpq.1 y, hxy, rfl]`
-- → `refine' .. <;> [skip; exact ofLe hpq.1 y; rfl]; exact hxy`
refine' (hxq.2 _).trans (hpq.2 _).symm <;> [skip; exact ofLe hpq.1 y; rfl]; exact hxy
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
⊢ ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
[PROOFSTEP]
intro p x y hxy
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
⊢ f x = ↑↑p y
[PROOFSTEP]
rcases hc (P x).1.1 (P x).1.2 p.1 p.2 with
⟨q, _hqc, hxq, hpq⟩
-- Porting note: `refine' ..; exacts [ofLe hpq.1 y, hxy, rfl]`
-- → `refine' .. <;> [skip; exact ofLe hpq.1 y; rfl]; exact hxy`
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
q : E →ₗ.[R] F
_hqc : q ∈ c
hxq : ↑↑(P x) ≤ q
hpq : ↑p ≤ q
⊢ f x = ↑↑p y
[PROOFSTEP]
refine' (hxq.2 _).trans (hpq.2 _).symm <;> [skip; exact ofLe hpq.1 y; rfl]
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
q : E →ₗ.[R] F
_hqc : q ∈ c
hxq : ↑↑(P x) ≤ q
hpq : ↑p ≤ q
⊢ f x = ↑↑p y
[PROOFSTEP]
refine' (hxq.2 _).trans (hpq.2 _).symm
[GOAL]
case intro.intro.intro.refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
q : E →ₗ.[R] F
_hqc : q ∈ c
hxq : ↑↑(P x) ≤ q
hpq : ↑p ≤ q
⊢ ↑{ val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } = ↑?intro.intro.intro.refine'_2
[PROOFSTEP]
skip
[GOAL]
case intro.intro.intro.refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
q : E →ₗ.[R] F
_hqc : q ∈ c
hxq : ↑↑(P x) ≤ q
hpq : ↑p ≤ q
⊢ { x // x ∈ q.domain }
[PROOFSTEP]
exact ofLe hpq.1 y
[GOAL]
case intro.intro.intro.refine'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
q : E →ₗ.[R] F
_hqc : q ∈ c
hxq : ↑↑(P x) ≤ q
hpq : ↑p ≤ q
⊢ ↑y = ↑(↑(ofLe (_ : (↑p).domain ≤ q.domain)) y)
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
p : ↑c
x : { x // x ∈ sSup (domain '' c) }
y : { x // x ∈ (↑p).domain }
hxy : ↑x = ↑y
q : E →ₗ.[R] F
_hqc : q ∈ c
hxq : ↑↑(P x) ≤ q
hpq : ↑p ≤ q
⊢ ↑{ val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } = ↑(↑(ofLe (_ : (↑p).domain ≤ q.domain)) y)
[PROOFSTEP]
exact hxy
[GOAL]
case inr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c
[PROOFSTEP]
refine' ⟨{ toFun := f .. }, _⟩
[GOAL]
case inr.refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
⊢ ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y
[PROOFSTEP]
intro x y
[GOAL]
case inr.refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
x y : { x // x ∈ sSup (domain '' c) }
⊢ f (x + y) = f x + f y
[PROOFSTEP]
rcases hc (P x).1.1 (P x).1.2 (P y).1.1 (P y).1.2 with ⟨p, hpc, hpx, hpy⟩
[GOAL]
case inr.refine'_1.intro.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
x y : { x // x ∈ sSup (domain '' c) }
p : E →ₗ.[R] F
hpc : p ∈ c
hpx : ↑↑(P x) ≤ p
hpy : ↑↑(P y) ≤ p
⊢ f (x + y) = f x + f y
[PROOFSTEP]
set x' := ofLe hpx.1 ⟨x, (P x).2⟩
[GOAL]
case inr.refine'_1.intro.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
x y : { x // x ∈ sSup (domain '' c) }
p : E →ₗ.[R] F
hpc : p ∈ c
hpx : ↑↑(P x) ≤ p
hpy : ↑↑(P y) ≤ p
x' : { x // x ∈ p.domain } :=
↑(ofLe (_ : (↑↑(P x)).domain ≤ p.domain)) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
⊢ f (x + y) = f x + f y
[PROOFSTEP]
set y' := ofLe hpy.1 ⟨y, (P y).2⟩
[GOAL]
case inr.refine'_1.intro.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
x y : { x // x ∈ sSup (domain '' c) }
p : E →ₗ.[R] F
hpc : p ∈ c
hpx : ↑↑(P x) ≤ p
hpy : ↑↑(P y) ≤ p
x' : { x // x ∈ p.domain } :=
↑(ofLe (_ : (↑↑(P x)).domain ≤ p.domain)) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
y' : { x // x ∈ p.domain } :=
↑(ofLe (_ : (↑↑(P y)).domain ≤ p.domain)) { val := ↑y, property := (_ : ↑y ∈ (↑↑(P y)).domain) }
⊢ f (x + y) = f x + f y
[PROOFSTEP]
rw [f_eq ⟨p, hpc⟩ x x' rfl, f_eq ⟨p, hpc⟩ y y' rfl, f_eq ⟨p, hpc⟩ (x + y) (x' + y') rfl, map_add]
[GOAL]
case inr.refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
⊢ ∀ (r : R) (x : { x // x ∈ sSup (domain '' c) }),
AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) }
x
[PROOFSTEP]
intro c x
[GOAL]
case inr.refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c✝ : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c✝
cne : Set.Nonempty c✝
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c✝)
P : (x : { x // x ∈ sSup (domain '' c✝) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c✝) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c✝) (x : { x // x ∈ sSup (domain '' c✝) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
c : R
x : { x // x ∈ sSup (domain '' c✝) }
⊢ AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c✝) }), f (x + y) = f x + f y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c✝) }), f (x + y) = f x + f y) } x
[PROOFSTEP]
simp only [f_eq (P x).1 (c • x) (c • ⟨x, (P x).2⟩) rfl, ← map_smul, RingHom.id_apply]
[GOAL]
case inr.refine'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
⊢ { domain := sSup (domain '' c),
toFun :=
{
toAddHom :=
{ toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) },
map_smul' :=
(_ :
∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }),
f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } } ∈
upperBounds c
[PROOFSTEP]
intro p hpc
[GOAL]
case inr.refine'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
p : E →ₗ.[R] F
hpc : p ∈ c
⊢ p ≤
{ domain := sSup (domain '' c),
toFun :=
{
toAddHom :=
{ toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) },
map_smul' :=
(_ :
∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }),
f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } }
[PROOFSTEP]
refine' ⟨le_sSup <| mem_image_of_mem domain hpc, fun x y hxy => Eq.symm _⟩
[GOAL]
case inr.refine'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
cne : Set.Nonempty c
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c)
P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain }
f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }
f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y
p : E →ₗ.[R] F
hpc : p ∈ c
x : { x // x ∈ p.domain }
y :
{ x //
x ∈
{ domain := sSup (domain '' c),
toFun :=
{
toAddHom :=
{ toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) },
map_smul' :=
(_ :
∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }),
f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } }.domain }
hxy : ↑x = ↑y
⊢ ↑{ domain := sSup (domain '' c),
toFun :=
{
toAddHom :=
{ toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) },
map_smul' :=
(_ :
∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }),
f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } }
y =
↑p x
[PROOFSTEP]
exact f_eq ⟨p, hpc⟩ _ _ hxy.symm
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
l : E →ₗ.[R] F
hl : l ∈ c
x : { x // x ∈ l.domain }
⊢ ↑(LinearPMap.sSup c hc) { val := ↑x, property := (_ : ↑x ∈ (LinearPMap.sSup c hc).domain) } = ↑l x
[PROOFSTEP]
symm
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
l : E →ₗ.[R] F
hl : l ∈ c
x : { x // x ∈ l.domain }
⊢ ↑l x = ↑(LinearPMap.sSup c hc) { val := ↑x, property := (_ : ↑x ∈ (LinearPMap.sSup c hc).domain) }
[PROOFSTEP]
apply (Classical.choose_spec (sSup_aux c hc) hl).2
[GOAL]
case _h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
c : Set (E →ₗ.[R] F)
hc : DirectedOn (fun x x_1 => x ≤ x_1) c
l : E →ₗ.[R] F
hl : l ∈ c
x : { x // x ∈ l.domain }
⊢ ↑x = ↑{ val := ↑x, property := (_ : ↑x ∈ (LinearPMap.sSup c hc).domain) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
⊢ S ⊓ f.domain ≤ f.domain
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
x : { x // x ∈ S ⊓ f.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ ↑(domRestrict f S) x = ↑f y
[PROOFSTEP]
have : Submodule.ofLe (by simp) x = y := by
ext
simp [h]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
x : { x // x ∈ S ⊓ f.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ S ⊓ f.domain ≤ f.domain
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
x : { x // x ∈ S ⊓ f.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ ↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x = y
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
x : { x // x ∈ S ⊓ f.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
⊢ ↑(↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x) = ↑y
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
x : { x // x ∈ S ⊓ f.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
this : ↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x = y
⊢ ↑(domRestrict f S) x = ↑f y
[PROOFSTEP]
rw [← this]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
x : { x // x ∈ S ⊓ f.domain }
y : { x // x ∈ f.domain }
h : ↑x = ↑y
this : ↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x = y
⊢ ↑(domRestrict f S) x = ↑f (↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x)
[PROOFSTEP]
exact LinearPMap.mk_apply _ _ _
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
S : Submodule R E
⊢ (domRestrict f S).domain ≤ f.domain
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E × F
⊢ x ∈ graph f ↔ ∃ y, (↑y, ↑f y) = x
[PROOFSTEP]
simp [graph]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E × F
⊢ x ∈ graph f ↔ ∃ y, ↑y = x.fst ∧ ↑f y = x.snd
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
fst✝ : E
snd✝ : F
⊢ (fst✝, snd✝) ∈ graph f ↔ ∃ y, ↑y = (fst✝, snd✝).fst ∧ ↑f y = (fst✝, snd✝).snd
[PROOFSTEP]
simp_rw [mem_graph_iff', Prod.mk.inj_iff]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : { x // x ∈ f.domain }
⊢ (↑x, ↑f x) ∈ graph f
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ Submodule.map (LinearMap.fst R E F) (graph f) = f.domain
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ x ∈ Submodule.map (LinearMap.fst R E F) (graph f) ↔ x ∈ f.domain
[PROOFSTEP]
simp only [Submodule.mem_map, mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left, LinearMap.fst_apply,
Prod.exists, exists_and_right, exists_eq_right]
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ (∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1) ↔ x ∈ f.domain
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ (∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1) → x ∈ f.domain
[PROOFSTEP]
intro h
[GOAL]
case h.mpr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
⊢ x ∈ f.domain → ∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1
[PROOFSTEP]
intro h
[GOAL]
case h.mp
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
h : ∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1
⊢ x ∈ f.domain
[PROOFSTEP]
rcases h with ⟨x, hx, _⟩
[GOAL]
case h.mp.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x✝ : E
x : F
hx : x✝ ∈ f.domain
h✝ : ↑f { val := x✝, property := (_ : (x✝, x).fst ∈ f.domain) } = x
⊢ x✝ ∈ f.domain
[PROOFSTEP]
exact hx
[GOAL]
case h.mpr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
h : x ∈ f.domain
⊢ ∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1
[PROOFSTEP]
use f ⟨x, h⟩
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x : E
h : x ∈ f.domain
⊢ ∃ h_1,
↑f { val := x, property := (_ : (x, ↑f { val := x, property := h }).fst ∈ f.domain) } =
↑f { val := x, property := h }
[PROOFSTEP]
simp only [h, exists_prop]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ Submodule.map (LinearMap.snd R E F) (graph f) = LinearMap.range f.toFun
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
x✝ : F
⊢ x✝ ∈ Submodule.map (LinearMap.snd R E F) (graph f) ↔ x✝ ∈ LinearMap.range f.toFun
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
⊢ graph (z • f) = Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x : E × F
⊢ x ∈ graph (z • f) ↔ x ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
cases' x with x_fst x_snd
[GOAL]
case h.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
⊢ (x_fst, x_snd) ∈ graph (z • f) ↔
(x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
constructor
[GOAL]
case h.mk.mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
⊢ (x_fst, x_snd) ∈ graph (z • f) →
(x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
intro h
[GOAL]
case h.mk.mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) →
(x_fst, x_snd) ∈ graph (z • f)
[PROOFSTEP]
intro h
[GOAL]
case h.mk.mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
h : (x_fst, x_snd) ∈ graph (z • f)
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
rw [mem_graph_iff] at h
[GOAL]
case h.mk.mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
h : ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
rcases h with ⟨y, hy, h⟩
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
y : { x // x ∈ (z • f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : ↑(z • f) y = (x_fst, x_snd).snd
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
rw [LinearPMap.smul_apply] at h
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
y : { x // x ∈ (z • f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : z • ↑f y = (x_fst, x_snd).snd
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
[PROOFSTEP]
rw [Submodule.mem_map]
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
y : { x // x ∈ (z • f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : z • ↑f y = (x_fst, x_snd).snd
⊢ ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) y = (x_fst, x_snd)
[PROOFSTEP]
simp only [mem_graph_iff, LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.smul_apply, Prod.mk.inj_iff,
Prod.exists, exists_exists_and_eq_and]
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
y : { x // x ∈ (z • f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : z • ↑f y = (x_fst, x_snd).snd
⊢ ∃ a a_1, ↑a_1 = a ∧ a = x_fst ∧ z • ↑f a_1 = x_snd
[PROOFSTEP]
use x_fst, y, hy
[GOAL]
case h.mk.mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
h : (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f)
⊢ (x_fst, x_snd) ∈ graph (z • f)
[PROOFSTEP]
rw [Submodule.mem_map] at h
[GOAL]
case h.mk.mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
h : ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) y = (x_fst, x_snd)
⊢ (x_fst, x_snd) ∈ graph (z • f)
[PROOFSTEP]
rcases h with ⟨x', hx', h⟩
[GOAL]
case h.mk.mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
x' : E × F
hx' : x' ∈ graph f
h : ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) x' = (x_fst, x_snd)
⊢ (x_fst, x_snd) ∈ graph (z • f)
[PROOFSTEP]
cases x'
[GOAL]
case h.mk.mpr.intro.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
hx' : (fst✝, snd✝) ∈ graph f
h : ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (fst✝, snd✝) = (x_fst, x_snd)
⊢ (x_fst, x_snd) ∈ graph (z • f)
[PROOFSTEP]
simp only [LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.smul_apply, Prod.mk.inj_iff] at h
[GOAL]
case h.mk.mpr.intro.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
hx' : (fst✝, snd✝) ∈ graph f
h : fst✝ = x_fst ∧ z • snd✝ = x_snd
⊢ (x_fst, x_snd) ∈ graph (z • f)
[PROOFSTEP]
rw [mem_graph_iff] at hx' ⊢
[GOAL]
case h.mk.mpr.intro.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
hx' : ∃ y, ↑y = (fst✝, snd✝).fst ∧ ↑f y = (fst✝, snd✝).snd
h : fst✝ = x_fst ∧ z • snd✝ = x_snd
⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd
[PROOFSTEP]
rcases hx' with ⟨y, hy, hx'⟩
[GOAL]
case h.mk.mpr.intro.intro.mk.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
h : fst✝ = x_fst ∧ z • snd✝ = x_snd
y : { x // x ∈ f.domain }
hy : ↑y = (fst✝, snd✝).fst
hx' : ↑f y = (fst✝, snd✝).snd
⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd
[PROOFSTEP]
use y
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
h : fst✝ = x_fst ∧ z • snd✝ = x_snd
y : { x // x ∈ f.domain }
hy : ↑y = (fst✝, snd✝).fst
hx' : ↑f y = (fst✝, snd✝).snd
⊢ ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd
[PROOFSTEP]
rw [← h.1, ← h.2]
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
z : M
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
h : fst✝ = x_fst ∧ z • snd✝ = x_snd
y : { x // x ∈ f.domain }
hy : ↑y = (fst✝, snd✝).fst
hx' : ↑f y = (fst✝, snd✝).snd
⊢ ↑y = (fst✝, z • snd✝).fst ∧ ↑(z • f) y = (fst✝, z • snd✝).snd
[PROOFSTEP]
simp [hy, hx']
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
⊢ graph (-f) = Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E × F
⊢ x ∈ graph (-f) ↔ x ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
cases' x with x_fst x_snd
[GOAL]
case h.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
⊢ (x_fst, x_snd) ∈ graph (-f) ↔
(x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
constructor
[GOAL]
case h.mk.mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
⊢ (x_fst, x_snd) ∈ graph (-f) →
(x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
intro h
[GOAL]
case h.mk.mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) →
(x_fst, x_snd) ∈ graph (-f)
[PROOFSTEP]
intro h
[GOAL]
case h.mk.mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
h : (x_fst, x_snd) ∈ graph (-f)
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
rw [mem_graph_iff] at h
[GOAL]
case h.mk.mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
h : ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
rcases h with ⟨y, hy, h⟩
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
y : { x // x ∈ (-f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : ↑(-f) y = (x_fst, x_snd).snd
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
rw [LinearPMap.neg_apply] at h
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
y : { x // x ∈ (-f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : -↑f y = (x_fst, x_snd).snd
⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
[PROOFSTEP]
rw [Submodule.mem_map]
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
y : { x // x ∈ (-f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : -↑f y = (x_fst, x_snd).snd
⊢ ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) y = (x_fst, x_snd)
[PROOFSTEP]
simp only [mem_graph_iff, LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.neg_apply, Prod.mk.inj_iff,
Prod.exists, exists_exists_and_eq_and]
[GOAL]
case h.mk.mp.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
y : { x // x ∈ (-f).domain }
hy : ↑y = (x_fst, x_snd).fst
h : -↑f y = (x_fst, x_snd).snd
⊢ ∃ a a_1, ↑a_1 = a ∧ a = x_fst ∧ -↑f a_1 = x_snd
[PROOFSTEP]
use x_fst, y, hy
[GOAL]
case h.mk.mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
h : (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f)
⊢ (x_fst, x_snd) ∈ graph (-f)
[PROOFSTEP]
rw [Submodule.mem_map] at h
[GOAL]
case h.mk.mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
h : ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) y = (x_fst, x_snd)
⊢ (x_fst, x_snd) ∈ graph (-f)
[PROOFSTEP]
rcases h with ⟨x', hx', h⟩
[GOAL]
case h.mk.mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
x' : E × F
hx' : x' ∈ graph f
h : ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) x' = (x_fst, x_snd)
⊢ (x_fst, x_snd) ∈ graph (-f)
[PROOFSTEP]
cases x'
[GOAL]
case h.mk.mpr.intro.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
hx' : (fst✝, snd✝) ∈ graph f
h : ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) (fst✝, snd✝) = (x_fst, x_snd)
⊢ (x_fst, x_snd) ∈ graph (-f)
[PROOFSTEP]
simp only [LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.neg_apply, Prod.mk.inj_iff] at h
[GOAL]
case h.mk.mpr.intro.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
hx' : (fst✝, snd✝) ∈ graph f
h : fst✝ = x_fst ∧ -snd✝ = x_snd
⊢ (x_fst, x_snd) ∈ graph (-f)
[PROOFSTEP]
rw [mem_graph_iff] at hx' ⊢
[GOAL]
case h.mk.mpr.intro.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
hx' : ∃ y, ↑y = (fst✝, snd✝).fst ∧ ↑f y = (fst✝, snd✝).snd
h : fst✝ = x_fst ∧ -snd✝ = x_snd
⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd
[PROOFSTEP]
rcases hx' with ⟨y, hy, hx'⟩
[GOAL]
case h.mk.mpr.intro.intro.mk.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
h : fst✝ = x_fst ∧ -snd✝ = x_snd
y : { x // x ∈ f.domain }
hy : ↑y = (fst✝, snd✝).fst
hx' : ↑f y = (fst✝, snd✝).snd
⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd
[PROOFSTEP]
use y
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
h : fst✝ = x_fst ∧ -snd✝ = x_snd
y : { x // x ∈ f.domain }
hy : ↑y = (fst✝, snd✝).fst
hx' : ↑f y = (fst✝, snd✝).snd
⊢ ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd
[PROOFSTEP]
rw [← h.1, ← h.2]
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x_fst : E
x_snd : F
fst✝ : E
snd✝ : F
h : fst✝ = x_fst ∧ -snd✝ = x_snd
y : { x // x ∈ f.domain }
hy : ↑y = (fst✝, snd✝).fst
hx' : ↑f y = (fst✝, snd✝).snd
⊢ ↑y = (fst✝, -snd✝).fst ∧ ↑(-f) y = (fst✝, -snd✝).snd
[PROOFSTEP]
simp [hy, hx']
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E
x' y' : F
hx : (x, x') ∈ graph f
hy : (y, y') ∈ graph f
hxy : x = y
⊢ x' = y'
[PROOFSTEP]
rw [mem_graph_iff] at hx hy
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E
x' y' : F
hx : ∃ y, ↑y = (x, x').fst ∧ ↑f y = (x, x').snd
hy : ∃ y_1, ↑y_1 = (y, y').fst ∧ ↑f y_1 = (y, y').snd
hxy : x = y
⊢ x' = y'
[PROOFSTEP]
rcases hx with ⟨x'', hx1, hx2⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E
x' y' : F
hy : ∃ y_1, ↑y_1 = (y, y').fst ∧ ↑f y_1 = (y, y').snd
hxy : x = y
x'' : { x // x ∈ f.domain }
hx1 : ↑x'' = (x, x').fst
hx2 : ↑f x'' = (x, x').snd
⊢ x' = y'
[PROOFSTEP]
rcases hy with ⟨y'', hy1, hy2⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E
x' y' : F
hxy : x = y
x'' : { x // x ∈ f.domain }
hx1 : ↑x'' = (x, x').fst
hx2 : ↑f x'' = (x, x').snd
y'' : { x // x ∈ f.domain }
hy1 : ↑y'' = (y, y').fst
hy2 : ↑f y'' = (y, y').snd
⊢ x' = y'
[PROOFSTEP]
simp only at hx1 hx2 hy1 hy2
[GOAL]
case intro.intro.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E
x' y' : F
hxy : x = y
x'' : { x // x ∈ f.domain }
hx1 : ↑x'' = x
hx2 : ↑f x'' = x'
y'' : { x // x ∈ f.domain }
hy1 : ↑y'' = y
hy2 : ↑f y'' = y'
⊢ x' = y'
[PROOFSTEP]
rw [← hx1, ← hy1, SetLike.coe_eq_coe] at hxy
[GOAL]
case intro.intro.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E
x' y' : F
x'' : { x // x ∈ f.domain }
hx1 : ↑x'' = x
hx2 : ↑f x'' = x'
y'' : { x // x ∈ f.domain }
hxy : x'' = y''
hy1 : ↑y'' = y
hy2 : ↑f y'' = y'
⊢ x' = y'
[PROOFSTEP]
rw [← hx2, ← hy2, hxy]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x y : E × F
hx : x ∈ graph f
hy : y ∈ graph f
hxy : x.fst = y.fst
⊢ x.snd = y.snd
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : E × F
hy : y ∈ graph f
fst✝ : E
snd✝ : F
hx : (fst✝, snd✝) ∈ graph f
hxy : (fst✝, snd✝).fst = y.fst
⊢ (fst✝, snd✝).snd = y.snd
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
fst✝¹ : E
snd✝¹ : F
hx : (fst✝¹, snd✝¹) ∈ graph f
fst✝ : E
snd✝ : F
hy : (fst✝, snd✝) ∈ graph f
hxy : (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst
⊢ (fst✝¹, snd✝¹).snd = (fst✝, snd✝).snd
[PROOFSTEP]
exact f.mem_graph_snd_inj hx hy hxy
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E
⊢ x ∈ f.domain ↔ ∃ y, (x, y) ∈ graph f
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E
⊢ x ∈ f.domain → ∃ y, (x, y) ∈ graph f
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E
⊢ (∃ y, (x, y) ∈ graph f) → x ∈ f.domain
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E
h : x ∈ f.domain
⊢ ∃ y, (x, y) ∈ graph f
[PROOFSTEP]
use f ⟨x, h⟩
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E
h : x ∈ f.domain
⊢ (x, ↑f { val := x, property := h }) ∈ graph f
[PROOFSTEP]
exact f.mem_graph ⟨x, h⟩
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f : E →ₗ.[R] F
x : E
h : ∃ y, (x, y) ∈ graph f
⊢ x ∈ f.domain
[PROOFSTEP]
cases' h with y h
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
h : (x, y) ∈ graph f
⊢ x ∈ f.domain
[PROOFSTEP]
rw [mem_graph_iff] at h
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
h : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd
⊢ x ∈ f.domain
[PROOFSTEP]
cases' h with x' h
[GOAL]
case mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
x' : { x // x ∈ f.domain }
h : ↑x' = (x, y).fst ∧ ↑f x' = (x, y).snd
⊢ x ∈ f.domain
[PROOFSTEP]
simp only at h
[GOAL]
case mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
x' : { x // x ∈ f.domain }
h : ↑x' = x ∧ ↑f x' = y
⊢ x ∈ f.domain
[PROOFSTEP]
rw [← h.1]
[GOAL]
case mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
x' : { x // x ∈ f.domain }
h : ↑x' = x ∧ ↑f x' = y
⊢ ↑x' ∈ f.domain
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
h : (x, y) ∈ graph f
⊢ x ∈ f.domain
[PROOFSTEP]
rw [mem_domain_iff]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
h : (x, y) ∈ graph f
⊢ ∃ y, (x, y) ∈ graph f
[PROOFSTEP]
exact ⟨y, h⟩
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
⊢ y = ↑f { val := x, property := hx } ↔ (x, y) ∈ graph f
[PROOFSTEP]
rw [mem_graph_iff]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
⊢ y = ↑f { val := x, property := hx } ↔ ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
⊢ y = ↑f { val := x, property := hx } → ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
⊢ (∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd) → y = ↑f { val := x, property := hx }
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
h : y = ↑f { val := x, property := hx }
⊢ ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd
[PROOFSTEP]
use⟨x, hx⟩
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
h : y = ↑f { val := x, property := hx }
⊢ ↑{ val := x, property := hx } = (x, y).fst ∧ ↑f { val := x, property := hx } = (x, y).snd
[PROOFSTEP]
simp [h]
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
h : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd
⊢ y = ↑f { val := x, property := hx }
[PROOFSTEP]
rcases h with ⟨⟨x', hx'⟩, ⟨h1, h2⟩⟩
[GOAL]
case mpr.intro.mk.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
x' : E
hx' : x' ∈ f.domain
h1 : ↑{ val := x', property := hx' } = (x, y).fst
h2 : ↑f { val := x', property := hx' } = (x, y).snd
⊢ y = ↑f { val := x, property := hx }
[PROOFSTEP]
simp only [Submodule.coe_mk] at h1 h2
[GOAL]
case mpr.intro.mk.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
x : E
y : F
hx : x ∈ f.domain
x' : E
hx' : x' ∈ f.domain
h1 : x' = x
h2 : ↑f { val := x', property := hx' } = y
⊢ y = ↑f { val := x, property := hx }
[PROOFSTEP]
simp only [← h2, h1]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
⊢ y ∈ range ↑f ↔ ∃ x, (x, y) ∈ graph f
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
⊢ y ∈ range ↑f → ∃ x, (x, y) ∈ graph f
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
⊢ (∃ x, (x, y) ∈ graph f) → y ∈ range ↑f
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
h : y ∈ range ↑f
⊢ ∃ x, (x, y) ∈ graph f
[PROOFSTEP]
rw [Set.mem_range] at h
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
h : ∃ y_1, ↑f y_1 = y
⊢ ∃ x, (x, y) ∈ graph f
[PROOFSTEP]
rcases h with ⟨⟨x, hx⟩, h⟩
[GOAL]
case mp.intro.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x : E
hx : x ∈ f.domain
h : ↑f { val := x, property := hx } = y
⊢ ∃ x, (x, y) ∈ graph f
[PROOFSTEP]
use x
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x : E
hx : x ∈ f.domain
h : ↑f { val := x, property := hx } = y
⊢ (x, y) ∈ graph f
[PROOFSTEP]
rw [← h]
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x : E
hx : x ∈ f.domain
h : ↑f { val := x, property := hx } = y
⊢ (x, ↑f { val := x, property := hx }) ∈ graph f
[PROOFSTEP]
exact f.mem_graph ⟨x, hx⟩
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
h : ∃ x, (x, y) ∈ graph f
⊢ y ∈ range ↑f
[PROOFSTEP]
cases' h with x h
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x : E
h : (x, y) ∈ graph f
⊢ y ∈ range ↑f
[PROOFSTEP]
rw [mem_graph_iff] at h
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x : E
h : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd
⊢ y ∈ range ↑f
[PROOFSTEP]
cases' h with x h
[GOAL]
case mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x✝ : E
x : { x // x ∈ f.domain }
h : ↑x = (x✝, y).fst ∧ ↑f x = (x✝, y).snd
⊢ y ∈ range ↑f
[PROOFSTEP]
rw [Set.mem_range]
[GOAL]
case mpr.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x✝ : E
x : { x // x ∈ f.domain }
h : ↑x = (x✝, y).fst ∧ ↑f x = (x✝, y).snd
⊢ ∃ y_1, ↑f y_1 = y
[PROOFSTEP]
use x
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x✝ : E
x : { x // x ∈ f.domain }
h : ↑x = (x✝, y).fst ∧ ↑f x = (x✝, y).snd
⊢ ↑f x = y
[PROOFSTEP]
simp only at h
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f : E →ₗ.[R] F
y : F
x✝ : E
x : { x // x ∈ f.domain }
h : ↑x = x✝ ∧ ↑f x = y
⊢ ↑f x = y
[PROOFSTEP]
rw [h.2]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f = graph g
x : E
⊢ x ∈ f.domain ↔ x ∈ g.domain
[PROOFSTEP]
simp_rw [mem_domain_iff, h]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
⊢ f ≤ g
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
⊢ f.domain ≤ g.domain
[PROOFSTEP]
intro x hx
[GOAL]
case left
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx : x ∈ f.domain
⊢ x ∈ g.domain
[PROOFSTEP]
rw [mem_domain_iff] at hx ⊢
[GOAL]
case left
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx : ∃ y, (x, y) ∈ graph f
⊢ ∃ y, (x, y) ∈ graph g
[PROOFSTEP]
cases' hx with y hx
[GOAL]
case left.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
y : F
hx : (x, y) ∈ graph f
⊢ ∃ y, (x, y) ∈ graph g
[PROOFSTEP]
use y
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
y : F
hx : (x, y) ∈ graph f
⊢ (x, y) ∈ graph g
[PROOFSTEP]
exact h hx
[GOAL]
case right
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
⊢ ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y
[PROOFSTEP]
rintro ⟨x, hx⟩ ⟨y, hy⟩ hxy
[GOAL]
case right.mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx : x ∈ f.domain
y : E
hy : y ∈ g.domain
hxy : ↑{ val := x, property := hx } = ↑{ val := y, property := hy }
⊢ ↑f { val := x, property := hx } = ↑g { val := y, property := hy }
[PROOFSTEP]
rw [image_iff]
[GOAL]
case right.mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx : x ∈ f.domain
y : E
hy : y ∈ g.domain
hxy : ↑{ val := x, property := hx } = ↑{ val := y, property := hy }
⊢ (y, ↑f { val := x, property := hx }) ∈ graph g
[PROOFSTEP]
refine' h _
[GOAL]
case right.mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx : x ∈ f.domain
y : E
hy : y ∈ g.domain
hxy : ↑{ val := x, property := hx } = ↑{ val := y, property := hy }
⊢ (y, ↑f { val := x, property := hx }) ∈ graph f
[PROOFSTEP]
simp only [Submodule.coe_mk] at hxy
[GOAL]
case right.mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx : x ∈ f.domain
y : E
hy : y ∈ g.domain
hxy : x = y
⊢ (y, ↑f { val := x, property := hx }) ∈ graph f
[PROOFSTEP]
rw [hxy] at hx
[GOAL]
case right.mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx✝ : x ∈ f.domain
y : E
hx : y ∈ f.domain
hy : y ∈ g.domain
hxy : x = y
⊢ (y, ↑f { val := x, property := hx✝ }) ∈ graph f
[PROOFSTEP]
rw [← image_iff hx]
[GOAL]
case right.mk.mk
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f ≤ graph g
x : E
hx✝ : x ∈ f.domain
y : E
hx : y ∈ f.domain
hy : y ∈ g.domain
hxy : x = y
⊢ ↑f { val := x, property := hx✝ } = ↑f { val := y, property := hx }
[PROOFSTEP]
simp [hxy]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : f ≤ g
⊢ graph f ≤ graph g
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
hx : x ∈ graph f
⊢ x ∈ graph g
[PROOFSTEP]
rw [mem_graph_iff] at hx ⊢
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
hx : ∃ y, ↑y = x.fst ∧ ↑f y = x.snd
⊢ ∃ y, ↑y = x.fst ∧ ↑g y = x.snd
[PROOFSTEP]
cases' hx with y hx
[GOAL]
case intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
y : { x // x ∈ f.domain }
hx : ↑y = x.fst ∧ ↑f y = x.snd
⊢ ∃ y, ↑y = x.fst ∧ ↑g y = x.snd
[PROOFSTEP]
use⟨y, h.1 y.2⟩
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
y : { x // x ∈ f.domain }
hx : ↑y = x.fst ∧ ↑f y = x.snd
⊢ ↑{ val := ↑y, property := (_ : ↑y ∈ g.domain) } = x.fst ∧ ↑g { val := ↑y, property := (_ : ↑y ∈ g.domain) } = x.snd
[PROOFSTEP]
simp only [hx, Submodule.coe_mk, eq_self_iff_true, true_and_iff]
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
y : { x // x ∈ f.domain }
hx : ↑y = x.fst ∧ ↑f y = x.snd
⊢ ↑g { val := x.fst, property := (_ : (fun x => x ∈ g.domain) x.fst) } = x.snd
[PROOFSTEP]
convert hx.2 using 1
[GOAL]
case h.e'_2
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
y : { x // x ∈ f.domain }
hx : ↑y = x.fst ∧ ↑f y = x.snd
⊢ ↑g { val := x.fst, property := (_ : (fun x => x ∈ g.domain) x.fst) } = ↑f y
[PROOFSTEP]
refine' (h.2 _).symm
[GOAL]
case h.e'_2
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : f ≤ g
x : E × F
y : { x // x ∈ f.domain }
hx : ↑y = x.fst ∧ ↑f y = x.snd
⊢ ↑y = ↑{ val := x.fst, property := (_ : (fun x => x ∈ g.domain) x.fst) }
[PROOFSTEP]
simp only [hx.1, Submodule.coe_mk]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f = graph g
⊢ f = g
[PROOFSTEP]
refine ext (Submodule.ext fun x => ?_) (fun x y h' => ?_)
[GOAL]
case refine_1
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y : M
f g : E →ₗ.[R] F
h : graph f = graph g
x : E
⊢ x ∈ f.domain ↔ x ∈ g.domain
case refine_2
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f = graph g
x : { x // x ∈ f.domain }
y : { x // x ∈ g.domain }
h' : ↑x = ↑y
⊢ ↑f x = ↑g y
[PROOFSTEP]
exact mem_domain_iff_of_eq_graph h
[GOAL]
case refine_2
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
M : Type u_5
inst✝² : Monoid M
inst✝¹ : DistribMulAction M F
inst✝ : SMulCommClass R M F
y✝ : M
f g : E →ₗ.[R] F
h : graph f = graph g
x : { x // x ∈ f.domain }
y : { x // x ∈ g.domain }
h' : ↑x = ↑y
⊢ ↑f x = ↑g y
[PROOFSTEP]
exact (le_of_le_graph h.le).2 h'
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
⊢ ∃! b, (a, b) ∈ g
[PROOFSTEP]
refine' exists_unique_of_exists_of_unique _ _
[GOAL]
case refine'_1
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
⊢ ∃ x, (a, x) ∈ g
[PROOFSTEP]
convert ha
[GOAL]
case a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
⊢ (∃ x, (a, x) ∈ g) ↔ a ∈ map (LinearMap.fst R E F) g
[PROOFSTEP]
simp
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
⊢ ∀ (y₁ y₂ : F), (a, y₁) ∈ g → (a, y₂) ∈ g → y₁ = y₂
[PROOFSTEP]
intro y₁ y₂ hy₁ hy₂
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
y₁ y₂ : F
hy₁ : (a, y₁) ∈ g
hy₂ : (a, y₂) ∈ g
⊢ y₁ = y₂
[PROOFSTEP]
have hy : ((0 : E), y₁ - y₂) ∈ g := by
convert g.sub_mem hy₁ hy₂
exact (sub_self _).symm
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
y₁ y₂ : F
hy₁ : (a, y₁) ∈ g
hy₂ : (a, y₂) ∈ g
⊢ (0, y₁ - y₂) ∈ g
[PROOFSTEP]
convert g.sub_mem hy₁ hy₂
[GOAL]
case h.e'_4.h.e'_3
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
y₁ y₂ : F
hy₁ : (a, y₁) ∈ g
hy₂ : (a, y₂) ∈ g
⊢ 0 = ((a, y₁) - (a, y₂)).fst
[PROOFSTEP]
exact (sub_self _).symm
[GOAL]
case refine'_2
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
y₁ y₂ : F
hy₁ : (a, y₁) ∈ g
hy₂ : (a, y₂) ∈ g
hy : (0, y₁ - y₂) ∈ g
⊢ y₁ = y₂
[PROOFSTEP]
exact sub_eq_zero.mp (hg hy (by simp))
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0
a : E
ha : a ∈ map (LinearMap.fst R E F) g
y₁ y₂ : F
hy₁ : (a, y₁) ∈ g
hy₂ : (a, y₂) ∈ g
hy : (0, y₁ - y₂) ∈ g
⊢ (0, y₁ - y₂).fst = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
v w : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w
[PROOFSTEP]
have hadd := (g.map (LinearMap.fst R E F)).add_mem v.2 w.2
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
v w : { x // x ∈ map (LinearMap.fst R E F) g }
hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g
⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w
[PROOFSTEP]
have hvw := valFromGraph_mem hg hadd
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
v w : { x // x ∈ map (LinearMap.fst R E F) g }
hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g
hvw : (↑v + ↑w, valFromGraph hg hadd) ∈ g
⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w
[PROOFSTEP]
have hvw' := g.add_mem (valFromGraph_mem hg v.2) (valFromGraph_mem hg w.2)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
v w : { x // x ∈ map (LinearMap.fst R E F) g }
hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g
hvw : (↑v + ↑w, valFromGraph hg hadd) ∈ g
hvw' :
(↑v, valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g)) +
(↑w, valFromGraph hg (_ : ↑w ∈ map (LinearMap.fst R E F) g)) ∈
g
⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w
[PROOFSTEP]
rw [Prod.mk_add_mk] at hvw'
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
v w : { x // x ∈ map (LinearMap.fst R E F) g }
hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g
hvw : (↑v + ↑w, valFromGraph hg hadd) ∈ g
hvw' :
(↑v + ↑w,
valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g) + valFromGraph hg (_ : ↑w ∈ map (LinearMap.fst R E F) g)) ∈
g
⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w
[PROOFSTEP]
exact (existsUnique_from_graph (@hg) hadd).unique hvw hvw'
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
a : R
v : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
(a • v) =
↑(RingHom.id R) a •
AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
v
[PROOFSTEP]
have hsmul := (g.map (LinearMap.fst R E F)).smul_mem a v.2
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
a : R
v : { x // x ∈ map (LinearMap.fst R E F) g }
hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g
⊢ AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
(a • v) =
↑(RingHom.id R) a •
AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
v
[PROOFSTEP]
have hav := valFromGraph_mem hg hsmul
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
a : R
v : { x // x ∈ map (LinearMap.fst R E F) g }
hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g
hav : (a • ↑v, valFromGraph hg hsmul) ∈ g
⊢ AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
(a • v) =
↑(RingHom.id R) a •
AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
v
[PROOFSTEP]
have hav' := g.smul_mem a (valFromGraph_mem hg v.2)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
a : R
v : { x // x ∈ map (LinearMap.fst R E F) g }
hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g
hav : (a • ↑v, valFromGraph hg hsmul) ∈ g
hav' : a • (↑v, valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g)) ∈ g
⊢ AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
(a • v) =
↑(RingHom.id R) a •
AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
v
[PROOFSTEP]
rw [Prod.smul_mk] at hav'
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
a : R
v : { x // x ∈ map (LinearMap.fst R E F) g }
hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g
hav : (a • ↑v, valFromGraph hg hsmul) ∈ g
hav' : (a • ↑v, a • valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g)) ∈ g
⊢ AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
(a • v) =
↑(RingHom.id R) a •
AddHom.toFun
{ toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g),
map_add' :=
(_ :
∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }),
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) =
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v +
(fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) }
v
[PROOFSTEP]
exact (existsUnique_from_graph (@hg) hsmul).unique hav hav'
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ ↑(toLinearPMap g) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)
[PROOFSTEP]
classical
change (if hg : _ then g.toLinearPMapAux hg else 0) x = _
rw [dif_pos]
· rfl
· exact hg
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ ↑(toLinearPMap g) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)
[PROOFSTEP]
change (if hg : _ then g.toLinearPMapAux hg else 0) x = _
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ ↑(if hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 then toLinearPMapAux g hg else 0) x =
valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)
[PROOFSTEP]
rw [dif_pos]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ ↑(toLinearPMapAux g ?hc) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)
[PROOFSTEP]
rfl
[GOAL]
case hc
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
[PROOFSTEP]
exact hg
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ (↑x, ↑(toLinearPMap g) x) ∈ g
[PROOFSTEP]
rw [toLinearPMap_apply_aux hg]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : { x // x ∈ map (LinearMap.fst R E F) g }
⊢ (↑x, valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) ∈ g
[PROOFSTEP]
exact valFromGraph_mem hg x.2
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
⊢ LinearPMap.graph (toLinearPMap g) = g
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
⊢ x ∈ LinearPMap.graph (toLinearPMap g) ↔ x ∈ g
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
⊢ x ∈ LinearPMap.graph (toLinearPMap g) → x ∈ g
[PROOFSTEP]
intro hx
[GOAL]
case h.mpr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
⊢ x ∈ g → x ∈ LinearPMap.graph (toLinearPMap g)
[PROOFSTEP]
intro hx
[GOAL]
case h.mp
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
hx : x ∈ LinearPMap.graph (toLinearPMap g)
⊢ x ∈ g
[PROOFSTEP]
rw [LinearPMap.mem_graph_iff] at hx
[GOAL]
case h.mp
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
hx : ∃ y, ↑y = x.fst ∧ ↑(toLinearPMap g) y = x.snd
⊢ x ∈ g
[PROOFSTEP]
rcases hx with ⟨y, hx1, hx2⟩
[GOAL]
case h.mp.intro.intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
y : { x // x ∈ (toLinearPMap g).domain }
hx1 : ↑y = x.fst
hx2 : ↑(toLinearPMap g) y = x.snd
⊢ x ∈ g
[PROOFSTEP]
convert g.mem_graph_toLinearPMap hg y using 1
[GOAL]
case h.e'_4
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
y : { x // x ∈ (toLinearPMap g).domain }
hx1 : ↑y = x.fst
hx2 : ↑(toLinearPMap g) y = x.snd
⊢ x = (↑y, ↑(toLinearPMap g) y)
[PROOFSTEP]
exact Prod.ext hx1.symm hx2.symm
[GOAL]
case h.mpr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
hx : x ∈ g
⊢ x ∈ LinearPMap.graph (toLinearPMap g)
[PROOFSTEP]
rw [LinearPMap.mem_graph_iff]
[GOAL]
case h.mpr
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x : E × F
hx : x ∈ g
⊢ ∃ y, ↑y = x.fst ∧ ↑(toLinearPMap g) y = x.snd
[PROOFSTEP]
cases' x with x_fst x_snd
[GOAL]
case h.mpr.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x_fst : E
x_snd : F
hx : (x_fst, x_snd) ∈ g
⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(toLinearPMap g) y = (x_fst, x_snd).snd
[PROOFSTEP]
have hx_fst : x_fst ∈ g.map (LinearMap.fst R E F) :=
by
simp only [mem_map, LinearMap.fst_apply, Prod.exists, exists_and_right, exists_eq_right]
exact ⟨x_snd, hx⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x_fst : E
x_snd : F
hx : (x_fst, x_snd) ∈ g
⊢ x_fst ∈ map (LinearMap.fst R E F) g
[PROOFSTEP]
simp only [mem_map, LinearMap.fst_apply, Prod.exists, exists_and_right, exists_eq_right]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x_fst : E
x_snd : F
hx : (x_fst, x_snd) ∈ g
⊢ ∃ x, (x_fst, x) ∈ g
[PROOFSTEP]
exact ⟨x_snd, hx⟩
[GOAL]
case h.mpr.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x_fst : E
x_snd : F
hx : (x_fst, x_snd) ∈ g
hx_fst : x_fst ∈ map (LinearMap.fst R E F) g
⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(toLinearPMap g) y = (x_fst, x_snd).snd
[PROOFSTEP]
refine' ⟨⟨x_fst, hx_fst⟩, Subtype.coe_mk x_fst hx_fst, _⟩
[GOAL]
case h.mpr.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x_fst : E
x_snd : F
hx : (x_fst, x_snd) ∈ g
hx_fst : x_fst ∈ map (LinearMap.fst R E F) g
⊢ ↑(toLinearPMap g) { val := x_fst, property := hx_fst } = (x_fst, x_snd).snd
[PROOFSTEP]
rw [toLinearPMap_apply_aux hg]
[GOAL]
case h.mpr.mk
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
x_fst : E
x_snd : F
hx : (x_fst, x_snd) ∈ g
hx_fst : x_fst ∈ map (LinearMap.fst R E F) g
⊢ valFromGraph hg (_ : ↑{ val := x_fst, property := hx_fst } ∈ map (LinearMap.fst R E F) g) = (x_fst, x_snd).snd
[PROOFSTEP]
exact (existsUnique_from_graph (@hg) hx_fst).unique (valFromGraph_mem hg hx_fst) hx
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
g : Submodule R (E × F)
hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0
⊢ LinearMap.range (toLinearPMap g).toFun = map (LinearMap.snd R E F) g
[PROOFSTEP]
rwa [← LinearPMap.graph_map_snd_eq_range, toLinearPMap_graph_eq]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ (inverse f).domain = LinearMap.range f.toFun
[PROOFSTEP]
rw [inverse, Submodule.toLinearPMap_domain, ← graph_map_snd_eq_range, ← LinearEquiv.fst_comp_prodComm,
Submodule.map_comp]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
⊢ Submodule.map (LinearMap.fst R F E) (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) =
Submodule.map (LinearMap.fst R F E) (Submodule.map (↑(LinearEquiv.prodComm R E F)) (graph f))
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
x : F × E
hv : x ∈ Submodule.map (LinearEquiv.prodComm R E F) (graph f)
hv' : x.fst = 0
⊢ x.snd = 0
[PROOFSTEP]
simp only [Submodule.mem_map, mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left,
LinearEquiv.prodComm_apply, Prod.exists, Prod.swap_prod_mk] at hv
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
x : F × E
hv' : x.fst = 0
hv : ∃ a b, (∃ h, ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b) ∧ (b, a) = x
⊢ x.snd = 0
[PROOFSTEP]
rcases hv with ⟨a, b, ⟨ha, h1⟩, ⟨h2, h3⟩⟩
[GOAL]
case intro.intro.intro.intro.refl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
a : E
b : F
ha : a ∈ f.domain
h1 : ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b
hv' : (b, a).fst = 0
⊢ (b, a).snd = 0
[PROOFSTEP]
simp only at hv' ⊢
[GOAL]
case intro.intro.intro.intro.refl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
a : E
b : F
ha : a ∈ f.domain
h1 : ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b
hv' : b = 0
⊢ a = 0
[PROOFSTEP]
rw [hv'] at h1
[GOAL]
case intro.intro.intro.intro.refl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
a : E
b : F
ha : a ∈ f.domain
h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0
hv' : b = 0
⊢ a = 0
[PROOFSTEP]
rw [LinearMap.ker_eq_bot'] at hf
[GOAL]
case intro.intro.intro.intro.refl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : ∀ (m : { x // x ∈ f.domain }), ↑f.toFun m = 0 → m = 0
a : E
b : F
ha : a ∈ f.domain
h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0
hv' : b = 0
⊢ a = 0
[PROOFSTEP]
specialize hf ⟨a, ha⟩ h1
[GOAL]
case intro.intro.intro.intro.refl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
a : E
b : F
ha : a ∈ f.domain
h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0
hv' : b = 0
hf : { val := a, property := ha } = 0
⊢ a = 0
[PROOFSTEP]
simp only [Submodule.mk_eq_zero] at hf
[GOAL]
case intro.intro.intro.intro.refl
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
a : E
b : F
ha : a ∈ f.domain
h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0
hv' : b = 0
hf : a = 0
⊢ a = 0
[PROOFSTEP]
exact hf
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
⊢ graph (inverse f) = Submodule.map (LinearEquiv.prodComm R E F) (graph f)
[PROOFSTEP]
rw [inverse, Submodule.toLinearPMap_graph_eq _ (mem_inverse_graph_snd_eq_zero hf)]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
⊢ LinearMap.range (inverse f).toFun = f.domain
[PROOFSTEP]
rw [inverse, Submodule.toLinearPMap_range _ (mem_inverse_graph_snd_eq_zero hf), ← graph_map_fst_eq_domain, ←
LinearEquiv.snd_comp_prodComm, Submodule.map_comp]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
⊢ Submodule.map (LinearMap.snd R F E) (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) =
Submodule.map (LinearMap.snd R F E) (Submodule.map (↑(LinearEquiv.prodComm R E F)) (graph f))
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
x : { x // x ∈ f.domain }
⊢ (↑f x, ↑x) ∈ graph (inverse f)
[PROOFSTEP]
simp only [inverse_graph hf, Submodule.mem_map, mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left,
LinearEquiv.prodComm_apply, Prod.exists, Prod.swap_prod_mk, Prod.mk.injEq]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
x : { x // x ∈ f.domain }
⊢ ∃ a b, (∃ h, ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b) ∧ b = ↑f x ∧ a = ↑x
[PROOFSTEP]
exact ⟨(x : E), f x, ⟨x.2, Eq.refl _⟩, Eq.refl _, Eq.refl _⟩
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
y : { x // x ∈ (inverse f).domain }
x : { x // x ∈ f.domain }
hxy : ↑f x = ↑y
⊢ ↑(inverse f) y = ↑x
[PROOFSTEP]
have := mem_inverse_graph hf x
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
y : { x // x ∈ (inverse f).domain }
x : { x // x ∈ f.domain }
hxy : ↑f x = ↑y
this : (↑f x, ↑x) ∈ graph (inverse f)
⊢ ↑(inverse f) y = ↑x
[PROOFSTEP]
simp only [mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left] at this
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
y : { x // x ∈ (inverse f).domain }
x : { x // x ∈ f.domain }
hxy : ↑f x = ↑y
this : ∃ x_1, ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x
⊢ ↑(inverse f) y = ↑x
[PROOFSTEP]
rcases this with ⟨hx, h⟩
[GOAL]
case intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
y : { x // x ∈ (inverse f).domain }
x : { x // x ∈ f.domain }
hxy : ↑f x = ↑y
hx : ↑f x ∈ (inverse f).domain
h : ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x
⊢ ↑(inverse f) y = ↑x
[PROOFSTEP]
rw [← h]
[GOAL]
case intro
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
y : { x // x ∈ (inverse f).domain }
x : { x // x ∈ f.domain }
hxy : ↑f x = ↑y
hx : ↑f x ∈ (inverse f).domain
h : ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x
⊢ ↑(inverse f) y = ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) }
[PROOFSTEP]
congr
[GOAL]
case intro.e_a
R : Type u_1
inst✝⁶ : Ring R
E : Type u_2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
F : Type u_3
inst✝³ : AddCommGroup F
inst✝² : Module R F
G : Type u_4
inst✝¹ : AddCommGroup G
inst✝ : Module R G
f : E →ₗ.[R] F
hf : LinearMap.ker f.toFun = ⊥
y : { x // x ∈ (inverse f).domain }
x : { x // x ∈ f.domain }
hxy : ↑f x = ↑y
hx : ↑f x ∈ (inverse f).domain
h : ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x
⊢ y = { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) }
[PROOFSTEP]
simp only [hxy, Subtype.coe_eta]
| {"mathlib_filename": "Mathlib.LinearAlgebra.LinearPMap", "llama_tokens": 101722} |
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
⊢ ∀ (x : ↑(toTopCat X)),
∃ U R, Nonempty (restrict X (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))
[PROOFSTEP]
intro x
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
⊢ ∃ U R, Nonempty (restrict X (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))
[PROOFSTEP]
obtain ⟨R, f, h₁, h₂⟩ := h x
[GOAL]
case intro.intro.intro
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ ∃ U R, Nonempty (restrict X (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))
[PROOFSTEP]
refine' ⟨⟨⟨_, h₂.base_open.open_range⟩, h₁⟩, R, ⟨_⟩⟩
[GOAL]
case intro.intro.intro
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
{ obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) },
property := h₁ }.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)
[PROOFSTEP]
apply LocallyRingedSpace.isoOfSheafedSpaceIso
[GOAL]
case intro.intro.intro.f
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ (restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
{ obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) },
property := h₁ }.obj))).toSheafedSpace ≅
(Spec.toLocallyRingedSpace.obj (op R)).toSheafedSpace
[PROOFSTEP]
refine' SheafedSpace.forgetToPresheafedSpace.preimageIso _
[GOAL]
case intro.intro.intro.f
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ SheafedSpace.forgetToPresheafedSpace.obj
(restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
{ obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) },
property := h₁ }.obj))).toSheafedSpace ≅
SheafedSpace.forgetToPresheafedSpace.obj (Spec.toLocallyRingedSpace.obj (op R)).toSheafedSpace
[PROOFSTEP]
skip
[GOAL]
case intro.intro.intro.f
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ SheafedSpace.forgetToPresheafedSpace.obj
(restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
{ obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) },
property := h₁ }.obj))).toSheafedSpace ≅
SheafedSpace.forgetToPresheafedSpace.obj (Spec.toLocallyRingedSpace.obj (op R)).toSheafedSpace
[PROOFSTEP]
apply PresheafedSpace.IsOpenImmersion.isoOfRangeEq (PresheafedSpace.ofRestrict _ _) f.1
[GOAL]
case intro.intro.intro.f
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ Set.range ↑(PresheafedSpace.ofRestrict X.toPresheafedSpace ?m.3415).base = Set.range ↑f.val.base
[PROOFSTEP]
exact Subtype.range_coe_subtype
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : LocallyRingedSpace
h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f
x : ↑(toTopCat X)
R : CommRingCat
f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X
h₁ : x ∈ Set.range ↑f.val.base
h₂ : IsOpenImmersion f
⊢ OpenEmbedding
↑(Opens.inclusion
{ obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) },
property := h₁ }.obj)
[PROOFSTEP]
exact
Opens.openEmbedding
_
-- Porting note : was `infer_instance`
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
⊢ ∀ (x : ↑↑X.toPresheafedSpace),
x ∈
Set.range
↑((fun x =>
(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv ≫
LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)))
((fun x => x) x)).val.base
[PROOFSTEP]
intro x
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ x ∈
Set.range
↑((fun x =>
(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv ≫
LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)))
((fun x => x) x)).val.base
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ x ∈
Set.range
(↑(LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj))).val.base ∘
↑(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base)
[PROOFSTEP]
rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ x ∈
Set.range
↑(LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj))).val.base
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ Function.Surjective
↑(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base
[PROOFSTEP]
erw [Subtype.range_coe_subtype]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ x ∈
{x_1 |
x_1 ∈
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj}
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ Function.Surjective
↑(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base
[PROOFSTEP]
exact (X.local_affine x).choose.2
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ Function.Surjective
↑(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ Epi
(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base
[PROOFSTEP]
change Epi ((SheafedSpace.forget _).map (LocallyRingedSpace.forgetToSheafedSpace.map _))
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ Epi
((SheafedSpace.forget CommRingCat).map
(LocallyRingedSpace.forgetToSheafedSpace.map
(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ IsOpenImmersion
((fun x =>
(Nonempty.some
(_ :
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj
(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))))).inv ≫
LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)))
x)
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp
[GOAL]
case hg
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ PresheafedSpace.IsOpenImmersion
(LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj))).val
[PROOFSTEP]
apply PresheafedSpace.IsOpenImmersion.ofRestrict
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
⊢ x ∈
Set.range
↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst)
((fun x =>
{ fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x,
snd :=
AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(Exists.choose
(_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) })
x)).val.base
[PROOFSTEP]
let y := (𝒰.Covers x).choose
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace :=
Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)
⊢ x ∈
Set.range
↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst)
((fun x =>
{ fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x,
snd :=
AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(Exists.choose
(_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) })
x)).val.base
[PROOFSTEP]
have hy : (𝒰.map (𝒰.f x)).val.base y = x := (𝒰.Covers x).choose_spec
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace :=
Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)
hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x
⊢ x ∈
Set.range
↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst)
((fun x =>
{ fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x,
snd :=
AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(Exists.choose
(_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) })
x)).val.base
[PROOFSTEP]
rcases(f (𝒰.f x)).Covers y with ⟨z, hz⟩
[GOAL]
case intro
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace :=
Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)
hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x
z :
(forget TopCat).obj
↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace
hz :
↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base
z =
y
⊢ x ∈
Set.range
↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst)
((fun x =>
{ fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x,
snd :=
AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(Exists.choose
(_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) })
x)).val.base
[PROOFSTEP]
change x ∈ Set.range ((f (𝒰.f x)).map ((f (𝒰.f x)).f y) ≫ 𝒰.map (𝒰.f x)).1.base
[GOAL]
case intro
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace :=
Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)
hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x
z :
(forget TopCat).obj
↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace
hz :
↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base
z =
y
⊢ x ∈
Set.range
↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y) ≫
map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base
[PROOFSTEP]
use z
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace :=
Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)
hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x
z :
(forget TopCat).obj
↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace
hz :
↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base
z =
y
⊢ ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y) ≫
map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base
z =
x
[PROOFSTEP]
erw [comp_apply]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g
f : (x : 𝒰.J) → OpenCover (obj 𝒰 x)
x : ↑↑X.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace :=
Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)
hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x
z :
(forget TopCat).obj
↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace
hz :
↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base
z =
y
⊢ ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base
(↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x))
(AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base
z) =
x
[PROOFSTEP]
rw [hz, hy]
-- Porting note : weirdly, even though no input is needed, `inferInstance` does not work
-- `PresheafedSpace.IsOpenImmersion.comp` is marked as `instance`
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ x ∈ Set.range ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base
[PROOFSTEP]
rw [Set.range_iff_surjective.mpr]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ x ∈ Set.univ
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base
[PROOFSTEP]
all_goals try trivial
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ x ∈ Set.univ
[PROOFSTEP]
try trivial
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ x ∈ Set.univ
[PROOFSTEP]
trivial
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base
[PROOFSTEP]
try trivial
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base
[PROOFSTEP]
trivial
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
x : ↑↑Y.toPresheafedSpace
⊢ Epi ((fun x => f) ((fun x => PUnit.unit) x)).val.base
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
J : Type u_1
obj : J → Scheme
map : (i : J) → obj i ⟶ X
e₁ : J ≃ 𝒰.J
e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i)
e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)
x : ↑↑X.toPresheafedSpace
⊢ x ∈ Set.range ↑(map ((fun x => ↑e₁.symm (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) x)).val.base
[PROOFSTEP]
rw [e₂, Scheme.comp_val_base, coe_comp, Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ,
e₁.rightInverse_symm]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
J : Type u_1
obj : J → Scheme
map : (i : J) → obj i ⟶ X
e₁ : J ≃ 𝒰.J
e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i)
e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)
x : ↑↑X.toPresheafedSpace
⊢ x ∈ Set.range ↑(AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base
[PROOFSTEP]
exact 𝒰.Covers x
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
J : Type u_1
obj : J → Scheme
map : (i : J) → obj i ⟶ X
e₁ : J ≃ 𝒰.J
e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i)
e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)
x : ↑↑X.toPresheafedSpace
⊢ Function.Surjective ↑(e₂✝ ((fun x => ↑e₁.symm (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) x)).hom.val.base
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
J : Type u_1
obj : J → Scheme
map : (i : J) → obj i ⟶ X
e₁ : J ≃ 𝒰.J
e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i)
e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)
x : ↑↑X.toPresheafedSpace
⊢ Epi (e₂✝ ((fun x => ↑e₁.symm (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) x)).hom.val.base
[PROOFSTEP]
infer_instance
-- Porting note : weirdly, even though no input is needed, `inferInstance` does not work
-- `PresheafedSpace.IsOpenImmersion.comp` is marked as `instance`
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
J : Type u_1
obj : J → Scheme
map : (i : J) → obj i ⟶ X
e₁ : J ≃ 𝒰.J
e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i)
e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)
i : J
⊢ IsOpenImmersion (map i)
[PROOFSTEP]
rw [e₂]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
J : Type u_1
obj : J → Scheme
map : (i : J) → obj i ⟶ X
e₁ : J ≃ 𝒰.J
e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i)
e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)
i : J
⊢ IsOpenImmersion ((e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i))
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.comp _ _
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰✝ : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : Y ⟶ X
inst✝ : IsOpenImmersion f
⊢ ∀ (x : Option 𝒰.J), IsOpenImmersion ((fun i => Option.rec f 𝒰.map i) x)
[PROOFSTEP]
rintro (_ | _)
[GOAL]
case none
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰✝ : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : Y ⟶ X
inst✝ : IsOpenImmersion f
⊢ IsOpenImmersion ((fun i => Option.rec f 𝒰.map i) none)
[PROOFSTEP]
dsimp
[GOAL]
case some
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰✝ : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : Y ⟶ X
inst✝ : IsOpenImmersion f
val✝ : 𝒰.J
⊢ IsOpenImmersion ((fun i => Option.rec f 𝒰.map i) (some val✝))
[PROOFSTEP]
dsimp
[GOAL]
case none
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰✝ : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : Y ⟶ X
inst✝ : IsOpenImmersion f
⊢ IsOpenImmersion f
[PROOFSTEP]
infer_instance
[GOAL]
case some
C : Type u
inst✝² : Category.{v, u} C
X✝ Y✝ Z : Scheme
𝒰✝ : OpenCover X✝
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : Y ⟶ X
inst✝ : IsOpenImmersion f
val✝ : 𝒰.J
⊢ IsOpenImmersion (map 𝒰 val✝)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
R : CommRingCat
f : ↑R
⊢ IsOpenImmersion (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op)
[PROOFSTEP]
apply SheafedSpace.IsOpenImmersion.of_stalk_iso (H := ?_)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
R : CommRingCat
f : ↑R
⊢ OpenEmbedding ↑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val.base
[PROOFSTEP]
exact (PrimeSpectrum.localization_away_openEmbedding (Localization.Away f) f : _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
R : CommRingCat
f : ↑R
hf : OpenEmbedding ↑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val.base
⊢ ∀ (x : ↑↑(Spec.obj (op (CommRingCat.of (Localization.Away f)))).toPresheafedSpace),
IsIso (PresheafedSpace.stalkMap (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val x)
[PROOFSTEP]
intro x
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g
R : CommRingCat
f : ↑R
hf : OpenEmbedding ↑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val.base
x : ↑↑(Spec.obj (op (CommRingCat.of (Localization.Away f)))).toPresheafedSpace
⊢ IsIso (PresheafedSpace.stalkMap (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val x)
[PROOFSTEP]
exact Spec_map_localization_isIso R (Submonoid.powers f) x
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
R : CommRingCat
r : ↑↑(Spec.obj (op R)).toPresheafedSpace
⊢ r ∈ Set.range ↑((fun r => Spec.map (algebraMap (↑R) (Localization.Away r)).op) ((fun x => 1) r)).val.base
[PROOFSTEP]
rw [Set.range_iff_surjective.mpr ((TopCat.epi_iff_surjective _).mp _)]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
R : CommRingCat
r : ↑↑(Spec.obj (op R)).toPresheafedSpace
⊢ r ∈ Set.univ
[PROOFSTEP]
exact trivial
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
R : CommRingCat
r : ↑↑(Spec.obj (op R)).toPresheafedSpace
⊢ Epi ((fun r => Spec.map (algebraMap (↑R) (Localization.Away r)).op) ((fun x => 1) r)).val.base
[PROOFSTEP]
change Epi (Spec.map (CommRingCat.ofHom (algebraMap _ _)).op).1.base
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
R : CommRingCat
r : ↑↑(Spec.obj (op R)).toPresheafedSpace
⊢ Epi (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away ((fun x => 1) r)))).op).val.base
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
r :
↑(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))
⊢ Set.range ↑(OpenCover.map (affineBasisCover X) { fst := x, snd := r }).val.base =
↑(OpenCover.map (affineCover X) x).val.base '' (PrimeSpectrum.basicOpen r).carrier
[PROOFSTEP]
erw [coe_comp, Set.range_comp]
-- Porting note : `congr` fails to see the goal is comparing image of the same function
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
r :
↑(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))
⊢ ↑(OpenCover.map (affineCover X) { fst := x, snd := r }.fst).val.base ''
Set.range
↑(OpenCover.map
((fun x =>
affineBasisCoverOfAffine
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))
{ fst := x, snd := r }.fst)
{ fst := x, snd := r }.snd).val.base =
↑(OpenCover.map (affineCover X) x).val.base '' (PrimeSpectrum.basicOpen r).carrier
[PROOFSTEP]
refine congr_arg (_ '' ·) ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
x : ↑↑X.toPresheafedSpace
r :
↑(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))
⊢ Set.range
↑(OpenCover.map
((fun x =>
affineBasisCoverOfAffine
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))))
{ fst := x, snd := r }.fst)
{ fst := x, snd := r }.snd).val.base =
(PrimeSpectrum.basicOpen r).carrier
[PROOFSTEP]
exact (PrimeSpectrum.localization_away_comap_range (Localization.Away r) r : _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
⊢ IsTopologicalBasis {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base}
[PROOFSTEP]
apply TopologicalSpace.isTopologicalBasis_of_open_of_nhds
[GOAL]
case h_open
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
⊢ ∀ (u : Set ↑↑X.toPresheafedSpace),
u ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} → IsOpen u
[PROOFSTEP]
rintro _ ⟨a, rfl⟩
[GOAL]
case h_open.intro
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : (affineBasisCover X).J
⊢ IsOpen (Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base)
[PROOFSTEP]
exact IsOpenImmersion.open_range (X.affineBasisCover.map a)
[GOAL]
case h_nhds
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
⊢ ∀ (a : ↑↑X.toPresheafedSpace) (u : Set ↑↑X.toPresheafedSpace),
a ∈ u →
IsOpen u → ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ u
[PROOFSTEP]
rintro a U haU hU
[GOAL]
case h_nhds
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U
[PROOFSTEP]
rcases X.affineCover.Covers a with ⟨x, e⟩
[GOAL]
case h_nhds.intro
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U
[PROOFSTEP]
let U' := (X.affineCover.map (X.affineCover.f a)).1.base ⁻¹' U
[GOAL]
case h_nhds.intro
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U
[PROOFSTEP]
have hxU' : x ∈ U' := by rw [← e] at haU ; exact haU
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
⊢ x ∈ U'
[PROOFSTEP]
rw [← e] at haU
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
haU : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x ∈ U
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
⊢ x ∈ U'
[PROOFSTEP]
exact haU
[GOAL]
case h_nhds.intro
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U
[PROOFSTEP]
rcases PrimeSpectrum.isBasis_basic_opens.exists_subset_of_mem_open hxU'
((X.affineCover.map (X.affineCover.f a)).1.base.continuous_toFun.isOpen_preimage _ hU) with
⟨_, ⟨_, ⟨s, rfl⟩, rfl⟩, hxV, hVU⟩
[GOAL]
case h_nhds.intro.intro.intro.intro.intro.intro.intro
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
s :
↑(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))).unop
hxV : x ∈ ↑(PrimeSpectrum.basicOpen s)
hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U'
⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U
[PROOFSTEP]
refine' ⟨_, ⟨⟨_, s⟩, rfl⟩, _, _⟩
[GOAL]
case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
s :
↑(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))).unop
hxV : x ∈ ↑(PrimeSpectrum.basicOpen s)
hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U'
⊢ a ∈ Set.range ↑(OpenCover.map (affineBasisCover X) { fst := OpenCover.f (affineCover X) a, snd := s }).val.base
[PROOFSTEP]
erw [affineBasisCover_map_range]
[GOAL]
case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
s :
↑(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))).unop
hxV : x ∈ ↑(PrimeSpectrum.basicOpen s)
hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U'
⊢ Set.range ↑(OpenCover.map (affineBasisCover X) { fst := OpenCover.f (affineCover X) a, snd := s }).val.base ⊆ U
[PROOFSTEP]
erw [affineBasisCover_map_range]
[GOAL]
case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
s :
↑(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))).unop
hxV : x ∈ ↑(PrimeSpectrum.basicOpen s)
hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U'
⊢ a ∈ ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base '' (PrimeSpectrum.basicOpen s).carrier
[PROOFSTEP]
exact ⟨x, hxV, e⟩
[GOAL]
case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
s :
↑(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))).unop
hxV : x ∈ ↑(PrimeSpectrum.basicOpen s)
hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U'
⊢ ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base '' (PrimeSpectrum.basicOpen s).carrier ⊆ U
[PROOFSTEP]
rw [Set.image_subset_iff]
[GOAL]
case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰 : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
X : Scheme
a : ↑↑X.toPresheafedSpace
U : Set ↑↑X.toPresheafedSpace
haU : a ∈ U
hU : IsOpen U
x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace
e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a
U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) :=
↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
hxU' : x ∈ U'
s :
↑(op
(Exists.choose
(_ :
∃ R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ :
OpenEmbedding
↑(Opens.inclusion
(Exists.choose
(_ :
∃ U R,
Nonempty
(LocallyRingedSpace.restrict X.toLocallyRingedSpace
(_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))))).unop
hxV : x ∈ ↑(PrimeSpectrum.basicOpen s)
hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U'
⊢ (PrimeSpectrum.basicOpen s).carrier ⊆ ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U
[PROOFSTEP]
exact hVU
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ OpenCover X
[PROOFSTEP]
have :=
@CompactSpace.elim_nhds_subcover _ _ H (fun x : X => Set.range (𝒰.map (𝒰.f x)).1.base) fun x =>
(IsOpenImmersion.open_range (𝒰.map (𝒰.f x))).mem_nhds (𝒰.Covers x)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
⊢ OpenCover X
[PROOFSTEP]
let t := this.choose
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
⊢ OpenCover X
[PROOFSTEP]
have h : ∀ x : X, ∃ y : t, x ∈ Set.range (𝒰.map (𝒰.f y)).1.base :=
by
intro x
have h' : x ∈ (⊤ : Set X) := trivial
rw [← Classical.choose_spec this, Set.mem_iUnion] at h'
rcases h' with ⟨y, _, ⟨hy, rfl⟩, hy'⟩
exact ⟨⟨y, hy⟩, hy'⟩
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
⊢ ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base
[PROOFSTEP]
intro x
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
x : ↑↑X.toPresheafedSpace
⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base
[PROOFSTEP]
have h' : x ∈ (⊤ : Set X) := trivial
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
x : ↑↑X.toPresheafedSpace
h' : x ∈ ⊤
⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base
[PROOFSTEP]
rw [← Classical.choose_spec this, Set.mem_iUnion] at h'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
x : ↑↑X.toPresheafedSpace
h' :
∃ i,
x ∈
⋃ (_ : i ∈ Classical.choose this),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) i
⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base
[PROOFSTEP]
rcases h' with ⟨y, _, ⟨hy, rfl⟩, hy'⟩
[GOAL]
case intro.intro.intro.intro
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
x y : ↑↑X.toPresheafedSpace
hy : y ∈ Classical.choose this
hy' : x ∈ (fun h => (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) y) hy
⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base
[PROOFSTEP]
exact ⟨⟨y, hy⟩, hy'⟩
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y Z : Scheme
𝒰✝ : OpenCover X✝
f : X✝ ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g
X : Scheme
𝒰 : OpenCover X
H : CompactSpace ↑↑X.toPresheafedSpace
this :
∃ t,
⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t),
(fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x =
⊤
t : Finset ↑↑X.toPresheafedSpace := Exists.choose this
h : ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base
⊢ OpenCover X
[PROOFSTEP]
exact
{ J := t
obj := fun x => 𝒰.obj (𝒰.f x.1)
map := fun x => 𝒰.map (𝒰.f x.1)
f := fun x => (h x).choose
Covers := fun x => (h x).choose_spec }
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ Fintype (OpenCover.finiteSubcover 𝒰).J
[PROOFSTEP]
delta OpenCover.finiteSubcover
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ Fintype
(let_fun this :=
(_ :
∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 x)).val.base = ⊤);
let t := Exists.choose this;
let_fun h :=
(_ : ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑y)).val.base);
OpenCover.mk { x // x ∈ t } (fun x => OpenCover.obj 𝒰 (OpenCover.f 𝒰 ↑x))
(fun x => OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑x))
(fun x => Exists.choose (_ : ∃ y, x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑y)).val.base))
(_ :
∀ (x : ↑↑X.toPresheafedSpace),
x ∈
Set.range
↑(OpenCover.map 𝒰
(OpenCover.f 𝒰
↑(Exists.choose
(_ : ∃ y, x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑y)).val.base)))).val.base)).J
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
⊢ Scheme
[PROOFSTEP]
apply LocallyRingedSpace.IsOpenImmersion.scheme (toLocallyRingedSpace _ f)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
⊢ ∀ (x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))),
∃ R f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1
[PROOFSTEP]
intro x
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
⊢ ∃ R f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1
[PROOFSTEP]
obtain ⟨_, ⟨i, rfl⟩, hx, hi⟩ :=
Y.affineBasisCover_is_basis.exists_subset_of_mem_open (Set.mem_range_self x) H.base_open.open_range
[GOAL]
case intro.intro.intro.intro
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ ∃ R f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1
[PROOFSTEP]
use Y.affineBasisCoverRing i
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ ∃ f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1
[PROOFSTEP]
use LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom _ f) _ hi
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ x ∈
Set.range
↑(LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f)
(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi).val.base ∧
LocallyRingedSpace.IsOpenImmersion
(LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f)
(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi)
[PROOFSTEP]
constructor
[GOAL]
case h.left
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ x ∈
Set.range
↑(LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f)
(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi).val.base
[PROOFSTEP]
rw [LocallyRingedSpace.IsOpenImmersion.lift_range]
[GOAL]
case h.left
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ x ∈
↑(toLocallyRingedSpaceHom Y.toLocallyRingedSpace f).val.base ⁻¹'
Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
[PROOFSTEP]
exact hx
[GOAL]
case h.right
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ LocallyRingedSpace.IsOpenImmersion
(LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f)
(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi)
[PROOFSTEP]
delta LocallyRingedSpace.IsOpenImmersion.lift
[GOAL]
case h.right
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))
i : (Scheme.affineBasisCover Y).J
hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base
hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base
⊢ LocallyRingedSpace.IsOpenImmersion
(let_fun this := (_ : IsIso pullback.snd);
inv pullback.snd ≫ pullback.fst)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ : PresheafedSpace CommRingCat
Y✝ : Scheme
f : X✝ ⟶ Y✝.toPresheafedSpace
H✝ : IsOpenImmersion f
X Y : Scheme
H : X.toLocallyRingedSpace = Y.toLocallyRingedSpace
⊢ X = Y
[PROOFSTEP]
cases X
[GOAL]
case mk
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y✝ : Scheme
f : X ⟶ Y✝.toPresheafedSpace
H✝ : IsOpenImmersion f
Y : Scheme
toLocallyRingedSpace✝ : LocallyRingedSpace
local_affine✝ :
∀ (x : ↑(LocallyRingedSpace.toTopCat toLocallyRingedSpace✝)),
∃ U R,
Nonempty
(LocallyRingedSpace.restrict toLocallyRingedSpace✝ (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))
H :
{ toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ }.toLocallyRingedSpace =
Y.toLocallyRingedSpace
⊢ { toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ } = Y
[PROOFSTEP]
cases Y
[GOAL]
case mk.mk
C : Type u
inst✝ : Category.{v, u} C
X : PresheafedSpace CommRingCat
Y : Scheme
f : X ⟶ Y.toPresheafedSpace
H✝ : IsOpenImmersion f
toLocallyRingedSpace✝¹ : LocallyRingedSpace
local_affine✝¹ :
∀ (x : ↑(LocallyRingedSpace.toTopCat toLocallyRingedSpace✝¹)),
∃ U R,
Nonempty
(LocallyRingedSpace.restrict toLocallyRingedSpace✝¹ (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))
toLocallyRingedSpace✝ : LocallyRingedSpace
local_affine✝ :
∀ (x : ↑(LocallyRingedSpace.toTopCat toLocallyRingedSpace✝)),
∃ U R,
Nonempty
(LocallyRingedSpace.restrict toLocallyRingedSpace✝ (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R))
H :
{ toLocallyRingedSpace := toLocallyRingedSpace✝¹, local_affine := local_affine✝¹ }.toLocallyRingedSpace =
{ toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ }.toLocallyRingedSpace
⊢ { toLocallyRingedSpace := toLocallyRingedSpace✝¹, local_affine := local_affine✝¹ } =
{ toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ }
[PROOFSTEP]
congr
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ : PresheafedSpace CommRingCat
Y✝ : Scheme
f✝ : X✝ ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
inst✝ : AlgebraicGeometry.IsOpenImmersion f
⊢ toScheme Y f.val = X
[PROOFSTEP]
apply scheme_eq_of_locallyRingedSpace_eq
[GOAL]
case H
C : Type u
inst✝¹ : Category.{v, u} C
X✝ : PresheafedSpace CommRingCat
Y✝ : Scheme
f✝ : X✝ ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
inst✝ : AlgebraicGeometry.IsOpenImmersion f
⊢ (toScheme Y f.val).toLocallyRingedSpace = X.toLocallyRingedSpace
[PROOFSTEP]
exact locallyRingedSpace_toLocallyRingedSpace f
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
U : TopCat
X : Scheme
f : U ⟶ TopCat.of ↑↑X.toPresheafedSpace
h : OpenEmbedding ↑f
⊢ PresheafedSpace.IsOpenImmersion (PresheafedSpace.ofRestrict X.toPresheafedSpace h)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ IsIso ((inducedFunctor Scheme.toLocallyRingedSpace).map g)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
⊢ IsIso f ↔ IsIso f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
rw [isIso_iff_isOpenImmersion, IsOpenImmersion.iff_stalk_iso, and_comm, ← and_assoc]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
⊢ ((Epi f.val.base ∧ OpenEmbedding ↑f.val.base) ∧
∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)) ↔
IsIso f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
refine' and_congr ⟨_, _⟩ Iff.rfl
[GOAL]
case refine'_1
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
⊢ Epi f.val.base ∧ OpenEmbedding ↑f.val.base → IsIso f.val.base
[PROOFSTEP]
rintro ⟨h₁, h₂⟩
[GOAL]
case refine'_1.intro
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
h₁ : Epi f.val.base
h₂ : OpenEmbedding ↑f.val.base
⊢ IsIso f.val.base
[PROOFSTEP]
convert_to
IsIso
(TopCat.isoOfHomeo
(Homeomorph.homeomorphOfContinuousOpen (Equiv.ofBijective _ ⟨h₂.inj, (TopCat.epi_iff_surjective _).mp h₁⟩)
h₂.continuous h₂.isOpenMap)).hom
[GOAL]
case refine'_1.intro
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
h₁ : Epi f.val.base
h₂ : OpenEmbedding ↑f.val.base
⊢ IsIso
(TopCat.isoOfHomeo
(Homeomorph.homeomorphOfContinuousOpen
(Equiv.ofBijective ↑f.val.base (_ : Function.Injective ↑f.val.base ∧ Function.Surjective ↑f.val.base))
(_ : Continuous ↑f.val.base) (_ : IsOpenMap ↑f.val.base))).hom
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_2
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
⊢ IsIso f.val.base → Epi f.val.base ∧ OpenEmbedding ↑f.val.base
[PROOFSTEP]
intro H
[GOAL]
case refine'_2
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g : Y✝ ⟶ Z
H✝ : IsOpenImmersion f✝
X Y : Scheme
f : X ⟶ Y
H : IsIso f.val.base
⊢ Epi f.val.base ∧ OpenEmbedding ↑f.val.base
[PROOFSTEP]
exact ⟨inferInstance, (TopCat.homeoOfIso (asIso f.1.base)).openEmbedding⟩
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Mono f
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan f g ⋙ forget)
[PROOFSTEP]
apply @hasLimitOfIso _ _ _ _ _ _ ?_ (diagramIsoCospan.{u} _).symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan ((cospan f g ⋙ forget).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forget).map WalkingCospan.Hom.inr))
[PROOFSTEP]
change HasLimit (cospan ((forget).map f) ((forget).map g))
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan (forget.map f) (forget.map g))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan g f ⋙ forget)
[PROOFSTEP]
apply @hasLimitOfIso _ _ _ _ _ _ ?_ (diagramIsoCospan.{u} _).symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr))
[PROOFSTEP]
change HasLimit (cospan ((forget).map g) ((forget).map f))
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan (forget.map g) (forget.map f))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ forget.obj (PresheafedSpace.IsOpenImmersion.toScheme Y pullback.snd.val) =
limit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ forget.obj (PresheafedSpace.IsOpenImmersion.toScheme Y pullback.fst.val) =
limit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr))
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion pullback.snd
[PROOFSTEP]
have := PreservesPullback.iso_hom_snd forget f g
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (PreservesPullback.iso forget f g).hom ≫ pullback.snd = forget.map pullback.snd
⊢ IsOpenImmersion pullback.snd
[PROOFSTEP]
dsimp only [Scheme.forgetToLocallyRingedSpace, inducedFunctor_map] at this
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd = pullback.snd
⊢ IsOpenImmersion pullback.snd
[PROOFSTEP]
rw [← this]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd = pullback.snd
⊢ IsOpenImmersion ((PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd)
[PROOFSTEP]
change LocallyRingedSpace.IsOpenImmersion _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd = pullback.snd
⊢ LocallyRingedSpace.IsOpenImmersion
((PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion pullback.fst
[PROOFSTEP]
rw [← pullbackSymmetry_hom_comp_snd]
-- Porting note : was just `infer_instance`, it is a bit weird that no explicit class instance is
-- provided but still class inference fail to find this
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion ((pullbackSymmetry g f).hom ≫ pullback.snd)
[PROOFSTEP]
exact LocallyRingedSpace.IsOpenImmersion.comp (H := inferInstance) _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) one)
[PROOFSTEP]
rw [← limit.w (cospan f g) WalkingCospan.Hom.inl]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) left ≫ (cospan f g).map Hom.inl)
[PROOFSTEP]
change
IsOpenImmersion
(_ ≫ f)
-- Porting note : was just `infer_instance`, it is a bit weird that no explicit class instance is
-- provided but still class inference fail to find this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) left ≫ f)
[PROOFSTEP]
exact LocallyRingedSpace.IsOpenImmersion.comp (H := inferInstance) _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g) Scheme.forgetToTop
[PROOFSTEP]
delta Scheme.forgetToTop
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g) (forget ⋙ LocallyRingedSpace.forgetToTop)
[PROOFSTEP]
apply @Limits.compPreservesLimit (K := cospan f g) (F := forget) (G := LocallyRingedSpace.forgetToTop) ?_ ?_
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g) forget
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g ⋙ forget) LocallyRingedSpace.forgetToTop
[PROOFSTEP]
apply @preservesLimitOfIsoDiagram (F := _) _ _ _ _ _ _ (diagramIsoCospan.{u} _).symm ?_
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
LocallyRingedSpace.forgetToTop
[PROOFSTEP]
dsimp [LocallyRingedSpace.forgetToTop]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g) (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range ↑pullback.snd.val.base =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
[PROOFSTEP]
rw [← show _ = (pullback.snd : pullback f g ⟶ _).1.base from PreservesPullback.iso_hom_snd Scheme.forgetToTop f g]
-- Porting note : was `rw`
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range ↑((PreservesPullback.iso Scheme.forgetToTop f g).hom ≫ pullback.snd) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range (↑pullback.snd ∘ ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
[PROOFSTEP]
rw [Set.range_comp, Set.range_iff_surjective.mpr, ←
@Set.preimage_univ _ _ (pullback.fst : pullback f.1.base g.1.base ⟶ _)]
-- Porting note : was `rw`
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ↑pullback.snd '' (↑pullback.fst ⁻¹' Set.univ) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom
[PROOFSTEP]
erw [TopCat.pullback_snd_image_fst_preimage]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' (↑(Scheme.forgetToTop.map f) '' Set.univ) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom
[PROOFSTEP]
rw [Set.image_univ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' Set.range ↑(Scheme.forgetToTop.map f) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Epi (PreservesPullback.iso Scheme.forgetToTop f g).hom
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range ↑pullback.fst.val.base =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
[PROOFSTEP]
rw [← show _ = (pullback.fst : pullback g f ⟶ _).1.base from PreservesPullback.iso_hom_fst Scheme.forgetToTop g f]
-- Porting note : was `rw`
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range ↑((PreservesPullback.iso Scheme.forgetToTop g f).hom ≫ pullback.fst) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range (↑pullback.fst ∘ ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
[PROOFSTEP]
rw [Set.range_comp, Set.range_iff_surjective.mpr, ←
@Set.preimage_univ _ _ (pullback.snd : pullback g.1.base f.1.base ⟶ _)]
-- Porting note : was `rw`
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ↑pullback.fst '' (↑pullback.snd ⁻¹' Set.univ) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom
[PROOFSTEP]
erw [TopCat.pullback_fst_image_snd_preimage]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' (↑(Scheme.forgetToTop.map f) '' Set.univ) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom
[PROOFSTEP]
rw [Set.image_univ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' Set.range ↑(Scheme.forgetToTop.map f) =
((Opens.map g.val.base).obj
{ carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Epi (PreservesPullback.iso Scheme.forgetToTop g f).hom
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range ↑(pullback.fst ≫ f).val.base = Set.range ↑f.val.base ∩ Set.range ↑g.val.base
[PROOFSTEP]
rw [pullback.condition, Scheme.comp_val_base, coe_comp, Set.range_comp, range_pullback_snd_of_left,
Opens.carrier_eq_coe, Opens.map_obj, Opens.coe_mk, Set.image_preimage_eq_inter_range, Set.inter_comm]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Set.range ↑(pullback.fst ≫ g).val.base = Set.range ↑g.val.base ∩ Set.range ↑f.val.base
[PROOFSTEP]
rw [Scheme.comp_val_base, coe_comp, Set.range_comp, range_pullback_fst_of_right, Opens.map_obj, Opens.carrier_eq_coe,
Opens.coe_mk, Set.image_preimage_eq_inter_range, Set.inter_comm]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
e : Set.range ↑f.val.base = Set.range ↑g.val.base
⊢ lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base) ≫
lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base) =
𝟙 X
[PROOFSTEP]
rw [← cancel_mono f]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
e : Set.range ↑f.val.base = Set.range ↑g.val.base
⊢ (lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base) ≫
lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base)) ≫
f =
𝟙 X ≫ f
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
e : Set.range ↑f.val.base = Set.range ↑g.val.base
⊢ lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base) ≫
lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base) =
𝟙 Y
[PROOFSTEP]
rw [← cancel_mono g]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
e : Set.range ↑f.val.base = Set.range ↑g.val.base
⊢ (lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base) ≫
lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base)) ≫
g =
𝟙 Y ≫ g
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H✝ : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
fg : Y ⟶ X
H : fg = f ≫ g
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ (Opens.map f.val.base).obj V = (Opens.map fg.val.base).obj ((Scheme.Hom.opensFunctor g).obj V)
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ (Opens.map f.val.base).obj V = (Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V)
[PROOFSTEP]
rw [Scheme.comp_val_base, Opens.map_comp_obj]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ (Opens.map f.val.base).obj V =
(Opens.map f.val.base).obj ((Opens.map g.val.base).obj ((Scheme.Hom.opensFunctor g).obj V))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ V = (Opens.map g.val.base).obj ((Scheme.Hom.opensFunctor g).obj V)
[PROOFSTEP]
ext1
[GOAL]
case e_a.h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ ↑V = ↑((Opens.map g.val.base).obj ((Scheme.Hom.opensFunctor g).obj V))
[PROOFSTEP]
exact (Set.preimage_image_eq _ h.base_open.inj).symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H✝ : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
fg : Y ⟶ X
H : fg = f ≫ g
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ NatTrans.app f.val.c (op V) =
Scheme.Hom.invApp g V ≫
NatTrans.app fg.val.c (op ((Scheme.Hom.opensFunctor g).obj V)) ≫
Y.presheaf.map
(eqToHom
(_ : (Opens.map f.val.base).obj V = (Opens.map fg.val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ NatTrans.app f.val.c (op V) =
Scheme.Hom.invApp g V ≫
NatTrans.app (f ≫ g).val.c (op ((Scheme.Hom.opensFunctor g).obj V)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map f.val.base).obj V = (Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op
[PROOFSTEP]
rw [Scheme.comp_val_c_app, Category.assoc, Scheme.Hom.invApp, PresheafedSpace.IsOpenImmersion.invApp_app_assoc,
f.val.c.naturality_assoc, TopCat.Presheaf.pushforwardObj_map, ← Functor.map_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
⊢ NatTrans.app f.val.c (op V) =
NatTrans.app f.val.c (op V) ≫
Y.presheaf.map
((Opens.map f.val.base).op.map
(eqToHom
(_ :
op V =
op ((Opens.map g.val.base).obj (op ((PresheafedSpace.IsOpenImmersion.openFunctor h).obj V)).unop))) ≫
(eqToHom
(_ :
(Opens.map f.val.base).obj V =
(Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op)
[PROOFSTEP]
convert (Category.comp_id <| f.1.c.app (op V)).symm
[GOAL]
case h.e'_3.h.e'_7.h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Z
g✝ : Y✝ ⟶ Z
H : IsOpenImmersion f✝
X Y U : Scheme
f : Y ⟶ U
g : U ⟶ X
h : IsOpenImmersion g
V : Opens ↑↑U.toPresheafedSpace
e_5✝ : Y.presheaf.obj (op ((Opens.map f.val.base).obj V)) = (f.val.base _* Y.presheaf).obj (op V)
⊢ Y.presheaf.map
((Opens.map f.val.base).op.map
(eqToHom
(_ :
op V =
op ((Opens.map g.val.base).obj (op ((PresheafedSpace.IsOpenImmersion.openFunctor h).obj V)).unop))) ≫
(eqToHom
(_ :
(Opens.map f.val.base).obj V =
(Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op) =
𝟙 ((f.val.base _* Y.presheaf).obj (op V))
[PROOFSTEP]
convert Y.presheaf.map_id _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r)
[PROOFSTEP]
have e := Scheme.preimage_basicOpen f (Scheme.Hom.invApp f U r)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(Hom.invApp f U) r)) =
basicOpen X (↑(NatTrans.app f.val.c (op ((Hom.opensFunctor f).obj U))) (↑(Hom.invApp f U) r))
⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r)
[PROOFSTEP]
rw [Scheme.Hom.invApp] at e
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
basicOpen X
(↑(NatTrans.app f.val.c (op ((Hom.opensFunctor f).obj U))) (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r))
⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r)
[PROOFSTEP]
erw [PresheafedSpace.IsOpenImmersion.invApp_app_apply] at e
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
basicOpen X
(↑(X.presheaf.map
(eqToHom
(_ :
op U =
op ((Opens.map f.val.base).obj (op ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U)).unop))))
r)
⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r)
[PROOFSTEP]
rw [Scheme.basicOpen_res, inf_eq_right.mpr _] at e
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r
⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r)
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
rw [← e]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r
⊢ (Hom.opensFunctor f).obj
((Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r))) =
basicOpen Y (↑(Hom.invApp f U) r)
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
ext1
-- Porting note : this `dsimp` was not necessary
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r
⊢ ↑((Hom.opensFunctor f).obj
((Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)))) =
↑(basicOpen Y (↑(Hom.invApp f U) r))
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
dsimp [Opens.map]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r
⊢ ↑f.val.base '' (↑f.val.base ⁻¹' ↑(basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r))) =
↑(basicOpen Y (↑(Hom.invApp f U) r))
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
refine' Set.image_preimage_eq_inter_range.trans _
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r
⊢ ↑(basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) ∩ Set.range ↑f.val.base =
↑(basicOpen Y (↑(Hom.invApp f U) r))
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
erw [Set.inter_eq_left_iff_subset]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r
⊢ ↑(basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) ⊆ Set.range ↑f.val.base
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
refine' Set.Subset.trans (Scheme.basicOpen_le _ _) (Set.image_subset_range _ _)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
refine' le_trans (Scheme.basicOpen_le _ _) (le_of_eq _)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ U = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X.toPresheafedSpace
r : ↑(X.presheaf.obj (op U))
e :
(Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) =
(Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r
⊢ ↑U = ↑((Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U))
[PROOFSTEP]
exact (Set.preimage_image_eq _ H.base_open.inj).symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base
[PROOFSTEP]
dsimp [ofRestrict, LocallyRingedSpace.ofRestrict, Opens.inclusion]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ Set.range ↑(ContinuousMap.mk Subtype.val) ⊆ Set.range ↑(ContinuousMap.mk Subtype.val)
[PROOFSTEP]
rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_val]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ ↑U ⊆ ↑V
[PROOFSTEP]
exact i.le
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
⊢ { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
(𝟙 U) =
𝟙
({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.obj
U)
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
⊢ ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
(𝟙 U)).left =
(𝟙
({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.obj
U)).left
[PROOFSTEP]
dsimp only [Over.homMk_left, Over.id_left]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base) =
𝟙 (Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).left
[PROOFSTEP]
rw [← cancel_mono (X.ofRestrict U.openEmbedding), Category.id_comp, IsOpenImmersion.lift_fac]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
(i ≫ j) =
{ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
i ≫
{ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
j
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
(i ≫ j)).left =
({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
i ≫
{ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))),
map := fun {U V} i =>
Over.homMk
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map
j).left
[PROOFSTEP]
dsimp only [Over.homMk_left, Over.comp_left]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) =
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base)
[PROOFSTEP]
rw [← cancel_mono (X.ofRestrict W.openEmbedding), Category.assoc]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) =
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))
[PROOFSTEP]
iterate 3 rw [IsOpenImmersion.lift_fac]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) =
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))
[PROOFSTEP]
rw [IsOpenImmersion.lift_fac]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) =
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))
[PROOFSTEP]
rw [IsOpenImmersion.lift_fac]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V W : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
j : V ⟶ W
⊢ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) =
IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ :
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))
[PROOFSTEP]
rw [IsOpenImmersion.lift_fac]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base
[PROOFSTEP]
dsimp [ofRestrict, LocallyRingedSpace.ofRestrict, Opens.inclusion]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ Set.range ↑(ContinuousMap.mk Subtype.val) ⊆ Set.range ↑(ContinuousMap.mk Subtype.val)
[PROOFSTEP]
rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_val]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ ↑U ⊆ ↑V
[PROOFSTEP]
exact i.le
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆
Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base
[PROOFSTEP]
dsimp [ofRestrict, LocallyRingedSpace.ofRestrict, Opens.inclusion]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ Set.range ↑(ContinuousMap.mk Subtype.val) ⊆ Set.range ↑(ContinuousMap.mk Subtype.val)
[PROOFSTEP]
rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_val]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ ↑U ⊆ ↑V
[PROOFSTEP]
exact i.le
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
⊢ ((restrictFunctor X).map i).left.val.base = (Opens.toTopCat ↑X.toPresheafedSpace).map i
[PROOFSTEP]
ext a
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
a : (forget TopCat).obj ↑((restrictFunctor X).obj U).left.toPresheafedSpace
⊢ ↑((restrictFunctor X).map i).left.val.base a = ↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) a
[PROOFSTEP]
refine
Subtype.ext
?_
-- Porting note : `ext` did not pick up `Subtype.ext`
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
a : (forget TopCat).obj ↑((restrictFunctor X).obj U).left.toPresheafedSpace
⊢ ↑(↑((restrictFunctor X).map i).left.val.base a) = ↑(↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) a)
[PROOFSTEP]
exact (congr_arg (fun f : X.restrict U.openEmbedding ⟶ X => f.1.base a) (X.restrictFunctor_map_ofRestrict i))
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W
[PROOFSTEP]
simp only [← SetLike.coe_subset_coe, IsOpenMap.functor_obj_coe, Set.image_subset_iff, Scheme.restrictFunctor_map_base,
Opens.map_coe, Opens.inclusion_apply]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
⊢ ↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) ⁻¹' ↑W ⊆
(fun a => ↑(Opens.inclusion U) a) ⁻¹' ((fun a => ↑(Opens.inclusion V) a) '' ↑W)
[PROOFSTEP]
rintro _ h
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
a✝ : (forget TopCat).obj ((Opens.toTopCat ↑X.toPresheafedSpace).obj U)
h : a✝ ∈ ↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) ⁻¹' ↑W
⊢ a✝ ∈ (fun a => ↑(Opens.inclusion U) a) ⁻¹' ((fun a => ↑(Opens.inclusion V) a) '' ↑W)
[PROOFSTEP]
exact ⟨_, h, rfl⟩
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
have e₁ := Scheme.congr_app (X.restrictFunctor_map_ofRestrict i) (op <| V.openEmbedding.isOpenMap.functor.obj W)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₁ :
NatTrans.app (((restrictFunctor X).map i).left ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
((restrictFunctor X).obj U).left.presheaf.map
(eqToHom
(_ :
(Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(Opens.map
(((restrictFunctor X).map i).left ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))
⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
rw [Scheme.comp_val_c_app] at e₁
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₁ :
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
NatTrans.app ((restrictFunctor X).map i).left.val.c
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
((restrictFunctor X).obj U).left.presheaf.map
(eqToHom
(_ :
(Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(Opens.map
(((restrictFunctor X).map i).left ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))
⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
have e₂ := (X.restrictFunctor.map i).1.val.c.naturality (eqToHom <| W.map_functor_eq (U := V)).op
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₁ :
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
NatTrans.app ((restrictFunctor X).map i).left.val.c
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
((restrictFunctor X).obj U).left.presheaf.map
(eqToHom
(_ :
(Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(Opens.map
(((restrictFunctor X).map i).left ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))
e₂ :
((restrictFunctor X).obj V).left.presheaf.map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)).op ≫
NatTrans.app ((restrictFunctor X).map i).left.val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) ≫
(((restrictFunctor X).map i).left.val.base _* ((restrictFunctor X).obj U).left.presheaf).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)).op
⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
rw [← IsIso.eq_inv_comp] at e₂
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₁ :
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
NatTrans.app ((restrictFunctor X).map i).left.val.c
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫
((restrictFunctor X).obj U).left.presheaf.map
(eqToHom
(_ :
(Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(Opens.map
(((restrictFunctor X).map i).left ≫
ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))
e₂ :
NatTrans.app ((restrictFunctor X).map i).left.val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
inv
(((restrictFunctor X).obj V).left.presheaf.map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)).op) ≫
NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) ≫
(((restrictFunctor X).map i).left.val.base _* ((restrictFunctor X).obj U).left.presheaf).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)).op
⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
dsimp at e₁ e₂ ⊢
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₁ :
X.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion V))).counit
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
X.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
(eqToHom
(_ :
op
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
op
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op
e₂ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
inv
(X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W))).op) ≫
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)))).op
⊢ NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
rw [e₂, W.adjunction_counit_map_functor (U := V), ← IsIso.eq_inv_comp, IsIso.inv_comp_eq, ← IsIso.eq_comp_inv] at e₁
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₁ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) =
(X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W))).op ≫
inv
(X.presheaf.map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
(𝟭 (Opens ↑↑X.toPresheafedSpace)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op) ≫
X.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
(eqToHom
(_ :
op
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
op
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫
inv
(X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)))).op)
e₂ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
inv
(X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W))).op) ≫
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)))).op
⊢ NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
simp_rw [eqToHom_map (Opens.map _), eqToHom_map (IsOpenMap.functor _), ← Functor.map_inv, ← Functor.map_comp] at e₁
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₂ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
inv
(X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W))).op) ≫
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)))).op
e₁ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) =
X.presheaf.map
(((eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
inv
(eqToHom
(_ :
(Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
(𝟭 (Opens ↑↑X.toPresheafedSpace)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op ≫
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
(eqToHom
(_ :
op
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
op
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫
inv
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
W))).op)
⊢ NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
rw [e₁]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
W : Opens { x // x ∈ V }
e₂ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
inv
(X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W))).op) ≫
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map
(eqToHom
(_ :
(Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
W)))).op
e₁ :
NatTrans.app
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c
(op W) =
X.presheaf.map
(((eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
inv
(eqToHom
(_ :
(Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
(𝟭 (Opens ↑↑X.toPresheafedSpace)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op ≫
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
(eqToHom
(_ :
op
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
op
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫
inv
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
W))).op)
⊢ X.presheaf.map
(((eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
inv
(eqToHom
(_ :
(Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) =
(𝟭 (Opens ↑↑X.toPresheafedSpace)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op ≫
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map
(eqToHom
(_ :
op
((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) =
op
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫
inv
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
((Opens.map (Opens.inclusion V)).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map
(IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)))
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj
W))).op) =
X.presheaf.map
(homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op
[PROOFSTEP]
congr 1
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
⊢ ∀ {X_1 Y : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ} (f : X_1 ⟶ Y),
((restrictFunctor X).op ⋙ (Over.forget X).op ⋙ Γ).map f ≫
((fun U =>
X.presheaf.mapIso
(Iso.op
(eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm))
Y).hom =
((fun U =>
X.presheaf.mapIso
(Iso.op
(eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm))
X_1).hom ≫
X.presheaf.map f
[PROOFSTEP]
intro U V i
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
⊢ ((restrictFunctor X).op ⋙ (Over.forget X).op ⋙ Γ).map i ≫
((fun U =>
X.presheaf.mapIso
(Iso.op
(eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm))
V).hom =
((fun U =>
X.presheaf.mapIso
(Iso.op
(eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm))
U).hom ≫
X.presheaf.map i
[PROOFSTEP]
dsimp [-Scheme.restrictFunctor_map_left]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
⊢ NatTrans.app ((restrictFunctor X).map i.unop).left.val.c (op ⊤) ≫
X.presheaf.map (eqToHom (_ : V.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V.unop))).obj ⊤)).op =
X.presheaf.map (eqToHom (_ : U.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤)).op ≫
X.presheaf.map i
[PROOFSTEP]
rw [X.restrictFunctor_map_app, ← Functor.map_comp, ← Functor.map_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map
((homOfLE
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V.unop))).obj
((Opens.map ((restrictFunctor X).map i.unop).left.val.base).obj ⊤) ≤
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤)).op ≫
(eqToHom (_ : V.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V.unop))).obj ⊤)).op) =
X.presheaf.map ((eqToHom (_ : U.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤)).op ≫ i)
[PROOFSTEP]
congr 1
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≅
restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
[PROOFSTEP]
apply
IsOpenImmersion.isoOfRangeEq (f := X.ofRestrict _ ≫ f) (H :=
PresheafedSpace.IsOpenImmersion.comp (hf := inferInstance) (hg := inferInstance)) (Y.ofRestrict _) _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base =
Set.range ↑(ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base
[PROOFSTEP]
dsimp [Opens.inclusion]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ Set.range ↑(ContinuousMap.mk Subtype.val ≫ f.val.base) = Set.range ↑(ContinuousMap.mk Subtype.val)
[PROOFSTEP]
rw [coe_comp, Set.range_comp, ContinuousMap.coe_mk, ContinuousMap.coe_mk]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base '' Set.range Subtype.val = Set.range Subtype.val
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base '' Set.range Subtype.val = Set.range Subtype.val
[PROOFSTEP]
rw [Subtype.range_val, Subtype.range_coe]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base '' ↑((Opens.map f.val.base).obj U) = ↑U
[PROOFSTEP]
refine' @Set.image_preimage_eq _ _ f.1.base U.1 _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ Function.Surjective ↑f.val.base
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ Epi f.val.base
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ x ∈
Set.range ↑((fun x => pullback.fst) ((fun x => AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)) x)).val.base
[PROOFSTEP]
rw [←
show _ = (pullback.fst : pullback f (𝒰.map (𝒰.f (f.1.base x))) ⟶ _).1.base from
PreservesPullback.iso_hom_fst Scheme.forgetToTop f (𝒰.map (𝒰.f (f.1.base x)))]
-- Porting note : `rw` to `erw` on this single lemma
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ x ∈
Set.range
↑((PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom ≫
pullback.fst)
[PROOFSTEP]
erw [coe_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ x ∈
Set.range
(↑pullback.fst ∘
↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom)
[PROOFSTEP]
rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ, TopCat.pullback_fst_range]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ x ∈
{x_1 |
∃ y,
↑(forgetToTop.map f) x_1 =
↑(forgetToTop.map (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) y}
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ Function.Surjective
↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom
[PROOFSTEP]
obtain ⟨y, h⟩ := 𝒰.Covers (f.1.base x)
[GOAL]
case intro
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x))).toPresheafedSpace
h : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base y = ↑f.val.base x
⊢ x ∈
{x_1 |
∃ y,
↑(forgetToTop.map f) x_1 =
↑(forgetToTop.map (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) y}
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ Function.Surjective
↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom
[PROOFSTEP]
exact ⟨y, h.symm⟩
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ Function.Surjective
↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
W : Scheme
f : W ⟶ X
x : ↑↑W.toPresheafedSpace
⊢ Epi (PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
⊢ ⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base = Set.univ
[PROOFSTEP]
rw [Set.eq_univ_iff_forall]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
⊢ ∀ (x : (forget TopCat).obj ↑X.toPresheafedSpace), x ∈ ⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base
[PROOFSTEP]
intro x
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
x : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ x ∈ ⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
x : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ ∃ i, x ∈ Set.range ↑(map 𝒰 i).val.base
[PROOFSTEP]
exact ⟨𝒰.f x, 𝒰.Covers x⟩
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
⊢ ↑(⨆ (i : 𝒰.J), Hom.opensRange (map 𝒰 i)) = ↑⊤
[PROOFSTEP]
rw [Opens.coe_iSup]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
⊢ ⋃ (i : 𝒰.J), ↑(Hom.opensRange (map 𝒰 i)) = ↑⊤
[PROOFSTEP]
exact 𝒰.iUnion_range
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
inst✝ : Finite 𝒰.J
H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace
⊢ CompactSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
cases nonempty_fintype 𝒰.J
[GOAL]
case intro
C : Type u
inst✝¹ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
inst✝ : Finite 𝒰.J
H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace
val✝ : Fintype 𝒰.J
⊢ CompactSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
rw [← isCompact_univ_iff, ← 𝒰.iUnion_range]
[GOAL]
case intro
C : Type u
inst✝¹ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
inst✝ : Finite 𝒰.J
H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace
val✝ : Fintype 𝒰.J
⊢ IsCompact (⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base)
[PROOFSTEP]
apply isCompact_iUnion
[GOAL]
case intro.h
C : Type u
inst✝¹ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
inst✝ : Finite 𝒰.J
H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace
val✝ : Fintype 𝒰.J
⊢ ∀ (i : 𝒰.J), IsCompact (Set.range ↑(map 𝒰 i).val.base)
[PROOFSTEP]
intro i
[GOAL]
case intro.h
C : Type u
inst✝¹ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
inst✝ : Finite 𝒰.J
H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace
val✝ : Fintype 𝒰.J
i : 𝒰.J
⊢ IsCompact (Set.range ↑(map 𝒰 i).val.base)
[PROOFSTEP]
rw [isCompact_iff_compactSpace]
[GOAL]
case intro.h
C : Type u
inst✝¹ : Category.{v, u} C
X : Scheme
𝒰 : OpenCover X
inst✝ : Finite 𝒰.J
H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace
val✝ : Fintype 𝒰.J
i : 𝒰.J
⊢ CompactSpace ↑(Set.range ↑(map 𝒰 i).val.base)
[PROOFSTEP]
exact
@Homeomorph.compactSpace _ _ _ _ (H i)
(TopCat.homeoOfIso
(asIso
(IsOpenImmersion.isoOfRangeEq (𝒰.map i)
(X.ofRestrict (Opens.openEmbedding ⟨_, (𝒰.IsOpen i).base_open.open_range⟩))
Subtype.range_coe.symm).hom.1.base))
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰₁ : OpenCover X
𝒰₂ : OpenCover X
x : ↑↑X.toPresheafedSpace
⊢ x ∈ Set.range ↑((fun ij => pullback.fst ≫ map 𝒰₁ ij.fst) ((fun x => (f 𝒰₁ x, f 𝒰₂ x)) x)).val.base
[PROOFSTEP]
rw [IsOpenImmersion.range_pullback_to_base_of_left]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Scheme
𝒰₁ : OpenCover X
𝒰₂ : OpenCover X
x : ↑↑X.toPresheafedSpace
⊢ x ∈
Set.range ↑(map 𝒰₁ ((fun x => (f 𝒰₁ x, f 𝒰₂ x)) x).fst).val.base ∩
Set.range ↑(map 𝒰₂ ((fun x => (f 𝒰₁ x, f 𝒰₂ x)) x).snd).val.base
[PROOFSTEP]
exact
⟨𝒰₁.Covers x, 𝒰₂.Covers x⟩
-- Porting note : was automatic
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
s : Type u_1
X : Scheme
U : s → Opens ↑↑X.toPresheafedSpace
hU : ⨆ (i : s), U i = ⊤
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ⊤
[PROOFSTEP]
triv
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
s : Type u_1
X : Scheme
U : s → Opens ↑↑X.toPresheafedSpace
hU : ⨆ (i : s), U i = ⊤
x : ↑↑X.toPresheafedSpace
⊢ x ∈
Set.range
↑((fun i => ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
((fun x => Exists.choose (_ : ∃ i, x ∈ U i)) x)).val.base
[PROOFSTEP]
erw [Subtype.range_coe]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
s : Type u_1
X : Scheme
U : s → Opens ↑↑X.toPresheafedSpace
hU : ⨆ (i : s), U i = ⊤
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑(U ((fun x => Exists.choose (_ : ∃ i, x ∈ U i)) x))
[PROOFSTEP]
have : x ∈ ⨆ i, U i := hU.symm ▸ show x ∈ (⊤ : Opens X) by triv
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
s : Type u_1
X : Scheme
U : s → Opens ↑↑X.toPresheafedSpace
hU : ⨆ (i : s), U i = ⊤
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ⊤
[PROOFSTEP]
triv
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
s : Type u_1
X : Scheme
U : s → Opens ↑↑X.toPresheafedSpace
hU : ⨆ (i : s), U i = ⊤
x : ↑↑X.toPresheafedSpace
this : x ∈ ⨆ (i : s), U i
⊢ x ∈ ↑(U ((fun x => Exists.choose (_ : ∃ i, x ∈ U i)) x))
[PROOFSTEP]
exact (Opens.mem_iSup.mp this).choose_spec
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) ≅
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))
[PROOFSTEP]
refine' IsOpenImmersion.isoOfRangeEq pullback.fst (X.ofRestrict _) _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ Set.range ↑pullback.fst.val.base =
Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base
[PROOFSTEP]
rw [IsOpenImmersion.range_pullback_fst_of_right]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ ((Opens.map f.val.base).obj
{ carrier := Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base,
is_open' :=
(_ :
IsOpen (Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base)) }).carrier =
Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base
[PROOFSTEP]
dsimp [Opens.inclusion]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base ⁻¹' Set.range ↑(ContinuousMap.mk Subtype.val) = Set.range ↑(ContinuousMap.mk Subtype.val)
[PROOFSTEP]
rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_coe]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base ⁻¹' ↑U = ↑((Opens.map f.val.base).obj U)
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ (pullbackRestrictIsoRestrict f U).inv ≫ pullback.fst =
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))
[PROOFSTEP]
delta pullbackRestrictIsoRestrict
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ (IsOpenImmersion.isoOfRangeEq pullback.fst
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ :
Set.range ↑pullback.fst.val.base =
Set.range
↑(Scheme.ofRestrict X
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base)).inv ≫
pullback.fst =
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ (pullbackRestrictIsoRestrict f U).hom ≫
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) =
pullback.fst
[PROOFSTEP]
delta pullbackRestrictIsoRestrict
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ (IsOpenImmersion.isoOfRangeEq pullback.fst
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ :
Set.range ↑pullback.fst.val.base =
Set.range
↑(Scheme.ofRestrict X
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base)).hom ≫
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) =
pullback.fst
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ (f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) =
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f
[PROOFSTEP]
delta morphismRestrict
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) =
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f
[PROOFSTEP]
rw [Category.assoc, pullback.condition.symm, pullbackRestrictIsoRestrict_inv_fst_assoc]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ IsPullback (f ∣_ U) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
[PROOFSTEP]
delta morphismRestrict
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ IsPullback ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd)
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
[PROOFSTEP]
rw [← Category.id_comp f]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ IsPullback ((pullbackRestrictIsoRestrict (𝟙 X ≫ f) U).inv ≫ pullback.snd)
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))))
(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (𝟙 X ≫ f)
[PROOFSTEP]
refine' (IsPullback.of_horiz_isIso ⟨_⟩).paste_horiz (IsPullback.of_hasPullback f (Y.ofRestrict U.openEmbedding)).flip
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ (pullbackRestrictIsoRestrict (𝟙 X ≫ f) U).inv ≫ pullback.fst =
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))) ≫ 𝟙 X
[PROOFSTEP]
erw [pullbackRestrictIsoRestrict_inv_fst]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))) =
Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))) ≫ 𝟙 X
[PROOFSTEP]
rw [Category.comp_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ (f ≫ g) ∣_ U = (f ∣_ (Opens.map g.val.base).obj U) ≫ g ∣_ U
[PROOFSTEP]
delta morphismRestrict
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ (pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ pullback.snd =
((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫
(pullbackRestrictIsoRestrict g U).inv ≫ pullback.snd
[PROOFSTEP]
rw [← pullbackRightPullbackFstIso_inv_snd_snd]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ (pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫
(pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv ≫
pullback.snd ≫ pullback.snd =
((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫
(pullbackRestrictIsoRestrict g U).inv ≫ pullback.snd
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ (((pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫
(pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv) ≫
pullback.snd) ≫
pullback.snd =
(((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫
(pullbackRestrictIsoRestrict g U).inv) ≫
pullback.snd
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ ((pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫
(pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv) ≫
pullback.snd =
((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫
(pullbackRestrictIsoRestrict g U).inv
[PROOFSTEP]
rw [← cancel_mono pullback.fst]
[GOAL]
case e_a
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ (((pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫
(pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv) ≫
pullback.snd) ≫
pullback.fst =
(((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫
(pullbackRestrictIsoRestrict g U).inv) ≫
pullback.fst
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case e_a
C : Type u
inst✝ : Category.{v, u} C
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
U : Opens ↑↑Z.toPresheafedSpace
⊢ (pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫
(pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv ≫
pullback.snd ≫ pullback.fst =
(pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫
pullback.snd ≫ (pullbackRestrictIsoRestrict g U).inv ≫ pullback.fst
[PROOFSTEP]
rw [pullbackRestrictIsoRestrict_inv_fst, pullbackRightPullbackFstIso_inv_snd_fst, ← pullback.condition,
pullbackRestrictIsoRestrict_inv_fst_assoc, pullbackRestrictIsoRestrict_inv_fst_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ IsIso (f ∣_ U)
[PROOFSTEP]
delta morphismRestrict
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑Y.toPresheafedSpace
⊢ IsIso ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V)) =
↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))
[PROOFSTEP]
ext x
[GOAL]
case h.h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
⊢ x ∈
↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V)) ↔
x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))
[PROOFSTEP]
constructor
[GOAL]
case h.h.mp
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
⊢ x ∈
↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V)) →
x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))
[PROOFSTEP]
rintro ⟨⟨x, hx⟩, hx' : (f ∣_ U).1.base _ ∈ V, rfl⟩
[GOAL]
case h.h.mp.intro.mk.intro
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : x ∈ (Opens.map f.val.base).obj U
hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V
⊢ ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) { val := x, property := hx } ∈
↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))
[PROOFSTEP]
refine'
⟨⟨_, hx⟩, _, rfl⟩
-- Porting note : this rewrite was not necessary
[GOAL]
case h.h.mp.intro.mk.intro
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : x ∈ (Opens.map f.val.base).obj U
hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V
⊢ { val := ↑f.val.base x, property := hx } ∈ ↑V
[PROOFSTEP]
rw [SetLike.mem_coe]
[GOAL]
case h.h.mp.intro.mk.intro
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : x ∈ (Opens.map f.val.base).obj U
hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V
⊢ { val := ↑f.val.base x, property := hx } ∈ V
[PROOFSTEP]
convert hx'
[GOAL]
case h.e'_4.h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : x ∈ (Opens.map f.val.base).obj U
hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V
e_1✝ :
(forget TopCat).obj ((Opens.toTopCat ↑Y.toPresheafedSpace).obj U) =
(fun x =>
(forget TopCat).obj
↑(Scheme.restrict Y
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
{ val := x, property := hx }
⊢ { val := ↑f.val.base x, property := hx } = ↑(f ∣_ U).val.base { val := x, property := hx }
[PROOFSTEP]
refine Subtype.ext ?_
[GOAL]
case h.e'_4.h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : x ∈ (Opens.map f.val.base).obj U
hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V
e_1✝ :
(forget TopCat).obj ((Opens.toTopCat ↑Y.toPresheafedSpace).obj U) =
(fun x =>
(forget TopCat).obj
↑(Scheme.restrict Y
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
{ val := x, property := hx }
⊢ ↑{ val := ↑f.val.base x, property := hx } = ↑(↑(f ∣_ U).val.base { val := x, property := hx })
[PROOFSTEP]
exact (morphismRestrict_base_coe f U ⟨x, hx⟩).symm
[GOAL]
case h.h.mpr
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) →
x ∈
↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V))
[PROOFSTEP]
rintro ⟨⟨x, hx⟩, hx' : _ ∈ V.1, rfl : x = _⟩
[GOAL]
case h.h.mpr.intro.mk.intro
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : ↑f.val.base x ∈ U
hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier
⊢ x ∈
↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V))
[PROOFSTEP]
refine' ⟨⟨_, hx⟩, (_ : (f ∣_ U).1.base ⟨x, hx⟩ ∈ V.1), rfl⟩
[GOAL]
case h.h.mpr.intro.mk.intro
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : ↑f.val.base x ∈ U
hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier
⊢ ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V.carrier
[PROOFSTEP]
convert hx'
[GOAL]
case h.e'_4.h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : ↑f.val.base x ∈ U
hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier
e_1✝ :
(fun x =>
(forget TopCat).obj
↑(Scheme.restrict Y
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
{ val := x, property := hx } =
{ x // x ∈ U }
⊢ ↑(f ∣_ U).val.base { val := x, property := hx } = { val := ↑f.val.base x, property := hx }
[PROOFSTEP]
refine Subtype.ext ?_
[GOAL]
case h.e'_4.h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
x : ↑↑X.toPresheafedSpace
hx : ↑f.val.base x ∈ U
hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier
e_1✝ :
(fun x =>
(forget TopCat).obj
↑(Scheme.restrict Y
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
{ val := x, property := hx } =
{ x // x ∈ U }
⊢ ↑(↑(f ∣_ U).val.base { val := x, property := hx }) = ↑{ val := ↑f.val.base x, property := hx }
[PROOFSTEP]
exact morphismRestrict_base_coe f U ⟨x, hx⟩
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
⊢ NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
have := Scheme.congr_app (morphismRestrict_ι f U) (op (U.openEmbedding.isOpenMap.functor.obj V))
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
⊢ NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app_assoc] at this
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
⊢ NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
have e : (Opens.map U.inclusion).obj (U.openEmbedding.isOpenMap.functor.obj V) = V := by ext1;
exact Set.preimage_image_eq _ Subtype.coe_injective
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
⊢ (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
⊢ ↑((Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = ↑V
[PROOFSTEP]
exact Set.preimage_image_eq _ Subtype.coe_injective
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
⊢ NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
have : _ ≫ X.presheaf.map _ = _ := (((f ∣_ U).1.c.naturality (eqToHom e).op).symm.trans ?_).trans this
[GOAL]
case refine_2
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this✝ :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
this :
NatTrans.app (f ∣_ U).val.c (op V) ≫
X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op)) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
⊢ NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
rw [← IsIso.eq_comp_inv, ← Functor.map_inv, Category.assoc] at this
[GOAL]
case refine_2
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this✝ :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
this :
NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
(NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
X.presheaf.map
(inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op)))
⊢ NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
rw [this]
[GOAL]
case refine_2
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this✝ :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
this :
NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
(NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
X.presheaf.map
(inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op)))
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
(NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
X.presheaf.map
(inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
congr 1
[GOAL]
case refine_2.e_a
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this✝ :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
this :
NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
(NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
X.presheaf.map
(inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op)))
⊢ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
X.presheaf.map
(inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) =
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
erw [← X.presheaf.map_comp, ← X.presheaf.map_comp]
[GOAL]
case refine_2.e_a
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this✝ :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
this :
NatTrans.app (f ∣_ U).val.c (op V) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
(NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
X.presheaf.map
(inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op)))
⊢ X.presheaf.map
(((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).counit
((Opens.map f.val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).unop).op ≫
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫
inv
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map
((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) =
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op
[PROOFSTEP]
congr 1
[GOAL]
case refine_1
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
⊢ (Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom e).op ≫
NatTrans.app (f ∣_ U).val.c
(op ((Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))
[PROOFSTEP]
change Y.presheaf.map _ ≫ _ = Y.presheaf.map _ ≫ _
[GOAL]
case refine_1
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
this :
NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c
((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom
(_ :
(Opens.map
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫
f).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) =
(Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))
e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V
⊢ Y.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.map (eqToHom e).op) ≫
NatTrans.app (f ∣_ U).val.c
(op ((Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) =
Y.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)).unop).op ≫
NatTrans.app (f ∣_ U).val.c
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))
[PROOFSTEP]
congr 1
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ Scheme.Γ.map (f ∣_ U).op =
Y.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫
NatTrans.app f.val.c (op U) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ⊤ =
(Opens.map f.val.base).obj U)).op
[PROOFSTEP]
rw [Scheme.Γ_map_op, morphismRestrict_c_app f U ⊤, f.val.c.naturality_assoc]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj ⊤) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))).op =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫
(f.val.base _* X.presheaf).map
(eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ⊤ =
(Opens.map f.val.base).obj U)).op
[PROOFSTEP]
erw [← X.presheaf.map_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫
X.presheaf.map
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj ⊤) =
(Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))).op =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫
X.presheaf.map
((Opens.map f.val.base).op.map
(eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫
(eqToHom
(_ :
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ⊤ =
(Opens.map f.val.base).obj U)).op)
[PROOFSTEP]
congr
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd
[PROOFSTEP]
let V : Opens Y := Scheme.Hom.opensRange g
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd
[PROOFSTEP]
let e := IsOpenImmersion.isoOfRangeEq g (Y.ofRestrict V.openEmbedding) Subtype.range_coe.symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) :=
IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ : Set.range ↑g.val.base = Set.range Subtype.val)
⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd
[PROOFSTEP]
let t : pullback f g ⟶ pullback f (Y.ofRestrict V.openEmbedding) :=
pullback.map _ _ _ _ (𝟙 _) e.hom (𝟙 _) (by rw [Category.comp_id, Category.id_comp])
(by rw [Category.comp_id, IsOpenImmersion.isoOfRangeEq_hom, IsOpenImmersion.lift_fac])
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) :=
IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ : Set.range ↑g.val.base = Set.range Subtype.val)
⊢ f ≫ 𝟙 Y = 𝟙 X ≫ f
[PROOFSTEP]
rw [Category.comp_id, Category.id_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) :=
IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ : Set.range ↑g.val.base = Set.range Subtype.val)
⊢ g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))
[PROOFSTEP]
rw [Category.comp_id, IsOpenImmersion.isoOfRangeEq_hom, IsOpenImmersion.lift_fac]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) :=
IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ : Set.range ↑g.val.base = Set.range Subtype.val)
t : pullback f g ⟶ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) :=
pullback.map f g f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (𝟙 X) e.hom (𝟙 Y)
(_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd
[PROOFSTEP]
symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) :=
IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ : Set.range ↑g.val.base = Set.range Subtype.val)
t : pullback f g ⟶ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) :=
pullback.map f g f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (𝟙 X) e.hom (𝟙 Y)
(_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
⊢ Arrow.mk pullback.snd ≅ Arrow.mk (f ∣_ Scheme.Hom.opensRange g)
[PROOFSTEP]
refine' Arrow.isoMk (asIso t ≪≫ pullbackRestrictIsoRestrict f V) e _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
hg : IsOpenImmersion g
V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g
e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) :=
IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ : Set.range ↑g.val.base = Set.range Subtype.val)
t : pullback f g ⟶ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) :=
pullback.map f g f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (𝟙 X) e.hom (𝟙 Y)
(_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)))
⊢ (asIso t ≪≫ pullbackRestrictIsoRestrict f V).hom ≫ (Arrow.mk (f ∣_ Scheme.Hom.opensRange g)).hom =
(Arrow.mk pullback.snd).hom ≫ e.hom
[PROOFSTEP]
rw [Iso.trans_hom, asIso_hom, ← Iso.comp_inv_eq, ← cancel_mono g, Arrow.mk_hom, Arrow.mk_hom,
IsOpenImmersion.isoOfRangeEq_inv, Category.assoc, Category.assoc, Category.assoc, IsOpenImmersion.lift_fac, ←
pullback.condition, morphismRestrict_ι, pullbackRestrictIsoRestrict_hom_restrict_assoc, pullback.lift_fst_assoc,
Category.comp_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U V : Opens ↑↑Y.toPresheafedSpace
e : U = V
⊢ Arrow.mk (f ∣_ U) = Arrow.mk (f ∣_ V)
[PROOFSTEP]
subst e
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ Arrow.mk (f ∣_ U) = Arrow.mk (f ∣_ U)
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
set g := ((Y.restrict U.openEmbedding).ofRestrict (V.openEmbedding (X := TopCat.of U)) ≫ Y.ofRestrict U.openEmbedding)
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
have i1 : IsOpenImmersion g := PresheafedSpace.IsOpenImmersion.comp _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
have i2 : HasPullback f g := IsOpenImmersion.hasPullback_of_right g f
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
set h : _ ⟶ pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry _ _).hom ≫
pullback.map _ _ _ _ (𝟙 _) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry _ _).hom) (𝟙 _)
((Category.comp_id _).trans (Category.id_comp _).symm) (by aesop_cat) ≫
(pullbackRightPullbackFstIso _ _ _).hom ≫ (pullbackSymmetry _ _).hom
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
⊢ (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
have i3 : IsIso h
[GOAL]
case i3
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
⊢ IsIso h
[PROOFSTEP]
repeat apply (config := { allowSynthFailures := true }) IsIso.comp_isIso
[GOAL]
case i3
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
⊢ IsIso h
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) IsIso.comp_isIso
[GOAL]
case inst
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
⊢ IsIso
((pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom)
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) IsIso.comp_isIso
[GOAL]
case inst
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
⊢ IsIso
(pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom)
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) IsIso.comp_isIso
[GOAL]
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) IsIso.comp_isIso
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
have : (f ∣_ U ∣_ V) ≫ (Iso.refl _).hom = (asIso h).hom ≫ pullback.snd (f := f) (g := g)
[GOAL]
case this
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
⊢ (f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
[PROOFSTEP]
simp only [Category.comp_id, pullbackRightPullbackFstIso_hom_fst, Iso.refl_hom, Category.assoc,
pullbackSymmetry_hom_comp_snd, asIso_hom, pullback.lift_fst, pullbackSymmetry_hom_comp_fst]
[GOAL]
case this
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
⊢ f ∣_ U ∣_ V = (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ pullback.snd
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
this :
(f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
refine' Arrow.isoMk' _ _ _ _ this.symm ≪≫ (morphismRestrictOpensRange _ _).symm ≪≫ morphismRestrictEq _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
this :
(f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
⊢ Scheme.Hom.opensRange g = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
this :
(f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
⊢ ↑(Scheme.Hom.opensRange g) = ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
this :
(f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
⊢ Set.range ↑(Opens.inclusion V ≫ Opens.inclusion U) = ↑(Opens.inclusion U) '' ↑V
[PROOFSTEP]
rw [coe_comp, Set.range_comp]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
this :
(f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
⊢ ↑(Opens.inclusion U) '' Set.range ↑(Opens.inclusion V) = ↑(Opens.inclusion U) '' ↑V
[PROOFSTEP]
apply congr_arg (U.inclusion '' ·)
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
V : Opens { x // x ∈ U }
g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶
Y :=
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))
i1 : IsOpenImmersion g
i2 : HasPullback f g
h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))))
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶
pullback f g :=
(pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫
(pullbackSymmetry (f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
pullback.map
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(f ∣_ U)
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
pullback.fst
(𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))))
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom)
(𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
(_ :
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
𝟙
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V))) ≫
Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))
(_ :
(f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) =
((pullbackRestrictIsoRestrict f U).inv ≫
(pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫
pullback.fst) ≫
(pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫
(pullbackSymmetry
(Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)) ≫
Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
f).hom
i3 : IsIso h
this :
(f ∣_ U ∣_ V) ≫
(Iso.refl
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(_ : OpenEmbedding ↑(Opens.inclusion V)))).hom =
(asIso h).hom ≫ pullback.snd
⊢ Set.range ↑(Opens.inclusion V) = ↑V
[PROOFSTEP]
exact Subtype.range_val
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
⊢ Arrow.mk
(f ∣_ U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) ≅
Arrow.mk (f ∣_ Scheme.basicOpen Y r)
[PROOFSTEP]
refine' morphismRestrictRestrict _ _ _ ≪≫ morphismRestrictEq _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
have e := Scheme.preimage_basicOpen (Y.ofRestrict U.openEmbedding) r
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U)) r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
erw [Scheme.ofRestrict_val_c_app, Opens.adjunction_counit_app_self, eqToHom_op] at e
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
rw [← (Y.restrict U.openEmbedding).basicOpen_res_eq _ (eqToHom U.inclusion_map_eq_top).op]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑((Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op)
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op)
r))) =
Scheme.basicOpen Y r
[PROOFSTEP]
erw [← comp_apply]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op ≫
(Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion
U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map
(eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op)
r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
erw [← Y.presheaf.map_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
((eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op ≫
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.map
(eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op))
r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
rw [eqToHom_op, eqToHom_op, eqToHom_map, eqToHom_trans]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op U =
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj
(op ((Opens.map (Opens.inclusion U)).obj U)))))
r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
erw [← e]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r)) =
Scheme.basicOpen Y r
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj
(Scheme.basicOpen Y r))) =
↑(Scheme.basicOpen Y r)
[PROOFSTEP]
dsimp [Opens.map, Opens.inclusion]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ ↑(ContinuousMap.mk Subtype.val) '' (↑(ContinuousMap.mk Subtype.val) ⁻¹' ↑(Scheme.basicOpen Y r)) =
↑(Scheme.basicOpen Y r)
[PROOFSTEP]
rw [Set.image_preimage_eq_inter_range, Set.inter_eq_left_iff_subset, ContinuousMap.coe_mk, Subtype.range_val]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
r : ↑(Y.presheaf.obj (op U))
e :
(Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) =
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))
(↑(Y.presheaf.map
(eqToHom
(_ :
op (op U).unop =
op
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj
((Opens.map (Opens.inclusion U)).obj (op U).unop)))))
r)
⊢ ↑(Scheme.basicOpen Y r) ⊆ ↑U
[PROOFSTEP]
exact Y.basicOpen_le r
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ Arrow.mk (PresheafedSpace.stalkMap (f ∣_ U).val x) ≅ Arrow.mk (PresheafedSpace.stalkMap f.val ↑x)
[PROOFSTEP]
fapply Arrow.isoMk'
[GOAL]
case e₁
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ PresheafedSpace.stalk
(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
(↑(f ∣_ U).val.base x) ≅
PresheafedSpace.stalk Y.toPresheafedSpace (↑f.val.base ↑x)
[PROOFSTEP]
refine' Y.restrictStalkIso U.openEmbedding ((f ∣_ U).1.1 x) ≪≫ TopCat.Presheaf.stalkCongr _ _
[GOAL]
case e₁
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x)
[PROOFSTEP]
apply Inseparable.of_eq
[GOAL]
case e₁.e
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x) = ↑f.val.base ↑x
[PROOFSTEP]
exact morphismRestrict_base_coe f U x
[GOAL]
case e₂
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ PresheafedSpace.stalk
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
x ≅
PresheafedSpace.stalk X.toPresheafedSpace ↑x
[PROOFSTEP]
exact X.restrictStalkIso (Opens.openEmbedding _) _
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ autoParam
((PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U))
(↑(f ∣_ U).val.base x) ≪≫
TopCat.Presheaf.stalkCongr Y.presheaf
(_ : Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x))).hom ≫
PresheafedSpace.stalkMap f.val ↑x =
PresheafedSpace.stalkMap (f ∣_ U).val x ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom)
_auto✝
[PROOFSTEP]
apply TopCat.Presheaf.stalk_hom_ext
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∀
(U_1 :
Opens
↑↑(Scheme.restrict Y
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
(hxU : ↑(f ∣_ U).val.base x ∈ U_1),
TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxU } ≫
(PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U))
(↑(f ∣_ U).val.base x) ≪≫
TopCat.Presheaf.stalkCongr Y.presheaf
(_ : Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x))).hom ≫
PresheafedSpace.stalkMap f.val ↑x =
TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxU } ≫
PresheafedSpace.stalkMap (f ∣_ U).val x ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
intro V hxV
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxV } ≫
(PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U))
(↑(f ∣_ U).val.base x) ≪≫
TopCat.Presheaf.stalkCongr Y.presheaf
(_ : Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x))).hom ≫
PresheafedSpace.stalkMap f.val ↑x =
TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxV } ≫
PresheafedSpace.stalkMap (f ∣_ U).val x ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
simp only [TopCat.Presheaf.stalkCongr_hom, CategoryTheory.Category.assoc, CategoryTheory.Iso.trans_hom]
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxV } ≫
(PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U))
(↑(f ∣_ U).val.base x)).hom ≫
TopCat.Presheaf.stalkSpecializes Y.presheaf
(_ : nhds (↑f.val.base ↑x) ≤ nhds (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x))) ≫
PresheafedSpace.stalkMap f.val ↑x =
TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxV } ≫
PresheafedSpace.stalkMap (f ∣_ U).val x ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
erw [PresheafedSpace.restrictStalkIso_hom_eq_germ_assoc]
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ TopCat.Presheaf.germ Y.presheaf
{ val := ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x),
property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) } ≫
TopCat.Presheaf.stalkSpecializes Y.presheaf
(_ : nhds (↑f.val.base ↑x) ≤ nhds (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x))) ≫
PresheafedSpace.stalkMap f.val ↑x =
TopCat.Presheaf.germ
(Scheme.restrict Y
(_ :
OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := ↑(f ∣_ U).val.base x, property := hxV } ≫
PresheafedSpace.stalkMap (f ∣_ U).val x ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
erw [PresheafedSpace.stalkMap_germ_assoc _ V ⟨_, hxV⟩]
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ TopCat.Presheaf.germ Y.presheaf
{ val := ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x),
property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) } ≫
TopCat.Presheaf.stalkSpecializes Y.presheaf
(_ : nhds (↑f.val.base ↑x) ≤ nhds (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x))) ≫
PresheafedSpace.stalkMap f.val ↑x =
NatTrans.app (f ∣_ U).val.c (op V) ≫
TopCat.Presheaf.germ
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := x, property := hxV } ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
rw [TopCat.Presheaf.germ_stalk_specializes'_assoc]
-- Porting note : explicit variables and proofs were not necessary
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ TopCat.Presheaf.germ Y.presheaf
{ val := ↑f.val.base ↑x,
property := (_ : ↑f.val.base ↑x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) } ≫
PresheafedSpace.stalkMap f.val ↑x =
NatTrans.app (f ∣_ U).val.c (op V) ≫
TopCat.Presheaf.germ
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := x, property := hxV } ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
erw [PresheafedSpace.stalkMap_germ _ (U.openEmbedding.isOpenMap.functor.obj V) ⟨x.1, ⟨⟨f.1.base x.1, x.2⟩, _, rfl⟩⟩]
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
TopCat.Presheaf.germ X.presheaf
{ val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } =
NatTrans.app (f ∣_ U).val.c (op V) ≫
TopCat.Presheaf.germ
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := x, property := hxV } ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ { val := ↑f.val.base ↑x, property := (_ : ↑x ∈ (Opens.map f.val.base).obj U) } ∈ ↑V
[PROOFSTEP]
swap
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ { val := ↑f.val.base ↑x, property := (_ : ↑x ∈ (Opens.map f.val.base).obj U) } ∈ ↑V
[PROOFSTEP]
rw [morphismRestrict_val_base] at hxV
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : Set.restrictPreimage U.carrier (↑f.val.base) x ∈ V
⊢ { val := ↑f.val.base ↑x, property := (_ : ↑x ∈ (Opens.map f.val.base).obj U) } ∈ ↑V
[PROOFSTEP]
exact hxV
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
TopCat.Presheaf.germ X.presheaf
{ val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } =
NatTrans.app (f ∣_ U).val.c (op V) ≫
TopCat.Presheaf.germ
(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf
{ val := x, property := hxV } ≫
(PresheafedSpace.restrictStalkIso X.toPresheafedSpace
(_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom
[PROOFSTEP]
erw [PresheafedSpace.restrictStalkIso_hom_eq_germ]
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
TopCat.Presheaf.germ X.presheaf
{ val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } =
NatTrans.app (f ∣_ U).val.c (op V) ≫
TopCat.Presheaf.germ X.presheaf
{ val := ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x,
property :=
(_ :
↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x ∈
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V)) }
[PROOFSTEP]
rw [morphismRestrict_c_app, Category.assoc, TopCat.Presheaf.germ_res]
[GOAL]
case h.ih
C : Type u
inst✝ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
x :
↑↑(Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
V :
Opens
↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
hxV : ↑(f ∣_ U).val.base x ∈ V
⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
TopCat.Presheaf.germ X.presheaf
{ val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } =
NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫
TopCat.Presheaf.germ X.presheaf
((fun x =>
{ val := ↑x,
property :=
(_ :
↑x ∈
↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) })
{ val := ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x,
property :=
(_ :
↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x ∈
(IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj
((Opens.map (f ∣_ U).val.base).obj V)) })
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
inst✝ : IsOpenImmersion f
⊢ IsOpenImmersion (f ∣_ U)
[PROOFSTEP]
delta morphismRestrict
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
inst✝ : IsOpenImmersion f
⊢ IsOpenImmersion ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd)
[PROOFSTEP]
refine PresheafedSpace.IsOpenImmersion.comp _ _
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.OpenImmersion.Scheme", "llama_tokens": 132619} |
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
x y : α →₀ M
⊢ ↑(x + y) = ↑x + ↑y
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
x y : α →₀ M
x✝ : α
⊢ ↑(x + y) x✝ = (↑x + ↑y) x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
x : R
y : α →₀ M
⊢ AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } (x • y) =
↑(RingHom.id R) x • AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } y
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
x : R
y : α →₀ M
x✝ : α
⊢ AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } (x • y) x✝ =
(↑(RingHom.id R) x •
AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } y)
x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
h : Disjoint s t
⊢ ⨆ (a : α) (_ : a ∈ s), LinearMap.range (lsingle a) ≤ ⨅ (a : α) (_ : a ∈ t), ker (lapply a)
[PROOFSTEP]
refine' iSup_le fun a₁ => iSup_le fun h₁ => range_le_iff_comap.2 _
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
h : Disjoint s t
a₁ : α
h₁ : a₁ ∈ s
⊢ comap (lsingle a₁) (⨅ (a : α) (_ : a ∈ t), ker (lapply a)) = ⊤
[PROOFSTEP]
simp only [(ker_comp _ _).symm, eq_top_iff, SetLike.le_def, mem_ker, comap_iInf, mem_iInf]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
h : Disjoint s t
a₁ : α
h₁ : a₁ ∈ s
⊢ ∀ ⦃x : M⦄, x ∈ ⊤ → ∀ (i : α), i ∈ t → ↑(comp (lapply i) (lsingle a₁)) x = 0
[PROOFSTEP]
intro b _ a₂ h₂
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
h : Disjoint s t
a₁ : α
h₁ : a₁ ∈ s
b : M
a✝ : b ∈ ⊤
a₂ : α
h₂ : a₂ ∈ t
⊢ ↑(comp (lapply a₂) (lsingle a₁)) b = 0
[PROOFSTEP]
have : a₁ ≠ a₂ := fun eq => h.le_bot ⟨h₁, eq.symm ▸ h₂⟩
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
h : Disjoint s t
a₁ : α
h₁ : a₁ ∈ s
b : M
a✝ : b ∈ ⊤
a₂ : α
h₂ : a₂ ∈ t
this : a₁ ≠ a₂
⊢ ↑(comp (lapply a₂) (lsingle a₁)) b = 0
[PROOFSTEP]
exact single_eq_of_ne this
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ ⨅ (a : α), ker (lapply a) ≤ ⊥
[PROOFSTEP]
simp only [SetLike.le_def, mem_iInf, mem_ker, mem_bot, lapply_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ ∀ ⦃x : α →₀ M⦄, (∀ (i : α), ↑x i = 0) → x = 0
[PROOFSTEP]
exact fun a h => Finsupp.ext h
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ ⨆ (a : α), LinearMap.range (lsingle a) = ⊤
[PROOFSTEP]
refine' eq_top_iff.2 <| SetLike.le_def.2 fun f _ => _
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
f : α →₀ M
x✝ : f ∈ ⊤
⊢ f ∈ ⨆ (a : α), LinearMap.range (lsingle a)
[PROOFSTEP]
rw [← sum_single f]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
f : α →₀ M
x✝ : f ∈ ⊤
⊢ sum f single ∈ ⨆ (a : α), LinearMap.range (lsingle a)
[PROOFSTEP]
exact sum_mem fun a _ => Submodule.mem_iSup_of_mem a ⟨_, rfl⟩
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
⊢ Disjoint (⨆ (a : α) (_ : a ∈ s), LinearMap.range (lsingle a)) (⨆ (a : α) (_ : a ∈ t), LinearMap.range (lsingle a))
[PROOFSTEP]
refine' (Disjoint.mono (lsingle_range_le_ker_lapply s sᶜ _) (lsingle_range_le_ker_lapply t tᶜ _)) _
[GOAL]
case refine'_1
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
⊢ Disjoint s sᶜ
[PROOFSTEP]
apply disjoint_compl_right
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
⊢ Disjoint t tᶜ
[PROOFSTEP]
apply disjoint_compl_right
[GOAL]
case refine'_3
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
⊢ Disjoint (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) (⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a))
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case refine'_3
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ⊥
[PROOFSTEP]
refine' le_trans (le_iInf fun i => _) iInf_ker_lapply_le_bot
[GOAL]
case refine'_3
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
i : α
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i)
[PROOFSTEP]
classical
by_cases his : i ∈ s
· by_cases hit : i ∈ t
· exact (hs.le_bot ⟨his, hit⟩).elim
exact inf_le_of_right_le (iInf_le_of_le i <| iInf_le _ hit)
exact inf_le_of_left_le (iInf_le_of_le i <| iInf_le _ his)
[GOAL]
case refine'_3
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
i : α
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i)
[PROOFSTEP]
by_cases his : i ∈ s
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
i : α
his : i ∈ s
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i)
[PROOFSTEP]
by_cases hit : i ∈ t
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
i : α
his : i ∈ s
hit : i ∈ t
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i)
[PROOFSTEP]
exact (hs.le_bot ⟨his, hit⟩).elim
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
i : α
his : i ∈ s
hit : ¬i ∈ t
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i)
[PROOFSTEP]
exact inf_le_of_right_le (iInf_le_of_le i <| iInf_le _ hit)
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
hs : Disjoint s t
i : α
his : ¬i ∈ s
⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i)
[PROOFSTEP]
exact inf_le_of_left_le (iInf_le_of_le i <| iInf_le _ his)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set M
a : α
⊢ span R (single a '' s) = map (lsingle a) (span R s)
[PROOFSTEP]
rw [← span_image]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set M
a : α
⊢ span R (single a '' s) = span R (↑(lsingle a) '' s)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
p q : α →₀ M
hp : p ∈ {p | ↑p.support ⊆ s}
hq : q ∈ {p | ↑p.support ⊆ s}
⊢ p + q ∈ {p | ↑p.support ⊆ s}
[PROOFSTEP]
classical
refine' Subset.trans (Subset.trans (Finset.coe_subset.2 support_add) _) (union_subset hp hq)
rw [Finset.coe_union]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
p q : α →₀ M
hp : p ∈ {p | ↑p.support ⊆ s}
hq : q ∈ {p | ↑p.support ⊆ s}
⊢ p + q ∈ {p | ↑p.support ⊆ s}
[PROOFSTEP]
refine' Subset.trans (Subset.trans (Finset.coe_subset.2 support_add) _) (union_subset hp hq)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
p q : α →₀ M
hp : p ∈ {p | ↑p.support ⊆ s}
hq : q ∈ {p | ↑p.support ⊆ s}
⊢ ↑(p.support ∪ q.support) ⊆ ↑p.support ∪ ↑q.support
[PROOFSTEP]
rw [Finset.coe_union]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
⊢ 0 ∈
{ carrier := {p | ↑p.support ⊆ s},
add_mem' :=
(_ : ∀ {p q : α →₀ M}, p ∈ {p | ↑p.support ⊆ s} → q ∈ {p | ↑p.support ⊆ s} → ↑(p + q).support ⊆ s) }.carrier
[PROOFSTEP]
simp only [subset_def, Finset.mem_coe, Set.mem_setOf_eq, mem_support_iff, zero_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
⊢ ∀ (x : α), 0 ≠ 0 → x ∈ s
[PROOFSTEP]
intro h ha
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
h : α
ha : 0 ≠ 0
⊢ h ∈ s
[PROOFSTEP]
exact (ha rfl).elim
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
p : α →₀ M
⊢ p ∈ supported M R s ↔ ∀ (x : α), ¬x ∈ s → ↑p x = 0
[PROOFSTEP]
haveI := Classical.decPred fun x : α => x ∈ s
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
p : α →₀ M
this : DecidablePred fun x => x ∈ s
⊢ p ∈ supported M R s ↔ ∀ (x : α), ¬x ∈ s → ↑p x = 0
[PROOFSTEP]
simp [mem_supported, Set.subset_def, not_imp_comm]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
p : α →₀ M
⊢ p ∈ supported M R ↑p.support
[PROOFSTEP]
rw [Finsupp.mem_supported]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
⊢ supported R R s = span R ((fun i => single i 1) '' s)
[PROOFSTEP]
refine' (span_eq_of_le _ _ (SetLike.le_def.2 fun l hl => _)).symm
[GOAL]
case refine'_1
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
⊢ (fun i => single i 1) '' s ⊆ ↑(supported R R s)
[PROOFSTEP]
rintro _ ⟨_, hp, rfl⟩
[GOAL]
case refine'_1.intro.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
w✝ : α
hp : w✝ ∈ s
⊢ (fun i => single i 1) w✝ ∈ ↑(supported R R s)
[PROOFSTEP]
exact single_mem_supported R 1 hp
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : α →₀ R
hl : l ∈ supported R R s
⊢ l ∈ span R ((fun i => single i 1) '' s)
[PROOFSTEP]
rw [← l.sum_single]
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : α →₀ R
hl : l ∈ supported R R s
⊢ sum l single ∈ span R ((fun i => single i 1) '' s)
[PROOFSTEP]
refine'
sum_mem fun i il =>
_
-- Porting note: Needed to help this convert quite a bit replacing underscores
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : α →₀ R
hl : l ∈ supported R R s
i : α
il : i ∈ l.support
⊢ single i (↑l i) ∈ span R ((fun i => single i 1) '' s)
[PROOFSTEP]
convert smul_mem (M := α →₀ R) (x := single i 1) (span R ((fun i => single i 1) '' s)) (l i) ?_
[GOAL]
case h.e'_4
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : α →₀ R
hl : l ∈ supported R R s
i : α
il : i ∈ l.support
⊢ single i (↑l i) = ↑l i • single i 1
[PROOFSTEP]
simp [span]
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : α →₀ R
hl : l ∈ supported R R s
i : α
il : i ∈ l.support
⊢ single i 1 ∈ span R ((fun i => single i 1) '' s)
[PROOFSTEP]
apply subset_span
[GOAL]
case refine'_2.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : α →₀ R
hl : l ∈ supported R R s
i : α
il : i ∈ l.support
⊢ single i 1 ∈ (fun i => single i 1) '' s
[PROOFSTEP]
apply Set.mem_image_of_mem _ (hl il)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
⊢ comp (restrictDom M R s) (Submodule.subtype (supported M R s)) = LinearMap.id
[PROOFSTEP]
ext l a
[GOAL]
case h.a.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : { x // x ∈ supported M R s }
a : α
⊢ ↑↑(↑(comp (restrictDom M R s) (Submodule.subtype (supported M R s))) l) a = ↑↑(↑LinearMap.id l) a
[PROOFSTEP]
by_cases h : a ∈ s
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : { x // x ∈ supported M R s }
a : α
h : a ∈ s
⊢ ↑↑(↑(comp (restrictDom M R s) (Submodule.subtype (supported M R s))) l) a = ↑↑(↑LinearMap.id l) a
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : { x // x ∈ supported M R s }
a : α
h : ¬a ∈ s
⊢ ↑↑(↑(comp (restrictDom M R s) (Submodule.subtype (supported M R s))) l) a = ↑↑(↑LinearMap.id l) a
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
l : { x // x ∈ supported M R s }
a : α
h : ¬a ∈ s
⊢ 0 = ↑↑l a
[PROOFSTEP]
exact ((mem_supported' R l.1).1 l.2 a h).symm
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
l : α →₀ M
h : l ∈ supported M R ∅
⊢ l = 0
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
l : α →₀ M
h : l ∈ supported M R ∅
a✝ : α
⊢ ↑l a✝ = ↑0 a✝
[PROOFSTEP]
simp_all [mem_supported']
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
⊢ supported M R (⋃ (i : δ), s i) = ⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
refine' le_antisymm _ (iSup_le fun i => supported_mono <| Set.subset_iUnion _ _)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
⊢ supported M R (⋃ (i : δ), s i) ≤ ⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
haveI := Classical.decPred fun x => x ∈ ⋃ i, s i
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
⊢ supported M R (⋃ (i : δ), s i) ≤ ⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
suffices LinearMap.range ((Submodule.subtype _).comp (restrictDom M R (⋃ i, s i))) ≤ ⨆ i, supported M R (s i) by
rwa [LinearMap.range_comp, range_restrictDom, Submodule.map_top, range_subtype] at this
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this✝ : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
this :
LinearMap.range (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) ≤
⨆ (i : δ), supported M R (s i)
⊢ supported M R (⋃ (i : δ), s i) ≤ ⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
rwa [LinearMap.range_comp, range_restrictDom, Submodule.map_top, range_subtype] at this
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
⊢ LinearMap.range (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) ≤
⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
rw [range_le_iff_comap, eq_top_iff]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
⊢ ⊤ ≤
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
rintro l
⟨⟩
-- Porting note: Was ported as `induction l using Finsupp.induction`
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l : α →₀ M
⊢ l ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
refine Finsupp.induction l ?_ ?_
[GOAL]
case intro.refine_1
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l : α →₀ M
⊢ 0 ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
exact zero_mem _
[GOAL]
case intro.refine_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l : α →₀ M
⊢ ∀ (a : α) (b : M) (f : α →₀ M),
¬a ∈ f.support →
b ≠ 0 →
f ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i)) →
single a b + f ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
refine' fun x a l _ _ => add_mem _
[GOAL]
case intro.refine_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l✝ : α →₀ M
x : α
a : M
l : α →₀ M
x✝¹ : ¬x ∈ l.support
x✝ : a ≠ 0
⊢ single x a ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
by_cases h : ∃ i, x ∈ s i
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l✝ : α →₀ M
x : α
a : M
l : α →₀ M
x✝¹ : ¬x ∈ l.support
x✝ : a ≠ 0
h : ∃ i, x ∈ s i
⊢ single x a ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l✝ : α →₀ M
x : α
a : M
l : α →₀ M
x✝¹ : ¬x ∈ l.support
x✝ : a ≠ 0
h : ¬∃ i, x ∈ s i
⊢ single x a ∈
comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i)))
(⨆ (i : δ), supported M R (s i))
[PROOFSTEP]
simp [h]
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l✝ : α →₀ M
x : α
a : M
l : α →₀ M
x✝¹ : ¬x ∈ l.support
x✝ : a ≠ 0
h : ∃ i, x ∈ s i
⊢ single x a ∈ ⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
cases' h with i hi
[GOAL]
case pos.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
δ : Type u_7
s : δ → Set α
this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i
l✝ : α →₀ M
x : α
a : M
l : α →₀ M
x✝¹ : ¬x ∈ l.support
x✝ : a ≠ 0
i : δ
hi : x ∈ s i
⊢ single x a ∈ ⨆ (i : δ), supported M R (s i)
[PROOFSTEP]
exact le_iSup (fun i => supported M R (s i)) i (single_mem_supported R _ hi)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
⊢ supported M R (s ∪ t) = supported M R s ⊔ supported M R t
[PROOFSTEP]
erw [Set.union_eq_iUnion, supported_iUnion, iSup_bool_eq]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
⊢ supported M R (bif true then s else t) ⊔ supported M R (bif false then s else t) = supported M R s ⊔ supported M R t
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
ι : Type u_7
s : ι → Set α
x : α →₀ M
⊢ x ∈ supported M R (⋂ (i : ι), s i) ↔ x ∈ ⨅ (i : ι), supported M R (s i)
[PROOFSTEP]
simp [mem_supported, subset_iInter_iff]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
⊢ supported M R (s ∩ t) = supported M R s ⊓ supported M R t
[PROOFSTEP]
rw [Set.inter_eq_iInter, supported_iInter, iInf_bool_eq]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
⊢ supported M R (bif true then s else t) ⊓ supported M R (bif false then s else t) = supported M R s ⊓ supported M R t
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s t : Set α
h : Disjoint s t
⊢ supported M R s ⊓ supported M R t = ⊥
[PROOFSTEP]
rw [← supported_inter, disjoint_iff_inter_eq_empty.1 h, supported_empty]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : Nontrivial M
s t : Set α
⊢ Disjoint (supported M R s) (supported M R t) ↔ Disjoint s t
[PROOFSTEP]
refine' ⟨fun h => Set.disjoint_left.mpr fun x hx1 hx2 => _, disjoint_supported_supported⟩
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : Nontrivial M
s t : Set α
h : Disjoint (supported M R s) (supported M R t)
x : α
hx1 : x ∈ s
hx2 : x ∈ t
⊢ False
[PROOFSTEP]
rcases exists_ne (0 : M) with ⟨y, hy⟩
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : Nontrivial M
s t : Set α
h : Disjoint (supported M R s) (supported M R t)
x : α
hx1 : x ∈ s
hx2 : x ∈ t
y : M
hy : y ≠ 0
⊢ False
[PROOFSTEP]
have := h.le_bot ⟨single_mem_supported R y hx1, single_mem_supported R y hx2⟩
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : Nontrivial M
s t : Set α
h : Disjoint (supported M R s) (supported M R t)
x : α
hx1 : x ∈ s
hx2 : x ∈ t
y : M
hy : y ≠ 0
this : single x y ∈ ⊥
⊢ False
[PROOFSTEP]
rw [mem_bot, single_eq_zero] at this
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : Nontrivial M
s t : Set α
h : Disjoint (supported M R s) (supported M R t)
x : α
hx1 : x ∈ s
hx2 : x ∈ t
y : M
hy : y ≠ 0
this : y = 0
⊢ False
[PROOFSTEP]
exact hy this
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
⊢ { x // x ∈ supported M R s } ≃ₗ[R] ↑s →₀ M
[PROOFSTEP]
let F : supported M R s ≃ (s →₀ M) := restrictSupportEquiv s M
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M
⊢ { x // x ∈ supported M R s } ≃ₗ[R] ↑s →₀ M
[PROOFSTEP]
refine' F.toLinearEquiv _
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M
⊢ IsLinearMap R ↑F
[PROOFSTEP]
have :
(F : supported M R s → ↥s →₀ M) =
(lsubtypeDomain s : (α →₀ M) →ₗ[R] s →₀ M).comp (Submodule.subtype (supported M R s)) :=
rfl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M
this : ↑F = ↑(comp (lsubtypeDomain s) (Submodule.subtype (supported M R s)))
⊢ IsLinearMap R ↑F
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
s : Set α
F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M
this : ↑F = ↑(comp (lsubtypeDomain s) (Submodule.subtype (supported M R s)))
⊢ IsLinearMap R ↑(comp (lsubtypeDomain s) (Submodule.subtype (supported M R s)))
[PROOFSTEP]
exact LinearMap.isLinear _
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : α → M →ₗ[R] N
c : R
f : α →₀ M
⊢ AddHom.toFun
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }
f
[PROOFSTEP]
simp [sum_smul_index', smul_sum]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F G : α → M →ₗ[R] N
⊢ (fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F G : α → M →ₗ[R] N
x : α
y : M
⊢ ↑(comp
((fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G))
(lsingle x))
y =
↑(comp
((fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G)
(lsingle x))
y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : S
G : α → M →ₗ[R] N
⊢ AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
(F • G) =
↑(RingHom.id S) F •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
G
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : S
G : α → M →ₗ[R] N
x : α
y : M
⊢ ↑(comp
(AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
(F • G))
(lsingle x))
y =
↑(comp
(↑(RingHom.id S) F •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
G)
(lsingle x))
y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : α → M →ₗ[R] N
⊢ (fun F x => comp F (lsingle x))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) },
map_smul' :=
(_ :
∀ (F : S) (G : α → M →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
(F • G) =
↑(RingHom.id S) F •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
G) }.toAddHom
F) =
F
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : α → M →ₗ[R] N
x : α
y : M
⊢ ↑((fun F x => comp F (lsingle x))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) },
map_smul' :=
(_ :
∀ (F : S) (G : α → M →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
(F • G) =
↑(RingHom.id S) F •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
G) }.toAddHom
F)
x)
y =
↑(F x) y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (α →₀ M) →ₗ[R] N
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) },
map_smul' :=
(_ :
∀ (F : S) (G : α → M →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
(F • G) =
↑(RingHom.id S) F •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
G) }.toAddHom
((fun F x => comp F (lsingle x)) F) =
F
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
inst✝¹ : Module S N
inst✝ : SMulCommClass R S N
F : (α →₀ M) →ₗ[R] N
x : α
y : M
⊢ ↑(comp
(AddHom.toFun
{
toAddHom :=
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) },
map_smul' :=
(_ :
∀ (F : S) (G : α → M →ₗ[R] N),
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
(F • G) =
↑(RingHom.id S) F •
AddHom.toFun
{
toFun := fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) },
map_add' :=
(_ :
∀ (F G : α → M →ₗ[R] N),
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
(F + G) =
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
F +
(fun F =>
{
toAddHom :=
{ toFun := fun d => sum d fun i => ↑(F i),
map_add' :=
(_ :
∀ (a b : α →₀ M),
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) =
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a +
↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) },
map_smul' :=
(_ :
∀ (c : R) (f : α →₀ M),
(sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) })
G) }
G) }.toAddHom
((fun F x => comp F (lsingle x)) F))
(lsingle x))
y =
↑(comp F (lsingle x)) y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
X : Type u_7
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X
⊢ ∀ (r : S) (x : X → M),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : X → M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r • x) =
↑(RingHom.id S) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : X → M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
X : Type u_7
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X
r✝ : S
x✝ : X → M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : X → M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r✝ • x✝) =
↑(RingHom.id S) r✝ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : X → M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x✝
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
X : Type u_7
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X
r✝ : S
x✝ : X → M
⊢ ↑(lift M R X) (r✝ • x✝) = r✝ • ↑(lift M R X) x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
X : Type u_7
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X
r✝ : S
x✝ : X → M
a✝ : X
⊢ ↑(comp (↑(lift M R X) (r✝ • x✝)) (lsingle a✝)) 1 = ↑(comp (r✝ • ↑(lift M R X) x✝) (lsingle a✝)) 1
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, lsingle_apply, lift_apply, Pi.smul_apply, sum_single_index, zero_smul,
one_smul, LinearMap.smul_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α'
⊢ supported M R (f ⁻¹' s) ≤ comap (lmapDomain M R f) (supported M R s)
[PROOFSTEP]
classical
intro l (hl : (l.support : Set α) ⊆ f ⁻¹' s)
show ↑(mapDomain f l).support ⊆ s
rw [← Set.image_subset_iff, ← Finset.coe_image] at hl
exact Set.Subset.trans mapDomain_support hl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α'
⊢ supported M R (f ⁻¹' s) ≤ comap (lmapDomain M R f) (supported M R s)
[PROOFSTEP]
intro l (hl : (l.support : Set α) ⊆ f ⁻¹' s)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α'
l : α →₀ M
hl : ↑l.support ⊆ f ⁻¹' s
⊢ l ∈ comap (lmapDomain M R f) (supported M R s)
[PROOFSTEP]
show ↑(mapDomain f l).support ⊆ s
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α'
l : α →₀ M
hl : ↑l.support ⊆ f ⁻¹' s
⊢ ↑(mapDomain f l).support ⊆ s
[PROOFSTEP]
rw [← Set.image_subset_iff, ← Finset.coe_image] at hl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α'
l : α →₀ M
hl✝ : f '' ↑l.support ⊆ s
hl : ↑(Finset.image f l.support) ⊆ s
⊢ ↑(mapDomain f l).support ⊆ s
[PROOFSTEP]
exact Set.Subset.trans mapDomain_support hl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s)
[PROOFSTEP]
classical
inhabit α
refine
le_antisymm
(map_le_iff_le_comap.2 <|
le_trans (supported_mono <| Set.subset_preimage_image _ _) (supported_comap_lmapDomain M R _ _))
?_
intro l hl
refine' ⟨(lmapDomain M R (Function.invFunOn f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, fun x hx => _, _⟩
· rcases Finset.mem_image.1 (mapDomain_support hx) with ⟨c, hc, rfl⟩
exact Function.invFunOn_mem (by simpa using hl hc)
· rw [← LinearMap.comp_apply, ← lmapDomain_comp]
refine' (mapDomain_congr fun c hc => _).trans mapDomain_id
exact Function.invFunOn_eq (by simpa using hl hc)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s)
[PROOFSTEP]
inhabit α
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s)
[PROOFSTEP]
refine
le_antisymm
(map_le_iff_le_comap.2 <|
le_trans (supported_mono <| Set.subset_preimage_image _ _) (supported_comap_lmapDomain M R _ _))
?_
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
⊢ supported M R (f '' s) ≤ map (lmapDomain M R f) (supported M R s)
[PROOFSTEP]
intro l hl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
⊢ l ∈ map (lmapDomain M R f) (supported M R s)
[PROOFSTEP]
refine' ⟨(lmapDomain M R (Function.invFunOn f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, fun x hx => _, _⟩
[GOAL]
case refine'_1
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
x : α
hx : x ∈ ↑(↑(lmapDomain M R (Function.invFunOn f s)) l).support
⊢ x ∈ s
[PROOFSTEP]
rcases Finset.mem_image.1 (mapDomain_support hx) with ⟨c, hc, rfl⟩
[GOAL]
case refine'_1.intro.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
c : α'
hc : c ∈ l.support
hx : Function.invFunOn f s c ∈ ↑(↑(lmapDomain M R (Function.invFunOn f s)) l).support
⊢ Function.invFunOn f s c ∈ s
[PROOFSTEP]
exact Function.invFunOn_mem (by simpa using hl hc)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
c : α'
hc : c ∈ l.support
hx : Function.invFunOn f s c ∈ ↑(↑(lmapDomain M R (Function.invFunOn f s)) l).support
⊢ ∃ a, a ∈ s ∧ f a = c
[PROOFSTEP]
simpa using hl hc
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
⊢ ↑(lmapDomain M R f) (↑(lmapDomain M R (Function.invFunOn f s)) l) = l
[PROOFSTEP]
rw [← LinearMap.comp_apply, ← lmapDomain_comp]
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
⊢ ↑(lmapDomain M R (f ∘ Function.invFunOn f s)) l = l
[PROOFSTEP]
refine' (mapDomain_congr fun c hc => _).trans mapDomain_id
[GOAL]
case refine'_2
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
c : α'
hc : c ∈ l.support
⊢ (f ∘ Function.invFunOn f s) c = _root_.id c
[PROOFSTEP]
exact Function.invFunOn_eq (by simpa using hl hc)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
α' : Type u_7
α'' : Type u_8
inst✝ : Nonempty α
f : α → α'
s : Set α
inhabited_h : Inhabited α
l : α' →₀ M
hl : l ∈ supported M R (f '' s)
c : α'
hc : c ∈ l.support
⊢ ∃ a, a ∈ s ∧ f a = c
[PROOFSTEP]
simpa using hl hc
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
⊢ Disjoint (supported M R s) (ker (lmapDomain M R f))
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
⊢ supported M R s ⊓ ker (lmapDomain M R f) ≤ ⊥
[PROOFSTEP]
rintro l ⟨h₁, h₂⟩
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : l ∈ ↑(ker (lmapDomain M R f))
⊢ l ∈ ⊥
[PROOFSTEP]
rw [SetLike.mem_coe, mem_ker, lmapDomain_apply, mapDomain] at h₂
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
⊢ l ∈ ⊥
[PROOFSTEP]
simp
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
⊢ l = 0
[PROOFSTEP]
ext x
[GOAL]
case intro.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
⊢ ↑l x = ↑0 x
[PROOFSTEP]
haveI := Classical.decPred fun x => x ∈ s
[GOAL]
case intro.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this : DecidablePred fun x => x ∈ s
⊢ ↑l x = ↑0 x
[PROOFSTEP]
by_cases xs : x ∈ s
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this : DecidablePred fun x => x ∈ s
xs : x ∈ s
⊢ ↑l x = ↑0 x
[PROOFSTEP]
have : Finsupp.sum l (fun a => Finsupp.single (f a)) (f x) = 0 :=
by
rw [h₂]
rfl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this : DecidablePred fun x => x ∈ s
xs : x ∈ s
⊢ ↑(sum l fun a => single (f a)) (f x) = 0
[PROOFSTEP]
rw [h₂]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this : DecidablePred fun x => x ∈ s
xs : x ∈ s
⊢ ↑0 (f x) = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this✝ : DecidablePred fun x => x ∈ s
xs : x ∈ s
this : ↑(sum l fun a => single (f a)) (f x) = 0
⊢ ↑l x = ↑0 x
[PROOFSTEP]
rw [Finsupp.sum_apply, Finsupp.sum, Finset.sum_eq_single x, single_eq_same] at this
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this✝ : DecidablePred fun x => x ∈ s
xs : x ∈ s
this : ↑l x = 0
⊢ ↑l x = ↑0 x
[PROOFSTEP]
simpa
[GOAL]
case pos.h₀
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this✝ : DecidablePred fun x => x ∈ s
xs : x ∈ s
this : ∑ a in l.support, ↑(single (f a) (↑l a)) (f x) = 0
⊢ ∀ (b : α), b ∈ l.support → b ≠ x → ↑(single (f b) (↑l b)) (f x) = 0
[PROOFSTEP]
intro y hy xy
[GOAL]
case pos.h₀
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this✝ : DecidablePred fun x => x ∈ s
xs : x ∈ s
this : ∑ a in l.support, ↑(single (f a) (↑l a)) (f x) = 0
y : α
hy : y ∈ l.support
xy : y ≠ x
⊢ ↑(single (f y) (↑l y)) (f x) = 0
[PROOFSTEP]
simp [mt (H _ (h₁ hy) _ xs) xy]
[GOAL]
case pos.h₁
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this✝ : DecidablePred fun x => x ∈ s
xs : x ∈ s
this : ∑ a in l.support, ↑(single (f a) (↑l a)) (f x) = 0
⊢ ¬x ∈ l.support → ↑(single (f x) (↑l x)) (f x) = 0
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this : DecidablePred fun x => x ∈ s
xs : ¬x ∈ s
⊢ ↑l x = ↑0 x
[PROOFSTEP]
by_contra h
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
α'' : Type u_8
f : α → α'
s : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b
l : α →₀ M
h₁ : l ∈ ↑(supported M R s)
h₂ : (sum l fun a => single (f a)) = 0
x : α
this : DecidablePred fun x => x ∈ s
xs : ¬x ∈ s
h : ¬↑l x = ↑0 x
⊢ False
[PROOFSTEP]
exact xs (h₁ <| Finsupp.mem_support_iff.2 h)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
β : Type u_7
f : α → β
hf : Function.Injective f
x y : β →₀ M
⊢ (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) =
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x +
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
β : Type u_7
f : α → β
hf : Function.Injective f
x y : β →₀ M
a✝ : α
⊢ ↑((fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y)) a✝ =
↑((fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x +
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y)
a✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
β : Type u_7
f : α → β
hf : Function.Injective f
c : R
x : β →₀ M
⊢ AddHom.toFun
{ toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)),
map_add' :=
(_ :
∀ (x y : β →₀ M),
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) =
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x +
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)),
map_add' :=
(_ :
∀ (x y : β →₀ M),
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) =
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x +
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) }
x
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
β : Type u_7
f : α → β
hf : Function.Injective f
c : R
x : β →₀ M
a✝ : α
⊢ ↑(AddHom.toFun
{ toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)),
map_add' :=
(_ :
∀ (x y : β →₀ M),
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) =
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x +
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) }
(c • x))
a✝ =
↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)),
map_add' :=
(_ :
∀ (x y : β →₀ M),
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) =
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x +
(fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) }
x)
a✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
l : α →₀ R
s : Finset α
hs : l ∈ supported R R ↑s
x : α
x✝ : x ∈ s
hxg : ¬x ∈ l.support
⊢ ↑l x • v x = 0
[PROOFSTEP]
rw [not_mem_support_iff.1 hxg, zero_smul]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
c : R
a : α
⊢ ↑(Finsupp.total α M R v) (single a c) = c • v a
[PROOFSTEP]
simp [total_apply, sum_single_index]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : α →₀ R
⊢ ↑(Finsupp.total α M R 0) x = 0
[PROOFSTEP]
simp [Finsupp.total_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
f : M →ₗ[R] M'
v : α → M
l : α →₀ R
⊢ ↑f (↑(Finsupp.total α M R v) l) = ↑(Finsupp.total α M' R (↑f ∘ v)) l
[PROOFSTEP]
apply Finsupp.induction_linear l
[GOAL]
case h0
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
f : M →ₗ[R] M'
v : α → M
l : α →₀ R
⊢ ↑f (↑(Finsupp.total α M R v) 0) = ↑(Finsupp.total α M' R (↑f ∘ v)) 0
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
case hadd
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
f : M →ₗ[R] M'
v : α → M
l : α →₀ R
⊢ ∀ (f_1 g : α →₀ R),
↑f (↑(Finsupp.total α M R v) f_1) = ↑(Finsupp.total α M' R (↑f ∘ v)) f_1 →
↑f (↑(Finsupp.total α M R v) g) = ↑(Finsupp.total α M' R (↑f ∘ v)) g →
↑f (↑(Finsupp.total α M R v) (f_1 + g)) = ↑(Finsupp.total α M' R (↑f ∘ v)) (f_1 + g)
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
case hsingle
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
f : M →ₗ[R] M'
v : α → M
l : α →₀ R
⊢ ∀ (a : α) (b : R), ↑f (↑(Finsupp.total α M R v) (single a b)) = ↑(Finsupp.total α M' R (↑f ∘ v)) (single a b)
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R P
α' : Type u_7
M' : Type u_8
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
v✝ : α → M
v' : α' → M'
inst✝ : Unique α
l : α →₀ R
v : α → M
⊢ ↑(Finsupp.total α M R v) l = ↑l default • v default
[PROOFSTEP]
rw [← total_single, ← unique_single l]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
h : Function.Surjective v
⊢ Function.Surjective ↑(Finsupp.total α M R v)
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
h : Function.Surjective v
x : M
⊢ ∃ a, ↑(Finsupp.total α M R v) a = x
[PROOFSTEP]
obtain ⟨y, hy⟩ := h x
[GOAL]
case intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
h : Function.Surjective v
x : M
y : α
hy : v y = x
⊢ ∃ a, ↑(Finsupp.total α M R v) a = x
[PROOFSTEP]
exact ⟨Finsupp.single y 1, by simp [hy]⟩
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
h : Function.Surjective v
x : M
y : α
hy : v y = x
⊢ ↑(Finsupp.total α M R v) (single y 1) = x
[PROOFSTEP]
simp [hy]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
⊢ LinearMap.range (Finsupp.total α M R v) = span R (Set.range v)
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ LinearMap.range (Finsupp.total α M R v) ↔ x ∈ span R (Set.range v)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ LinearMap.range (Finsupp.total α M R v) → x ∈ span R (Set.range v)
[PROOFSTEP]
intro hx
[GOAL]
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
hx : x ∈ LinearMap.range (Finsupp.total α M R v)
⊢ x ∈ span R (Set.range v)
[PROOFSTEP]
rw [LinearMap.mem_range] at hx
[GOAL]
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
hx : ∃ y, ↑(Finsupp.total α M R v) y = x
⊢ x ∈ span R (Set.range v)
[PROOFSTEP]
rcases hx with ⟨l, hl⟩
[GOAL]
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : ↑(Finsupp.total α M R v) l = x
⊢ x ∈ span R (Set.range v)
[PROOFSTEP]
rw [← hl]
[GOAL]
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : ↑(Finsupp.total α M R v) l = x
⊢ ↑(Finsupp.total α M R v) l ∈ span R (Set.range v)
[PROOFSTEP]
rw [Finsupp.total_apply]
[GOAL]
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : ↑(Finsupp.total α M R v) l = x
⊢ (sum l fun i a => a • v i) ∈ span R (Set.range v)
[PROOFSTEP]
exact sum_mem fun i _ => Submodule.smul_mem _ _ (subset_span (mem_range_self i))
[GOAL]
case h.mpr
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ span R (Set.range v) → x ∈ LinearMap.range (Finsupp.total α M R v)
[PROOFSTEP]
apply span_le.2
[GOAL]
case h.mpr.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ Set.range v ⊆ ↑(LinearMap.range (Finsupp.total α M R v))
[PROOFSTEP]
intro x hx
[GOAL]
case h.mpr.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
hx : x ∈ Set.range v
⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
[PROOFSTEP]
rcases hx with ⟨i, hi⟩
[GOAL]
case h.mpr.a.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
[PROOFSTEP]
rw [SetLike.mem_coe, LinearMap.mem_range]
[GOAL]
case h.mpr.a.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ ∃ y, ↑(Finsupp.total α M R v) y = x
[PROOFSTEP]
use Finsupp.single i 1
[GOAL]
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ ↑(Finsupp.total α M R v) (single i 1) = x
[PROOFSTEP]
simp [hi]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α → α'
g : M →ₗ[R] M'
h : ∀ (i : α), ↑g (v i) = v' (f i)
⊢ comp (Finsupp.total α' M' R v') (lmapDomain R R f) = comp g (Finsupp.total α M R v)
[PROOFSTEP]
ext l
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α → α'
g : M →ₗ[R] M'
h : ∀ (i : α), ↑g (v i) = v' (f i)
l : α
⊢ ↑(comp (comp (Finsupp.total α' M' R v') (lmapDomain R R f)) (lsingle l)) 1 =
↑(comp (comp g (Finsupp.total α M R v)) (lsingle l)) 1
[PROOFSTEP]
simp [total_apply, Finsupp.sum_mapDomain_index, add_smul, h]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α → α'
⊢ comp (Finsupp.total α' M' R v') (lmapDomain R R f) = Finsupp.total α M' R (v' ∘ f)
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α → α'
a✝ : α
⊢ ↑(comp (comp (Finsupp.total α' M' R v') (lmapDomain R R f)) (lsingle a✝)) 1 =
↑(comp (Finsupp.total α M' R (v' ∘ f)) (lsingle a✝)) 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α ↪ α'
l : α →₀ R
⊢ ↑(Finsupp.total α' M' R v') (embDomain f l) = ↑(Finsupp.total α M' R (v' ∘ ↑f)) l
[PROOFSTEP]
simp [total_apply, Finsupp.sum, support_embDomain, embDomain_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α ≃ α'
l : α →₀ R
⊢ ↑(Finsupp.total α' M' R v') (equivMapDomain f l) = ↑(Finsupp.total α M' R (v' ∘ ↑f)) l
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain, total_mapDomain]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set M
⊢ span R s = LinearMap.range (Finsupp.total (↑s) M R Subtype.val)
[PROOFSTEP]
rw [range_total, Subtype.range_coe_subtype, Set.setOf_mem_eq]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
v : α → M
x : M
⊢ x ∈ span R (Set.range v) ↔ ∃ c, (sum c fun i a => a • v i) = x
[PROOFSTEP]
simp only [← Finsupp.range_total, LinearMap.mem_range, Finsupp.total_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
⊢ span R (v '' s) = map (Finsupp.total α M R v) (supported R R s)
[PROOFSTEP]
apply span_eq_of_le
[GOAL]
case h₁
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
⊢ v '' s ⊆ ↑(map (Finsupp.total α M R v) (supported R R s))
[PROOFSTEP]
intro x hx
[GOAL]
case h₁
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
hx : x ∈ v '' s
⊢ x ∈ ↑(map (Finsupp.total α M R v) (supported R R s))
[PROOFSTEP]
rw [Set.mem_image] at hx
[GOAL]
case h₁
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x
⊢ x ∈ ↑(map (Finsupp.total α M R v) (supported R R s))
[PROOFSTEP]
apply Exists.elim hx
[GOAL]
case h₁
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x
⊢ ∀ (a : α), a ∈ s ∧ v a = x → x ∈ ↑(map (Finsupp.total α M R v) (supported R R s))
[PROOFSTEP]
intro i hi
[GOAL]
case h₁
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x
i : α
hi : i ∈ s ∧ v i = x
⊢ x ∈ ↑(map (Finsupp.total α M R v) (supported R R s))
[PROOFSTEP]
exact ⟨_, Finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x
i : α
hi : i ∈ s ∧ v i = x
⊢ ↑(Finsupp.total α M R v) (single i 1) = x
[PROOFSTEP]
simp [hi.2]
[GOAL]
case h₂
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
⊢ map (Finsupp.total α M R v) (supported R R s) ≤ span R (v '' s)
[PROOFSTEP]
refine' map_le_iff_le_comap.2 fun z hz => _
[GOAL]
case h₂
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
⊢ z ∈ comap (Finsupp.total α M R v) (span R (v '' s))
[PROOFSTEP]
have : ∀ i, z i • v i ∈ span R (v '' s) := by
intro c
haveI := Classical.decPred fun x => x ∈ s
by_cases h : c ∈ s
· exact smul_mem _ _ (subset_span (Set.mem_image_of_mem _ h))
·
simp [(Finsupp.mem_supported' R _).1 hz _ h]
-- Porting note: `rw` is required to infer metavariables in `sum_mem`.
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
⊢ ∀ (i : α), ↑z i • v i ∈ span R (v '' s)
[PROOFSTEP]
intro c
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
c : α
⊢ ↑z c • v c ∈ span R (v '' s)
[PROOFSTEP]
haveI := Classical.decPred fun x => x ∈ s
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
c : α
this : DecidablePred fun x => x ∈ s
⊢ ↑z c • v c ∈ span R (v '' s)
[PROOFSTEP]
by_cases h : c ∈ s
[GOAL]
case pos
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
c : α
this : DecidablePred fun x => x ∈ s
h : c ∈ s
⊢ ↑z c • v c ∈ span R (v '' s)
[PROOFSTEP]
exact smul_mem _ _ (subset_span (Set.mem_image_of_mem _ h))
[GOAL]
case neg
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
c : α
this : DecidablePred fun x => x ∈ s
h : ¬c ∈ s
⊢ ↑z c • v c ∈ span R (v '' s)
[PROOFSTEP]
simp [(Finsupp.mem_supported' R _).1 hz _ h]
-- Porting note: `rw` is required to infer metavariables in `sum_mem`.
[GOAL]
case h₂
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
this : ∀ (i : α), ↑z i • v i ∈ span R (v '' s)
⊢ z ∈ comap (Finsupp.total α M R v) (span R (v '' s))
[PROOFSTEP]
rw [mem_comap, total_apply]
[GOAL]
case h₂
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
this : ∀ (i : α), ↑z i • v i ∈ span R (v '' s)
⊢ (sum z fun i a => a • v i) ∈ span R (v '' s)
[PROOFSTEP]
refine' sum_mem _
[GOAL]
case h₂
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
z : α →₀ R
hz : z ∈ supported R R s
this : ∀ (i : α), ↑z i • v i ∈ span R (v '' s)
⊢ ∀ (c : α), c ∈ z.support → (fun i a => a • v i) c (↑z c) ∈ span R (v '' s)
[PROOFSTEP]
simp [this]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
⊢ x ∈ span R (v '' s) ↔ ∃ l, l ∈ supported R R s ∧ ↑(Finsupp.total α M R v) l = x
[PROOFSTEP]
rw [span_image_eq_map_total]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
x : M
⊢ x ∈ map (Finsupp.total α M R v) (supported R R s) ↔ ∃ l, l ∈ supported R R s ∧ ↑(Finsupp.total α M R v) l = x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
v : Option α → M
f : Option α →₀ R
⊢ ↑(Finsupp.total (Option α) M R v) f = ↑f none • v none + ↑(Finsupp.total α M R (v ∘ Option.some)) (some f)
[PROOFSTEP]
rw [total_apply, sum_option_index_smul, total_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v✝ : α → M
v' : α' → M'
v : Option α → M
f : Option α →₀ R
⊢ (↑f none • v none + sum (some f) fun a r => r • v (Option.some a)) =
↑f none • v none + sum (some f) fun i a => a • (v ∘ Option.some) i
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
⊢ ↑(Finsupp.total α M R A) (↑(Finsupp.total β (α →₀ R) R B) f) =
↑(Finsupp.total β M R fun b => ↑(Finsupp.total α M R A) (B b)) f
[PROOFSTEP]
classical
simp only [total_apply]
apply induction_linear f
· simp only [sum_zero_index]
· intro f₁ f₂ h₁ h₂
simp [sum_add_index, h₁, h₂, add_smul]
· simp [sum_single_index, sum_smul_index, smul_sum, mul_smul]
[GOAL]
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
⊢ ↑(Finsupp.total α M R A) (↑(Finsupp.total β (α →₀ R) R B) f) =
↑(Finsupp.total β M R fun b => ↑(Finsupp.total α M R A) (B b)) f
[PROOFSTEP]
simp only [total_apply]
[GOAL]
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
⊢ (sum (sum f fun i a => a • B i) fun i a => a • A i) = sum f fun i a => a • sum (B i) fun i a => a • A i
[PROOFSTEP]
apply induction_linear f
[GOAL]
case h0
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
⊢ (sum (sum 0 fun i a => a • B i) fun i a => a • A i) = sum 0 fun i a => a • sum (B i) fun i a => a • A i
[PROOFSTEP]
simp only [sum_zero_index]
[GOAL]
case hadd
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
⊢ ∀ (f g : β →₀ R),
((sum (sum f fun i a => a • B i) fun i a => a • A i) = sum f fun i a => a • sum (B i) fun i a => a • A i) →
((sum (sum g fun i a => a • B i) fun i a => a • A i) = sum g fun i a => a • sum (B i) fun i a => a • A i) →
(sum (sum (f + g) fun i a => a • B i) fun i a => a • A i) =
sum (f + g) fun i a => a • sum (B i) fun i a => a • A i
[PROOFSTEP]
intro f₁ f₂ h₁ h₂
[GOAL]
case hadd
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
f₁ f₂ : β →₀ R
h₁ : (sum (sum f₁ fun i a => a • B i) fun i a => a • A i) = sum f₁ fun i a => a • sum (B i) fun i a => a • A i
h₂ : (sum (sum f₂ fun i a => a • B i) fun i a => a • A i) = sum f₂ fun i a => a • sum (B i) fun i a => a • A i
⊢ (sum (sum (f₁ + f₂) fun i a => a • B i) fun i a => a • A i) =
sum (f₁ + f₂) fun i a => a • sum (B i) fun i a => a • A i
[PROOFSTEP]
simp [sum_add_index, h₁, h₂, add_smul]
[GOAL]
case hsingle
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α✝ → M
v' : α' → M'
α : Type u_9
β : Type u_10
A : α → M
B : β → α →₀ R
f : β →₀ R
⊢ ∀ (a : β) (b : R),
(sum (sum (single a b) fun i a => a • B i) fun i a => a • A i) =
sum (single a b) fun i a => a • sum (B i) fun i a => a • A i
[PROOFSTEP]
simp [sum_single_index, sum_smul_index, smul_sum, mul_smul]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : Fin 0 → M
⊢ Finsupp.total (Fin 0) M R f = 0
[PROOFSTEP]
ext i
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : Fin 0 → M
i : Fin 0
⊢ ↑(comp (Finsupp.total (Fin 0) M R f) (lsingle i)) 1 = ↑(comp 0 (lsingle i)) 1
[PROOFSTEP]
apply finZeroElim i
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
⊢ LinearMap.range (Finsupp.totalOn α M R v s) = ⊤
[PROOFSTEP]
rw [Finsupp.totalOn, LinearMap.range_eq_map, LinearMap.map_codRestrict, ← LinearMap.range_le_iff_comap, range_subtype,
Submodule.map_top, LinearMap.range_comp, range_subtype]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Set α
⊢ span R (v '' s) ≤ map (Finsupp.total α M R v) (supported R R s)
[PROOFSTEP]
exact (span_image_eq_map_total _ _).le
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α' → α
⊢ Finsupp.total α' M R (v ∘ f) = comp (Finsupp.total α M R v) (lmapDomain R R f)
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α' → α
a✝ : α'
⊢ ↑(comp (Finsupp.total α' M R (v ∘ f)) (lsingle a✝)) 1 =
↑(comp (comp (Finsupp.total α M R v) (lmapDomain R R f)) (lsingle a✝)) 1
[PROOFSTEP]
simp [total_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α → α'
l : α' →₀ R
hf : InjOn f (f ⁻¹' ↑l.support)
⊢ ↑(Finsupp.total α M R v) (comapDomain f l hf) = ∑ i in Finset.preimage l.support f hf, ↑l (f i) • v i
[PROOFSTEP]
rw [Finsupp.total_apply]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
f : α → α'
l : α' →₀ R
hf : InjOn f (f ⁻¹' ↑l.support)
⊢ (sum (comapDomain f l hf) fun i a => a • v i) = ∑ i in Finset.preimage l.support f hf, ↑l (f i) • v i
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
⊢ ↑(Finsupp.total α M R g) (onFinset s f hf) = ∑ x in s, f x • g x
[PROOFSTEP]
classical
simp only [Finsupp.total_apply, Finsupp.sum, Finsupp.onFinset_apply, Finsupp.support_onFinset]
rw [Finset.sum_filter_of_ne]
intro x _ h
contrapose! h
simp [h]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
⊢ ↑(Finsupp.total α M R g) (onFinset s f hf) = ∑ x in s, f x • g x
[PROOFSTEP]
simp only [Finsupp.total_apply, Finsupp.sum, Finsupp.onFinset_apply, Finsupp.support_onFinset]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
⊢ ∑ x in Finset.filter (fun a => f a ≠ 0) s, f x • g x = ∑ x in s, f x • g x
[PROOFSTEP]
rw [Finset.sum_filter_of_ne]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
⊢ ∀ (x : α), x ∈ s → f x • g x ≠ 0 → f x ≠ 0
[PROOFSTEP]
intro x _ h
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
x : α
a✝ : x ∈ s
h : f x • g x ≠ 0
⊢ f x ≠ 0
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
x : α
a✝ : x ∈ s
h : f x = 0
⊢ f x • g x = 0
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α₁ : Type u_7
α₂ : Type u_8
e : α₁ ≃ α₂
⊢ ∀ (c : R) (x : α₁ →₀ M), ↑(Finsupp.domCongr e) (c • x) = c • ↑(Finsupp.domCongr e) x
[PROOFSTEP]
simpa only [equivMapDomain_eq_mapDomain, domCongr_apply] using (lmapDomain M R e).map_smul
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α₁ : Type u_7
α₂ : Type u_8
e : α₁ ≃ α₂
i : α₁
m : M
⊢ ↑(Finsupp.domLCongr e) (single i m) = single (↑e i) m
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
s : Set α
t : Set α'
e : ↑s ≃ ↑t
⊢ { x // x ∈ supported M R s } ≃ₗ[R] { x // x ∈ supported M R t }
[PROOFSTEP]
haveI := Classical.decPred fun x => x ∈ s
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
s : Set α
t : Set α'
e : ↑s ≃ ↑t
this : DecidablePred fun x => x ∈ s
⊢ { x // x ∈ supported M R s } ≃ₗ[R] { x // x ∈ supported M R t }
[PROOFSTEP]
haveI := Classical.decPred fun x => x ∈ t
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α' : Type u_7
s : Set α
t : Set α'
e : ↑s ≃ ↑t
this✝ : DecidablePred fun x => x ∈ s
this : DecidablePred fun x => x ∈ t
⊢ { x // x ∈ supported M R s } ≃ₗ[R] { x // x ∈ supported M R t }
[PROOFSTEP]
exact Finsupp.supportedEquivFinsupp s ≪≫ₗ (Finsupp.domLCongr e ≪≫ₗ (Finsupp.supportedEquivFinsupp t).symm)
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
ι : Type u_7
κ : Type u_8
e₁ : ι ≃ κ
e₂ : M ≃ₗ[R] N
i : ι
m : M
⊢ ↑(lcongr e₁ e₂) (single i m) = single (↑e₁ i) (↑e₂ m)
[PROOFSTEP]
simp [lcongr]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
ι : Type u_7
κ : Type u_8
e₁ : ι ≃ κ
e₂ : M ≃ₗ[R] N
k : κ
n : N
⊢ ↑(LinearEquiv.symm (lcongr e₁ e₂)) (single k n) = single (↑e₁.symm k) (↑(LinearEquiv.symm e₂) n)
[PROOFSTEP]
apply_fun (lcongr e₁ e₂ : (ι →₀ M) → (κ →₀ N)) using (lcongr e₁ e₂).injective
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
ι : Type u_7
κ : Type u_8
e₁ : ι ≃ κ
e₂ : M ≃ₗ[R] N
k : κ
n : N
⊢ ↑(lcongr e₁ e₂) (↑(LinearEquiv.symm (lcongr e₁ e₂)) (single k n)) =
↑(lcongr e₁ e₂) (single (↑e₁.symm k) (↑(LinearEquiv.symm e₂) n))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
ι : Type u_7
κ : Type u_8
e₁ : ι ≃ κ
e₂ : M ≃ₗ[R] N
⊢ LinearEquiv.symm (lcongr e₁ e₂) = lcongr e₁.symm (LinearEquiv.symm e₂)
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
ι : Type u_7
κ : Type u_8
e₁ : ι ≃ κ
e₂ : M ≃ₗ[R] N
x✝ : κ →₀ N
a✝ : ι
⊢ ↑(↑(LinearEquiv.symm (lcongr e₁ e₂)) x✝) a✝ = ↑(↑(lcongr e₁.symm (LinearEquiv.symm e₂)) x✝) a✝
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_7
β : Type u_8
src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp
⊢ ∀ (r : R) (x : α ⊕ β →₀ M),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x
[PROOFSTEP]
intros
[GOAL]
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_7
β : Type u_8
src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp
r✝ : R
x✝ : α ⊕ β →₀ M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r✝ • x✝) =
↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x✝
[PROOFSTEP]
ext
[GOAL]
case h₁.h
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_7
β : Type u_8
src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp
r✝ : R
x✝ : α ⊕ β →₀ M
a✝ : α
⊢ ↑(AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r✝ • x✝)).fst
a✝ =
↑(↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x✝).fst
a✝
[PROOFSTEP]
simp only [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, Prod.smul_fst, Prod.smul_snd, smul_apply,
snd_sumFinsuppAddEquivProdFinsupp, fst_sumFinsuppAddEquivProdFinsupp, RingHom.id_apply]
[GOAL]
case h₂.h
α✝ : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_7
β : Type u_8
src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp
r✝ : R
x✝ : α ⊕ β →₀ M
a✝ : β
⊢ ↑(AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r✝ • x✝)).snd
a✝ =
↑(↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : α ⊕ β →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x✝).snd
a✝
[PROOFSTEP]
simp only [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, Prod.smul_fst, Prod.smul_snd, smul_apply,
snd_sumFinsuppAddEquivProdFinsupp, fst_sumFinsuppAddEquivProdFinsupp, RingHom.id_apply]
[GOAL]
α : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring S
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R M✝
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
η : Type u_7
inst✝³ : Fintype η
ιs✝ : η → Type u_8
inst✝² : Zero α
M : Type u_9
ιs : η → Type u_10
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : ((j : η) × ιs j →₀ M) ≃+ ((j : η) → ιs j →₀ M) := sigmaFinsuppAddEquivPiFinsupp
c : R
f : (j : η) × ιs j →₀ M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : (j : η) × ιs j →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : (j : η) × ιs j →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
f
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring S
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R M✝
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
η : Type u_7
inst✝³ : Fintype η
ιs✝ : η → Type u_8
inst✝² : Zero α
M : Type u_9
ιs : η → Type u_10
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : ((j : η) × ιs j →₀ M) ≃+ ((j : η) → ιs j →₀ M) := sigmaFinsuppAddEquivPiFinsupp
c : R
f : (j : η) × ιs j →₀ M
x✝ : η
a✝ : ιs x✝
⊢ ↑(AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : (j : η) × ιs j →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(c • f) x✝)
a✝ =
↑((↑(RingHom.id R) c •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : (j : η) × ιs j →₀ M),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
f)
x✝)
a✝
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv
f g : α × β →₀ M
⊢ Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g
[PROOFSTEP]
ext
[GOAL]
case h.h
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv
f g : α × β →₀ M
a✝¹ : α
a✝ : β
⊢ ↑(↑(Equiv.toFun src✝ (f + g)) a✝¹) a✝ = ↑(↑(Equiv.toFun src✝ f + Equiv.toFun src✝ g) a✝¹) a✝
[PROOFSTEP]
simp [finsuppProdEquiv, curry_apply]
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv
c : R
f : α × β →₀ M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
f
[PROOFSTEP]
ext
[GOAL]
case h.h
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv
c : R
f : α × β →₀ M
a✝¹ : α
a✝ : β
⊢ ↑(↑(AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
(c • f))
a✝¹)
a✝ =
↑(↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
f)
a✝¹)
a✝
[PROOFSTEP]
simp [finsuppProdEquiv, curry_apply]
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α × β →₀ M
x : α
y : β
⊢ ↑(↑(↑(finsuppProdLEquiv R) f) x) y = ↑f (x, y)
[PROOFSTEP]
rw [finsuppProdLEquiv, LinearEquiv.coe_mk, finsuppProdEquiv, Finsupp.curry_apply]
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α →₀ β →₀ M
xy : α × β
⊢ ↑(↑(LinearEquiv.symm (finsuppProdLEquiv R)) f) xy = ↑(↑f xy.fst) xy.snd
[PROOFSTEP]
conv_rhs => rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta]
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α →₀ β →₀ M
xy : α × β
| ↑(↑f xy.fst) xy.snd
[PROOFSTEP]
rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta]
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α →₀ β →₀ M
xy : α × β
| ↑(↑f xy.fst) xy.snd
[PROOFSTEP]
rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta]
[GOAL]
α✝ : Type u_1
M✝ : Type u_2
N : Type u_3
P : Type u_4
R✝ : Type u_5
S : Type u_6
inst✝¹⁰ : Semiring R✝
inst✝⁹ : Semiring S
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
inst✝⁶ : AddCommMonoid N
inst✝⁵ : Module R✝ N
inst✝⁴ : AddCommMonoid P
inst✝³ : Module R✝ P
α : Type u_7
β : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α →₀ β →₀ M
xy : α × β
| ↑(↑f xy.fst) xy.snd
[PROOFSTEP]
rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta]
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
ι : Type u_7
inst✝¹ : Countable R
inst✝ : Countable ι
v : ι → M
⊢ Countable { x // x ∈ span R (Set.range v) }
[PROOFSTEP]
refine
Set.countable_coe_iff.mpr
(Set.Countable.mono ?_ (Set.countable_range (fun c : (ι →₀ R) => c.sum fun i _ => (c i) • v i)))
[GOAL]
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
ι : Type u_7
inst✝¹ : Countable R
inst✝ : Countable ι
v : ι → M
⊢ ↑(span R (Set.range v)) ⊆ Set.range fun c => sum c fun i x => ↑c i • v i
[PROOFSTEP]
exact fun _ h => Finsupp.mem_span_range_iff_exists_finsupp.mp (SetLike.mem_coe.mp h)
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ v : α → M
f g : α → R
⊢ (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g
[PROOFSTEP]
simp_rw [← Finset.sum_add_distrib, ← add_smul]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ v : α → M
f g : α → R
⊢ ∑ i : α, (f + g) i • v i = ∑ x : α, (f x + g x) • v x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ v : α → M
r : R
f : α → R
⊢ AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f
[PROOFSTEP]
simp_rw [Finset.smul_sum, smul_smul]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ v : α → M
r : R
f : α → R
⊢ ∑ i : α, (r • f) i • v i = ∑ x : α, (↑(RingHom.id R) r * f x) • v x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ u v : α → M
⊢ (fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
(u + v) =
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
u +
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
v
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ u v : α → M
x✝ : α → R
⊢ ↑((fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
(u + v))
x✝ =
↑((fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
u +
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
v)
x✝
[PROOFSTEP]
simp [Finset.sum_add_distrib, Pi.add_apply, smul_add]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ : α → M
r : S
v : α → M
⊢ AddHom.toFun
{
toFun := fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) },
map_add' :=
(_ :
∀ (u v : α → M),
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
(u + v) =
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
u +
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
v) }
(r • v) =
↑(RingHom.id S) r •
AddHom.toFun
{
toFun := fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) },
map_add' :=
(_ :
∀ (u v : α → M),
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
(u + v) =
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
u +
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
v) }
v
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v✝ : α → M
r : S
v : α → M
x✝ : α → R
⊢ ↑(AddHom.toFun
{
toFun := fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) },
map_add' :=
(_ :
∀ (u v : α → M),
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
(u + v) =
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
u +
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
v) }
(r • v))
x✝ =
↑(↑(RingHom.id S) r •
AddHom.toFun
{
toFun := fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) },
map_add' :=
(_ :
∀ (u v : α → M),
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
(u + v) =
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
u +
(fun v =>
{
toAddHom :=
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) },
map_smul' :=
(_ :
∀ (r : R) (f : α → R),
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => ∑ i : α, f i • v i,
map_add' :=
(_ :
∀ (f g : α → R),
(fun f => ∑ i : α, f i • v i) (f + g) =
(fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }
f) })
v) }
v)
x✝
[PROOFSTEP]
simp [Finset.smul_sum, smul_comm]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁷ : Fintype α
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
S : Type u_4
inst✝³ : Semiring S
inst✝² : Module S M
inst✝¹ : SMulCommClass R S M
v : α → M
inst✝ : DecidableEq α
i : α
r : R
⊢ ↑(↑(Fintype.total R S) v) (Pi.single i r) = r • v i
[PROOFSTEP]
simp_rw [Fintype.total_apply, Pi.single_apply, ite_smul, zero_smul]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁷ : Fintype α
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
S : Type u_4
inst✝³ : Semiring S
inst✝² : Module S M
inst✝¹ : SMulCommClass R S M
v : α → M
inst✝ : DecidableEq α
i : α
r : R
⊢ (∑ x : α, if x = i then r • v x else 0) = r • v i
[PROOFSTEP]
rw [Finset.sum_ite_eq', if_pos (Finset.mem_univ _)]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : α → R
⊢ ↑(Finsupp.total α M R v) (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x) = ↑(↑(Fintype.total R S) v) x
[PROOFSTEP]
apply Finset.sum_subset
[GOAL]
case h
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : α → R
⊢ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x).support ⊆ Finset.univ
[PROOFSTEP]
exact Finset.subset_univ _
[GOAL]
case hf
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : α → R
⊢ ∀ (x_1 : α),
x_1 ∈ Finset.univ →
¬x_1 ∈ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x).support →
(fun i => ↑((fun i => smulRight LinearMap.id (v i)) i)) x_1
(↑(↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x) x_1) =
0
[PROOFSTEP]
intro x _ hx
[GOAL]
case hf
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x✝ : α → R
x : α
a✝ : x ∈ Finset.univ
hx : ¬x ∈ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x✝).support
⊢ (fun i => ↑((fun i => smulRight LinearMap.id (v i)) i)) x
(↑(↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x✝) x) =
0
[PROOFSTEP]
rw [Finsupp.not_mem_support_iff.mp hx]
[GOAL]
case hf
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x✝ : α → R
x : α
a✝ : x ∈ Finset.univ
hx : ¬x ∈ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x✝).support
⊢ (fun i => ↑((fun i => smulRight LinearMap.id (v i)) i)) x 0 = 0
[PROOFSTEP]
exact zero_smul _ _
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
⊢ LinearMap.range (↑(Fintype.total R S) v) = span R (Set.range v)
[PROOFSTEP]
rw [← Finsupp.total_eq_fintype_total, LinearMap.range_comp, LinearEquiv.range, Submodule.map_top, Finsupp.range_total]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : M
⊢ x ∈ span R (Set.range v) ↔ ∃ c, ∑ i : α, c i • v i = x
[PROOFSTEP]
rw [Finsupp.equivFunOnFinite.surjective.exists]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : M
⊢ x ∈ span R (Set.range v) ↔ ∃ x_1, ∑ i : α, ↑Finsupp.equivFunOnFinite x_1 i • v i = x
[PROOFSTEP]
simp [Finsupp.mem_span_range_iff_exists_finsupp, Finsupp.equivFunOnFinite_apply]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : M
⊢ (∃ c, (Finsupp.sum c fun i a => a • v i) = x) ↔ ∃ x_1, ∑ x : α, ↑x_1 x • v x = x
[PROOFSTEP]
exact exists_congr fun c => Eq.congr_left <| Finsupp.sum_fintype _ _ fun i => zero_smul _ _
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : M
⊢ ⊤ ≤ span R (Set.range v) ↔ ∀ (x : M), ∃ c, ∑ i : α, c i • v i = x
[PROOFSTEP]
simp_rw [← mem_span_range_iff_exists_fun]
[GOAL]
α : Type u_1
M : Type u_2
R : Type u_3
inst✝⁶ : Fintype α
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
v : α → M
x : M
⊢ ⊤ ≤ span R (Set.range v) ↔ ∀ (x : M), x ∈ span R (Set.range fun i => v i)
[PROOFSTEP]
exact ⟨fun h x => h trivial, fun h x _ => h x⟩
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
w : Set M
x : { x // x ∈ span R w }
⊢ ↑(Finsupp.total (↑w) M R Subtype.val) (repr R w x) = ↑x
[PROOFSTEP]
rw [Span.repr_def]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
w : Set M
x : { x // x ∈ span R w }
⊢ ↑(Finsupp.total (↑w) M R Subtype.val) (Exists.choose (_ : ∃ l, ↑(Finsupp.total (↑w) M R Subtype.val) l = ↑x)) = ↑x
[PROOFSTEP]
exact ((Finsupp.mem_span_iff_total _ _ _).mp x.2).choose_spec
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
f : M →ₗ[R] N
ι : Type u_4
g : ι → M
l : ι →₀ R
⊢ ↑f (↑(Finsupp.total ι M R g) l) = ↑(Finsupp.total ι N R (↑f ∘ g)) l
[PROOFSTEP]
simp only [Finsupp.total_apply, Finsupp.total_apply, Finsupp.sum, f.map_sum, f.map_smul, (· ∘ ·)]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
ι : Type u_4
p : ι → Submodule R M
m : M
hm : m ∈ ⨆ (i : ι), p i
⊢ ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i
[PROOFSTEP]
have :=
CompleteLattice.IsCompactElement.exists_finset_of_le_iSup (Submodule R M)
(Submodule.singleton_span_isCompactElement m) p
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
ι : Type u_4
p : ι → Submodule R M
m : M
hm : m ∈ ⨆ (i : ι), p i
this : span R {m} ≤ ⨆ (i : ι), p i → ∃ s, span R {m} ≤ ⨆ (i : ι) (_ : i ∈ s), p i
⊢ ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i
[PROOFSTEP]
simp only [Submodule.span_singleton_le_iff_mem] at this
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
ι : Type u_4
p : ι → Submodule R M
m : M
hm : m ∈ ⨆ (i : ι), p i
this : m ∈ ⨆ (i : ι), p i → ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i
⊢ ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i
[PROOFSTEP]
exact this hm
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
s : Finset M
x : M
hx : x ∈ span R ↑s
⊢ x ∈ span R (_root_.id '' ↑s)
[PROOFSTEP]
rwa [Set.image_id]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : M
s : Set M
⊢ m ∈ span R s ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m
[PROOFSTEP]
conv_lhs => rw [← Set.image_id s]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : M
s : Set M
| m ∈ span R s
[PROOFSTEP]
rw [← Set.image_id s]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : M
s : Set M
| m ∈ span R s
[PROOFSTEP]
rw [← Set.image_id s]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : M
s : Set M
| m ∈ span R s
[PROOFSTEP]
rw [← Set.image_id s]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : M
s : Set M
⊢ m ∈ span R (_root_.id '' s) ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m
[PROOFSTEP]
exact Finsupp.mem_span_image_iff_total R (v := _root_.id (α := M))
[GOAL]
R✝ : Type u_1
M✝ : Type u_2
N : Type u_3
inst✝⁸ : Semiring R✝
inst✝⁷ : AddCommMonoid M✝
inst✝⁶ : Module R✝ M✝
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R✝ N
R : Type u_4
M : Type u_5
ι : Type u_6
inst✝³ : Semiring R
inst✝² : Subsingleton R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : M
⊢ (fun x => 0)
(AddHom.toFun
{ toAddHom := { toFun := fun x => 0, map_add' := (_ : M → M → 0 = 0 + 0) },
map_smul' := (_ : ∀ (r : R), M → 0 = r • 0) }.toAddHom
m) =
m
[PROOFSTEP]
letI := Module.subsingleton R M
[GOAL]
R✝ : Type u_1
M✝ : Type u_2
N : Type u_3
inst✝⁸ : Semiring R✝
inst✝⁷ : AddCommMonoid M✝
inst✝⁶ : Module R✝ M✝
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R✝ N
R : Type u_4
M : Type u_5
ι : Type u_6
inst✝³ : Semiring R
inst✝² : Subsingleton R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : M
this : Subsingleton M := Module.subsingleton R M
⊢ (fun x => 0)
(AddHom.toFun
{ toAddHom := { toFun := fun x => 0, map_add' := (_ : M → M → 0 = 0 + 0) },
map_smul' := (_ : ∀ (r : R), M → 0 = r • 0) }.toAddHom
m) =
m
[PROOFSTEP]
simp only [eq_iff_true_of_subsingleton]
[GOAL]
R✝ : Type u_1
M✝ : Type u_2
N : Type u_3
inst✝⁸ : Semiring R✝
inst✝⁷ : AddCommMonoid M✝
inst✝⁶ : Module R✝ M✝
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R✝ N
R : Type u_4
M : Type u_5
ι : Type u_6
inst✝³ : Semiring R
inst✝² : Subsingleton R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : ι →₀ R
⊢ AddHom.toFun
{ toAddHom := { toFun := fun x => 0, map_add' := (_ : M → M → 0 = 0 + 0) },
map_smul' := (_ : ∀ (r : R), M → 0 = r • 0) }.toAddHom
((fun x => 0) f) =
f
[PROOFSTEP]
simp only [eq_iff_true_of_subsingleton]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
α : Type u_4
f : M →ₗ[R] α →₀ R
s : Surjective ↑f
⊢ comp f (splittingOfFinsuppSurjective f s) = id
[PROOFSTEP]
refine lhom_ext' fun x => ext_ring <| Finsupp.ext fun y => ?_
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
α : Type u_4
f : M →ₗ[R] α →₀ R
s : Surjective ↑f
x y : α
⊢ ↑(↑(comp (comp f (splittingOfFinsuppSurjective f s)) (lsingle x)) 1) y = ↑(↑(comp id (lsingle x)) 1) y
[PROOFSTEP]
dsimp [splittingOfFinsuppSurjective]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
α : Type u_4
f : M →ₗ[R] α →₀ R
s : Surjective ↑f
x y : α
⊢ ↑(↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1))) y =
↑(Finsupp.single x 1) y
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
α : Type u_4
f : M →ₗ[R] α →₀ R
s : Surjective ↑f
x y : α
⊢ ↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1
[PROOFSTEP]
rw [sum_single_index, one_smul]
[GOAL]
case e_a
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
α : Type u_4
f : M →ₗ[R] α →₀ R
s : Surjective ↑f
x y : α
⊢ ↑f (Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1
[PROOFSTEP]
exact (s (Finsupp.single x 1)).choose_spec
[GOAL]
case e_a
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
α : Type u_4
f : M →ₗ[R] α →₀ R
s : Surjective ↑f
x y : α
⊢ 0 • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1) = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
α : Type u_4
inst✝ : Fintype α
f : M →ₗ[R] α → R
s : Surjective ↑f
⊢ comp f (splittingOfFunOnFintypeSurjective f s) = id
[PROOFSTEP]
classical
-- Porting note: `ext` can't find appropriate theorems.
refine pi_ext' fun x => ext_ring <| funext fun y => ?_
dsimp [splittingOfFunOnFintypeSurjective]
rw [linearEquivFunOnFinite_symm_single, Finsupp.sum_single_index, one_smul, (s (Finsupp.single x 1)).choose_spec,
Finsupp.single_eq_pi_single]
rw [zero_smul]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
α : Type u_4
inst✝ : Fintype α
f : M →ₗ[R] α → R
s : Surjective ↑f
⊢ comp f (splittingOfFunOnFintypeSurjective f s) = id
[PROOFSTEP]
refine pi_ext' fun x => ext_ring <| funext fun y => ?_
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
α : Type u_4
inst✝ : Fintype α
f : M →ₗ[R] α → R
s : Surjective ↑f
x y : α
⊢ ↑(comp (comp f (splittingOfFunOnFintypeSurjective f s)) (single x)) 1 y = ↑(comp id (single x)) 1 y
[PROOFSTEP]
dsimp [splittingOfFunOnFintypeSurjective]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
α : Type u_4
inst✝ : Fintype α
f : M →ₗ[R] α → R
s : Surjective ↑f
x y : α
⊢ ↑f
(sum (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) (Pi.single x 1)) fun x r =>
r • Exists.choose (_ : ∃ a, ↑f a = ↑(Finsupp.single x 1)))
y =
Pi.single x 1 y
[PROOFSTEP]
rw [linearEquivFunOnFinite_symm_single, Finsupp.sum_single_index, one_smul, (s (Finsupp.single x 1)).choose_spec,
Finsupp.single_eq_pi_single]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
α : Type u_4
inst✝ : Fintype α
f : M →ₗ[R] α → R
s : Surjective ↑f
x y : α
⊢ 0 • Exists.choose (_ : ∃ a, ↑f a = ↑(Finsupp.single x 1)) = 0
[PROOFSTEP]
rw [zero_smul]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Finsupp", "llama_tokens": 101013} |
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹² : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹¹ : (i : ι) → AddCommMonoid (s i)
inst✝¹⁰ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
E : Type u_9
inst✝⁷ : AddCommMonoid E
inst✝⁶ : Module R E
F : Type u_10
inst✝⁵ : AddCommMonoid F
inst✝⁴ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r : R₁
inst✝³ : SMul R₁ R
inst✝² : IsScalarTower R₁ R R
inst✝¹ : SMul R₁ (s i)
inst✝ : IsScalarTower R₁ R (s i)
⊢ tprodCoeff R z (update f i (r • f i)) = tprodCoeff R (r • z) f
[PROOFSTEP]
have h₁ : r • z = r • (1 : R) * z := by rw [smul_mul_assoc, one_mul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹² : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹¹ : (i : ι) → AddCommMonoid (s i)
inst✝¹⁰ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
E : Type u_9
inst✝⁷ : AddCommMonoid E
inst✝⁶ : Module R E
F : Type u_10
inst✝⁵ : AddCommMonoid F
inst✝⁴ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r : R₁
inst✝³ : SMul R₁ R
inst✝² : IsScalarTower R₁ R R
inst✝¹ : SMul R₁ (s i)
inst✝ : IsScalarTower R₁ R (s i)
⊢ r • z = r • 1 * z
[PROOFSTEP]
rw [smul_mul_assoc, one_mul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹² : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹¹ : (i : ι) → AddCommMonoid (s i)
inst✝¹⁰ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
E : Type u_9
inst✝⁷ : AddCommMonoid E
inst✝⁶ : Module R E
F : Type u_10
inst✝⁵ : AddCommMonoid F
inst✝⁴ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r : R₁
inst✝³ : SMul R₁ R
inst✝² : IsScalarTower R₁ R R
inst✝¹ : SMul R₁ (s i)
inst✝ : IsScalarTower R₁ R (s i)
h₁ : r • z = r • 1 * z
⊢ tprodCoeff R z (update f i (r • f i)) = tprodCoeff R (r • z) f
[PROOFSTEP]
have h₂ : r • f i = (r • (1 : R)) • f i := (smul_one_smul _ _ _).symm
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹² : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹¹ : (i : ι) → AddCommMonoid (s i)
inst✝¹⁰ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
E : Type u_9
inst✝⁷ : AddCommMonoid E
inst✝⁶ : Module R E
F : Type u_10
inst✝⁵ : AddCommMonoid F
inst✝⁴ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r : R₁
inst✝³ : SMul R₁ R
inst✝² : IsScalarTower R₁ R R
inst✝¹ : SMul R₁ (s i)
inst✝ : IsScalarTower R₁ R (s i)
h₁ : r • z = r • 1 * z
h₂ : r • f i = (r • 1) • f i
⊢ tprodCoeff R z (update f i (r • f i)) = tprodCoeff R (r • z) f
[PROOFSTEP]
rw [h₁, h₂]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹² : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹¹ : (i : ι) → AddCommMonoid (s i)
inst✝¹⁰ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
E : Type u_9
inst✝⁷ : AddCommMonoid E
inst✝⁶ : Module R E
F : Type u_10
inst✝⁵ : AddCommMonoid F
inst✝⁴ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r : R₁
inst✝³ : SMul R₁ R
inst✝² : IsScalarTower R₁ R R
inst✝¹ : SMul R₁ (s i)
inst✝ : IsScalarTower R₁ R (s i)
h₁ : r • z = r • 1 * z
h₂ : r • f i = (r • 1) • f i
⊢ tprodCoeff R z (update f i ((r • 1) • f i)) = tprodCoeff R (r • 1 * z) f
[PROOFSTEP]
exact smul_tprodCoeff_aux z f i _
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : R × ((i : ι) → s i) → F
C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0
C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0
C_add :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))
C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f)
C_smul :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f)
x y : FreeAddMonoid (R × ((i : ι) → s i))
hxy : Eqv R s x y
r' : R
f : (i : ι) → s i
i : ι
hf : f i = 0
⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (r', f)) = ↑(↑FreeAddMonoid.lift φ) 0
[PROOFSTEP]
simp [FreeAddMonoid.lift_eval_of, C0 r' f i hf]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : R × ((i : ι) → s i) → F
C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0
C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0
C_add :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))
C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f)
C_smul :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f)
x y : FreeAddMonoid (R × ((i : ι) → s i))
hxy : Eqv R s x y
f : (i : ι) → s i
⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (0, f)) = ↑(↑FreeAddMonoid.lift φ) 0
[PROOFSTEP]
simp [FreeAddMonoid.lift_eval_of, C0']
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : R × ((i : ι) → s i) → F
C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0
C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0
C_add :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))
C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f)
C_smul :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f)
x y : FreeAddMonoid (R × ((i : ι) → s i))
hxy : Eqv R s x y
inst : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
m₁ m₂ : s i
⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z, update f i m₁) + FreeAddMonoid.of (z, update f i m₂)) =
↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z, update f i (m₁ + m₂)))
[PROOFSTEP]
simp [FreeAddMonoid.lift_eval_of, @C_add inst]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : R × ((i : ι) → s i) → F
C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0
C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0
C_add :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))
C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f)
C_smul :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f)
x y : FreeAddMonoid (R × ((i : ι) → s i))
hxy : Eqv R s x y
z₁ z₂ : R
f : (i : ι) → s i
⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z₁, f) + FreeAddMonoid.of (z₂, f)) =
↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z₁ + z₂, f))
[PROOFSTEP]
simp [FreeAddMonoid.lift_eval_of, C_add_scalar]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : R × ((i : ι) → s i) → F
C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0
C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0
C_add :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))
C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f)
C_smul :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f)
x y : FreeAddMonoid (R × ((i : ι) → s i))
hxy : Eqv R s x y
inst : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r' : R
⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z, update f i (r' • f i))) =
↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (r' * z, f))
[PROOFSTEP]
simp [FreeAddMonoid.lift_eval_of, @C_smul inst]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : R × ((i : ι) → s i) → F
C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0
C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0
C_add :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i),
φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))
C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f)
C_smul :
∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f)
x✝ y✝ : FreeAddMonoid (R × ((i : ι) → s i))
hxy : Eqv R s x✝ y✝
x y : FreeAddMonoid (R × ((i : ι) → s i))
⊢ ↑(↑FreeAddMonoid.lift φ) (x + y) = ↑(↑FreeAddMonoid.lift φ) (y + x)
[PROOFSTEP]
simp_rw [AddMonoidHom.map_add, add_comm]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
⊢ C z
[PROOFSTEP]
have C0 : C 0 := by
have h₁ := @C1 0 0
rwa [zero_tprodCoeff] at h₁
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
⊢ C 0
[PROOFSTEP]
have h₁ := @C1 0 0
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
h₁ : C (tprodCoeff R 0 0)
⊢ C 0
[PROOFSTEP]
rwa [zero_tprodCoeff] at h₁
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
C0 : C 0
⊢ C z
[PROOFSTEP]
refine' AddCon.induction_on z fun x ↦ FreeAddMonoid.recOn x C0 _
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
C0 : C 0
x : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))
⊢ ∀ (x : R × ((i : ι) → (fun i => s i) i)) (xs : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))),
C ↑xs → C ↑(FreeAddMonoid.of x + xs)
[PROOFSTEP]
simp_rw [AddCon.coe_add]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
C0 : C 0
x : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))
⊢ ∀ (x : R × ((i : ι) → (fun i => s i) i)) (xs : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))),
C ↑xs → C (↑(FreeAddMonoid.of x) + ↑xs)
[PROOFSTEP]
refine' fun f y ih ↦ Cp _ ih
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
C0 : C 0
x : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))
f : R × ((i : ι) → (fun i => s i) i)
y : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))
ih : C ↑y
⊢ C ↑(FreeAddMonoid.of f)
[PROOFSTEP]
convert @C1 f.1 f.2
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
r : R₁
r' : R
f : (i : ι) → s i
i : ι
hf : f i = 0
⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (r', f) = 0
[PROOFSTEP]
simp_rw [zero_tprodCoeff' _ f i hf]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
r : R₁
f : (i : ι) → s i
⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (0, f) = 0
[PROOFSTEP]
simp [zero_tprodCoeff]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁴ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹³ : (i : ι) → AddCommMonoid (s i)
inst✝¹² : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
E : Type u_9
inst✝⁹ : AddCommMonoid E
inst✝⁸ : Module R E
F : Type u_10
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Monoid R₁
inst✝⁵ : DistribMulAction R₁ R
inst✝⁴ : SMulCommClass R₁ R R
inst✝³ : Monoid R₂
inst✝² : DistribMulAction R₂ R
inst✝¹ : SMulCommClass R₂ R R
r : R₁
inst✝ : DecidableEq ι
r' : R
f : (i : ι) → s i
i : ι
m₁ m₂ : s i
⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (r', update f i m₁) +
(fun f => tprodCoeff R (r • f.fst) f.snd) (r', update f i m₂) =
(fun f => tprodCoeff R (r • f.fst) f.snd) (r', update f i (m₁ + m₂))
[PROOFSTEP]
simp [add_tprodCoeff]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
r : R₁
r' r'' : R
f : (i : ι) → s i
⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (r', f) + (fun f => tprodCoeff R (r • f.fst) f.snd) (r'', f) =
(fun f => tprodCoeff R (r • f.fst) f.snd) (r' + r'', f)
[PROOFSTEP]
simp [add_tprodCoeff', mul_add]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁴ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹³ : (i : ι) → AddCommMonoid (s i)
inst✝¹² : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
E : Type u_9
inst✝⁹ : AddCommMonoid E
inst✝⁸ : Module R E
F : Type u_10
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Monoid R₁
inst✝⁵ : DistribMulAction R₁ R
inst✝⁴ : SMulCommClass R₁ R R
inst✝³ : Monoid R₂
inst✝² : DistribMulAction R₂ R
inst✝¹ : SMulCommClass R₂ R R
r : R₁
inst✝ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r' : R
⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (z, update f i (r' • f i)) =
(fun f => tprodCoeff R (r • f.fst) f.snd) (r' * z, f)
[PROOFSTEP]
simp [smul_tprodCoeff, mul_smul_comm]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
x : ⨂[R] (i : ι), s i
r : R
f : (i : ι) → s i
⊢ 1 • tprodCoeff R r f = tprodCoeff R r f
[PROOFSTEP]
rw [smul_tprodCoeff', one_smul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
x z y : ⨂[R] (i : ι), s i
ihz : 1 • z = z
ihy : 1 • y = y
⊢ 1 • (z + y) = z + y
[PROOFSTEP]
simp_rw [PiTensorProduct.smul_add, ihz, ihy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
r r' : R₁
x : ⨂[R] (i : ι), s i
r'' : R
f : (i : ι) → s i
⊢ (r * r') • tprodCoeff R r'' f = r • r' • tprodCoeff R r'' f
[PROOFSTEP]
simp [smul_tprodCoeff', smul_smul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹³ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹² : (i : ι) → AddCommMonoid (s i)
inst✝¹¹ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : Module R M
E : Type u_9
inst✝⁸ : AddCommMonoid E
inst✝⁷ : Module R E
F : Type u_10
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Monoid R₁
inst✝⁴ : DistribMulAction R₁ R
inst✝³ : SMulCommClass R₁ R R
inst✝² : Monoid R₂
inst✝¹ : DistribMulAction R₂ R
inst✝ : SMulCommClass R₂ R R
r r' : R₁
x✝ x y : ⨂[R] (i : ι), s i
ihx : (r * r') • x = r • r' • x
ihy : (r * r') • y = r • r' • y
⊢ (r * r') • (x + y) = r • r' • (x + y)
[PROOFSTEP]
simp_rw [PiTensorProduct.smul_add, ihx, ihy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁴ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹³ : (i : ι) → AddCommMonoid (s i)
inst✝¹² : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
E : Type u_9
inst✝⁹ : AddCommMonoid E
inst✝⁸ : Module R E
F : Type u_10
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Monoid R₁
inst✝⁵ : DistribMulAction R₁ R
inst✝⁴ : SMulCommClass R₁ R R
inst✝³ : Monoid R₂
inst✝² : DistribMulAction R₂ R
inst✝¹ : SMulCommClass R₂ R R
inst✝ : SMulCommClass R₁ R₂ R
r' : R₁
r'' : R₂
x : ⨂[R] (i : ι), s i
xr : R
xf : (i : ι) → s i
⊢ r' • r'' • tprodCoeff R xr xf = r'' • r' • tprodCoeff R xr xf
[PROOFSTEP]
simp only [smul_tprodCoeff', smul_comm]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁴ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹³ : (i : ι) → AddCommMonoid (s i)
inst✝¹² : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
E : Type u_9
inst✝⁹ : AddCommMonoid E
inst✝⁸ : Module R E
F : Type u_10
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Monoid R₁
inst✝⁵ : DistribMulAction R₁ R
inst✝⁴ : SMulCommClass R₁ R R
inst✝³ : Monoid R₂
inst✝² : DistribMulAction R₂ R
inst✝¹ : SMulCommClass R₂ R R
inst✝ : SMulCommClass R₁ R₂ R
r' : R₁
r'' : R₂
x z y : ⨂[R] (i : ι), s i
ihz : r' • r'' • z = r'' • r' • z
ihy : r' • r'' • y = r'' • r' • y
⊢ r' • r'' • (z + y) = r'' • r' • (z + y)
[PROOFSTEP]
simp_rw [PiTensorProduct.smul_add, ihz, ihy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁵ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹⁴ : (i : ι) → AddCommMonoid (s i)
inst✝¹³ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹² : AddCommMonoid M
inst✝¹¹ : Module R M
E : Type u_9
inst✝¹⁰ : AddCommMonoid E
inst✝⁹ : Module R E
F : Type u_10
inst✝⁸ : AddCommMonoid F
inst✝⁷ : Monoid R₁
inst✝⁶ : DistribMulAction R₁ R
inst✝⁵ : SMulCommClass R₁ R R
inst✝⁴ : Monoid R₂
inst✝³ : DistribMulAction R₂ R
inst✝² : SMulCommClass R₂ R R
inst✝¹ : SMul R₁ R₂
inst✝ : IsScalarTower R₁ R₂ R
r' : R₁
r'' : R₂
x : ⨂[R] (i : ι), s i
xr : R
xf : (i : ι) → s i
⊢ (r' • r'') • tprodCoeff R xr xf = r' • r'' • tprodCoeff R xr xf
[PROOFSTEP]
simp only [smul_tprodCoeff', smul_assoc]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁵ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝¹⁴ : (i : ι) → AddCommMonoid (s i)
inst✝¹³ : (i : ι) → Module R (s i)
M : Type u_8
inst✝¹² : AddCommMonoid M
inst✝¹¹ : Module R M
E : Type u_9
inst✝¹⁰ : AddCommMonoid E
inst✝⁹ : Module R E
F : Type u_10
inst✝⁸ : AddCommMonoid F
inst✝⁷ : Monoid R₁
inst✝⁶ : DistribMulAction R₁ R
inst✝⁵ : SMulCommClass R₁ R R
inst✝⁴ : Monoid R₂
inst✝³ : DistribMulAction R₂ R
inst✝² : SMulCommClass R₂ R R
inst✝¹ : SMul R₁ R₂
inst✝ : IsScalarTower R₁ R₂ R
r' : R₁
r'' : R₂
x z y : ⨂[R] (i : ι), s i
ihz : (r' • r'') • z = r' • r'' • z
ihy : (r' • r'') • y = r' • r'' • y
⊢ (r' • r'') • (z + y) = r' • r'' • (z + y)
[PROOFSTEP]
simp_rw [PiTensorProduct.smul_add, ihz, ihy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁰ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁹ : (i : ι) → AddCommMonoid (s i)
inst✝⁸ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
E : Type u_9
inst✝⁵ : AddCommMonoid E
inst✝⁴ : Module R E
F : Type u_10
inst✝³ : AddCommMonoid F
inst✝² : Semiring R₁
inst✝¹ : Module R₁ R
inst✝ : SMulCommClass R₁ R R
src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction'
r✝ r' : R₁
x : ⨂[R] (i : ι), s i
r : R
f : (i : ι) → s i
⊢ (r✝ + r') • tprodCoeff R r f = r✝ • tprodCoeff R r f + r' • tprodCoeff R r f
[PROOFSTEP]
simp_rw [smul_tprodCoeff', add_smul, add_tprodCoeff']
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁰ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁹ : (i : ι) → AddCommMonoid (s i)
inst✝⁸ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
E : Type u_9
inst✝⁵ : AddCommMonoid E
inst✝⁴ : Module R E
F : Type u_10
inst✝³ : AddCommMonoid F
inst✝² : Semiring R₁
inst✝¹ : Module R₁ R
inst✝ : SMulCommClass R₁ R R
src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction'
r r' : R₁
x✝ x y : ⨂[R] (i : ι), s i
ihx : (r + r') • x = r • x + r' • x
ihy : (r + r') • y = r • y + r' • y
⊢ (r + r') • (x + y) = r • (x + y) + r' • (x + y)
[PROOFSTEP]
simp_rw [PiTensorProduct.smul_add, ihx, ihy, add_add_add_comm]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁰ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁹ : (i : ι) → AddCommMonoid (s i)
inst✝⁸ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
E : Type u_9
inst✝⁵ : AddCommMonoid E
inst✝⁴ : Module R E
F : Type u_10
inst✝³ : AddCommMonoid F
inst✝² : Semiring R₁
inst✝¹ : Module R₁ R
inst✝ : SMulCommClass R₁ R R
src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction'
x : ⨂[R] (i : ι), s i
r : R
f : (i : ι) → s i
⊢ 0 • tprodCoeff R r f = 0
[PROOFSTEP]
simp_rw [smul_tprodCoeff', zero_smul, zero_tprodCoeff]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝¹⁰ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁹ : (i : ι) → AddCommMonoid (s i)
inst✝⁸ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
E : Type u_9
inst✝⁵ : AddCommMonoid E
inst✝⁴ : Module R E
F : Type u_10
inst✝³ : AddCommMonoid F
inst✝² : Semiring R₁
inst✝¹ : Module R₁ R
inst✝ : SMulCommClass R₁ R R
src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction'
x✝ x y : ⨂[R] (i : ι), s i
ihx : 0 • x = 0
ihy : 0 • y = 0
⊢ 0 • (x + y) = 0
[PROOFSTEP]
simp_rw [PiTensorProduct.smul_add, ihx, ihy, add_zero]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
x✝ : DecidableEq ι
f : (i : ι) → s i
i : ι
r : R
x : s i
⊢ tprodCoeff R 1 (update f i (r • x)) = r • tprodCoeff R 1 (update f i x)
[PROOFSTEP]
rw [smul_tprodCoeff', ← smul_tprodCoeff (1 : R) _ i, update_idem, update_same]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
z : R
f : (i : ι) → s i
⊢ tprodCoeff R z f = z • ↑(tprod R) f
[PROOFSTEP]
have : z = z • (1 : R) := by simp only [mul_one, Algebra.id.smul_eq_mul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
z : R
f : (i : ι) → s i
⊢ z = z • 1
[PROOFSTEP]
simp only [mul_one, Algebra.id.smul_eq_mul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
z : R
f : (i : ι) → s i
this : z = z • 1
⊢ tprodCoeff R z f = z • ↑(tprod R) f
[PROOFSTEP]
conv_lhs => rw [this]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
z : R
f : (i : ι) → s i
this : z = z • 1
| tprodCoeff R z f
[PROOFSTEP]
rw [this]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
z : R
f : (i : ι) → s i
this : z = z • 1
| tprodCoeff R z f
[PROOFSTEP]
rw [this]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
z : R
f : (i : ι) → s i
this : z = z • 1
| tprodCoeff R z f
[PROOFSTEP]
rw [this]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (r • ↑(tprod R) f)
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
⊢ C z
[PROOFSTEP]
simp_rw [← tprodCoeff_eq_smul_tprod] at C1
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
C : (⨂[R] (i : ι), s i) → Prop
z : ⨂[R] (i : ι), s i
Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y)
C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f)
⊢ C z
[PROOFSTEP]
exact PiTensorProduct.induction_on' z @C1 @Cp
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
⊢ φ₁ = φ₂
[PROOFSTEP]
refine' LinearMap.ext _
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
⊢ ∀ (x : ⨂[R] (i : ι), s i), ↑φ₁ x = ↑φ₂ x
[PROOFSTEP]
refine' fun z ↦ PiTensorProduct.induction_on' z _ fun {x y} hx hy ↦ by rw [φ₁.map_add, φ₂.map_add, hx, hy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
z x y : ⨂[R] (i : ι), s i
hx : ↑φ₁ x = ↑φ₂ x
hy : ↑φ₁ y = ↑φ₂ y
⊢ ↑φ₁ (x + y) = ↑φ₂ (x + y)
[PROOFSTEP]
rw [φ₁.map_add, φ₂.map_add, hx, hy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
z : ⨂[R] (i : ι), s i
⊢ ∀ {r : R} {f : (i : ι) → s i}, ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f)
[PROOFSTEP]
intro r f
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
z : ⨂[R] (i : ι), s i
r : R
f : (i : ι) → s i
⊢ ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f)
[PROOFSTEP]
rw [tprodCoeff_eq_smul_tprod, φ₁.map_smul, φ₂.map_smul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
z : ⨂[R] (i : ι), s i
r : R
f : (i : ι) → s i
⊢ r • ↑φ₁ (↑(tprod R) f) = r • ↑φ₂ (↑(tprod R) f)
[PROOFSTEP]
apply _root_.congr_arg
[GOAL]
case h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E
H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)
z : ⨂[R] (i : ι), s i
r : R
f : (i : ι) → s i
⊢ ↑φ₁ (↑(tprod R) f) = ↑φ₂ (↑(tprod R) f)
[PROOFSTEP]
exact MultilinearMap.congr_fun H f
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
z : R
f : (i : ι) → s i
i : ι
hf : f i = 0
⊢ (fun p => p.fst • ↑φ p.snd) (z, f) = 0
[PROOFSTEP]
simp_rw [map_coord_zero φ i hf, smul_zero]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
f : (i : ι) → s i
⊢ (fun p => p.fst • ↑φ p.snd) (0, f) = 0
[PROOFSTEP]
simp_rw [zero_smul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
m₁ m₂ : s i
⊢ (fun p => p.fst • ↑φ p.snd) (z, update f i m₁) + (fun p => p.fst • ↑φ p.snd) (z, update f i m₂) =
(fun p => p.fst • ↑φ p.snd) (z, update f i (m₁ + m₂))
[PROOFSTEP]
simp_rw [← smul_add, φ.map_add]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
z₁ z₂ : R
f : (i : ι) → s i
⊢ (fun p => p.fst • ↑φ p.snd) (z₁, f) + (fun p => p.fst • ↑φ p.snd) (z₂, f) = (fun p => p.fst • ↑φ p.snd) (z₁ + z₂, f)
[PROOFSTEP]
rw [← add_smul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : DecidableEq ι
z : R
f : (i : ι) → s i
i : ι
r : R
⊢ (fun p => p.fst • ↑φ p.snd) (z, update f i (r • f i)) = (fun p => p.fst • ↑φ p.snd) (r * z, f)
[PROOFSTEP]
simp [φ.map_smul, smul_smul, mul_comm]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
f : (i : ι) → s i
⊢ ↑(liftAux φ) (↑(tprod R) f) = ↑φ f
[PROOFSTEP]
simp only [liftAux, liftAddHom, tprod_eq_tprodCoeff_one, tprodCoeff, AddCon.coe_mk']
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
f : (i : ι) → s i
⊢ ↑(AddCon.lift (addConGen (Eqv R fun i => s i)) (↑FreeAddMonoid.lift fun p => p.fst • ↑φ p.snd)
(_ : addConGen (Eqv R fun i => s i) ≤ AddCon.ker (↑FreeAddMonoid.lift fun p => p.fst • ↑φ p.snd)))
↑(FreeAddMonoid.of (1, f)) =
↑φ f
[PROOFSTEP]
rw [FreeAddMonoid.of, FreeAddMonoid.ofList, Equiv.refl_apply, AddCon.lift_coe]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
f : (i : ι) → s i
⊢ ↑(↑FreeAddMonoid.lift fun p => p.fst • ↑φ p.snd) [(1, f)] = ↑φ f
[PROOFSTEP]
dsimp [FreeAddMonoid.lift, FreeAddMonoid.sumAux]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
f : (i : ι) → s i
⊢ (FreeAddMonoid.sumAux.match_1 (fun x => E) [1 • ↑φ f] (fun _ => 0) fun x xs =>
List.foldl (fun x x_1 => x + x_1) x xs) =
↑φ f
[PROOFSTEP]
show _ • _ = _
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
f : (i : ι) → s i
⊢ 1 • ↑φ f = ↑φ f
[PROOFSTEP]
rw [one_smul]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
r : R
x : ⨂[R] (i : ι), s i
⊢ ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x
[PROOFSTEP]
refine' PiTensorProduct.induction_on' x _ _
[GOAL]
case refine'_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
r : R
x : ⨂[R] (i : ι), s i
⊢ ∀ {r_1 : R} {f : (i : ι) → s i}, ↑(liftAux φ) (r • tprodCoeff R r_1 f) = r • ↑(liftAux φ) (tprodCoeff R r_1 f)
[PROOFSTEP]
intro z f
[GOAL]
case refine'_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
r : R
x : ⨂[R] (i : ι), s i
z : R
f : (i : ι) → s i
⊢ ↑(liftAux φ) (r • tprodCoeff R z f) = r • ↑(liftAux φ) (tprodCoeff R z f)
[PROOFSTEP]
rw [smul_tprodCoeff' r z f, liftAux_tprodCoeff, liftAux_tprodCoeff, smul_assoc]
[GOAL]
case refine'_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
r : R
x : ⨂[R] (i : ι), s i
⊢ ∀ {x y : ⨂[R] (i : ι), s i},
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x →
↑(liftAux φ) (r • y) = r • ↑(liftAux φ) y → ↑(liftAux φ) (r • (x + y)) = r • ↑(liftAux φ) (x + y)
[PROOFSTEP]
intro z y ihz ihy
[GOAL]
case refine'_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
r : R
x z y : ⨂[R] (i : ι), s i
ihz : ↑(liftAux φ) (r • z) = r • ↑(liftAux φ) z
ihy : ↑(liftAux φ) (r • y) = r • ↑(liftAux φ) y
⊢ ↑(liftAux φ) (r • (z + y)) = r • ↑(liftAux φ) (z + y)
[PROOFSTEP]
rw [smul_add, (liftAux φ).map_add, ihz, ihy, (liftAux φ).map_add, smul_add]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : MultilinearMap R s E
⊢ (fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂
[PROOFSTEP]
ext
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ₁ φ₂ : MultilinearMap R s E
x✝ : (i : ι) → s i
⊢ ↑(LinearMap.compMultilinearMap
((fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂))
(tprod R))
x✝ =
↑(LinearMap.compMultilinearMap
((fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂)
(tprod R))
x✝
[PROOFSTEP]
simp [liftAux_tprod]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
r : R
φ₂ : MultilinearMap R s E
⊢ AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
(r • φ₂) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
φ₂
[PROOFSTEP]
ext
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
r : R
φ₂ : MultilinearMap R s E
x✝ : (i : ι) → s i
⊢ ↑(LinearMap.compMultilinearMap
(AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
(r • φ₂))
(tprod R))
x✝ =
↑(LinearMap.compMultilinearMap
(↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
φ₂)
(tprod R))
x✝
[PROOFSTEP]
simp [liftAux_tprod]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
⊢ (fun φ' => LinearMap.compMultilinearMap φ' (tprod R))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) },
map_smul' :=
(_ :
∀ (r : R) (φ₂ : MultilinearMap R s E),
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
(r • φ₂) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
φ₂) }.toAddHom
φ) =
φ
[PROOFSTEP]
ext
[GOAL]
case H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x✝ : (i : ι) → s i
⊢ ↑((fun φ' => LinearMap.compMultilinearMap φ' (tprod R))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) },
map_smul' :=
(_ :
∀ (r : R) (φ₂ : MultilinearMap R s E),
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
(r • φ₂) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
φ₂) }.toAddHom
φ))
x✝ =
↑φ x✝
[PROOFSTEP]
simp [liftAux_tprod, LinearMap.compMultilinearMap]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : (⨂[R] (i : ι), s i) →ₗ[R] E
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) },
map_smul' :=
(_ :
∀ (r : R) (φ₂ : MultilinearMap R s E),
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
(r • φ₂) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
φ₂) }.toAddHom
((fun φ' => LinearMap.compMultilinearMap φ' (tprod R)) φ) =
φ
[PROOFSTEP]
ext
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : (⨂[R] (i : ι), s i) →ₗ[R] E
x✝ : (i : ι) → s i
⊢ ↑(LinearMap.compMultilinearMap
(AddHom.toFun
{
toAddHom :=
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) },
map_smul' :=
(_ :
∀ (r : R) (φ₂ : MultilinearMap R s E),
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
(r • φ₂) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) },
map_add' :=
(_ :
∀ (φ₁ φ₂ : MultilinearMap R s E),
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
(φ₁ + φ₂) =
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₁ +
(fun φ =>
let src := liftAux φ;
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : ⨂[R] (i : ι), s i),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (i : ι), s i),
↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) })
φ₂) }
φ₂) }.toAddHom
((fun φ' => LinearMap.compMultilinearMap φ' (tprod R)) φ))
(tprod R))
x✝ =
↑(LinearMap.compMultilinearMap φ (tprod R)) x✝
[PROOFSTEP]
simp [liftAux_tprod]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
⊢ LinearMap.comp (↑lift (domDomCongr e.symm (tprod R))) (↑lift (domDomCongr e (tprod R))) = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝ : ι₂ → M
⊢ ↑(LinearMap.compMultilinearMap
(LinearMap.comp (↑lift (domDomCongr e.symm (tprod R))) (↑lift (domDomCongr e (tprod R)))) (tprod R))
x✝ =
↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x✝
[PROOFSTEP]
simp only [LinearMap.comp_apply, LinearMap.id_apply, lift_tprod, LinearMap.compMultilinearMap_apply, lift.tprod,
domDomCongr_apply]
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝ : ι₂ → M
⊢ (⨂ₜ[R] (i : ι₂), x✝ (↑e (↑e.symm i))) = ↑(tprod R) x✝
[PROOFSTEP]
congr
[GOAL]
case H.H.h.e_6.h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝ : ι₂ → M
⊢ (fun i => x✝ (↑e (↑e.symm i))) = x✝
[PROOFSTEP]
ext
[GOAL]
case H.H.h.e_6.h.h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝¹ : ι₂ → M
x✝ : ι₂
⊢ x✝¹ (↑e (↑e.symm x✝)) = x✝¹ x✝
[PROOFSTEP]
rw [e.apply_symm_apply]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
⊢ LinearMap.comp (↑lift (domDomCongr e (tprod R))) (↑lift (domDomCongr e.symm (tprod R))) = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝ : ι → M
⊢ ↑(LinearMap.compMultilinearMap
(LinearMap.comp (↑lift (domDomCongr e (tprod R))) (↑lift (domDomCongr e.symm (tprod R)))) (tprod R))
x✝ =
↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x✝
[PROOFSTEP]
simp only [LinearMap.comp_apply, LinearMap.id_apply, lift_tprod, LinearMap.compMultilinearMap_apply, lift.tprod,
domDomCongr_apply]
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝ : ι → M
⊢ (⨂ₜ[R] (i : ι), x✝ (↑e.symm (↑e i))) = ↑(tprod R) x✝
[PROOFSTEP]
congr
[GOAL]
case H.H.h.e_6.h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝ : ι → M
⊢ (fun i => x✝ (↑e.symm (↑e i))) = x✝
[PROOFSTEP]
ext
[GOAL]
case H.H.h.e_6.h.h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
x✝¹ : ι → M
x✝ : ι
⊢ x✝¹ (↑e.symm (↑e x✝)) = x✝¹ x✝
[PROOFSTEP]
rw [e.symm_apply_apply]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
f : ι → M
⊢ ↑(reindex R M e) (↑(tprod R) f) = ⨂ₜ[R] (i : ι₂), f (↑e.symm i)
[PROOFSTEP]
dsimp [reindex]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
f : ι → M
⊢ ↑(↑lift (domDomCongr e.symm (tprod R))) (↑(tprod R) f) = ⨂ₜ[R] (i : ι₂), f (↑e.symm i)
[PROOFSTEP]
exact liftAux_tprod _ f
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ✝ : MultilinearMap R s E
e : ι ≃ ι₂
φ : MultilinearMap R (fun x => M) E
⊢ LinearMap.comp (↑lift φ) ↑(reindex R M e) = ↑lift (domDomCongr e.symm φ)
[PROOFSTEP]
ext
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ✝ : MultilinearMap R s E
e : ι ≃ ι₂
φ : MultilinearMap R (fun x => M) E
x✝ : ι → M
⊢ ↑(LinearMap.compMultilinearMap (LinearMap.comp (↑lift φ) ↑(reindex R M e)) (tprod R)) x✝ =
↑(LinearMap.compMultilinearMap (↑lift (domDomCongr e.symm φ)) (tprod R)) x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
e' : ι₂ ≃ ι₃
⊢ LinearEquiv.trans (reindex R M e) (reindex R M e') = reindex R M (e.trans e')
[PROOFSTEP]
apply LinearEquiv.toLinearMap_injective
[GOAL]
case a
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
e' : ι₂ ≃ ι₃
⊢ ↑(LinearEquiv.trans (reindex R M e) (reindex R M e')) = ↑(reindex R M (e.trans e'))
[PROOFSTEP]
ext f
[GOAL]
case a.H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
e' : ι₂ ≃ ι₃
f : ι → M
⊢ ↑(LinearMap.compMultilinearMap (↑(LinearEquiv.trans (reindex R M e) (reindex R M e'))) (tprod R)) f =
↑(LinearMap.compMultilinearMap (↑(reindex R M (e.trans e'))) (tprod R)) f
[PROOFSTEP]
simp only [LinearEquiv.trans_apply, LinearEquiv.coe_coe, reindex_tprod, LinearMap.coe_compMultilinearMap,
Function.comp_apply, MultilinearMap.domDomCongr_apply, reindex_comp_tprod]
[GOAL]
case a.H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
e : ι ≃ ι₂
e' : ι₂ ≃ ι₃
f : ι → M
⊢ (⨂ₜ[R] (i : ι₃), f (↑e.symm (↑e'.symm i))) = ⨂ₜ[R] (i : ι₃), f (↑(e.trans e').symm i)
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
⊢ reindex R M (Equiv.refl ι) = LinearEquiv.refl R (⨂[R] (x : ι), M)
[PROOFSTEP]
apply LinearEquiv.toLinearMap_injective
[GOAL]
case a
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
⊢ ↑(reindex R M (Equiv.refl ι)) = ↑(LinearEquiv.refl R (⨂[R] (x : ι), M))
[PROOFSTEP]
ext
[GOAL]
case a.H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x✝ : ι → M
⊢ ↑(LinearMap.compMultilinearMap (↑(reindex R M (Equiv.refl ι))) (tprod R)) x✝ =
↑(LinearMap.compMultilinearMap (↑(LinearEquiv.refl R (⨂[R] (x : ι), M))) (tprod R)) x✝
[PROOFSTEP]
rw [reindex_comp_tprod, LinearEquiv.refl_toLinearMap, Equiv.refl_symm]
[GOAL]
case a.H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x✝ : ι → M
⊢ ↑(domDomCongr (Equiv.refl ι) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x✝
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
r : R
x : ⨂[R] (x : ι), M
⊢ AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
r : R
x : ⨂[R] (x : ι), M
⊢ ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (r • x) = ↑(RingHom.id R) r • ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x
[PROOFSTEP]
exact LinearMap.map_smul _ r x
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x : ⨂[R] (x : ι), M
⊢ (fun r => r • ↑(tprod R) isEmptyElim)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
x) =
x
[PROOFSTEP]
refine x.induction_on ?_ ?_
[GOAL]
case refine_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x : ⨂[R] (x : ι), M
⊢ ∀ {r : R} {f : ι → M},
(fun r => r • ↑(tprod R) isEmptyElim)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
(r • ↑(tprod R) f)) =
r • ↑(tprod R) f
[PROOFSTEP]
intro x y
[GOAL]
case refine_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x✝ : ⨂[R] (x : ι), M
x : R
y : ι → M
⊢ (fun r => r • ↑(tprod R) isEmptyElim)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
(x • ↑(tprod R) y)) =
x • ↑(tprod R) y
[PROOFSTEP]
simp only [map_smulₛₗ, RingHom.id_apply, lift.tprod, constOfIsEmpty_apply, const_apply, smul_eq_mul, mul_one]
[GOAL]
case refine_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x✝ : ⨂[R] (x : ι), M
x : R
y : ι → M
⊢ x • ↑(tprod R) isEmptyElim = x • ↑(tprod R) y
[PROOFSTEP]
congr
[GOAL]
case refine_1.e_a.h.e_6.h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x✝ : ⨂[R] (x : ι), M
x : R
y : ι → M
⊢ isEmptyElim = y
[PROOFSTEP]
aesop
[GOAL]
case refine_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x : ⨂[R] (x : ι), M
⊢ ∀ {x y : ⨂[R] (i : ι), M},
(fun r => r • ↑(tprod R) isEmptyElim)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
x) =
x →
(fun r => r • ↑(tprod R) isEmptyElim)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
y) =
y →
(fun r => r • ↑(tprod R) isEmptyElim)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
(x + y)) =
x + y
[PROOFSTEP]
simp only
[GOAL]
case refine_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x : ⨂[R] (x : ι), M
⊢ ∀ {x y : ⨂[R] (i : ι), M},
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x • ↑(tprod R) isEmptyElim = x →
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y • ↑(tprod R) isEmptyElim = y →
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) • ↑(tprod R) isEmptyElim = x + y
[PROOFSTEP]
intro x y hx hy
[GOAL]
case refine_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
x✝ x y : ⨂[R] (i : ι), M
hx : ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x • ↑(tprod R) isEmptyElim = x
hy : ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y • ↑(tprod R) isEmptyElim = y
⊢ ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) • ↑(tprod R) isEmptyElim = x + y
[PROOFSTEP]
rw [map_add, add_smul, hx, hy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : IsEmpty ι
t : R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) =
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x +
↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }
x) }.toAddHom
((fun r => r • ↑(tprod R) isEmptyElim) t) =
t
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
r : R
x : ⨂[R] (x : ι), M
⊢ AddHom.toFun
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }
x
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
r : R
x : ⨂[R] (x : ι), M
⊢ ↑(↑lift (ofSubsingleton R M i₀)) (r • x) = ↑(RingHom.id R) r • ↑(↑lift (ofSubsingleton R M i₀)) x
[PROOFSTEP]
exact LinearMap.map_smul _ r x
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
⊢ (fun m => ⨂ₜ[R] (x : ι), m)
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }
x) }.toAddHom
x) =
x
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
⊢ (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x
[PROOFSTEP]
have : ∀ (f : ι → M) (z : M), (fun _ : ι ↦ z) = update f i₀ z :=
by
intro f z
ext i
rw [Subsingleton.elim i i₀, Function.update_same]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
⊢ ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z
[PROOFSTEP]
intro f z
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
f : ι → M
z : M
⊢ (fun x => z) = update f i₀ z
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
f : ι → M
z : M
i : ι
⊢ z = update f i₀ z i
[PROOFSTEP]
rw [Subsingleton.elim i i₀, Function.update_same]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z
⊢ (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x
[PROOFSTEP]
refine x.induction_on ?_ ?_
[GOAL]
case refine_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z
⊢ ∀ {r : R} {f : ι → M}, (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) (r • ↑(tprod R) f)) = r • ↑(tprod R) f
[PROOFSTEP]
intro r f
[GOAL]
case refine_1
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z
r : R
f : ι → M
⊢ (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) (r • ↑(tprod R) f)) = r • ↑(tprod R) f
[PROOFSTEP]
simp only [LinearMap.map_smul, lift.tprod, ofSubsingleton_apply, Function.eval, this f, MultilinearMap.map_smul,
update_eq_self]
[GOAL]
case refine_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x : ⨂[R] (x : ι), M
this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z
⊢ ∀ {x y : ⨂[R] (i : ι), M},
(⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x →
(⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) y) = y →
(⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) (x + y)) = x + y
[PROOFSTEP]
intro x y hx hy
[GOAL]
case refine_2
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
x✝ : ⨂[R] (x : ι), M
this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z
x y : ⨂[R] (i : ι), M
hx : (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x
hy : (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) y) = y
⊢ (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) (x + y)) = x + y
[PROOFSTEP]
rw [LinearMap.map_add, this 0 (_ + _), MultilinearMap.map_add, ← this 0 (lift _ _), hx, ← this 0 (lift _ _), hy]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁸ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁷ : (i : ι) → AddCommMonoid (s i)
inst✝⁶ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
E : Type u_9
inst✝³ : AddCommMonoid E
inst✝² : Module R E
F : Type u_10
inst✝¹ : AddCommMonoid F
φ : MultilinearMap R s E
inst✝ : Subsingleton ι
i₀ : ι
t : M
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) },
map_smul' :=
(_ :
∀ (r : R) (x : ⨂[R] (x : ι), M),
AddHom.toFun
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := ↑(↑lift (ofSubsingleton R M i₀)),
map_add' :=
(_ :
∀ (x y : ⨂[R] (x : ι), M),
↑(↑lift (ofSubsingleton R M i₀)) (x + y) =
↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }
x) }.toAddHom
((fun m => ⨂ₜ[R] (x : ι), m) t) =
t
[PROOFSTEP]
simp only [ofSubsingleton_apply, lift.tprod, Function.eval_apply]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
a b : ⨂[R] (x : ι), M
⊢ (fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a)) (a + b) =
(fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a)) a +
(fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a)) b
[PROOFSTEP]
simp only [LinearEquiv.map_add, LinearMap.map_add]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
r : R
a : ⨂[R] (x : ι), M
⊢ AddHom.toFun
{ toFun := fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a),
map_add' :=
(_ :
∀ (a b : ⨂[R] (x : ι), M),
↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) (a + b)) =
↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a) +
↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) b)) }
(r • a) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a),
map_add' :=
(_ :
∀ (a b : ⨂[R] (x : ι), M),
↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) (a + b)) =
↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a) +
↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) b)) }
a
[PROOFSTEP]
simp only [LinearEquiv.map_smul, LinearMap.map_smul, RingHom.id_apply]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
a : ι → M
b : ι₂ → M
⊢ ↑PiTensorProduct.tmul ((⨂ₜ[R] (i : ι), a i) ⊗ₜ[R] ⨂ₜ[R] (i : ι₂), b i) = ⨂ₜ[R] (i : ι ⊕ ι₂), Sum.elim a b i
[PROOFSTEP]
erw [TensorProduct.lift.tmul, PiTensorProduct.lift.tprod, PiTensorProduct.lift.tprod]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
a : ι → M
b : ι₂ → M
⊢ (↑(↑(↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R)) fun i => a i) fun i => b i) =
⨂ₜ[R] (i : ι ⊕ ι₂), Sum.elim a b i
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
⊢ LinearMap.comp PiTensorProduct.tmul PiTensorProduct.tmulSymm = LinearMap.id
[PROOFSTEP]
ext x
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x : ι ⊕ ι₂ → M
⊢ ↑(LinearMap.compMultilinearMap (LinearMap.comp PiTensorProduct.tmul PiTensorProduct.tmulSymm) (tprod R)) x =
↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x
[PROOFSTEP]
show tmul (tmulSymm (tprod R x)) = tprod R x
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x : ι ⊕ ι₂ → M
⊢ ↑PiTensorProduct.tmul (↑PiTensorProduct.tmulSymm (↑(tprod R) x)) = ↑(tprod R) x
[PROOFSTEP]
simp only [tmulSymm_apply, tmul_apply]
-- Porting note (https://github.com/leanprover-community/mathlib4/issues/5026):
-- was part of `simp only` above
[GOAL]
case H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x : ι ⊕ ι₂ → M
⊢ (⨂ₜ[R] (i : ι ⊕ ι₂), Sum.elim (fun i => x (Sum.inl i)) (fun i => x (Sum.inr i)) i) = ↑(tprod R) x
[PROOFSTEP]
erw [Sum.elim_comp_inl_inr]
[GOAL]
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
⊢ LinearMap.comp PiTensorProduct.tmulSymm PiTensorProduct.tmul = LinearMap.id
[PROOFSTEP]
ext x y
[GOAL]
case H.H.H.H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x : ι → M
y : ι₂ → M
⊢ ↑(LinearMap.compMultilinearMap
(↑(LinearMap.compMultilinearMap
(LinearMap.compr₂ (TensorProduct.mk R (⨂[R] (x : ι), M) (⨂[R] (x : ι₂), M))
(LinearMap.comp PiTensorProduct.tmulSymm PiTensorProduct.tmul))
(tprod R))
x)
(tprod R))
y =
↑(LinearMap.compMultilinearMap
(↑(LinearMap.compMultilinearMap
(LinearMap.compr₂ (TensorProduct.mk R (⨂[R] (x : ι), M) (⨂[R] (x : ι₂), M)) LinearMap.id) (tprod R))
x)
(tprod R))
y
[PROOFSTEP]
show tmulSymm (tmul (tprod R x ⊗ₜ[R] tprod R y)) = tprod R x ⊗ₜ[R] tprod R y
[GOAL]
case H.H.H.H.H
ι : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
R : Type u_4
inst✝⁷ : CommSemiring R
R₁ : Type u_5
R₂ : Type u_6
s : ι → Type u_7
inst✝⁶ : (i : ι) → AddCommMonoid (s i)
inst✝⁵ : (i : ι) → Module R (s i)
M : Type u_8
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
E : Type u_9
inst✝² : AddCommMonoid E
inst✝¹ : Module R E
F : Type u_10
inst✝ : AddCommMonoid F
φ : MultilinearMap R s E
x : ι → M
y : ι₂ → M
⊢ ↑PiTensorProduct.tmulSymm (↑PiTensorProduct.tmul (↑(tprod R) x ⊗ₜ[R] ↑(tprod R) y)) = ↑(tprod R) x ⊗ₜ[R] ↑(tprod R) y
[PROOFSTEP]
simp only [tmul_apply, tmulSymm_apply, Sum.elim_inl, Sum.elim_inr]
| {"mathlib_filename": "Mathlib.LinearAlgebra.PiTensorProduct", "llama_tokens": 66964} |
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ 4 * b₈ W = b₂ W * b₆ W - b₄ W ^ 2
[PROOFSTEP]
simp only [b₂, b₄, b₆, b₈]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ 4 * (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) =
(W.a₁ ^ 2 + 4 * W.a₂) * (W.a₃ ^ 2 + 4 * W.a₆) - (2 * W.a₄ + W.a₁ * W.a₃) ^ 2
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ 1728 * Δ W = c₄ W ^ 3 - c₆ W ^ 2
[PROOFSTEP]
simp only [b₂, b₄, b₆, b₈, c₄, c₆, Δ]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ 1728 *
(-(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 *
(W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) -
8 * (2 * W.a₄ + W.a₁ * W.a₃) ^ 3 -
27 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 +
9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) * (W.a₃ ^ 2 + 4 * W.a₆)) =
((W.a₁ ^ 2 + 4 * W.a₂) ^ 2 - 24 * (2 * W.a₄ + W.a₁ * W.a₃)) ^ 3 -
(-(W.a₁ ^ 2 + 4 * W.a₂) ^ 3 + 36 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) -
216 * (W.a₃ ^ 2 + 4 * W.a₆)) ^
2
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ c₄ (ofJ0 R) = 0
[PROOFSTEP]
rw [ofJ0, c₄, b₂, b₄]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ ({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂) ^
2 -
24 *
(2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃) =
0
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ Δ (ofJ0 R) = -27
[PROOFSTEP]
rw [ofJ0, Δ, b₂, b₄, b₆, b₈]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ -({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂) ^
2 *
({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 *
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆ +
4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂ *
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆ -
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ *
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ *
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂ *
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ ^ 2 -
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ ^ 2) -
8 *
(2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ *
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃) ^
3 -
27 *
({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ ^ 2 +
4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆) ^
2 +
9 *
({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 +
4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂) *
(2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃) *
({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ ^ 2 +
4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆) =
-27
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ c₄ (ofJ1728 R) = -48
[PROOFSTEP]
rw [ofJ1728, c₄, b₂, b₄]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ ({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂) ^
2 -
24 *
(2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃) =
-48
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ Δ (ofJ1728 R) = -64
[PROOFSTEP]
rw [ofJ1728, Δ, b₂, b₄, b₆, b₈]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
⊢ -({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂) ^
2 *
({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 *
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆ +
4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂ *
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆ -
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ *
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ *
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂ *
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ ^ 2 -
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ ^ 2) -
8 *
(2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ *
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃) ^
3 -
27 *
({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ ^ 2 +
4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆) ^
2 +
9 *
({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 +
4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂) *
(2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ +
{ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃) *
({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ ^ 2 +
4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆) =
-64
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
j : R
⊢ c₄ (ofJ j) = j * (j - 1728) ^ 3
[PROOFSTEP]
simp only [ofJ, c₄, b₂, b₄]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
j : R
⊢ ((j - 1728) ^ 2 + 4 * 0) ^ 2 - 24 * (2 * (-36 * (j - 1728) ^ 3) + (j - 1728) * 0) = j * (j - 1728) ^ 3
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
j : R
⊢ Δ (ofJ j) = j ^ 2 * (j - 1728) ^ 9
[PROOFSTEP]
simp only [ofJ, Δ, b₂, b₄, b₆, b₈]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
j : R
⊢ -((j - 1728) ^ 2 + 4 * 0) ^ 2 *
((j - 1728) ^ 2 * -(j - 1728) ^ 5 + 4 * 0 * -(j - 1728) ^ 5 - (j - 1728) * 0 * (-36 * (j - 1728) ^ 3) +
0 * 0 ^ 2 -
(-36 * (j - 1728) ^ 3) ^ 2) -
8 * (2 * (-36 * (j - 1728) ^ 3) + (j - 1728) * 0) ^ 3 -
27 * (0 ^ 2 + 4 * -(j - 1728) ^ 5) ^ 2 +
9 * ((j - 1728) ^ 2 + 4 * 0) * (2 * (-36 * (j - 1728) ^ 3) + (j - 1728) * 0) * (0 ^ 2 + 4 * -(j - 1728) ^ 5) =
j ^ 2 * (j - 1728) ^ 9
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ comp id C = C
[PROOFSTEP]
simp only [comp, id, zero_add, zero_mul, mul_zero, one_mul]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ comp C id = C
[PROOFSTEP]
simp only [comp, id, add_zero, mul_zero, one_mul, mul_one, one_pow, Units.val_one]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ comp (inv C) C = id
[PROOFSTEP]
rw [comp, id, inv]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u,
r :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 +
C.r,
s :=
↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s,
t :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 +
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s *
↑C.u ^ 2 +
C.t } =
{ u := 1, r := 0, s := 0, t := 0 }
[PROOFSTEP]
ext
[GOAL]
case u.a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ ↑{ u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u,
r :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r *
↑C.u ^ 2 +
C.r,
s :=
↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s +
C.s,
t :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t *
↑C.u ^ 3 +
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r *
C.s *
↑C.u ^ 2 +
C.t }.u =
↑{ u := 1, r := 0, s := 0, t := 0 }.u
[PROOFSTEP]
dsimp only
[GOAL]
case r
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u,
r :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 +
C.r,
s :=
↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s +
C.s,
t :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 +
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s *
↑C.u ^ 2 +
C.t }.r =
{ u := 1, r := 0, s := 0, t := 0 }.r
[PROOFSTEP]
dsimp only
[GOAL]
case s
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u,
r :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 +
C.r,
s :=
↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s +
C.s,
t :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 +
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s *
↑C.u ^ 2 +
C.t }.s =
{ u := 1, r := 0, s := 0, t := 0 }.s
[PROOFSTEP]
dsimp only
[GOAL]
case t
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u,
r :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 +
C.r,
s :=
↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s +
C.s,
t :=
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 +
{ u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s *
↑C.u ^ 2 +
C.t }.t =
{ u := 1, r := 0, s := 0, t := 0 }.t
[PROOFSTEP]
dsimp only
[GOAL]
case u.a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ ↑(C.u⁻¹ * C.u) = ↑1
[PROOFSTEP]
exact C.u.inv_mul
[GOAL]
case r
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ -C.r * ↑C.u⁻¹ ^ 2 * ↑C.u ^ 2 + C.r = 0
[PROOFSTEP]
linear_combination (norm := ring1) -C.r * pow_mul_pow_eq_one 2 C.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ -C.r * ↑C.u⁻¹ ^ 2 * ↑C.u ^ 2 + C.r - 0 - (-C.r * (↑C.u⁻¹ ^ 2 * ↑C.u ^ 2) - -C.r * 1) = 0
[PROOFSTEP]
ring1
[GOAL]
case s
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ ↑C.u * (-C.s * ↑C.u⁻¹) + C.s = 0
[PROOFSTEP]
linear_combination (norm := ring1) -C.s * C.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ ↑C.u * (-C.s * ↑C.u⁻¹) + C.s - 0 - (-C.s * (↑C.u⁻¹ * ↑C.u) - -C.s * 1) = 0
[PROOFSTEP]
ring1
[GOAL]
case t
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 * ↑C.u ^ 3 + -C.r * ↑C.u⁻¹ ^ 2 * C.s * ↑C.u ^ 2 + C.t = 0
[PROOFSTEP]
linear_combination (norm := ring1)
(C.r * C.s - C.t) * pow_mul_pow_eq_one 3 C.u.inv_mul + -C.r * C.s * pow_mul_pow_eq_one 2 C.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C' C'' C : VariableChange R
⊢ (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 * ↑C.u ^ 3 + -C.r * ↑C.u⁻¹ ^ 2 * C.s * ↑C.u ^ 2 + C.t - 0 -
((C.r * C.s - C.t) * (↑C.u⁻¹ ^ 3 * ↑C.u ^ 3) + -C.r * C.s * (↑C.u⁻¹ ^ 2 * ↑C.u ^ 2) -
((C.r * C.s - C.t) * 1 + -C.r * C.s * 1)) =
0
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ comp (comp C C') C'' = comp C (comp C' C'')
[PROOFSTEP]
ext
[GOAL]
case u.a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ ↑(comp (comp C C') C'').u = ↑(comp C (comp C' C'')).u
[PROOFSTEP]
simp only [comp, Units.val_mul]
[GOAL]
case r
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ (comp (comp C C') C'').r = (comp C (comp C' C'')).r
[PROOFSTEP]
simp only [comp, Units.val_mul]
[GOAL]
case s
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ (comp (comp C C') C'').s = (comp C (comp C' C'')).s
[PROOFSTEP]
simp only [comp, Units.val_mul]
[GOAL]
case t
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ (comp (comp C C') C'').t = (comp C (comp C' C'')).t
[PROOFSTEP]
simp only [comp, Units.val_mul]
[GOAL]
case u.a
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ ↑C.u * ↑C'.u * ↑C''.u = ↑C.u * (↑C'.u * ↑C''.u)
[PROOFSTEP]
ring1
[GOAL]
case r
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ (C.r * ↑C'.u ^ 2 + C'.r) * ↑C''.u ^ 2 + C''.r = C.r * (↑C'.u * ↑C''.u) ^ 2 + (C'.r * ↑C''.u ^ 2 + C''.r)
[PROOFSTEP]
ring1
[GOAL]
case s
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ ↑C''.u * (↑C'.u * C.s + C'.s) + C''.s = ↑C'.u * ↑C''.u * C.s + (↑C''.u * C'.s + C''.s)
[PROOFSTEP]
ring1
[GOAL]
case t
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C✝ C'✝ C''✝ C C' C'' : VariableChange R
⊢ (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * ↑C''.u ^ 3 + (C.r * ↑C'.u ^ 2 + C'.r) * C''.s * ↑C''.u ^ 2 +
C''.t =
C.t * (↑C'.u * ↑C''.u) ^ 3 + C.r * (↑C''.u * C'.s + C''.s) * (↑C'.u * ↑C''.u) ^ 2 +
(C'.t * ↑C''.u ^ 3 + C'.r * C''.s * ↑C''.u ^ 2 + C''.t)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ variableChange W VariableChange.id = W
[PROOFSTEP]
rw [VariableChange.id, variableChange, inv_one, Units.val_one]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s),
a₂ :=
1 ^ 2 *
(W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r -
{ u := 1, r := 0, s := 0, t := 0 }.s ^ 2),
a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t),
a₄ :=
1 ^ 4 *
(W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ -
({ u := 1, r := 0, s := 0, t := 0 }.t +
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) *
W.a₁ +
3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 -
2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t),
a₆ :=
1 ^ 6 *
(W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ +
{ u := 1, r := 0, s := 0, t := 0 }.r ^ 3 -
{ u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ -
{ u := 1, r := 0, s := 0, t := 0 }.t ^ 2 -
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) } =
W
[PROOFSTEP]
ext
[GOAL]
case a₁
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s),
a₂ :=
1 ^ 2 *
(W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r -
{ u := 1, r := 0, s := 0, t := 0 }.s ^ 2),
a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t),
a₄ :=
1 ^ 4 *
(W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ -
({ u := 1, r := 0, s := 0, t := 0 }.t +
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) *
W.a₁ +
3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 -
2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t),
a₆ :=
1 ^ 6 *
(W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ +
{ u := 1, r := 0, s := 0, t := 0 }.r ^ 3 -
{ u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ -
{ u := 1, r := 0, s := 0, t := 0 }.t ^ 2 -
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₁ =
W.a₁
[PROOFSTEP]
dsimp only
[GOAL]
case a₁
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ 1 * (W.a₁ + 2 * 0) = W.a₁
[PROOFSTEP]
ring1
[GOAL]
case a₂
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s),
a₂ :=
1 ^ 2 *
(W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r -
{ u := 1, r := 0, s := 0, t := 0 }.s ^ 2),
a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t),
a₄ :=
1 ^ 4 *
(W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ -
({ u := 1, r := 0, s := 0, t := 0 }.t +
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) *
W.a₁ +
3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 -
2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t),
a₆ :=
1 ^ 6 *
(W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ +
{ u := 1, r := 0, s := 0, t := 0 }.r ^ 3 -
{ u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ -
{ u := 1, r := 0, s := 0, t := 0 }.t ^ 2 -
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₂ =
W.a₂
[PROOFSTEP]
dsimp only
[GOAL]
case a₂
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ 1 ^ 2 * (W.a₂ - 0 * W.a₁ + 3 * 0 - 0 ^ 2) = W.a₂
[PROOFSTEP]
ring1
[GOAL]
case a₃
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s),
a₂ :=
1 ^ 2 *
(W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r -
{ u := 1, r := 0, s := 0, t := 0 }.s ^ 2),
a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t),
a₄ :=
1 ^ 4 *
(W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ -
({ u := 1, r := 0, s := 0, t := 0 }.t +
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) *
W.a₁ +
3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 -
2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t),
a₆ :=
1 ^ 6 *
(W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ +
{ u := 1, r := 0, s := 0, t := 0 }.r ^ 3 -
{ u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ -
{ u := 1, r := 0, s := 0, t := 0 }.t ^ 2 -
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₃ =
W.a₃
[PROOFSTEP]
dsimp only
[GOAL]
case a₃
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ 1 ^ 3 * (W.a₃ + 0 * W.a₁ + 2 * 0) = W.a₃
[PROOFSTEP]
ring1
[GOAL]
case a₄
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s),
a₂ :=
1 ^ 2 *
(W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r -
{ u := 1, r := 0, s := 0, t := 0 }.s ^ 2),
a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t),
a₄ :=
1 ^ 4 *
(W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ -
({ u := 1, r := 0, s := 0, t := 0 }.t +
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) *
W.a₁ +
3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 -
2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t),
a₆ :=
1 ^ 6 *
(W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ +
{ u := 1, r := 0, s := 0, t := 0 }.r ^ 3 -
{ u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ -
{ u := 1, r := 0, s := 0, t := 0 }.t ^ 2 -
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₄ =
W.a₄
[PROOFSTEP]
dsimp only
[GOAL]
case a₄
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ 1 ^ 4 * (W.a₄ - 0 * W.a₃ + 2 * 0 * W.a₂ - (0 + 0 * 0) * W.a₁ + 3 * 0 ^ 2 - 2 * 0 * 0) = W.a₄
[PROOFSTEP]
ring1
[GOAL]
case a₆
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s),
a₂ :=
1 ^ 2 *
(W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r -
{ u := 1, r := 0, s := 0, t := 0 }.s ^ 2),
a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t),
a₄ :=
1 ^ 4 *
(W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ -
({ u := 1, r := 0, s := 0, t := 0 }.t +
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) *
W.a₁ +
3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 -
2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t),
a₆ :=
1 ^ 6 *
(W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ +
{ u := 1, r := 0, s := 0, t := 0 }.r ^ 3 -
{ u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ -
{ u := 1, r := 0, s := 0, t := 0 }.t ^ 2 -
{ u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₆ =
W.a₆
[PROOFSTEP]
dsimp only
[GOAL]
case a₆
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ 1 ^ 6 * (W.a₆ + 0 * W.a₄ + 0 ^ 2 * W.a₂ + 0 ^ 3 - 0 * W.a₃ - 0 ^ 2 - 0 * 0 * W.a₁) = W.a₆
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ variableChange W (VariableChange.comp C C') = variableChange (variableChange W C') C
[PROOFSTEP]
simp only [VariableChange.comp, variableChange]
[GOAL]
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)),
a₂ :=
↑(C.u * C'.u)⁻¹ ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2),
a₃ :=
↑(C.u * C'.u)⁻¹ ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₄ :=
↑(C.u * C'.u)⁻¹ ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₆ :=
↑(C.u * C'.u)⁻¹ ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) } =
{ a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s),
a₂ :=
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2),
a₃ :=
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t),
a₄ :=
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t),
a₆ :=
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }
[PROOFSTEP]
ext
[GOAL]
case a₁
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)),
a₂ :=
↑(C.u * C'.u)⁻¹ ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2),
a₃ :=
↑(C.u * C'.u)⁻¹ ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₄ :=
↑(C.u * C'.u)⁻¹ ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₆ :=
↑(C.u * C'.u)⁻¹ ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ +
(C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₁ =
{ a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s),
a₂ :=
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2),
a₃ :=
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t),
a₄ :=
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t),
a₆ :=
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₁
[PROOFSTEP]
simp only [mul_inv, Units.val_mul]
[GOAL]
case a₂
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)),
a₂ :=
↑(C.u * C'.u)⁻¹ ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2),
a₃ :=
↑(C.u * C'.u)⁻¹ ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₄ :=
↑(C.u * C'.u)⁻¹ ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₆ :=
↑(C.u * C'.u)⁻¹ ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ +
(C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₂ =
{ a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s),
a₂ :=
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2),
a₃ :=
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t),
a₄ :=
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t),
a₆ :=
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₂
[PROOFSTEP]
simp only [mul_inv, Units.val_mul]
[GOAL]
case a₃
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)),
a₂ :=
↑(C.u * C'.u)⁻¹ ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2),
a₃ :=
↑(C.u * C'.u)⁻¹ ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₄ :=
↑(C.u * C'.u)⁻¹ ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₆ :=
↑(C.u * C'.u)⁻¹ ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ +
(C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₃ =
{ a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s),
a₂ :=
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2),
a₃ :=
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t),
a₄ :=
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t),
a₆ :=
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₃
[PROOFSTEP]
simp only [mul_inv, Units.val_mul]
[GOAL]
case a₄
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)),
a₂ :=
↑(C.u * C'.u)⁻¹ ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2),
a₃ :=
↑(C.u * C'.u)⁻¹ ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₄ :=
↑(C.u * C'.u)⁻¹ ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₆ :=
↑(C.u * C'.u)⁻¹ ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ +
(C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₄ =
{ a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s),
a₂ :=
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2),
a₃ :=
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t),
a₄ :=
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t),
a₆ :=
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₄
[PROOFSTEP]
simp only [mul_inv, Units.val_mul]
[GOAL]
case a₆
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)),
a₂ :=
↑(C.u * C'.u)⁻¹ ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2),
a₃ :=
↑(C.u * C'.u)⁻¹ ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₄ :=
↑(C.u * C'.u)⁻¹ ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)),
a₆ :=
↑(C.u * C'.u)⁻¹ ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ +
(C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₆ =
{ a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s),
a₂ :=
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2),
a₃ :=
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t),
a₄ :=
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t),
a₆ :=
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₆
[PROOFSTEP]
simp only [mul_inv, Units.val_mul]
[GOAL]
case a₁
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ ↑C.u⁻¹ * ↑C'.u⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)) = ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s)
[PROOFSTEP]
linear_combination (norm := ring1) ↑C.u⁻¹ * C.s * 2 * C'.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ ↑C.u⁻¹ * ↑C'.u⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)) - ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s) -
(↑C.u⁻¹ * C.s * 2 * (↑C'.u⁻¹ * ↑C'.u) - ↑C.u⁻¹ * C.s * 2 * 1) =
0
[PROOFSTEP]
ring1
[GOAL]
case a₂
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2) =
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2)
[PROOFSTEP]
linear_combination (norm := ring1)
C.s * (-C'.s * 2 - W.a₁) * (↑C.u⁻¹ : R) ^ 2 * ↑C'.u⁻¹ * C'.u.inv_mul +
(C.r * 3 - C.s ^ 2) * (↑C.u⁻¹ : R) ^ 2 * pow_mul_pow_eq_one 2 C'.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 2 *
(W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2) -
↑C.u⁻¹ ^ 2 *
(↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r -
C.s ^ 2) -
(C.s * (-C'.s * 2 - W.a₁) * ↑C.u⁻¹ ^ 2 * ↑C'.u⁻¹ * (↑C'.u⁻¹ * ↑C'.u) +
(C.r * 3 - C.s ^ 2) * ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) -
(C.s * (-C'.s * 2 - W.a₁) * ↑C.u⁻¹ ^ 2 * ↑C'.u⁻¹ * 1 + (C.r * 3 - C.s ^ 2) * ↑C.u⁻¹ ^ 2 * 1)) =
0
[PROOFSTEP]
ring1
[GOAL]
case a₃
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) =
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t)
[PROOFSTEP]
linear_combination (norm := ring1)
C.r * (C'.s * 2 + W.a₁) * (↑C.u⁻¹ : R) ^ 3 * ↑C'.u⁻¹ * pow_mul_pow_eq_one 2 C'.u.inv_mul +
C.t * 2 * (↑C.u⁻¹ : R) ^ 3 * pow_mul_pow_eq_one 3 C'.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 3 *
(W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) -
↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t) -
(C.r * (C'.s * 2 + W.a₁) * ↑C.u⁻¹ ^ 3 * ↑C'.u⁻¹ * (↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) +
C.t * 2 * ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * ↑C'.u ^ 3) -
(C.r * (C'.s * 2 + W.a₁) * ↑C.u⁻¹ ^ 3 * ↑C'.u⁻¹ * 1 + C.t * 2 * ↑C.u⁻¹ ^ 3 * 1)) =
0
[PROOFSTEP]
ring1
[GOAL]
case a₄
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) =
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t)
[PROOFSTEP]
linear_combination (norm := ring1)
C.s * (-W.a₃ - C'.r * W.a₁ - C'.t * 2) * (↑C.u⁻¹ : R) ^ 4 * (↑C'.u⁻¹ : R) ^ 3 * C'.u.inv_mul +
(↑C.u⁻¹ : R) ^ 4 * (↑C'.u⁻¹ : R) ^ 2 *
(C.r * C'.r * 6 + C.r * W.a₂ * 2 - C'.s * C.r * W.a₁ * 2 - C'.s ^ 2 * C.r * 2) *
pow_mul_pow_eq_one 2 C'.u.inv_mul +
-(↑C.u⁻¹ : R) ^ 4 * ↑C'.u⁻¹ * (C.s * C'.s * C.r * 2 + C.s * C.r * W.a₁ + C'.s * C.t * 2 + C.t * W.a₁) *
pow_mul_pow_eq_one 3 C'.u.inv_mul +
(↑C.u⁻¹ : R) ^ 4 * (C.r ^ 2 * 3 - C.s * C.t * 2) * pow_mul_pow_eq_one 4 C'.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 4 *
(W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) *
W.a₁ +
3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 -
2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) -
↑C.u⁻¹ ^ 4 *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t) -
C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) +
2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) -
(C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) +
3 * C.r ^ 2 -
2 * C.s * C.t) -
(C.s * (-W.a₃ - C'.r * W.a₁ - C'.t * 2) * ↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 3 * (↑C'.u⁻¹ * ↑C'.u) +
↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 2 *
(C.r * C'.r * 6 + C.r * W.a₂ * 2 - C'.s * C.r * W.a₁ * 2 - C'.s ^ 2 * C.r * 2) *
(↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) +
-↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ * (C.s * C'.s * C.r * 2 + C.s * C.r * W.a₁ + C'.s * C.t * 2 + C.t * W.a₁) *
(↑C'.u⁻¹ ^ 3 * ↑C'.u ^ 3) +
↑C.u⁻¹ ^ 4 * (C.r ^ 2 * 3 - C.s * C.t * 2) * (↑C'.u⁻¹ ^ 4 * ↑C'.u ^ 4) -
(C.s * (-W.a₃ - C'.r * W.a₁ - C'.t * 2) * ↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 3 * 1 +
↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 2 *
(C.r * C'.r * 6 + C.r * W.a₂ * 2 - C'.s * C.r * W.a₁ * 2 - C'.s ^ 2 * C.r * 2) *
1 +
-↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ * (C.s * C'.s * C.r * 2 + C.s * C.r * W.a₁ + C'.s * C.t * 2 + C.t * W.a₁) * 1 +
↑C.u⁻¹ ^ 4 * (C.r ^ 2 * 3 - C.s * C.t * 2) * 1)) =
0
[PROOFSTEP]
ring1
[GOAL]
case a₆
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) =
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)))
[PROOFSTEP]
linear_combination (norm := ring1)
C.r * (↑C.u⁻¹ : R) ^ 6 * (↑C'.u⁻¹ : R) ^ 4 *
(C'.r * W.a₂ * 2 - C'.r * C'.s * W.a₁ + C'.r ^ 2 * 3 + W.a₄ - C'.s * C'.t * 2 - C'.s * W.a₃ -
C'.t * W.a₁) *
pow_mul_pow_eq_one 2 C'.u.inv_mul +
-(↑C.u⁻¹ : R) ^ 6 * (↑C'.u⁻¹ : R) ^ 3 * C.t * (C'.r * W.a₁ + C'.t * 2 + W.a₃) *
pow_mul_pow_eq_one 3 C'.u.inv_mul +
C.r ^ 2 * (↑C.u⁻¹ : R) ^ 6 * (↑C'.u⁻¹ : R) ^ 2 * (C'.r * 3 + W.a₂ - C'.s * W.a₁ - C'.s ^ 2) *
pow_mul_pow_eq_one 4 C'.u.inv_mul +
-C.r * C.t * (↑C.u⁻¹ : R) ^ 6 * ↑C'.u⁻¹ * (C'.s * 2 + W.a₁) * pow_mul_pow_eq_one 5 C'.u.inv_mul +
(↑C.u⁻¹ : R) ^ 6 * (C.r ^ 3 - C.t ^ 2) * pow_mul_pow_eq_one 6 C'.u.inv_mul
[GOAL]
case a
R : Type u
inst✝ : CommRing R
W✝ : WeierstrassCurve R
C✝ C C' : VariableChange R
W : WeierstrassCurve R
⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 6 *
(W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ -
(C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 -
(C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) -
↑C.u⁻¹ ^ 6 *
(↑C'.u⁻¹ ^ 6 *
(W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 -
C'.r * C'.t * W.a₁) +
C.r *
(↑C'.u⁻¹ ^ 4 *
(W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 -
2 * C'.s * C'.t)) +
C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) +
C.r ^ 3 -
C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) -
C.t ^ 2 -
C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) -
(C.r * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 4 *
(C'.r * W.a₂ * 2 - C'.r * C'.s * W.a₁ + C'.r ^ 2 * 3 + W.a₄ - C'.s * C'.t * 2 - C'.s * W.a₃ -
C'.t * W.a₁) *
(↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) +
-↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 3 * C.t * (C'.r * W.a₁ + C'.t * 2 + W.a₃) * (↑C'.u⁻¹ ^ 3 * ↑C'.u ^ 3) +
C.r ^ 2 * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 2 * (C'.r * 3 + W.a₂ - C'.s * W.a₁ - C'.s ^ 2) *
(↑C'.u⁻¹ ^ 4 * ↑C'.u ^ 4) +
-C.r * C.t * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ * (C'.s * 2 + W.a₁) * (↑C'.u⁻¹ ^ 5 * ↑C'.u ^ 5) +
↑C.u⁻¹ ^ 6 * (C.r ^ 3 - C.t ^ 2) * (↑C'.u⁻¹ ^ 6 * ↑C'.u ^ 6) -
(C.r * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 4 *
(C'.r * W.a₂ * 2 - C'.r * C'.s * W.a₁ + C'.r ^ 2 * 3 + W.a₄ - C'.s * C'.t * 2 - C'.s * W.a₃ -
C'.t * W.a₁) *
1 +
-↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 3 * C.t * (C'.r * W.a₁ + C'.t * 2 + W.a₃) * 1 +
C.r ^ 2 * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 2 * (C'.r * 3 + W.a₂ - C'.s * W.a₁ - C'.s ^ 2) * 1 +
-C.r * C.t * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ * (C'.s * 2 + W.a₁) * 1 +
↑C.u⁻¹ ^ 6 * (C.r ^ 3 - C.t ^ 2) * 1)) =
0
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ b₂ (variableChange W C) = ↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)
[PROOFSTEP]
simp only [b₂, variableChange_a₁, variableChange_a₂]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ (↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)) =
↑C.u⁻¹ ^ 2 * (W.a₁ ^ 2 + 4 * W.a₂ + 12 * C.r)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ b₄ (variableChange W C) = ↑C.u⁻¹ ^ 4 * (b₄ W + C.r * b₂ W + 6 * C.r ^ 2)
[PROOFSTEP]
simp only [b₂, b₄, variableChange_a₁, variableChange_a₃, variableChange_a₄]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ 2 * (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) +
↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) =
↑C.u⁻¹ ^ 4 * (2 * W.a₄ + W.a₁ * W.a₃ + C.r * (W.a₁ ^ 2 + 4 * W.a₂) + 6 * C.r ^ 2)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ b₆ (variableChange W C) = ↑C.u⁻¹ ^ 6 * (b₆ W + 2 * C.r * b₄ W + C.r ^ 2 * b₂ W + 4 * C.r ^ 3)
[PROOFSTEP]
simp only [b₂, b₄, b₆, variableChange_a₃, variableChange_a₆]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 +
4 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) =
↑C.u⁻¹ ^ 6 *
(W.a₃ ^ 2 + 4 * W.a₆ + 2 * C.r * (2 * W.a₄ + W.a₁ * W.a₃) + C.r ^ 2 * (W.a₁ ^ 2 + 4 * W.a₂) + 4 * C.r ^ 3)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ b₈ (variableChange W C) = ↑C.u⁻¹ ^ 8 * (b₈ W + 3 * C.r * b₆ W + 3 * C.r ^ 2 * b₄ W + C.r ^ 3 * b₂ W + 3 * C.r ^ 4)
[PROOFSTEP]
simp only [b₂, b₄, b₆, b₈, variableChange_a₁, variableChange_a₂, variableChange_a₃, variableChange_a₄,
variableChange_a₆]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ (↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 *
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) +
4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)) *
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) -
↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) *
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) +
↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 -
(↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) ^ 2 =
↑C.u⁻¹ ^ 8 *
(W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2 +
3 * C.r * (W.a₃ ^ 2 + 4 * W.a₆) +
3 * C.r ^ 2 * (2 * W.a₄ + W.a₁ * W.a₃) +
C.r ^ 3 * (W.a₁ ^ 2 + 4 * W.a₂) +
3 * C.r ^ 4)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ c₄ (variableChange W C) = ↑C.u⁻¹ ^ 4 * c₄ W
[PROOFSTEP]
simp only [c₄, variableChange_b₂, variableChange_b₄]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ (↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)) ^ 2 - 24 * (↑C.u⁻¹ ^ 4 * (b₄ W + C.r * b₂ W + 6 * C.r ^ 2)) =
↑C.u⁻¹ ^ 4 * (b₂ W ^ 2 - 24 * b₄ W)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ c₆ (variableChange W C) = ↑C.u⁻¹ ^ 6 * c₆ W
[PROOFSTEP]
simp only [c₆, variableChange_b₂, variableChange_b₄, variableChange_b₆]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ -(↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)) ^ 3 +
36 * (↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)) * (↑C.u⁻¹ ^ 4 * (b₄ W + C.r * b₂ W + 6 * C.r ^ 2)) -
216 * (↑C.u⁻¹ ^ 6 * (b₆ W + 2 * C.r * b₄ W + C.r ^ 2 * b₂ W + 4 * C.r ^ 3)) =
↑C.u⁻¹ ^ 6 * (-b₂ W ^ 3 + 36 * b₂ W * b₄ W - 216 * b₆ W)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ Δ (variableChange W C) = ↑C.u⁻¹ ^ 12 * Δ W
[PROOFSTEP]
simp only [b₂, b₄, b₆, b₈, Δ, variableChange_a₁, variableChange_a₂, variableChange_a₃, variableChange_a₄,
variableChange_a₆]
[GOAL]
R : Type u
inst✝ : CommRing R
W : WeierstrassCurve R
C : VariableChange R
⊢ -((↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2))) ^ 2 *
((↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 *
(↑C.u⁻¹ ^ 6 *
(W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) +
4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)) *
(↑C.u⁻¹ ^ 6 *
(W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) -
↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) *
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) +
↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2) *
(↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 -
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) ^
2) -
8 *
(2 *
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) +
↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t))) ^
3 -
27 *
((↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 +
4 *
(↑C.u⁻¹ ^ 6 *
(W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁))) ^
2 +
9 * ((↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2))) *
(2 *
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) +
↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t))) *
((↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 +
4 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁))) =
↑C.u⁻¹ ^ 12 *
(-(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 *
(W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) -
8 * (2 * W.a₄ + W.a₁ * W.a₃) ^ 3 -
27 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 +
9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) * (W.a₃ ^ 2 + 4 * W.a₆))
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ b₂ (baseChange W A) = ↑(algebraMap R A) (b₂ W)
[PROOFSTEP]
simp only [b₂, baseChange_a₁, baseChange_a₂]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ ↑(algebraMap R A) W.a₁ ^ 2 + 4 * ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) (W.a₁ ^ 2 + 4 * W.a₂)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ b₄ (baseChange W A) = ↑(algebraMap R A) (b₄ W)
[PROOFSTEP]
simp only [b₄, baseChange_a₁, baseChange_a₃, baseChange_a₄]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ 2 * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) W.a₃ =
↑(algebraMap R A) (2 * W.a₄ + W.a₁ * W.a₃)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ b₆ (baseChange W A) = ↑(algebraMap R A) (b₆ W)
[PROOFSTEP]
simp only [b₆, baseChange_a₃, baseChange_a₆]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ ↑(algebraMap R A) W.a₃ ^ 2 + 4 * ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) (W.a₃ ^ 2 + 4 * W.a₆)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ b₈ (baseChange W A) = ↑(algebraMap R A) (b₈ W)
[PROOFSTEP]
simp only [b₈, baseChange_a₁, baseChange_a₂, baseChange_a₃, baseChange_a₄, baseChange_a₆]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ ↑(algebraMap R A) W.a₁ ^ 2 * ↑(algebraMap R A) W.a₆ + 4 * ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) W.a₆ -
↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) W.a₃ * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) W.a₃ ^ 2 -
↑(algebraMap R A) W.a₄ ^ 2 =
↑(algebraMap R A) (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ c₄ (baseChange W A) = ↑(algebraMap R A) (c₄ W)
[PROOFSTEP]
simp only [c₄, baseChange_b₂, baseChange_b₄]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ ↑(algebraMap R A) (b₂ W) ^ 2 - 24 * ↑(algebraMap R A) (b₄ W) = ↑(algebraMap R A) (b₂ W ^ 2 - 24 * b₄ W)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ c₆ (baseChange W A) = ↑(algebraMap R A) (c₆ W)
[PROOFSTEP]
simp only [c₆, baseChange_b₂, baseChange_b₄, baseChange_b₆]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ -↑(algebraMap R A) (b₂ W) ^ 3 + 36 * ↑(algebraMap R A) (b₂ W) * ↑(algebraMap R A) (b₄ W) -
216 * ↑(algebraMap R A) (b₆ W) =
↑(algebraMap R A) (-b₂ W ^ 3 + 36 * b₂ W * b₄ W - 216 * b₆ W)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ Δ (baseChange W A) = ↑(algebraMap R A) (Δ W)
[PROOFSTEP]
simp only [Δ, baseChange_b₂, baseChange_b₄, baseChange_b₆, baseChange_b₈]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ -↑(algebraMap R A) (b₂ W) ^ 2 * ↑(algebraMap R A) (b₈ W) - 8 * ↑(algebraMap R A) (b₄ W) ^ 3 -
27 * ↑(algebraMap R A) (b₆ W) ^ 2 +
9 * ↑(algebraMap R A) (b₂ W) * ↑(algebraMap R A) (b₄ W) * ↑(algebraMap R A) (b₆ W) =
↑(algebraMap R A) (-b₂ W ^ 2 * b₈ W - 8 * b₄ W ^ 3 - 27 * b₆ W ^ 2 + 9 * b₂ W * b₄ W * b₆ W)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ baseChange W R = W
[PROOFSTEP]
ext
[GOAL]
case a₁
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange W R).a₁ = W.a₁
[PROOFSTEP]
rfl
[GOAL]
case a₂
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange W R).a₂ = W.a₂
[PROOFSTEP]
rfl
[GOAL]
case a₃
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange W R).a₃ = W.a₃
[PROOFSTEP]
rfl
[GOAL]
case a₄
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange W R).a₄ = W.a₄
[PROOFSTEP]
rfl
[GOAL]
case a₆
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange W R).a₆ = W.a₆
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ baseChange (baseChange W A) B = baseChange W B
[PROOFSTEP]
ext
[GOAL]
case a₁
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange (baseChange W A) B).a₁ = (baseChange W B).a₁
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case a₂
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange (baseChange W A) B).a₂ = (baseChange W B).a₂
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case a₃
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange (baseChange W A) B).a₃ = (baseChange W B).a₃
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case a₄
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange (baseChange W A) B).a₄ = (baseChange W B).a₄
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case a₆
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (baseChange (baseChange W A) B).a₆ = (baseChange W B).a₆
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
⊢ W = W'
[PROOFSTEP]
rcases mk.inj h1 with ⟨_, _, _, _, _⟩
[GOAL]
case intro.intro.intro.intro
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ W = W'
[PROOFSTEP]
ext
[GOAL]
case intro.intro.intro.intro.a₁
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ W.a₁ = W'.a₁
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.a₂
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ W.a₂ = W'.a₂
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.a₃
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ W.a₃ = W'.a₃
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.a₄
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ W.a₄ = W'.a₄
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.a₆
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ W.a₆ = W'.a₆
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.a₁
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.a₂
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.a₃
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.a₄
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.a₆
R : Type u
inst✝⁶ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : Function.Injective ↑(algebraMap R A)
W W' : WeierstrassCurve R
h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W'
left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁
left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂
left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃
left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄
right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
⊢ ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆
[PROOFSTEP]
assumption
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ baseChange A id = id
[PROOFSTEP]
simp only [id, baseChange]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0,
t := ↑(algebraMap R A) 0 } =
{ u := 1, r := 0, s := 0, t := 0 }
[PROOFSTEP]
ext
[GOAL]
case u.a
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ ↑{ u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0,
t := ↑(algebraMap R A) 0 }.u =
↑{ u := 1, r := 0, s := 0, t := 0 }.u
[PROOFSTEP]
simp only [map_one, Units.val_one, map_zero]
[GOAL]
case r
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0,
t := ↑(algebraMap R A) 0 }.r =
{ u := 1, r := 0, s := 0, t := 0 }.r
[PROOFSTEP]
simp only [map_one, Units.val_one, map_zero]
[GOAL]
case s
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0,
t := ↑(algebraMap R A) 0 }.s =
{ u := 1, r := 0, s := 0, t := 0 }.s
[PROOFSTEP]
simp only [map_one, Units.val_one, map_zero]
[GOAL]
case t
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0,
t := ↑(algebraMap R A) 0 }.t =
{ u := 1, r := 0, s := 0, t := 0 }.t
[PROOFSTEP]
simp only [map_one, Units.val_one, map_zero]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C C' : VariableChange R
⊢ baseChange A (comp C C') = comp (baseChange A C) (baseChange A C')
[PROOFSTEP]
simp only [comp, baseChange]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C C' : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r),
s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s),
t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) } =
{ u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u,
r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r,
s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s,
t :=
↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 +
↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 +
↑(algebraMap R A) C'.t }
[PROOFSTEP]
ext
[GOAL]
case u.a
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C C' : VariableChange R
⊢ ↑{ u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r),
s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s),
t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.u =
↑{ u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u,
r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r,
s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s,
t :=
↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 +
↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 +
↑(algebraMap R A) C'.t }.u
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case r
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C C' : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r),
s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s),
t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.r =
{ u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u,
r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r,
s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s,
t :=
↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 +
↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 +
↑(algebraMap R A) C'.t }.r
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case s
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C C' : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r),
s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s),
t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.s =
{ u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u,
r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r,
s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s,
t :=
↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 +
↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 +
↑(algebraMap R A) C'.t }.s
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case t
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C C' : VariableChange R
⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r),
s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s),
t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.t =
{ u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u,
r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r,
s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s,
t :=
↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 +
↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 +
↑(algebraMap R A) C'.t }.t
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ baseChange B (baseChange A C) = baseChange B C
[PROOFSTEP]
ext
[GOAL]
case u.a
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ ↑(baseChange B (baseChange A C)).u = ↑(baseChange B C).u
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case r
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ (baseChange B (baseChange A C)).r = (baseChange B C).r
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case s
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ (baseChange B (baseChange A C)).s = (baseChange B C).s
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
case t
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ (baseChange B (baseChange A C)).t = (baseChange B C).t
[PROOFSTEP]
exact (IsScalarTower.algebraMap_apply R A B _).symm
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1 : baseChange A C = baseChange A C'
⊢ C = C'
[PROOFSTEP]
rcases mk.inj h1 with ⟨h1, _, _, _⟩
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
h1 : ↑(Units.map ↑(algebraMap R A)) C.u = ↑(Units.map ↑(algebraMap R A)) C'.u
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
⊢ C = C'
[PROOFSTEP]
replace h1 := (Units.mk.inj h1).left
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ C = C'
[PROOFSTEP]
ext
[GOAL]
case intro.intro.intro.u.a
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ ↑C.u = ↑C'.u
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.r
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ C.r = C'.r
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.s
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ C.s = C'.s
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.t
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ C.t = C'.t
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.u.a
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ ↑(algebraMap R A) ↑C.u = ↑(algebraMap R A) ↑C'.u
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.r
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.s
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.t
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C✝ : VariableChange R
h : Function.Injective ↑(algebraMap R A)
C C' : VariableChange R
h1✝ : baseChange A C = baseChange A C'
left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r
left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s
right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u
⊢ ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t
[PROOFSTEP]
assumption
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ variableChange (baseChange W A) (VariableChange.baseChange A C) = baseChange (variableChange W C) A
[PROOFSTEP]
simp only [baseChange, variableChange, VariableChange.baseChange]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s),
a₂ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 *
(↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r -
↑(algebraMap R A) C.s ^ 2),
a₃ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 *
(↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t),
a₄ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 *
(↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ +
2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ -
(↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ +
3 * ↑(algebraMap R A) C.r ^ 2 -
2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t),
a₆ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 *
(↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ +
↑(algebraMap R A) C.r ^ 3 -
↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ -
↑(algebraMap R A) C.t ^ 2 -
↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) } =
{ a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)),
a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)),
a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)),
a₄ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)),
a₆ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }
[PROOFSTEP]
ext
[GOAL]
case a₁
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s),
a₂ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 *
(↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r -
↑(algebraMap R A) C.s ^ 2),
a₃ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 *
(↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t),
a₄ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 *
(↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ +
2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ -
(↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ +
3 * ↑(algebraMap R A) C.r ^ 2 -
2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t),
a₆ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 *
(↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ +
↑(algebraMap R A) C.r ^ 3 -
↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ -
↑(algebraMap R A) C.t ^ 2 -
↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₁ =
{ a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)),
a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)),
a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)),
a₄ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)),
a₆ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₁
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case a₂
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s),
a₂ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 *
(↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r -
↑(algebraMap R A) C.s ^ 2),
a₃ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 *
(↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t),
a₄ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 *
(↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ +
2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ -
(↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ +
3 * ↑(algebraMap R A) C.r ^ 2 -
2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t),
a₆ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 *
(↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ +
↑(algebraMap R A) C.r ^ 3 -
↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ -
↑(algebraMap R A) C.t ^ 2 -
↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₂ =
{ a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)),
a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)),
a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)),
a₄ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)),
a₆ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₂
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case a₃
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s),
a₂ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 *
(↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r -
↑(algebraMap R A) C.s ^ 2),
a₃ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 *
(↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t),
a₄ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 *
(↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ +
2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ -
(↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ +
3 * ↑(algebraMap R A) C.r ^ 2 -
2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t),
a₆ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 *
(↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ +
↑(algebraMap R A) C.r ^ 3 -
↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ -
↑(algebraMap R A) C.t ^ 2 -
↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₃ =
{ a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)),
a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)),
a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)),
a₄ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)),
a₆ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₃
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case a₄
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s),
a₂ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 *
(↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r -
↑(algebraMap R A) C.s ^ 2),
a₃ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 *
(↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t),
a₄ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 *
(↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ +
2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ -
(↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ +
3 * ↑(algebraMap R A) C.r ^ 2 -
2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t),
a₆ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 *
(↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ +
↑(algebraMap R A) C.r ^ 3 -
↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ -
↑(algebraMap R A) C.t ^ 2 -
↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₄ =
{ a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)),
a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)),
a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)),
a₄ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)),
a₆ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₄
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
case a₆
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
C : VariableChange R
⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s),
a₂ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 *
(↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r -
↑(algebraMap R A) C.s ^ 2),
a₃ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 *
(↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t),
a₄ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 *
(↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ +
2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ -
(↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ +
3 * ↑(algebraMap R A) C.r ^ 2 -
2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t),
a₆ :=
↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 *
(↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ +
↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ +
↑(algebraMap R A) C.r ^ 3 -
↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ -
↑(algebraMap R A) C.t ^ 2 -
↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₆ =
{ a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)),
a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)),
a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)),
a₄ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 4 *
(W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)),
a₆ :=
↑(algebraMap R A)
(↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₆
[PROOFSTEP]
simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ Cubic.disc (twoTorsionPolynomial W) = 16 * Δ W
[PROOFSTEP]
simp only [b₂, b₄, b₆, b₈, Δ, twoTorsionPolynomial, Cubic.disc]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ (W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (2 * (2 * W.a₄ + W.a₁ * W.a₃)) ^ 2 - 4 * 4 * (2 * (2 * W.a₄ + W.a₁ * W.a₃)) ^ 3 -
4 * (W.a₁ ^ 2 + 4 * W.a₂) ^ 3 * (W.a₃ ^ 2 + 4 * W.a₆) -
27 * 4 ^ 2 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 +
18 * 4 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * (2 * W.a₄ + W.a₁ * W.a₃)) * (W.a₃ ^ 2 + 4 * W.a₆) =
16 *
(-(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 *
(W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) -
8 * (2 * W.a₄ + W.a₁ * W.a₃) ^ 3 -
27 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 +
9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) * (W.a₃ ^ 2 + 4 * W.a₆))
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Invertible 2
⊢ IsUnit (Cubic.disc (twoTorsionPolynomial W)) ↔ IsUnit (Δ W)
[PROOFSTEP]
rw [twoTorsionPolynomial_disc, IsUnit.mul_iff, show (16 : R) = 2 ^ 4 by norm_num1]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Invertible 2
⊢ 16 = 2 ^ 4
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Invertible 2
⊢ IsUnit (2 ^ 4) ∧ IsUnit (Δ W) ↔ IsUnit (Δ W)
[PROOFSTEP]
exact and_iff_right <| isUnit_of_invertible <| 2 ^ 4
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ WeierstrassCurve.polynomial W =
Cubic.toPoly
{ a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ },
d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } }
[PROOFSTEP]
simp only [WeierstrassCurve.polynomial, Cubic.toPoly]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) =
↑C 0 * Y ^ 3 + ↑C 1 * Y ^ 2 + ↑C (↑C 0 * Y ^ 3 + ↑C 0 * Y ^ 2 + ↑C W.a₁ * Y + ↑C W.a₃) * Y +
↑C (↑C (-1) * Y ^ 3 + ↑C (-W.a₂) * Y ^ 2 + ↑C (-W.a₄) * Y + ↑C (-W.a₆))
[PROOFSTEP]
C_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ Y ^ 2 + (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) * Y -
(↑C Y ^ 3 + ↑C (↑C W.a₂) * ↑C Y ^ 2 + ↑C (↑C W.a₄) * ↑C Y + ↑C (↑C W.a₆)) =
0 * Y ^ 3 + 1 * Y ^ 2 + (0 * ↑C Y ^ 3 + 0 * ↑C Y ^ 2 + ↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) * Y +
(-1 * ↑C Y ^ 3 + -↑C (↑C W.a₂) * ↑C Y ^ 2 + -↑C (↑C W.a₄) * ↑C Y + -↑C (↑C W.a₆))
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Nontrivial R
⊢ WeierstrassCurve.polynomial W ≠ 0
[PROOFSTEP]
rw [polynomial_eq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Nontrivial R
⊢ Cubic.toPoly
{ a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ },
d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } } ≠
0
[PROOFSTEP]
exact Cubic.ne_zero_of_b_ne_zero one_ne_zero
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Nontrivial R
⊢ degree (WeierstrassCurve.polynomial W) = 2
[PROOFSTEP]
rw [polynomial_eq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Nontrivial R
⊢ degree
(Cubic.toPoly
{ a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ },
d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } }) =
2
[PROOFSTEP]
exact Cubic.degree_of_b_ne_zero' one_ne_zero
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Nontrivial R
⊢ natDegree (WeierstrassCurve.polynomial W) = 2
[PROOFSTEP]
rw [polynomial_eq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : Nontrivial R
⊢ natDegree
(Cubic.toPoly
{ a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ },
d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } }) =
2
[PROOFSTEP]
exact Cubic.natDegree_of_b_ne_zero' one_ne_zero
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ Monic (WeierstrassCurve.polynomial W)
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
✝ : Nontrivial R
⊢ Monic (WeierstrassCurve.polynomial W)
[PROOFSTEP]
simpa only [polynomial_eq] using Cubic.monic_of_b_eq_one'
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
⊢ Irreducible (WeierstrassCurve.polynomial W)
[PROOFSTEP]
by_contra h
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h : ¬Irreducible (WeierstrassCurve.polynomial W)
⊢ False
[PROOFSTEP]
rcases(W.monic_polynomial.not_irreducible_iff_exists_add_mul_eq_coeff W.natDegree_polynomial).mp h with ⟨f, g, h0, h1⟩
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : coeff (WeierstrassCurve.polynomial W) 0 = f * g
h1 : coeff (WeierstrassCurve.polynomial W) 1 = f + g
⊢ False
[PROOFSTEP]
simp only [polynomial_eq, Cubic.coeff_eq_c, Cubic.coeff_eq_d] at h0 h1
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } = f * g
h1 : Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ } = f + g
⊢ False
[PROOFSTEP]
apply_fun degree at h0 h1
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : degree (Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ }) = degree (f * g)
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
⊢ False
[PROOFSTEP]
rw [Cubic.degree_of_a_ne_zero' <| neg_ne_zero.mpr <| one_ne_zero' R, degree_mul] at h0
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
⊢ False
[PROOFSTEP]
apply (h1.symm.le.trans Cubic.degree_of_b_eq_zero').not_lt
[GOAL]
case intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
⊢ 1 < degree (f + g)
[PROOFSTEP]
rcases Nat.WithBot.add_eq_three_iff.mp h0.symm with h | h | h | h
[GOAL]
case intro.intro.intro.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 0 ∧ degree g = 3
⊢ 1 < degree (f + g)
case intro.intro.intro.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 1 ∧ degree g = 2
⊢ 1 < degree (f + g)
case intro.intro.intro.inr.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 2 ∧ degree g = 1
⊢ 1 < degree (f + g)
case intro.intro.intro.inr.inr.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 3 ∧ degree g = 0
⊢ 1 < degree (f + g)
[PROOFSTEP]
iterate 2 rw [degree_add_eq_right_of_degree_lt] <;> simp only [h]
[GOAL]
case intro.intro.intro.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 0 ∧ degree g = 3
⊢ 1 < degree (f + g)
[PROOFSTEP]
rw [degree_add_eq_right_of_degree_lt]
[GOAL]
case intro.intro.intro.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 0 ∧ degree g = 3
⊢ 1 < degree g
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 0 ∧ degree g = 3
⊢ degree f < degree g
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 1 ∧ degree g = 2
⊢ 1 < degree (f + g)
[PROOFSTEP]
rw [degree_add_eq_right_of_degree_lt]
[GOAL]
case intro.intro.intro.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 1 ∧ degree g = 2
⊢ 1 < degree g
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 1 ∧ degree g = 2
⊢ degree f < degree g
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inr.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 2 ∧ degree g = 1
⊢ 1 < degree (f + g)
case intro.intro.intro.inr.inr.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 3 ∧ degree g = 0
⊢ 1 < degree (f + g)
[PROOFSTEP]
iterate 2 rw [degree_add_eq_left_of_degree_lt] <;> simp only [h]
[GOAL]
case intro.intro.intro.inr.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 2 ∧ degree g = 1
⊢ 1 < degree (f + g)
[PROOFSTEP]
rw [degree_add_eq_left_of_degree_lt]
[GOAL]
case intro.intro.intro.inr.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 2 ∧ degree g = 1
⊢ 1 < degree f
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inr.inr.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 2 ∧ degree g = 1
⊢ degree g < degree f
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inr.inr.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 3 ∧ degree g = 0
⊢ 1 < degree (f + g)
[PROOFSTEP]
rw [degree_add_eq_left_of_degree_lt]
[GOAL]
case intro.intro.intro.inr.inr.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 3 ∧ degree g = 0
⊢ 1 < degree f
[PROOFSTEP]
simp only [h]
[GOAL]
case intro.intro.intro.inr.inr.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
inst✝ : IsDomain R
h✝ : ¬Irreducible (WeierstrassCurve.polynomial W)
f g : R[X]
h0 : 3 = degree f + degree g
h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g)
h : degree f = 3 ∧ degree g = 0
⊢ degree g < degree f
[PROOFSTEP]
simp only [h]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ eval x (eval (↑C y) (WeierstrassCurve.polynomial W)) =
y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)
[PROOFSTEP]
simp only [WeierstrassCurve.polynomial]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ eval x (eval (↑C y) (Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))) =
y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)
[PROOFSTEP]
eval_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ y ^ 2 + (W.a₁ * x + W.a₃) * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) =
y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)
[PROOFSTEP]
rw [add_mul, ← add_assoc]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ eval 0 (eval 0 (WeierstrassCurve.polynomial W)) = -W.a₆
[PROOFSTEP]
simp only [← C_0, eval_polynomial, zero_add, zero_sub, mul_zero, zero_pow <| Nat.zero_lt_succ _]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.equation W x y ↔ y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) = 0
[PROOFSTEP]
rw [WeierstrassCurve.equation, eval_polynomial]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.equation W x y ↔ y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
[PROOFSTEP]
rw [equation_iff', sub_eq_zero]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ WeierstrassCurve.equation W 0 0 ↔ W.a₆ = 0
[PROOFSTEP]
rw [WeierstrassCurve.equation, C_0, eval_polynomial_zero, neg_eq_zero]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.equation W x y ↔ WeierstrassCurve.equation (variableChange W { u := 1, r := x, s := 0, t := y }) 0 0
[PROOFSTEP]
rw [equation_iff', ← neg_eq_zero, equation_zero, variableChange_a₆, inv_one, Units.val_one]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ -(y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)) = 0 ↔
1 ^ 6 *
(W.a₆ + { u := 1, r := x, s := 0, t := y }.r * W.a₄ + { u := 1, r := x, s := 0, t := y }.r ^ 2 * W.a₂ +
{ u := 1, r := x, s := 0, t := y }.r ^ 3 -
{ u := 1, r := x, s := 0, t := y }.t * W.a₃ -
{ u := 1, r := x, s := 0, t := y }.t ^ 2 -
{ u := 1, r := x, s := 0, t := y }.r * { u := 1, r := x, s := 0, t := y }.t * W.a₁) =
0
[PROOFSTEP]
congr! 1
[GOAL]
case a.h.e'_2
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ -(y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)) =
1 ^ 6 *
(W.a₆ + { u := 1, r := x, s := 0, t := y }.r * W.a₄ + { u := 1, r := x, s := 0, t := y }.r ^ 2 * W.a₂ +
{ u := 1, r := x, s := 0, t := y }.r ^ 3 -
{ u := 1, r := x, s := 0, t := y }.t * W.a₃ -
{ u := 1, r := x, s := 0, t := y }.t ^ 2 -
{ u := 1, r := x, s := 0, t := y }.r * { u := 1, r := x, s := 0, t := y }.t * W.a₁)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
⊢ WeierstrassCurve.equation W x y ↔
WeierstrassCurve.equation (baseChange W A) (↑(algebraMap R A) x) (↑(algebraMap R A) y)
[PROOFSTEP]
simp only [equation_iff]
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
⊢ y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ↔
↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 +
(baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆
[PROOFSTEP]
exact
⟨fun h => by convert congr_arg (algebraMap R A) h <;> map_simp <;> rfl, fun h => by
apply NoZeroSMulDivisors.algebraMap_injective R A; map_simp; exact h⟩
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
⊢ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 +
(baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆
[PROOFSTEP]
convert congr_arg (algebraMap R A) h
[GOAL]
case h.e'_2
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
⊢ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) (y ^ 2 + W.a₁ * x * y + W.a₃ * y)
[PROOFSTEP]
map_simp
[GOAL]
case h.e'_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
⊢ ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆ =
↑(algebraMap R A) (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)
[PROOFSTEP]
map_simp
[GOAL]
case h.e'_2
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
⊢ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) y ^ 2 + ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
↑(algebraMap R A) W.a₃ * ↑(algebraMap R A) y
[PROOFSTEP]
rfl
[GOAL]
case h.e'_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
⊢ ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆ =
↑(algebraMap R A) x ^ 3 + ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x ^ 2 +
↑(algebraMap R A) W.a₄ * ↑(algebraMap R A) x +
↑(algebraMap R A) W.a₆
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 +
(baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆
⊢ y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆
[PROOFSTEP]
apply NoZeroSMulDivisors.algebraMap_injective R A
[GOAL]
case a
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 +
(baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆
⊢ ↑(algebraMap R A) (y ^ 2 + W.a₁ * x * y + W.a₃ * y) = ↑(algebraMap R A) (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)
[PROOFSTEP]
map_simp
[GOAL]
case a
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
(baseChange W A).a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 +
(baseChange W A).a₄ * ↑(algebraMap R A) x +
(baseChange W A).a₆
⊢ ↑(algebraMap R A) y ^ 2 + ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y +
↑(algebraMap R A) W.a₃ * ↑(algebraMap R A) y =
↑(algebraMap R A) x ^ 3 + ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x ^ 2 +
↑(algebraMap R A) W.a₄ * ↑(algebraMap R A) x +
↑(algebraMap R A) W.a₆
[PROOFSTEP]
exact h
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial B
inst✝ : NoZeroSMulDivisors A B
x y : A
⊢ WeierstrassCurve.equation (baseChange W A) x y ↔
WeierstrassCurve.equation (baseChange W B) (↑(algebraMap A B) x) (↑(algebraMap A B) y)
[PROOFSTEP]
rw [equation_iff_baseChange (W.baseChange A) B, baseChange_baseChange]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ eval x (eval (↑C y) (WeierstrassCurve.polynomialX W)) = W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)
[PROOFSTEP]
simp only [WeierstrassCurve.polynomialX]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ eval x (eval (↑C y) (↑C (↑C W.a₁) * Y - ↑C (↑C 3 * Y ^ 2 + ↑C (2 * W.a₂) * Y + ↑C W.a₄))) =
W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)
[PROOFSTEP]
eval_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ eval 0 (eval 0 (WeierstrassCurve.polynomialX W)) = -W.a₄
[PROOFSTEP]
simp only [← C_0, eval_polynomialX, zero_add, zero_sub, mul_zero, zero_pow zero_lt_two]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ eval x (eval (↑C y) (WeierstrassCurve.polynomialY W)) = 2 * y + W.a₁ * x + W.a₃
[PROOFSTEP]
simp only [WeierstrassCurve.polynomialY]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ eval x (eval (↑C y) (↑C (↑C 2) * Y + ↑C (↑C W.a₁ * Y + ↑C W.a₃))) = 2 * y + W.a₁ * x + W.a₃
[PROOFSTEP]
eval_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ 2 * y + (W.a₁ * x + W.a₃) = 2 * y + W.a₁ * x + W.a₃
[PROOFSTEP]
rw [← add_assoc]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ eval 0 (eval 0 (WeierstrassCurve.polynomialY W)) = W.a₃
[PROOFSTEP]
simp only [← C_0, eval_polynomialY, zero_add, mul_zero]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.nonsingular W x y ↔
WeierstrassCurve.equation W x y ∧ (W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄) ≠ 0 ∨ 2 * y + W.a₁ * x + W.a₃ ≠ 0)
[PROOFSTEP]
rw [WeierstrassCurve.nonsingular, equation_iff', eval_polynomialX, eval_polynomialY]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.nonsingular W x y ↔
WeierstrassCurve.equation W x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ -y - W.a₁ * x - W.a₃)
[PROOFSTEP]
rw [nonsingular_iff', sub_ne_zero, ← @sub_ne_zero _ _ y]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.equation W x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ 2 * y + W.a₁ * x + W.a₃ ≠ 0) ↔
WeierstrassCurve.equation W x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y - (-y - W.a₁ * x - W.a₃) ≠ 0)
[PROOFSTEP]
congr! 3
[GOAL]
case a.h.e'_2.h.e'_2.h.e'_2
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ 2 * y + W.a₁ * x + W.a₃ = y - (-y - W.a₁ * x - W.a₃)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
⊢ WeierstrassCurve.nonsingular W 0 0 ↔ W.a₆ = 0 ∧ (W.a₃ ≠ 0 ∨ W.a₄ ≠ 0)
[PROOFSTEP]
rw [WeierstrassCurve.nonsingular, equation_zero, C_0, eval_polynomialX_zero, neg_ne_zero, eval_polynomialY_zero,
or_comm]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ WeierstrassCurve.nonsingular W x y ↔
WeierstrassCurve.nonsingular (variableChange W { u := 1, r := x, s := 0, t := y }) 0 0
[PROOFSTEP]
rw [nonsingular_iff', equation_iff_variableChange, equation_zero, ← neg_ne_zero, or_comm, nonsingular_zero,
variableChange_a₃, variableChange_a₄, inv_one, Units.val_one]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ (variableChange W { u := 1, r := x, s := 0, t := y }).a₆ = 0 ∧
(2 * y + W.a₁ * x + W.a₃ ≠ 0 ∨ -(W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)) ≠ 0) ↔
(variableChange W { u := 1, r := x, s := 0, t := y }).a₆ = 0 ∧
(1 ^ 3 * (W.a₃ + { u := 1, r := x, s := 0, t := y }.r * W.a₁ + 2 * { u := 1, r := x, s := 0, t := y }.t) ≠ 0 ∨
1 ^ 4 *
(W.a₄ - { u := 1, r := x, s := 0, t := y }.s * W.a₃ + 2 * { u := 1, r := x, s := 0, t := y }.r * W.a₂ -
({ u := 1, r := x, s := 0, t := y }.t +
{ u := 1, r := x, s := 0, t := y }.r * { u := 1, r := x, s := 0, t := y }.s) *
W.a₁ +
3 * { u := 1, r := x, s := 0, t := y }.r ^ 2 -
2 * { u := 1, r := x, s := 0, t := y }.s * { u := 1, r := x, s := 0, t := y }.t) ≠
0)
[PROOFSTEP]
simp only [variableChange]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ ↑1⁻¹ ^ 6 * (W.a₆ + x * W.a₄ + x ^ 2 * W.a₂ + x ^ 3 - y * W.a₃ - y ^ 2 - x * y * W.a₁) = 0 ∧
(2 * y + W.a₁ * x + W.a₃ ≠ 0 ∨ -(W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)) ≠ 0) ↔
↑1⁻¹ ^ 6 * (W.a₆ + x * W.a₄ + x ^ 2 * W.a₂ + x ^ 3 - y * W.a₃ - y ^ 2 - x * y * W.a₁) = 0 ∧
(1 ^ 3 * (W.a₃ + x * W.a₁ + 2 * y) ≠ 0 ∨
1 ^ 4 * (W.a₄ - 0 * W.a₃ + 2 * x * W.a₂ - (y + x * 0) * W.a₁ + 3 * x ^ 2 - 2 * 0 * y) ≠ 0)
[PROOFSTEP]
congr! 3
[GOAL]
case a.h.e'_2.h.e'_1.h.e'_2
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ 2 * y + W.a₁ * x + W.a₃ = 1 ^ 3 * (W.a₃ + x * W.a₁ + 2 * y)
[PROOFSTEP]
ring1
[GOAL]
case a.h.e'_2.h.e'_2.h.e'_2
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
⊢ -(W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)) =
1 ^ 4 * (W.a₄ - 0 * W.a₃ + 2 * x * W.a₂ - (y + x * 0) * W.a₁ + 3 * x ^ 2 - 2 * 0 * y)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
⊢ WeierstrassCurve.nonsingular W x y ↔
WeierstrassCurve.nonsingular (baseChange W A) (↑(algebraMap R A) x) (↑(algebraMap R A) y)
[PROOFSTEP]
rw [nonsingular_iff, nonsingular_iff, and_congr <| W.equation_iff_baseChange A x y]
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
⊢ W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ -y - W.a₁ * x - W.a₃ ↔
(baseChange W A).a₁ * ↑(algebraMap R A) y ≠
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ ∨
↑(algebraMap R A) y ≠ -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
[PROOFSTEP]
refine
⟨Or.imp (not_imp_not.mpr fun h => ?_) (not_imp_not.mpr fun h => ?_),
Or.imp (not_imp_not.mpr fun h => ?_) (not_imp_not.mpr fun h => ?_)⟩
[GOAL]
case refine_1
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
(baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
⊢ W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
case refine_2
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
⊢ y = -y - W.a₁ * x - W.a₃
case refine_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
case refine_4
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y = -y - W.a₁ * x - W.a₃
⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
[PROOFSTEP]
any_goals apply NoZeroSMulDivisors.algebraMap_injective R A; map_simp; exact h
[GOAL]
case refine_1
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
(baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
⊢ W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
[PROOFSTEP]
apply NoZeroSMulDivisors.algebraMap_injective R A
[GOAL]
case refine_1.a
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
(baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
⊢ ↑(algebraMap R A) (W.a₁ * y) = ↑(algebraMap R A) (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)
[PROOFSTEP]
map_simp
[GOAL]
case refine_1.a
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h :
(baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
⊢ ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x + ↑(algebraMap R A) W.a₄
[PROOFSTEP]
exact h
[GOAL]
case refine_2
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
⊢ y = -y - W.a₁ * x - W.a₃
[PROOFSTEP]
apply NoZeroSMulDivisors.algebraMap_injective R A
[GOAL]
case refine_2.a
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
⊢ ↑(algebraMap R A) y = ↑(algebraMap R A) (-y - W.a₁ * x - W.a₃)
[PROOFSTEP]
map_simp
[GOAL]
case refine_2.a
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x - ↑(algebraMap R A) W.a₃
[PROOFSTEP]
exact h
[GOAL]
case refine_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
[PROOFSTEP]
apply NoZeroSMulDivisors.algebraMap_injective R A
[GOAL]
case refine_4
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y = -y - W.a₁ * x - W.a₃
⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
[PROOFSTEP]
apply NoZeroSMulDivisors.algebraMap_injective R A
[GOAL]
case refine_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
case refine_4
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y = -y - W.a₁ * x - W.a₃
⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
[PROOFSTEP]
any_goals convert congr_arg (algebraMap R A) h <;> map_simp <;> rfl
[GOAL]
case refine_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y =
3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄
[PROOFSTEP]
convert congr_arg (algebraMap R A) h
[GOAL]
case h.e'_2
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = ↑(algebraMap R A) (W.a₁ * y)
[PROOFSTEP]
map_simp
[GOAL]
case h.e'_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ =
↑(algebraMap R A) (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)
[PROOFSTEP]
map_simp
[GOAL]
case h.e'_2
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) y
[PROOFSTEP]
rfl
[GOAL]
case h.e'_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄
⊢ 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ =
3 * ↑(algebraMap R A) x ^ 2 + 2 * ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x + ↑(algebraMap R A) W.a₄
[PROOFSTEP]
rfl
[GOAL]
case refine_4
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y = -y - W.a₁ * x - W.a₃
⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃
[PROOFSTEP]
convert congr_arg (algebraMap R A) h
[GOAL]
case h.e'_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y = -y - W.a₁ * x - W.a₃
⊢ -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ =
↑(algebraMap R A) (-y - W.a₁ * x - W.a₃)
[PROOFSTEP]
map_simp
[GOAL]
case h.e'_3
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial A
inst✝ : NoZeroSMulDivisors R A
x y : R
h : y = -y - W.a₁ * x - W.a₃
⊢ -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ =
-↑(algebraMap R A) y - ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x - ↑(algebraMap R A) W.a₃
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : Nontrivial B
inst✝ : NoZeroSMulDivisors A B
x y : A
⊢ WeierstrassCurve.nonsingular (baseChange W A) x y ↔
WeierstrassCurve.nonsingular (baseChange W B) (↑(algebraMap A B) x) (↑(algebraMap A B) y)
[PROOFSTEP]
rw [nonsingular_iff_baseChange (W.baseChange A) B, baseChange_baseChange]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : WeierstrassCurve.equation W 0 0
hΔ : Δ W ≠ 0
⊢ WeierstrassCurve.nonsingular W 0 0
[PROOFSTEP]
simp only [equation_zero, nonsingular_zero] at *
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
hΔ : Δ W ≠ 0
h : W.a₆ = 0
⊢ W.a₆ = 0 ∧ (W.a₃ ≠ 0 ∨ W.a₄ ≠ 0)
[PROOFSTEP]
contrapose! hΔ
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : W.a₆ = 0
hΔ : W.a₆ = 0 → W.a₃ = 0 ∧ W.a₄ = 0
⊢ Δ W = 0
[PROOFSTEP]
simp only [b₂, b₄, b₆, b₈, Δ, h, hΔ]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
h : W.a₆ = 0
hΔ : W.a₆ = 0 → W.a₃ = 0 ∧ W.a₄ = 0
⊢ -(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (W.a₁ ^ 2 * 0 + 4 * W.a₂ * 0 - W.a₁ * 0 * 0 + W.a₂ * 0 ^ 2 - 0 ^ 2) -
8 * (2 * 0 + W.a₁ * 0) ^ 3 -
27 * (0 ^ 2 + 4 * 0) ^ 2 +
9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * 0 + W.a₁ * 0) * (0 ^ 2 + 4 * 0) =
0
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x y : R
h : WeierstrassCurve.equation W x y
hΔ : Δ W ≠ 0
⊢ Δ (variableChange W { u := 1, r := x, s := 0, t := y }) ≠ 0
[PROOFSTEP]
rwa [variableChange_Δ, inv_one, Units.val_one, one_pow, one_mul]
[GOAL]
R : Type u
inst✝⁸ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁷ : CommRing A
inst✝⁶ : Algebra R A
B : Type w
inst✝⁵ : CommRing B
inst✝⁴ : Algebra R B
inst✝³ : Algebra A B
inst✝² : IsScalarTower R A B
inst✝¹ : IsDomain R
inst✝ : NormalizedGCDMonoid R
⊢ IsPrime (span {WeierstrassCurve.polynomial W})
[PROOFSTEP]
simpa only [span_singleton_prime W.polynomial_ne_zero, ← GCDMonoid.irreducible_iff_prime] using W.irreducible_polynomial
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
F : Type u
inst✝ : Field F
W : WeierstrassCurve F
⊢ IsDomain (CoordinateRing W)
[PROOFSTEP]
classical exact instIsDomainCoordinateRing W
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W✝ : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
F : Type u
inst✝ : Field F
W : WeierstrassCurve F
⊢ IsDomain (CoordinateRing W)
[PROOFSTEP]
exact instIsDomainCoordinateRing W
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : Nontrivial R
⊢ natDegree (↑C (Y - ↑C x)) < natDegree (WeierstrassCurve.polynomial W)
[PROOFSTEP]
rw [natDegree_polynomial, natDegree_C]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : Nontrivial R
⊢ 0 < 2
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : Nontrivial R
⊢ natDegree (Y - ↑C y) < natDegree (WeierstrassCurve.polynomial W)
[PROOFSTEP]
rw [natDegree_polynomial, natDegree_X_sub_C]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : Nontrivial R
⊢ 1 < 2
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x✝ : R
y✝ : R[X]
x : R
y : R[X]
h : eval x (eval y (WeierstrassCurve.polynomial W)) = 0
⊢ XYIdeal W x y = Ideal.map (Quotient.mkₐ R (span {WeierstrassCurve.polynomial W})) (span {↑C (Y - ↑C x), Y - ↑C y})
[PROOFSTEP]
simp only [XYIdeal, XClass, YClass, ← Set.image_pair, ← map_span]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x✝ : R
y✝ : R[X]
x : R
y : R[X]
h : eval x (eval y (WeierstrassCurve.polynomial W)) = 0
⊢ Ideal.map (mk W) (span {↑C (Y - ↑C x), Y - ↑C y}) =
Ideal.map (Quotient.mkₐ R (span {WeierstrassCurve.polynomial W})) (span {↑C (Y - ↑C x), Y - ↑C y})
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ Basis (Fin 2) R[X] (CoordinateRing W)
[PROOFSTEP]
classical exact
(subsingleton_or_nontrivial R).by_cases (fun _ => default) fun _ =>
(AdjoinRoot.powerBasis' W.monic_polynomial).basis.reindex <| finCongr W.natDegree_polynomial
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ Basis (Fin 2) R[X] (CoordinateRing W)
[PROOFSTEP]
exact
(subsingleton_or_nontrivial R).by_cases (fun _ => default) fun _ =>
(AdjoinRoot.powerBasis' W.monic_polynomial).basis.reindex <| finCongr W.natDegree_polynomial
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
n : Fin 2
⊢ ↑(CoordinateRing.basis W) n = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n
[PROOFSTEP]
classical
nontriviality R
rw [CoordinateRing.basis, Or.by_cases, dif_neg <| not_subsingleton R, Basis.reindex_apply, PowerBasis.basis_eq_pow]
rfl
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
n : Fin 2
⊢ ↑(CoordinateRing.basis W) n = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
n : Fin 2
✝ : Nontrivial R
⊢ ↑(CoordinateRing.basis W) n = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n
[PROOFSTEP]
rw [CoordinateRing.basis, Or.by_cases, dif_neg <| not_subsingleton R, Basis.reindex_apply, PowerBasis.basis_eq_pow]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
n : Fin 2
✝ : Nontrivial R
⊢ (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^
↑(↑(finCongr (_ : natDegree (WeierstrassCurve.polynomial W) = 2)).symm n) =
(AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ ↑(CoordinateRing.basis W) 0 = 1
[PROOFSTEP]
simpa only [basis_apply] using pow_zero _
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ ↑(CoordinateRing.basis W) 1 = ↑(mk W) Y
[PROOFSTEP]
simpa only [basis_apply] using pow_one _
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ ↑(CoordinateRing.basis W) = ![1, ↑(mk W) Y]
[PROOFSTEP]
ext n
[GOAL]
case h
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
n : Fin 2
⊢ ↑(CoordinateRing.basis W) n = Matrix.vecCons 1 ![↑(mk W) Y] n
[PROOFSTEP]
fin_cases n
[GOAL]
case h.head
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ ↑(CoordinateRing.basis W) { val := 0, isLt := (_ : 0 < 2) } =
Matrix.vecCons 1 ![↑(mk W) Y] { val := 0, isLt := (_ : 0 < 2) }
case h.tail.head
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y : R[X]
⊢ ↑(CoordinateRing.basis W) { val := 1, isLt := (_ : (fun a => a < 2) 1) } =
Matrix.vecCons 1 ![↑(mk W) Y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
exacts [basis_zero W, basis_one W]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
hpq : p • 1 + q • ↑(mk W) Y = 0
⊢ p = 0 ∧ q = 0
[PROOFSTEP]
have h := Fintype.linearIndependent_iff.mp (CoordinateRing.basis W).linearIndependent ![p, q]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
hpq : p • 1 + q • ↑(mk W) Y = 0
h :
(Finset.sum Finset.univ fun i => Matrix.vecCons p ![q] i • ↑(CoordinateRing.basis W) i) = 0 →
∀ (i : Fin 2), Matrix.vecCons p ![q] i = 0
⊢ p = 0 ∧ q = 0
[PROOFSTEP]
erw [Fin.sum_univ_succ, basis_zero, Fin.sum_univ_one, basis_one] at h
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
hpq : p • 1 + q • ↑(mk W) Y = 0
h :
Matrix.vecCons p ![q] 0 • 1 + Matrix.vecCons p ![q] (Fin.succ 0) • ↑(mk W) Y = 0 →
∀ (i : Fin 2), Matrix.vecCons p ![q] i = 0
⊢ p = 0 ∧ q = 0
[PROOFSTEP]
exact ⟨h hpq 0, h hpq 1⟩
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x✝ : R
y : R[X]
x : CoordinateRing W
⊢ ∃ p q, p • 1 + q • ↑(mk W) Y = x
[PROOFSTEP]
have h := (CoordinateRing.basis W).sum_equivFun x
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x✝ : R
y : R[X]
x : CoordinateRing W
h : (Finset.sum Finset.univ fun i => ↑(Basis.equivFun (CoordinateRing.basis W)) x i • ↑(CoordinateRing.basis W) i) = x
⊢ ∃ p q, p • 1 + q • ↑(mk W) Y = x
[PROOFSTEP]
erw [Fin.sum_univ_succ, Fin.sum_univ_one, basis_zero, basis_one] at h
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x✝ : R
y : R[X]
x : CoordinateRing W
h :
↑(Basis.equivFun (CoordinateRing.basis W)) x 0 • 1 +
↑(Basis.equivFun (CoordinateRing.basis W)) x (Fin.succ 0) • ↑(mk W) Y =
x
⊢ ∃ p q, p • 1 + q • ↑(mk W) Y = x
[PROOFSTEP]
exact ⟨_, _, h⟩
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ (p • 1 + q • ↑(mk W) Y) * ↑(mk W) (↑C y) = (p * y) • 1 + (q * y) • ↑(mk W) Y
[PROOFSTEP]
simp only [smul, _root_.map_mul]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ (↑(mk W) (↑C p) * 1 + ↑(mk W) (↑C q) * ↑(mk W) Y) * ↑(mk W) (↑C y) =
↑(mk W) (↑C p) * ↑(mk W) (↑C y) * 1 + ↑(mk W) (↑C q) * ↑(mk W) (↑C y) * ↑(mk W) Y
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ (p • 1 + q • ↑(mk W) Y) * ↑(mk W) Y =
(q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) • 1 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) • ↑(mk W) Y
[PROOFSTEP]
have Y_sq : mk W Y ^ 2 = mk W (C (X ^ 3 + C W.a₂ * X ^ 2 + C W.a₄ * X + C W.a₆) - C (C W.a₁ * X + C W.a₃) * Y) := by
exact AdjoinRoot.mk_eq_mk.mpr ⟨1, by rw [WeierstrassCurve.polynomial]; ring1⟩
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ ↑(mk W) Y ^ 2 = ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y)
[PROOFSTEP]
exact AdjoinRoot.mk_eq_mk.mpr ⟨1, by rw [WeierstrassCurve.polynomial]; ring1⟩
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ (fun x => x ^ 2) Y - (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) =
WeierstrassCurve.polynomial W * 1
[PROOFSTEP]
rw [WeierstrassCurve.polynomial]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ (fun x => x ^ 2) Y - (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) =
(Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) * 1
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
Y_sq : ↑(mk W) Y ^ 2 = ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y)
⊢ (p • 1 + q • ↑(mk W) Y) * ↑(mk W) Y =
(q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) • 1 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) • ↑(mk W) Y
[PROOFSTEP]
simp_rw [smul, add_mul, mul_assoc, ← sq, Y_sq, C_sub, map_sub, C_mul, _root_.map_mul]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
Y_sq : ↑(mk W) Y ^ 2 = ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y)
⊢ ↑(mk W) (↑C p) * (1 * ↑(mk W) Y) +
↑(mk W) (↑C q) *
(↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) -
↑(mk W) (↑C (↑C W.a₁ * Y + ↑C W.a₃)) * ↑(mk W) Y) =
↑(mk W) (↑C q) * ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) * 1 +
(↑(mk W) (↑C p) - ↑(mk W) (↑C q) * ↑(mk W) (↑C (↑C W.a₁ * Y + ↑C W.a₃))) * ↑(mk W) Y
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ ↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y) =
p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)
[PROOFSTEP]
simp_rw [Algebra.norm_eq_matrix_det <| CoordinateRing.basis W, Matrix.det_fin_two, Algebra.leftMulMatrix_eq_repr_mul,
basis_zero, mul_one, basis_one, smul_basis_mul_Y, map_add, Finsupp.add_apply, map_smul, Finsupp.smul_apply, ←
basis_zero, ← basis_one, Basis.repr_self_apply, if_pos, if_neg, smul_eq_mul]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ (p * 1 + q * 0) *
(q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) * 0 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) * 1) -
(q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) * 1 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) * 0) *
(p * 0 + q * 1) =
p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ ↑C (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) -
(↑C p + ↑C q * Y) * (↑C p + ↑C q * (-Y - ↑C (↑C W.a₁ * Y + ↑C W.a₃))) =
WeierstrassCurve.polynomial W * ↑C q ^ 2
[PROOFSTEP]
simp only [norm_smul_basis, WeierstrassCurve.polynomial]
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ ↑C (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) -
(↑C p + ↑C q * Y) * (↑C p + ↑C q * (-Y - ↑C (↑C W.a₁ * Y + ↑C W.a₃))) =
(Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) * ↑C q ^ 2
[PROOFSTEP]
C_simp
[GOAL]
R : Type u
inst✝⁶ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁵ : CommRing A
inst✝⁴ : Algebra R A
B : Type w
inst✝³ : CommRing B
inst✝² : Algebra R B
inst✝¹ : Algebra A B
inst✝ : IsScalarTower R A B
x : R
y p q : R[X]
⊢ ↑C p ^ 2 - ↑C p * ↑C q * (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) -
↑C q ^ 2 * (↑C Y ^ 3 + ↑C (↑C W.a₂) * ↑C Y ^ 2 + ↑C (↑C W.a₄) * ↑C Y + ↑C (↑C W.a₆)) -
(↑C p + ↑C q * Y) * (↑C p + ↑C q * (-Y - (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)))) =
(Y ^ 2 + (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) * Y -
(↑C Y ^ 3 + ↑C (↑C W.a₂) * ↑C Y ^ 2 + ↑C (↑C W.a₄) * ↑C Y + ↑C (↑C W.a₆))) *
↑C q ^ 2
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
have hdp : (p ^ 2).degree = 2 • p.degree := degree_pow p 2
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
have hdpq : (p * q * (C W.a₁ * X + C W.a₃)).degree ≤ p.degree + q.degree + 1 := by
simpa only [degree_mul] using add_le_add_left degree_linear_le (p.degree + q.degree)
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
⊢ degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
[PROOFSTEP]
simpa only [degree_mul] using add_le_add_left degree_linear_le (p.degree + q.degree)
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
have hdq : (q ^ 2 * (X ^ 3 + C W.a₂ * X ^ 2 + C W.a₄ * X + C W.a₆)).degree = 2 • q.degree + 3 := by
rw [degree_mul, degree_pow, ← one_mul <| X ^ 3, ← C_1, degree_cubic <| one_ne_zero' R]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
⊢ degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
[PROOFSTEP]
rw [degree_mul, degree_pow, ← one_mul <| X ^ 3, ← C_1, degree_cubic <| one_ne_zero' R]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
rw [norm_smul_basis]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
by_cases hp : p = 0
[GOAL]
case pos
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : p = 0
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
simpa only [hp, hdq, neg_zero, zero_sub, zero_mul, zero_pow zero_lt_two, degree_neg] using (max_bot_left _).symm
[GOAL]
case neg
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬p = 0
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
by_cases hq : q = 0
[GOAL]
case pos
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬p = 0
hq : q = 0
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
simpa only [hq, hdp, sub_zero, zero_mul, mul_zero, zero_pow zero_lt_two] using (max_bot_right _).symm
[GOAL]
case neg
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬p = 0
hq : ¬q = 0
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
rw [← not_congr degree_eq_bot] at hp hq
[GOAL]
case neg
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • degree p) (2 • degree q + 3)
[PROOFSTEP]
rcases hp' : p.degree with _ | dp
[GOAL]
case neg.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
hp' : degree p = none
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • none) (2 • degree q + 3)
[PROOFSTEP]
exact (hp hp').elim
[GOAL]
case neg.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdp : degree (p ^ 2) = 2 • degree p
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hp' : degree p = some dp
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • degree q + 3)
[PROOFSTEP]
rw [hp'] at hdp hdpq
[GOAL]
case neg.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + degree q + 1
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • degree q + 3)
[PROOFSTEP]
rcases hq' : q.degree with _ | dq
[GOAL]
case neg.some.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + degree q + 1
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
hq' : degree q = none
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • none + 3)
[PROOFSTEP]
exact (hq hq').elim
[GOAL]
case neg.some.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + degree q + 1
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hq' : degree q = some dq
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • some dq + 3)
[PROOFSTEP]
rw [hq'] at hdpq hdq
[GOAL]
case neg.some.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • some dq + 3)
[PROOFSTEP]
rcases le_or_lt dp (dq + 1) with hpq | hpq
[GOAL]
case neg.some.some.inl
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • some dq + 3)
[PROOFSTEP]
convert
(degree_sub_eq_right_of_degree_lt <|
(degree_sub_le _ _).trans_lt <| max_lt_iff.mpr ⟨hdp.trans_lt _, hdpq.trans_lt _⟩).trans
(max_eq_right_of_lt _).symm
[GOAL]
case h.e'_3.h.e'_4
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ 2 • some dq + 3 = degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))
[PROOFSTEP]
rw [hdq]
[GOAL]
case neg.some.some.inl.convert_2
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ 2 • some dp < degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))
[PROOFSTEP]
rw [hdq]
[GOAL]
case neg.some.some.inl.convert_3
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ some dp + some dq + 1 < degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))
[PROOFSTEP]
rw [hdq]
[GOAL]
case neg.some.some.inl.convert_5
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ 2 • some dp < degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))
[PROOFSTEP]
rw [hdq]
[GOAL]
case neg.some.some.inl.convert_2
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ 2 • some dp < 2 • some dq + 3
[PROOFSTEP]
exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) <
(fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3
[PROOFSTEP]
linarith only [hpq]
[GOAL]
case neg.some.some.inl.convert_3
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ some dp + some dq + 1 < 2 • some dq + 3
[PROOFSTEP]
exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dp dq) 1 <
(fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3
[PROOFSTEP]
linarith only [hpq]
[GOAL]
case neg.some.some.inl.convert_5
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ 2 • some dp < 2 • some dq + 3
[PROOFSTEP]
exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dp ≤ dq + 1
⊢ (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) <
(fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3
[PROOFSTEP]
linarith only [hpq]
[GOAL]
case neg.some.some.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) =
max (2 • some dp) (2 • some dq + 3)
[PROOFSTEP]
rw [sub_sub]
[GOAL]
case neg.some.some.inr
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ degree (p ^ 2 - (p * q * (↑C W.a₁ * Y + ↑C W.a₃) + q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))) =
max (2 • some dp) (2 • some dq + 3)
[PROOFSTEP]
convert
(degree_sub_eq_left_of_degree_lt <|
(degree_add_le _ _).trans_lt <| max_lt_iff.mpr ⟨hdpq.trans_lt _, hdq.trans_lt _⟩).trans
(max_eq_left_of_lt _).symm
[GOAL]
case h.e'_3.h.e'_3
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ 2 • some dp = degree (p ^ 2)
[PROOFSTEP]
rw [hdp]
[GOAL]
case neg.some.some.inr.convert_2
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ some dp + some dq + 1 < degree (p ^ 2)
[PROOFSTEP]
rw [hdp]
[GOAL]
case neg.some.some.inr.convert_3
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ 2 • some dq + 3 < degree (p ^ 2)
[PROOFSTEP]
rw [hdp]
[GOAL]
case neg.some.some.inr.convert_5
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ 2 • some dq + 3 < degree (p ^ 2)
[PROOFSTEP]
rw [hdp]
[GOAL]
case neg.some.some.inr.convert_2
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ some dp + some dq + 1 < 2 • some dp
[PROOFSTEP]
exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dp dq) 1 < (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0)
[PROOFSTEP]
linarith only [hpq]
[GOAL]
case neg.some.some.inr.convert_3
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ 2 • some dq + 3 < 2 • some dp
[PROOFSTEP]
exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 <
(fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0)
[PROOFSTEP]
linarith only [hpq]
[GOAL]
case neg.some.some.inr.convert_5
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ 2 • some dq + 3 < 2 • some dp
[PROOFSTEP]
exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
hp : ¬degree p = ⊥
hq : ¬degree q = ⊥
dp : ℕ
hdp : degree (p ^ 2) = 2 • some dp
hp' : degree p = some dp
dq : ℕ
hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3
hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1
hq' : degree q = some dq
hpq : dq + 1 < dp
⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 <
(fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0)
[PROOFSTEP]
linarith only [hpq]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x✝ : R
y : R[X]
inst✝ : IsDomain R
x : CoordinateRing W
⊢ degree (↑(Algebra.norm R[X]) x) ≠ 1
[PROOFSTEP]
rcases exists_smul_basis_eq x with ⟨p, q, rfl⟩
[GOAL]
case intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) ≠ 1
[PROOFSTEP]
rw [degree_norm_smul_basis]
[GOAL]
case intro.intro
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • degree p) (2 • degree q + 3) ≠ 1
[PROOFSTEP]
rcases p.degree with (_ | _ | _ | _)
[GOAL]
case intro.intro.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • none) (2 • degree q + 3) ≠ 1
[PROOFSTEP]
cases q.degree
[GOAL]
case intro.intro.some.zero
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • some Nat.zero) (2 • degree q + 3) ≠ 1
[PROOFSTEP]
cases q.degree
[GOAL]
case intro.intro.some.succ.zero
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • some (Nat.succ Nat.zero)) (2 • degree q + 3) ≠ 1
[PROOFSTEP]
cases q.degree
[GOAL]
case intro.intro.some.succ.succ
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ : ℕ
⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • degree q + 3) ≠ 1
[PROOFSTEP]
cases q.degree
[GOAL]
case intro.intro.none.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • none) (2 • none + 3) ≠ 1
case intro.intro.none.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
val✝ : ℕ
⊢ max (2 • none) (2 • some val✝ + 3) ≠ 1
case intro.intro.some.zero.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • some Nat.zero) (2 • none + 3) ≠ 1
case intro.intro.some.zero.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
val✝ : ℕ
⊢ max (2 • some Nat.zero) (2 • some val✝ + 3) ≠ 1
case intro.intro.some.succ.zero.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • some (Nat.succ Nat.zero)) (2 • none + 3) ≠ 1
case intro.intro.some.succ.zero.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
val✝ : ℕ
⊢ max (2 • some (Nat.succ Nat.zero)) (2 • some val✝ + 3) ≠ 1
case intro.intro.some.succ.succ.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ : ℕ
⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • none + 3) ≠ 1
case intro.intro.some.succ.succ.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ val✝ : ℕ
⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • some val✝ + 3) ≠ 1
[PROOFSTEP]
any_goals
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.none.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • none) (2 • none + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.none.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
val✝ : ℕ
⊢ max (2 • none) (2 • some val✝ + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.zero.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • some Nat.zero) (2 • none + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.zero.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
val✝ : ℕ
⊢ max (2 • some Nat.zero) (2 • some val✝ + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.succ.zero.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
⊢ max (2 • some (Nat.succ Nat.zero)) (2 • none + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.succ.zero.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
val✝ : ℕ
⊢ max (2 • some (Nat.succ Nat.zero)) (2 • some val✝ + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.succ.succ.none
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ : ℕ
⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • none + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.succ.succ.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ val✝ : ℕ
⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • some val✝ + 3) ≠ 1
[PROOFSTEP]
rintro
(_ | _)
-- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined
[GOAL]
case intro.intro.some.succ.succ.some
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ val✝ : ℕ
⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • some val✝ + 3) ≠ 1
[PROOFSTEP]
apply (lt_max_of_lt_right _).ne'
[GOAL]
R : Type u
inst✝⁷ : CommRing R
W : WeierstrassCurve R
A : Type v
inst✝⁶ : CommRing A
inst✝⁵ : Algebra R A
B : Type w
inst✝⁴ : CommRing B
inst✝³ : Algebra R B
inst✝² : Algebra A B
inst✝¹ : IsScalarTower R A B
x : R
y : R[X]
inst✝ : IsDomain R
p q : R[X]
n✝ val✝ : ℕ
⊢ 1 < 2 • some val✝ + 3
[PROOFSTEP]
exact (cmp_eq_lt_iff _ _).mp rfl
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 3
this : Invertible (-3 ^ 3)
⊢ ↑(unitOfInvertible (-3 ^ 3)) = WeierstrassCurve.Δ (WeierstrassCurve.ofJ0 R)
[PROOFSTEP]
rw [unitOfInvertible_val, WeierstrassCurve.ofJ0_Δ R]
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 3
this : Invertible (-3 ^ 3)
⊢ -3 ^ 3 = -27
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 3
⊢ j (ofJ0 R) = 0
[PROOFSTEP]
simp only [j, ofJ0, WeierstrassCurve.ofJ0_c₄]
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 3
⊢ ↑(unitOfInvertible (-3 ^ 3))⁻¹ * 0 ^ 3 = 0
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 2
this : Invertible (-2 ^ 6)
⊢ ↑(unitOfInvertible (-2 ^ 6)) = WeierstrassCurve.Δ (WeierstrassCurve.ofJ1728 R)
[PROOFSTEP]
rw [unitOfInvertible_val, WeierstrassCurve.ofJ1728_Δ R]
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 2
this : Invertible (-2 ^ 6)
⊢ -2 ^ 6 = -64
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 2
⊢ j (ofJ1728 R) = 1728
[PROOFSTEP]
field_simp [j, ofJ1728, @unitOfInvertible_val _ _ _ <| invertibleNeg _, WeierstrassCurve.ofJ1728_c₄]
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
inst✝ : Invertible 2
⊢ -(1728 * 2 ^ 6) = (-48) ^ 3
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
j : R
inst✝¹ : Invertible j
inst✝ : Invertible (j - 1728)
⊢ EllipticCurve.j (ofJ' j) = j
[PROOFSTEP]
field_simp [EllipticCurve.j, ofJ', @unitOfInvertible_val _ _ _ <| invertibleMul _ _, WeierstrassCurve.ofJ_c₄]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
j : R
inst✝¹ : Invertible j
inst✝ : Invertible (j - 1728)
⊢ j * (j ^ 2 * (j - 1728) ^ 9) = (j * (j - 1728) ^ 3) ^ 3
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝¹ : CommRing R
E : EllipticCurve R
F : Type u
inst✝ : Field F
j : F
⊢ Nat.coprime 2 3
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : j = 1728
h : 2 = 0
⊢ j = 0
[PROOFSTEP]
rw [h1728, show (1728 : F) = 2 * 864 by norm_num1, h, zero_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : j = 1728
h : 2 = 0
⊢ 1728 = 2 * 864
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h3 : NeZero 3
⊢ ofJ 0 = ofJ0 F
[PROOFSTEP]
rw [ofJ, dif_pos rfl, dif_neg h3.out]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h3 : 3 = 0
⊢ ofJ 0 = ofJ1728 F
[PROOFSTEP]
rw [ofJ, dif_pos rfl, dif_pos h3]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h3 : 3 = 0
⊢ ofJ 1728 = ofJ1728 F
[PROOFSTEP]
rw [ofJ, dif_pos <| by rw [show (1728 : F) = 3 * 576 by norm_num1, h3, zero_mul], dif_pos h3]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h3 : 3 = 0
⊢ 1728 = 0
[PROOFSTEP]
rw [show (1728 : F) = 3 * 576 by norm_num1, h3, zero_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h3 : 3 = 0
⊢ 1728 = 3 * 576
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : NeZero 2
⊢ ofJ 1728 = ofJ1728 F
[PROOFSTEP]
by_cases h3 : (3 : F) = 0
[GOAL]
case pos
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : NeZero 2
h3 : 3 = 0
⊢ ofJ 1728 = ofJ1728 F
[PROOFSTEP]
exact ofJ_1728_of_three_eq_zero h3
[GOAL]
case neg
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : NeZero 2
h3 : ¬3 = 0
⊢ ofJ 1728 = ofJ1728 F
[PROOFSTEP]
have h : (1728 : F) ≠ 0 := fun h =>
or_iff_not_and_not.mp (mul_eq_zero.mp <| by rwa [show 2 ^ 6 * 3 ^ 3 = (1728 : F) by norm_num1])
⟨pow_ne_zero 6 h2.out, pow_ne_zero 3 h3⟩
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : NeZero 2
h3 : ¬3 = 0
h : 1728 = 0
⊢ 2 ^ 6 * 3 ^ 3 = 0
[PROOFSTEP]
rwa [show 2 ^ 6 * 3 ^ 3 = (1728 : F) by norm_num1]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : NeZero 2
h3 : ¬3 = 0
h : 1728 = 0
⊢ 2 ^ 6 * 3 ^ 3 = 1728
[PROOFSTEP]
norm_num1
[GOAL]
case neg
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : NeZero 2
h3 : ¬3 = 0
h : 1728 ≠ 0
⊢ ofJ 1728 = ofJ1728 F
[PROOFSTEP]
rw [ofJ, dif_neg h, dif_pos rfl]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : 2 = 0
⊢ ofJ 1728 = ofJ0 F
[PROOFSTEP]
rw [ofJ, dif_pos <| by rw [show (1728 : F) = 2 * 864 by norm_num1, h2, zero_mul], dif_neg]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : 2 = 0
⊢ 1728 = 0
[PROOFSTEP]
rw [show (1728 : F) = 2 * 864 by norm_num1, h2, zero_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h2 : 2 = 0
⊢ 1728 = 2 * 864
[PROOFSTEP]
norm_num1
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : j ≠ 0
h1728 : j ≠ 1728
⊢ ofJ j = ofJ' j
[PROOFSTEP]
rw [ofJ, dif_neg h0, dif_neg h1728]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
by_cases h0 : j = 0
[GOAL]
case pos
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : j = 0
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
by_cases h3 : (3 : F) = 0
[GOAL]
case pos
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : j = 0
h3 : 3 = 0
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
rw [h0, ofJ_0_of_three_eq_zero h3, @ofJ1728_j _ _ <| invertibleOfNonzero <| two_or_three_ne_zero.neg_resolve_right h3,
show (1728 : F) = 3 * 576 by norm_num1, h3, zero_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : j = 0
h3 : 3 = 0
⊢ 1728 = 3 * 576
[PROOFSTEP]
norm_num1
[GOAL]
case neg
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : j = 0
h3 : ¬3 = 0
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
rw [h0, ofJ_0_of_three_ne_zero (h3 := neZero_iff.2 h3), @ofJ0_j _ _ <| invertibleOfNonzero h3]
[GOAL]
case neg
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
by_cases h1728 : j = 1728
[GOAL]
case pos
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : j = 1728
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
have h2 : (2 : F) ≠ 0 := fun h => h0 <| by rw [h1728, show (1728 : F) = 2 * 864 by norm_num1, h, zero_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : j = 1728
h : 2 = 0
⊢ j = 0
[PROOFSTEP]
rw [h1728, show (1728 : F) = 2 * 864 by norm_num1, h, zero_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : j = 1728
h : 2 = 0
⊢ 1728 = 2 * 864
[PROOFSTEP]
norm_num1
[GOAL]
case pos
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : j = 1728
h2 : 2 ≠ 0
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
rw [h1728, ofJ_1728_of_two_ne_zero (h2 := neZero_iff.2 h2), @ofJ1728_j _ _ <| invertibleOfNonzero h2]
[GOAL]
case neg
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
F : Type u
inst✝¹ : Field F
j : F
inst✝ : DecidableEq F
h0 : ¬j = 0
h1728 : ¬j = 1728
⊢ EllipticCurve.j (ofJ j) = j
[PROOFSTEP]
rw [ofJ_ne_0_ne_1728 j h0 h1728,
@ofJ'_j _ _ _ (invertibleOfNonzero h0) (invertibleOfNonzero <| sub_ne_zero_of_ne h1728)]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ ↑(C.u⁻¹ ^ 12 * E.Δ') = WeierstrassCurve.Δ (WeierstrassCurve.variableChange E.toWeierstrassCurve C)
[PROOFSTEP]
rw [Units.val_mul, Units.val_pow_eq_pow_val, coe_Δ', E.variableChange_Δ]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ variableChange E WeierstrassCurve.VariableChange.id = E
[PROOFSTEP]
simp only [variableChange, WeierstrassCurve.variableChange_id]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ { toWeierstrassCurve := E.toWeierstrassCurve, Δ' := WeierstrassCurve.VariableChange.id.u⁻¹ ^ 12 * E.Δ',
coe_Δ' :=
(_ : ↑(WeierstrassCurve.VariableChange.id.u⁻¹ ^ 12 * E.Δ') = WeierstrassCurve.Δ E.toWeierstrassCurve) } =
E
[PROOFSTEP]
simp only [WeierstrassCurve.VariableChange.id, inv_one, one_pow, one_mul]
[GOAL]
R : Type u
inst✝ : CommRing R
E✝ : EllipticCurve R
C✝ C C' : WeierstrassCurve.VariableChange R
E : EllipticCurve R
⊢ variableChange E (WeierstrassCurve.VariableChange.comp C C') = variableChange (variableChange E C') C
[PROOFSTEP]
simp only [variableChange, WeierstrassCurve.variableChange_comp]
[GOAL]
R : Type u
inst✝ : CommRing R
E✝ : EllipticCurve R
C✝ C C' : WeierstrassCurve.VariableChange R
E : EllipticCurve R
⊢ { toWeierstrassCurve := WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C,
Δ' := (WeierstrassCurve.VariableChange.comp C C').u⁻¹ ^ 12 * E.Δ',
coe_Δ' :=
(_ :
↑((WeierstrassCurve.VariableChange.comp C C').u⁻¹ ^ 12 * E.Δ') =
WeierstrassCurve.Δ
(WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C)) } =
{ toWeierstrassCurve := WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C,
Δ' := C.u⁻¹ ^ 12 * (C'.u⁻¹ ^ 12 * E.Δ'),
coe_Δ' :=
(_ :
↑(C.u⁻¹ ^ 12 * (C'.u⁻¹ ^ 12 * E.Δ')) =
WeierstrassCurve.Δ
(WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C)) }
[PROOFSTEP]
simp only [WeierstrassCurve.VariableChange.comp, mul_inv, mul_pow, ← mul_assoc]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ ↑(variableChange E C).Δ' = ↑C.u⁻¹ ^ 12 * ↑E.Δ'
[PROOFSTEP]
rw [variableChange_Δ', Units.val_mul, Units.val_pow_eq_pow_val]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ ↑(variableChange E C).Δ'⁻¹ = ↑C.u ^ 12 * ↑E.Δ'⁻¹
[PROOFSTEP]
rw [variableChange_Δ', mul_inv, inv_pow, inv_inv, Units.val_mul, Units.val_pow_eq_pow_val]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ j (variableChange E C) = j E
[PROOFSTEP]
rw [j, coe_inv_variableChange_Δ']
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ (variableChange E C).toWeierstrassCurve ^ 3 = j E
[PROOFSTEP]
have hu : (C.u * ↑C.u⁻¹ : R) ^ 12 = 1 := by rw [C.u.mul_inv, one_pow]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
⊢ (↑C.u * ↑C.u⁻¹) ^ 12 = 1
[PROOFSTEP]
rw [C.u.mul_inv, one_pow]
[GOAL]
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
hu : (↑C.u * ↑C.u⁻¹) ^ 12 = 1
⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ (variableChange E C).toWeierstrassCurve ^ 3 = j E
[PROOFSTEP]
linear_combination (norm := (rw [variableChange_toWeierstrassCurve, WeierstrassCurve.variableChange_c₄, j]; ring1))
E.j * hu
[GOAL]
case a
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
hu : (↑C.u * ↑C.u⁻¹) ^ 12 = 1
⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ (variableChange E C).toWeierstrassCurve ^ 3 - j E -
(j E * (↑C.u * ↑C.u⁻¹) ^ 12 - j E * 1) =
0
[PROOFSTEP]
rw [variableChange_toWeierstrassCurve, WeierstrassCurve.variableChange_c₄, j]
[GOAL]
case a
R : Type u
inst✝ : CommRing R
E : EllipticCurve R
C : WeierstrassCurve.VariableChange R
hu : (↑C.u * ↑C.u⁻¹) ^ 12 = 1
⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * (↑C.u⁻¹ ^ 4 * WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 -
↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3 -
(↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3 * (↑C.u * ↑C.u⁻¹) ^ 12 -
↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3 * 1) =
0
[PROOFSTEP]
ring1
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
⊢ ↑(↑(Units.map ↑(algebraMap R A)) E.Δ') = WeierstrassCurve.Δ (WeierstrassCurve.baseChange E.toWeierstrassCurve A)
[PROOFSTEP]
simp only [Units.coe_map, coe_Δ', E.baseChange_Δ]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
⊢ ↑↑(algebraMap R A) (WeierstrassCurve.Δ E.toWeierstrassCurve) =
↑(algebraMap R A) (WeierstrassCurve.Δ E.toWeierstrassCurve)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
⊢ j (baseChange E A) = ↑(algebraMap R A) (j E)
[PROOFSTEP]
simp only [j, baseChange, E.baseChange_c₄]
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
⊢ ↑(↑(Units.map ↑(algebraMap R A)) E.Δ')⁻¹ * ↑(algebraMap R A) (WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 =
↑(algebraMap R A) (↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3)
[PROOFSTEP]
map_simp
[GOAL]
R : Type u
inst✝² : CommRing R
E : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
⊢ ↑(↑(Units.map ↑(algebraMap R A)) E.Δ')⁻¹ * ↑(algebraMap R A) (WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 =
↑(algebraMap R A) ↑E.Δ'⁻¹ * ↑(algebraMap R A) (WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1 : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
⊢ E = E'
[PROOFSTEP]
rcases mk.inj h1 with ⟨h1, h2⟩
[GOAL]
case intro
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑(Units.map ↑(algebraMap R A)) E.Δ' = ↑(Units.map ↑(algebraMap R A)) E'.Δ'
⊢ E = E'
[PROOFSTEP]
replace h2 := (Units.mk.inj h2).left
[GOAL]
case intro
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
⊢ E = E'
[PROOFSTEP]
rcases WeierstrassCurve.mk.inj h1 with ⟨_, _, _, _, _⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ E = E'
[PROOFSTEP]
ext
[GOAL]
case intro.intro.intro.intro.intro.a₁
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ E.a₁ = E'.a₁
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.intro.a₂
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ E.a₂ = E'.a₂
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.intro.a₃
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ E.a₃ = E'.a₃
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.intro.a₄
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ E.a₄ = E'.a₄
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.intro.a₆
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ E.a₆ = E'.a₆
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.intro.Δ'.a
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑E.Δ' = ↑E'.Δ'
[PROOFSTEP]
apply_fun _ using h
[GOAL]
case intro.intro.intro.intro.intro.a₁
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.intro.a₂
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.intro.a₃
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.intro.a₄
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.intro.a₆
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.intro.intro.Δ'.a
R : Type u
inst✝² : CommRing R
E✝ : EllipticCurve R
A : Type v
inst✝¹ : CommRing A
inst✝ : Algebra R A
h : Function.Injective ↑(algebraMap R A)
E E' : EllipticCurve R
h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E'
h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A
h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ'
left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁
left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂
left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃
left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄
right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆
⊢ ↑(algebraMap R A) ↑E.Δ' = ↑(algebraMap R A) ↑E'.Δ'
[PROOFSTEP]
assumption
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.EllipticCurve.Weierstrass", "llama_tokens": 130835} |
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ ↑(coevaluation K V) 1 =
let bV := Basis.ofVectorSpace K V;
∑ i : ↑(Basis.ofVectorSpaceIndex K V), ↑bV i ⊗ₜ[K] Basis.coord bV i
[PROOFSTEP]
simp only [coevaluation, id]
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ ↑(↑(Basis.constr (Basis.singleton Unit K) K) fun x =>
∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x)
1 =
∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x
[PROOFSTEP]
rw [(Basis.singleton Unit K).constr_apply_fintype K]
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ ∑ i : Unit,
↑(Basis.equivFun (Basis.singleton Unit K)) 1 i •
∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x =
∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x
[PROOFSTEP]
simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply,
Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton]
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) =
LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V))
[PROOFSTEP]
letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) =
LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V))
[PROOFSTEP]
apply TensorProduct.ext
[GOAL]
case H
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V)))) =
LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V)))
↑(TensorProduct.rid K (Module.Dual K V)))
[PROOFSTEP]
apply (Basis.ofVectorSpace K V).dualBasis.ext
[GOAL]
case H
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)),
↑(LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V)))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) i) =
↑(LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V)))
↑(TensorProduct.rid K (Module.Dual K V))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) i)
[PROOFSTEP]
intro j
[GOAL]
case H
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V)))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j) =
↑(LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V)))
↑(TensorProduct.rid K (Module.Dual K V))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j)
[PROOFSTEP]
apply LinearMap.ext_ring
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(↑(LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V)))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j))
1 =
↑(↑(LinearMap.compr₂ (mk K (Module.Dual K V) K)
(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V)))
↑(TensorProduct.rid K (Module.Dual K V))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j))
1
[PROOFSTEP]
rw [LinearMap.compr₂_apply, LinearMap.compr₂_apply, TensorProduct.mk_apply]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))))
(LinearMap.lTensor (Module.Dual K V) (coevaluation K V))))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1) =
↑(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V)))
↑(TensorProduct.rid K (Module.Dual K V)))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1)
[PROOFSTEP]
simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))
(↑(LinearMap.lTensor (Module.Dual K V) (coevaluation K V))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1))) =
↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V)))
(↑(TensorProduct.rid K (Module.Dual K V)) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1))
[PROOFSTEP]
rw [rid_tmul, one_smul, lid_symm_apply]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))
(↑(LinearMap.lTensor (Module.Dual K V) (coevaluation K V))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1))) =
1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j
[PROOFSTEP]
simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K]
∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x)) =
1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j
[PROOFSTEP]
rw [TensorProduct.tmul_sum, LinearEquiv.map_sum]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(∑ i : ↑(Basis.ofVectorSpaceIndex K V),
↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K]
↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i)) =
1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j
[PROOFSTEP]
simp only [assoc_symm_tmul]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
(∑ x : ↑(Basis.ofVectorSpaceIndex K V),
(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) x) ⊗ₜ[K]
Basis.coord (Basis.ofVectorSpace K V) x) =
1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j
[PROOFSTEP]
rw [LinearMap.map_sum]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ∑ i : ↑(Basis.ofVectorSpaceIndex K V),
↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V))
((↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) i) ⊗ₜ[K]
Basis.coord (Basis.ofVectorSpace K V) i) =
1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j
[PROOFSTEP]
simp only [LinearMap.rTensor_tmul, contractLeft_apply]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j) (↑(Basis.ofVectorSpace K V) x) ⊗ₜ[K]
Basis.coord (Basis.ofVectorSpace K V) x =
1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j
[PROOFSTEP]
simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ (∑ x : ↑(Basis.ofVectorSpaceIndex K V), if x = j then 1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x else 0) =
1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) j
[PROOFSTEP]
rw [Finset.sum_ite_eq']
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ (if j ∈ Finset.univ then 1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) j else 0) =
1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) j
[PROOFSTEP]
simp only [Finset.mem_univ, if_true]
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) =
LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)
[PROOFSTEP]
letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
[GOAL]
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) =
LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)
[PROOFSTEP]
apply TensorProduct.ext
[GOAL]
case H
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ LinearMap.compr₂ (mk K K V)
(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))) =
LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))
[PROOFSTEP]
apply LinearMap.ext_ring
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.compr₂ (mk K K V)
(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))))
1 =
↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))
1
[PROOFSTEP]
apply (Basis.ofVectorSpace K V).ext
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)),
↑(↑(LinearMap.compr₂ (mk K K V)
(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V))
(LinearMap.rTensor V (coevaluation K V)))))
1)
(↑(Basis.ofVectorSpace K V) i) =
↑(↑(LinearMap.compr₂ (mk K K V)
(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))
1)
(↑(Basis.ofVectorSpace K V) i)
[PROOFSTEP]
intro j
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(↑(LinearMap.compr₂ (mk K K V)
(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V))
(LinearMap.rTensor V (coevaluation K V)))))
1)
(↑(Basis.ofVectorSpace K V) j) =
↑(↑(LinearMap.compr₂ (mk K K V)
(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))
1)
(↑(Basis.ofVectorSpace K V) j)
[PROOFSTEP]
rw [LinearMap.compr₂_apply, LinearMap.compr₂_apply, TensorProduct.mk_apply]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))
(LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))))
(1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =
↑(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))
(1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j)
[PROOFSTEP]
simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.lTensor V (contractLeft K V))
(↑(TensorProduct.assoc K V (Module.Dual K V) V)
(↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) =
↑(LinearEquiv.symm (TensorProduct.rid K V)) (↑(TensorProduct.lid K V) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))
[PROOFSTEP]
rw [lid_tmul, one_smul, rid_symm_apply]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.lTensor V (contractLeft K V))
(↑(TensorProduct.assoc K V (Module.Dual K V) V)
(↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.lTensor V (contractLeft K V))
(↑(TensorProduct.assoc K V (Module.Dual K V) V)
((∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x) ⊗ₜ[K]
↑(Basis.ofVectorSpace K V) j)) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
rw [TensorProduct.sum_tmul, LinearEquiv.map_sum]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.lTensor V (contractLeft K V))
(∑ i : ↑(Basis.ofVectorSpaceIndex K V),
↑(TensorProduct.assoc K V (Module.Dual K V) V)
((↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i) ⊗ₜ[K]
↑(Basis.ofVectorSpace K V) j)) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
simp only [assoc_tmul]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ↑(LinearMap.lTensor V (contractLeft K V))
(∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
rw [LinearMap.map_sum]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ∑ i : ↑(Basis.ofVectorSpaceIndex K V),
↑(LinearMap.lTensor V (contractLeft K V))
(↑(Basis.ofVectorSpace K V) i ⊗ₜ[K]
Basis.coord (Basis.ofVectorSpace K V) i ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
simp only [LinearMap.lTensor_tmul, contractLeft_apply]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ ∑ x : ↑(Basis.ofVectorSpaceIndex K V),
↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.coord (Basis.ofVectorSpace K V) x) (↑(Basis.ofVectorSpace K V) j) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ (∑ x : ↑(Basis.ofVectorSpaceIndex K V), if j = x then ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] 1 else 0) =
↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
rw [Finset.sum_ite_eq]
[GOAL]
case H.h
K : Type u
inst✝³ : Field K
V : Type v
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)
j : ↑(Basis.ofVectorSpaceIndex K V)
⊢ (if j ∈ Finset.univ then ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 else 0) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
[PROOFSTEP]
simp only [Finset.mem_univ, if_true]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Coevaluation", "llama_tokens": 9700} |
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
⊢ QuasiSeparatedSpace ↑↑X.toPresheafedSpace ↔ ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
rw [QuasiSeparatedSpace_iff]
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
⊢ (∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)) ↔
∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
constructor
[GOAL]
case mp
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
⊢ (∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)) →
∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
intro H U V
[GOAL]
case mp
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)
U V : ↑(Scheme.affineOpens X)
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
exact H U V U.1.2 U.2.isCompact V.1.2 V.2.isCompact
[GOAL]
case mpr
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
⊢ (∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)) →
∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)
[PROOFSTEP]
intro H
[GOAL]
case mpr
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
⊢ ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)
[PROOFSTEP]
suffices ∀ (U : Opens X.carrier) (_ : IsCompact U.1) (V : Opens X.carrier) (_ : IsCompact V.1), IsCompact (U ⊓ V).1 by
intro U V hU hU' hV hV'; exact this ⟨U, hU⟩ hU' ⟨V, hV⟩ hV'
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
this :
∀ (U : Opens ↑↑X.toPresheafedSpace),
IsCompact U.carrier → ∀ (V : Opens ↑↑X.toPresheafedSpace), IsCompact V.carrier → IsCompact (U ⊓ V).carrier
⊢ ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)
[PROOFSTEP]
intro U V hU hU' hV hV'
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
this :
∀ (U : Opens ↑↑X.toPresheafedSpace),
IsCompact U.carrier → ∀ (V : Opens ↑↑X.toPresheafedSpace), IsCompact V.carrier → IsCompact (U ⊓ V).carrier
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
⊢ IsCompact (U ∩ V)
[PROOFSTEP]
exact this ⟨U, hU⟩ hU' ⟨V, hV⟩ hV'
[GOAL]
case mpr
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
⊢ ∀ (U : Opens ↑↑X.toPresheafedSpace),
IsCompact U.carrier → ∀ (V : Opens ↑↑X.toPresheafedSpace), IsCompact V.carrier → IsCompact (U ⊓ V).carrier
[PROOFSTEP]
intro U hU V hV
[GOAL]
case mpr
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V.carrier
⊢ IsCompact (U ⊓ V).carrier
[PROOFSTEP]
apply compact_open_induction_on (P := _) V hV
[GOAL]
case mpr.h₁
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V.carrier
⊢ IsCompact (U ⊓ ⊥).carrier
[PROOFSTEP]
simp
[GOAL]
case mpr.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V.carrier
⊢ ∀ (S : Opens ↑↑X.toPresheafedSpace),
IsCompact S.carrier →
∀ (U_1 : ↑(Scheme.affineOpens X)), IsCompact (U ⊓ S).carrier → IsCompact (U ⊓ (S ⊔ ↑U_1)).carrier
[PROOFSTEP]
intro S _ V hV
[GOAL]
case mpr.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV✝ : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
hV : IsCompact (U ⊓ S).carrier
⊢ IsCompact (U ⊓ (S ⊔ ↑V)).carrier
[PROOFSTEP]
change IsCompact (U.1 ∩ (S.1 ∪ V.1))
[GOAL]
case mpr.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV✝ : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
hV : IsCompact (U ⊓ S).carrier
⊢ IsCompact (U.carrier ∩ (S.carrier ∪ ↑↑V))
[PROOFSTEP]
rw [Set.inter_union_distrib_left]
[GOAL]
case mpr.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV✝ : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
hV : IsCompact (U ⊓ S).carrier
⊢ IsCompact (U.carrier ∩ S.carrier ∪ U.carrier ∩ ↑↑V)
[PROOFSTEP]
apply hV.union
[GOAL]
case mpr.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV✝ : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
hV : IsCompact (U ⊓ S).carrier
⊢ IsCompact (U.carrier ∩ ↑↑V)
[PROOFSTEP]
clear hV
[GOAL]
case mpr.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
⊢ IsCompact (U.carrier ∩ ↑↑V)
[PROOFSTEP]
apply compact_open_induction_on (P := _) U hU
[GOAL]
case mpr.h₂.h₁
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
⊢ IsCompact (⊥.carrier ∩ ↑↑V)
[PROOFSTEP]
simp
[GOAL]
case mpr.h₂.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
V : ↑(Scheme.affineOpens X)
⊢ ∀ (S : Opens ↑↑X.toPresheafedSpace),
IsCompact S.carrier →
∀ (U : ↑(Scheme.affineOpens X)), IsCompact (S.carrier ∩ ↑↑V) → IsCompact ((S ⊔ ↑U).carrier ∩ ↑↑V)
[PROOFSTEP]
intro S _ W hW
[GOAL]
case mpr.h₂.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S✝ : Opens ↑↑X.toPresheafedSpace
x✝¹ : IsCompact S✝.carrier
V : ↑(Scheme.affineOpens X)
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
W : ↑(Scheme.affineOpens X)
hW : IsCompact (S.carrier ∩ ↑↑V)
⊢ IsCompact ((S ⊔ ↑W).carrier ∩ ↑↑V)
[PROOFSTEP]
change IsCompact ((S.1 ∪ W.1) ∩ V.1)
[GOAL]
case mpr.h₂.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S✝ : Opens ↑↑X.toPresheafedSpace
x✝¹ : IsCompact S✝.carrier
V : ↑(Scheme.affineOpens X)
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
W : ↑(Scheme.affineOpens X)
hW : IsCompact (S.carrier ∩ ↑↑V)
⊢ IsCompact ((S.carrier ∪ ↑↑W) ∩ ↑↑V)
[PROOFSTEP]
rw [Set.union_inter_distrib_right]
[GOAL]
case mpr.h₂.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S✝ : Opens ↑↑X.toPresheafedSpace
x✝¹ : IsCompact S✝.carrier
V : ↑(Scheme.affineOpens X)
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
W : ↑(Scheme.affineOpens X)
hW : IsCompact (S.carrier ∩ ↑↑V)
⊢ IsCompact (S.carrier ∩ ↑↑V ∪ ↑↑W ∩ ↑↑V)
[PROOFSTEP]
apply hW.union
[GOAL]
case mpr.h₂.h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
V✝ : Opens ↑↑X.toPresheafedSpace
hV : IsCompact V✝.carrier
S✝ : Opens ↑↑X.toPresheafedSpace
x✝¹ : IsCompact S✝.carrier
V : ↑(Scheme.affineOpens X)
S : Opens ↑↑X.toPresheafedSpace
x✝ : IsCompact S.carrier
W : ↑(Scheme.affineOpens X)
hW : IsCompact (S.carrier ∩ ↑↑V)
⊢ IsCompact (↑↑W ∩ ↑↑V)
[PROOFSTEP]
apply H
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
⊢ AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty f ↔ QuasiSeparatedSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
delta AffineTargetMorphismProperty.diagonal
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
⊢ (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂],
QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)) ↔
QuasiSeparatedSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
rw [quasiSeparatedSpace_iff_affine]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
⊢ (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂],
QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)) ↔
∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
constructor
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
⊢ (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂],
QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)) →
∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
intro H U V
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
haveI : IsAffine _ := U.2
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
haveI : IsAffine _ := V.2
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
let g : pullback (X.ofRestrict U.1.openEmbedding) (X.ofRestrict V.1.openEmbedding) ⟶ X :=
pullback.fst ≫
X.ofRestrict
_
-- Porting note: `inferInstance` does not work here
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶
X :=
pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
have : IsOpenImmersion g := PresheafedSpace.IsOpenImmersion.comp _ _
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶
X :=
pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))
this : IsOpenImmersion g
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
have e := Homeomorph.ofEmbedding _ this.base_open.toEmbedding
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶
X :=
pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))
this : IsOpenImmersion g
e :
(forget TopCat).obj
↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X
(_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(Set.range ↑g.val.base)
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
rw [IsOpenImmersion.range_pullback_to_base_of_left] at e
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶
X :=
pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))
this : IsOpenImmersion g
e :
(forget TopCat).obj
↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X
(_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))).val.base ∩
Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))).val.base)
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
erw [Subtype.range_coe, Subtype.range_coe] at e
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶
X :=
pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))
this : IsOpenImmersion g
e :
(forget TopCat).obj
↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X
(_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(↑↑U ∩ ↑↑V)
⊢ IsCompact (↑↑U ∩ ↑↑V)
[PROOFSTEP]
rw [isCompact_iff_compactSpace]
[GOAL]
case mp
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
U V : ↑(Scheme.affineOpens X)
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))
g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶
X :=
pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))
this : IsOpenImmersion g
e :
(forget TopCat).obj
↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(Scheme.ofRestrict X
(_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(↑↑U ∩ ↑↑V)
⊢ CompactSpace ↑(↑↑U ∩ ↑↑V)
[PROOFSTEP]
exact @Homeomorph.compactSpace _ _ _ _ (H _ _) e
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
⊢ (∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)) →
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂],
QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
introv H h₁ h₂
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝² : IsAffine Y
f : X ⟶ Y
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝¹ : IsAffine U₁
inst✝ : IsAffine U₂
h₁ : IsOpenImmersion f₁
h₂ : IsOpenImmersion f₂
⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
let g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝² : IsAffine Y
f : X ⟶ Y
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝¹ : IsAffine U₁
inst✝ : IsAffine U₂
h₁ : IsOpenImmersion f₁
h₂ : IsOpenImmersion f₂
g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁
⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
have : IsOpenImmersion g := PresheafedSpace.IsOpenImmersion.comp _ _
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝² : IsAffine Y
f : X ⟶ Y
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝¹ : IsAffine U₁
inst✝ : IsAffine U₂
h₁ : IsOpenImmersion f₁
h₂ : IsOpenImmersion f₂
g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁
this : IsOpenImmersion g
⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
have e := Homeomorph.ofEmbedding _ this.base_open.toEmbedding
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝² : IsAffine Y
f : X ⟶ Y
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝¹ : IsAffine U₁
inst✝ : IsAffine U₂
h₁ : IsOpenImmersion f₁
h₂ : IsOpenImmersion f₂
g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁
this : IsOpenImmersion g
e :
(forget TopCat).obj ↑(pullback f₁ f₂).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(Set.range ↑g.val.base)
⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
rw [IsOpenImmersion.range_pullback_to_base_of_left] at e
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝² : IsAffine Y
f : X ⟶ Y
H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝¹ : IsAffine U₁
inst✝ : IsAffine U₂
h₁ : IsOpenImmersion f₁
h₂ : IsOpenImmersion f₂
g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁
this : IsOpenImmersion g
e :
(forget TopCat).obj ↑(pullback f₁ f₂).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(Set.range ↑f₁.val.base ∩ Set.range ↑f₂.val.base)
⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
simp_rw [isCompact_iff_compactSpace] at H
[GOAL]
case mpr
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝² : IsAffine Y
f : X ⟶ Y
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝¹ : IsAffine U₁
inst✝ : IsAffine U₂
h₁ : IsOpenImmersion f₁
h₂ : IsOpenImmersion f₂
g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁
this : IsOpenImmersion g
e :
(forget TopCat).obj ↑(pullback f₁ f₂).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ
↑(Set.range ↑f₁.val.base ∩ Set.range ↑f₂.val.base)
H : ∀ (U V : ↑(Scheme.affineOpens X)), CompactSpace ↑(↑↑U ∩ ↑↑V)
⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
exact
@Homeomorph.compactSpace _ _ _ _
(H ⟨⟨_, h₁.base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion _⟩
⟨⟨_, h₂.base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion _⟩)
e.symm
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ @QuasiSeparated = MorphismProperty.diagonal @QuasiCompact
[PROOFSTEP]
ext
[GOAL]
case h.h.h.a
X Y : Scheme
f : X ⟶ Y
x✝² x✝¹ : Scheme
x✝ : x✝² ⟶ x✝¹
⊢ QuasiSeparated x✝ ↔ MorphismProperty.diagonal (@QuasiCompact) x✝
[PROOFSTEP]
exact QuasiSeparated_iff _
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty = QuasiSeparated.affineProperty
[PROOFSTEP]
funext
[GOAL]
case h.h.h.h
X Y : Scheme
f : X ⟶ Y
x✝³ x✝² : Scheme
x✝¹ : x✝³ ⟶ x✝²
x✝ : IsAffine x✝²
⊢ AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty x✝¹ = QuasiSeparated.affineProperty x✝¹
[PROOFSTEP]
rw [quasi_compact_affineProperty_iff_quasiSeparatedSpace]
[GOAL]
case h.h.h.h
X Y : Scheme
f : X ⟶ Y
x✝³ x✝² : Scheme
x✝¹ : x✝³ ⟶ x✝²
x✝ : IsAffine x✝²
⊢ QuasiSeparatedSpace ↑↑x✝³.toPresheafedSpace = QuasiSeparated.affineProperty x✝¹
[PROOFSTEP]
rfl
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ @QuasiSeparated = targetAffineLocally (AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty)
[PROOFSTEP]
rw [quasiSeparated_eq_diagonal_is_quasiCompact, quasiCompact_eq_affineProperty]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ MorphismProperty.diagonal (targetAffineLocally QuasiCompact.affineProperty) =
targetAffineLocally (AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty)
[PROOFSTEP]
exact diagonal_targetAffineLocally_eq_targetAffineLocally _ QuasiCompact.affineProperty_isLocal
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ @QuasiSeparated = targetAffineLocally QuasiSeparated.affineProperty
[PROOFSTEP]
rw [quasiSeparated_eq_affineProperty_diagonal, quasi_compact_affineProperty_diagonal_eq]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
⊢ TFAE
[QuasiSeparated f,
∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst : IsOpenImmersion g],
QuasiSeparatedSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∃ 𝒰 x 𝒰' x,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
CompactSpace
↑↑(pullback (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace]
[PROOFSTEP]
have := QuasiCompact.affineProperty_isLocal.diagonal_affine_openCover_TFAE f
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
this :
TFAE
[MorphismProperty.diagonal (targetAffineLocally QuasiCompact.affineProperty) f,
∃ 𝒰 x, ∀ (i : 𝒰.J), AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g],
AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
QuasiCompact.affineProperty
(pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
⊢ TFAE
[QuasiSeparated f,
∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst : IsOpenImmersion g],
QuasiSeparatedSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∃ 𝒰 x 𝒰' x,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
CompactSpace
↑↑(pullback (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace]
[PROOFSTEP]
simp_rw [← quasiCompact_eq_affineProperty, ← quasiSeparated_eq_diagonal_is_quasiCompact,
quasi_compact_affineProperty_diagonal_eq] at this
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
this :
TFAE
[QuasiSeparated f, ∃ 𝒰 h, ∀ (i : 𝒰.J), affineProperty pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
affineProperty pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], affineProperty pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
QuasiCompact.affineProperty
(pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
⊢ TFAE
[QuasiSeparated f,
∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst : IsOpenImmersion g],
QuasiSeparatedSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace,
∃ 𝒰 x 𝒰' x,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
CompactSpace
↑↑(pullback (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace]
[PROOFSTEP]
exact this
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
⊢ QuasiSeparated f ↔ QuasiSeparatedSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
rw [quasiSeparated_eq_affineProperty, QuasiSeparated.affineProperty_isLocal.affine_target_iff f,
QuasiSeparated.affineProperty]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
f : X ⟶ Y
⊢ QuasiSeparated f ↔
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
rw [quasiSeparated_eq_affineProperty, QuasiSeparated.affineProperty_isLocal.affine_openCover_iff f 𝒰]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
f : X ⟶ Y
⊢ (∀ (i : 𝒰.J), affineProperty pullback.snd) ↔
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
rfl
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
hY : QuasiSeparatedSpace ↑↑Y.toPresheafedSpace
inst✝ : QuasiSeparated f
⊢ QuasiSeparatedSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
rw [quasiSeparatedSpace_iff_quasiSeparated] at hY ⊢
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
hY : QuasiSeparated (terminal.from Y)
inst✝ : QuasiSeparated f
⊢ QuasiSeparated (terminal.from X)
[PROOFSTEP]
have : f ≫ terminal.from Y = terminal.from X := terminalIsTerminal.hom_ext _ _
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
hY : QuasiSeparated (terminal.from Y)
inst✝ : QuasiSeparated f
this : f ≫ terminal.from Y = terminal.from X
⊢ QuasiSeparated (terminal.from X)
[PROOFSTEP]
rw [← this]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
hY : QuasiSeparated (terminal.from Y)
inst✝ : QuasiSeparated f
this : f ≫ terminal.from Y = terminal.from X
⊢ QuasiSeparated (f ≫ terminal.from Y)
[PROOFSTEP]
infer_instance
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
⊢ QuasiSeparatedSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
constructor
[GOAL]
case inter_isCompact
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
⊢ ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)
[PROOFSTEP]
intro U V hU hU' hV hV'
[GOAL]
case inter_isCompact
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
⊢ IsCompact (U ∩ V)
[PROOFSTEP]
obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_basicOpen_union _).mp ⟨hU', hU⟩
[GOAL]
case inter_isCompact.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
⊢ IsCompact (U ∩ V)
[PROOFSTEP]
obtain ⟨s', hs', e'⟩ := (isCompact_open_iff_eq_basicOpen_union _).mp ⟨hV', hV⟩
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
⊢ IsCompact (U ∩ V)
[PROOFSTEP]
rw [e, e', Set.iUnion₂_inter]
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
⊢ IsCompact
(⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s),
↑(Scheme.basicOpen X i) ∩ ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i))
[PROOFSTEP]
simp_rw [Set.inter_iUnion₂]
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
⊢ IsCompact
(⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s) (i_1 : ↑(X.presheaf.obj (op ⊤))) (_ : i_1 ∈ s'),
↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1))
[PROOFSTEP]
apply hs.isCompact_biUnion
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
⊢ ∀ (i : ↑(X.presheaf.obj (op ⊤))),
i ∈ s →
IsCompact (⋃ (i_1 : ↑(X.presheaf.obj (op ⊤))) (_ : i_1 ∈ s'), ↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1))
[PROOFSTEP]
intro i _
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
i : ↑(X.presheaf.obj (op ⊤))
a✝ : i ∈ s
⊢ IsCompact (⋃ (i_1 : ↑(X.presheaf.obj (op ⊤))) (_ : i_1 ∈ s'), ↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1))
[PROOFSTEP]
apply hs'.isCompact_biUnion
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
i : ↑(X.presheaf.obj (op ⊤))
a✝ : i ∈ s
⊢ ∀ (i_1 : ↑(X.presheaf.obj (op ⊤))), i_1 ∈ s' → IsCompact (↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1))
[PROOFSTEP]
intro i' _
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
i : ↑(X.presheaf.obj (op ⊤))
a✝¹ : i ∈ s
i' : ↑(X.presheaf.obj (op ⊤))
a✝ : i' ∈ s'
⊢ IsCompact (↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i'))
[PROOFSTEP]
change IsCompact (X.basicOpen i ⊓ X.basicOpen i').1
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
i : ↑(X.presheaf.obj (op ⊤))
a✝¹ : i ∈ s
i' : ↑(X.presheaf.obj (op ⊤))
a✝ : i' ∈ s'
⊢ IsCompact (Scheme.basicOpen X i ⊓ Scheme.basicOpen X i').carrier
[PROOFSTEP]
rw [← Scheme.basicOpen_mul]
[GOAL]
case inter_isCompact.intro.intro.intro.intro
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
inst✝ : IsAffine X
U V : Set ↑↑X.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
hV : IsOpen V
hV' : IsCompact V
s : Set ↑(X.presheaf.obj (op ⊤))
hs : Set.Finite s
e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i)
s' : Set ↑(X.presheaf.obj (op ⊤))
hs' : Set.Finite s'
e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)
i : ↑(X.presheaf.obj (op ⊤))
a✝¹ : i ∈ s
i' : ↑(X.presheaf.obj (op ⊤))
a✝ : i' ∈ s'
⊢ IsCompact (Scheme.basicOpen X (i * i')).carrier
[PROOFSTEP]
exact ((topIsAffineOpen _).basicOpenIsAffine _).isCompact
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
⊢ IsQuasiSeparated ↑U
[PROOFSTEP]
rw [isQuasiSeparated_iff_quasiSeparatedSpace]
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
⊢ QuasiSeparatedSpace ↑↑U
case hs X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpen ↑U
[PROOFSTEP]
exacts [@AlgebraicGeometry.quasiSeparatedSpace_of_isAffine _ hU, U.isOpen]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H : QuasiSeparated (f ≫ g)
⊢ QuasiSeparated f
[PROOFSTEP]
have h01 := (QuasiSeparated.affine_openCover_TFAE f).out 0 1
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H : QuasiSeparated (f ≫ g)
h01 :
QuasiSeparated f ↔
∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ QuasiSeparated f
[PROOFSTEP]
rw [h01]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H : QuasiSeparated (f ≫ g)
h01 :
QuasiSeparated f ↔
∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
clear h01
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H : QuasiSeparated (f ≫ g)
⊢ ∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
have h02 := (QuasiSeparated.affine_openCover_TFAE (f ≫ g)).out 0 2
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H : QuasiSeparated (f ≫ g)
h02 :
QuasiSeparated (f ≫ g) ↔
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
rw [h02] at H
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
h02 :
QuasiSeparated (f ≫ g) ↔
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
clear h02
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∃ 𝒰 x,
∀ (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
refine
⟨(Z.affineCover.pullbackCover g).bind fun x => Scheme.affineCover _, ?_, ?_⟩
-- constructor
[GOAL]
case refine_1
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∀
(i :
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J),
IsAffine
(Scheme.OpenCover.obj
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
i)
[PROOFSTEP]
intro i
[GOAL]
case refine_1
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i :
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J
⊢ IsAffine
(Scheme.OpenCover.obj
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
i)
[PROOFSTEP]
dsimp
[GOAL]
case refine_1
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i :
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J
⊢ IsAffine
(Scheme.OpenCover.obj (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i.fst))) i.snd)
[PROOFSTEP]
infer_instance
[GOAL]
case refine_2
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∀
(i :
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J),
QuasiSeparatedSpace
↑↑(pullback f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover
(Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case refine_2.mk
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g).J
j :
((fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) i).J
⊢ QuasiSeparatedSpace
↑↑(pullback f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover
(Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j })).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
dsimp at i j
[GOAL]
case refine_2.mk
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
H :
∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
QuasiSeparatedSpace
↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i : (Scheme.affineCover Z).J
j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J
⊢ QuasiSeparatedSpace
↑↑(pullback f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover
(Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j })).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
specialize H _ i
[GOAL]
case refine_2.mk
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
i : (Scheme.affineCover Z).J
j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J
H :
QuasiSeparatedSpace
↑↑(pullback (f ≫ g)
(Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ QuasiSeparatedSpace
↑↑(pullback f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover
(Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j })).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
refine @quasiSeparatedSpace_of_quasiSeparated _ _ ?_ H ?_
[GOAL]
case refine_2.mk.refine_1
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
i : (Scheme.affineCover Z).J
j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J
H :
QuasiSeparatedSpace
↑↑(pullback (f ≫ g)
(Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ pullback f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j }) ⟶
pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i)
[PROOFSTEP]
exact
pullback.map _ _ _ _ (𝟙 _) _ _ (by simp) (Category.comp_id _) ≫
(pullbackRightPullbackFstIso g (Z.affineCover.map i) f).hom
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
i : (Scheme.affineCover Z).J
j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J
H :
QuasiSeparatedSpace
↑↑(pullback (f ≫ g)
(Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ f ≫ 𝟙 Y = 𝟙 X ≫ f
[PROOFSTEP]
simp
[GOAL]
case refine_2.mk.refine_2
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
i : (Scheme.affineCover Z).J
j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J
H :
QuasiSeparatedSpace
↑↑(pullback (f ≫ g)
(Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ QuasiSeparated
(pullback.map f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j })
f (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) { fst := i, snd := j }.fst)
(𝟙 X)
(Scheme.OpenCover.map
((fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j }.fst)
{ fst := i, snd := j }.snd)
(𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f)
(_ :
Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j } ≫
𝟙 Y =
Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j }) ≫
(pullbackRightPullbackFstIso g (Scheme.OpenCover.map (Scheme.affineCover Z) i) f).hom)
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) AlgebraicGeometry.quasiSeparatedOfMono
[GOAL]
case inst
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
i : (Scheme.affineCover Z).J
j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J
H :
QuasiSeparatedSpace
↑↑(pullback (f ≫ g)
(Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ Mono
(pullback.map f
(Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j })
f (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) { fst := i, snd := j }.fst)
(𝟙 X)
(Scheme.OpenCover.map
((fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j }.fst)
{ fst := i, snd := j }.snd)
(𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f)
(_ :
Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j } ≫
𝟙 Y =
Scheme.OpenCover.map
(Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x =>
Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x))
{ fst := i, snd := j }) ≫
(pullbackRightPullbackFstIso g (Scheme.OpenCover.map (Scheme.affineCover Z) i) f).hom)
[PROOFSTEP]
apply mono_comp
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x
[PROOFSTEP]
have := (isLocalization_basicOpen hU f).2
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
this :
∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x
[PROOFSTEP]
obtain ⟨⟨y, _, n, rfl⟩, d⟩ := this x
[GOAL]
case intro.mk.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
this :
∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
y : ↑(X.presheaf.obj (op U))
n : ℕ
d :
x *
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
↑(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst
⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x
[PROOFSTEP]
use n, y
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
this :
∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
y : ↑(X.presheaf.obj (op U))
n : ℕ
d :
x *
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
↑(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst
⊢ y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x
[PROOFSTEP]
delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
this :
∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
y : ↑(X.presheaf.obj (op U))
n : ℕ
d :
x *
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
↑(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst
⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) f ^ n * x
[PROOFSTEP]
simpa [mul_comm x] using d.symm
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁
[PROOFSTEP]
erw [X.basicOpen_res]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
⊢ U₁ ⊓ Scheme.basicOpen X f ≤ U₁
[PROOFSTEP]
exact inf_le_left
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f
[PROOFSTEP]
erw [X.basicOpen_res]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
⊢ U₁ ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f
[PROOFSTEP]
exact inf_le_right
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂
[PROOFSTEP]
rw [X.basicOpen_res]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ U₂ ⊓ Scheme.basicOpen X f ≤ U₂
[PROOFSTEP]
exact inf_le_left
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f
[PROOFSTEP]
rw [X.basicOpen_res]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ U₂ ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f
[PROOFSTEP]
exact inf_le_right
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ∃ n,
↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₁) * y₂)
[PROOFSTEP]
obtain ⟨⟨_, n, rfl⟩, e⟩ :=
(@IsLocalization.eq_iff_exists _ _ _ _ _ _
(isLocalization_basicOpen S.2 (X.presheaf.map (homOfLE <| le_trans h₁ le_sup_left).op f))
(X.presheaf.map (homOfLE <| h₁).op (X.presheaf.map (homOfLE le_sup_left).op f ^ n₂ * y₁))
(X.presheaf.map (homOfLE <| h₂).op (X.presheaf.map (homOfLE le_sup_right).op f ^ n₁ * y₂))).mp <|
by
-- Porting note: was just a `simp`, but know as some lemmas need `erw`, just a `simp` does not
-- leave the goal in a desired form
rw [RingHom.algebraMap_toAlgebra, map_mul, map_mul, map_pow, map_pow, map_mul, map_pow, map_mul]
erw [map_pow]
rw [← comp_apply, ← comp_apply]
erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply]
simp only [← Functor.map_comp, ← op_comp, homOfLE_comp]
have h₃ : X.basicOpen ((X.presheaf.map (homOfLE (h₁.trans le_sup_left)).op) f) ≤ S.val := by
simpa only [X.basicOpen_res] using inf_le_left
trans
X.presheaf.map (homOfLE <| h₃.trans <| h₁.trans le_sup_left).op f ^ (n₂ + n₁) *
X.presheaf.map (homOfLE <| (X.basicOpen_res f _).trans_le inf_le_right).op x
· rw [pow_add, mul_assoc]; congr 1
convert congr_arg (X.presheaf.map (homOfLE _).op) e₁ using 1
pick_goal 3
· rw [X.basicOpen_res, X.basicOpen_res]; rintro x ⟨H₁, H₂⟩; exact ⟨h₁ H₁, H₂⟩
· simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr 1
· simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr
· rw [add_comm, pow_add, mul_assoc]; congr 1
convert congr_arg (X.presheaf.map (homOfLE _).op) e₂.symm
· simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr
· simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr
· simp only [X.basicOpen_res]
rintro x ⟨H₁, H₂⟩; exact ⟨h₂ H₁, H₂⟩
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ↑(algebraMap ↑(X.presheaf.obj (op ↑S))
↑(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f)))))
(↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * y₁)) =
↑(algebraMap ↑(X.presheaf.obj (op ↑S))
↑(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f)))))
(↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * y₂))
[PROOFSTEP]
rw [RingHom.algebraMap_toAlgebra, map_mul, map_mul, map_pow, map_pow, map_mul, map_pow, map_mul]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₁).op) y₁) =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₁) *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₂).op) y₂)
[PROOFSTEP]
erw [map_pow]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₁).op) y₁) =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f)) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₂).op) y₂)
[PROOFSTEP]
rw [← comp_apply, ← comp_apply]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₁).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₁).op) y₁) =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₂).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
(↑(X.presheaf.map (homOfLE h₂).op) y₂)
[PROOFSTEP]
erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ↑((X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₁).op) ≫
X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
f ^
n₂ *
↑(X.presheaf.map (homOfLE h₁).op ≫
X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
y₁ =
↑((X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₂).op) ≫
X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
f ^
n₁ *
↑(X.presheaf.map (homOfLE h₂).op ≫
X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
↑S)).op)
y₂
[PROOFSTEP]
simp only [← Functor.map_comp, ← op_comp, homOfLE_comp]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₂)).op)
y₂
[PROOFSTEP]
have h₃ : X.basicOpen ((X.presheaf.map (homOfLE (h₁.trans le_sup_left)).op) f) ≤ S.val := by
simpa only [X.basicOpen_res] using inf_le_left
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
[PROOFSTEP]
simpa only [X.basicOpen_res] using inf_le_left
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₂)).op)
y₂
[PROOFSTEP]
trans
X.presheaf.map (homOfLE <| h₃.trans <| h₁.trans le_sup_left).op f ^ (n₂ + n₁) *
X.presheaf.map (homOfLE <| (X.basicOpen_res f _).trans_le inf_le_right).op x
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
(n₂ + n₁) *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
[PROOFSTEP]
rw [pow_add, mul_assoc]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₂ *
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
[PROOFSTEP]
convert congr_arg (X.presheaf.map (homOfLE _).op) e₁ using 1
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op)
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁)
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op)
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x)
case e_a.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)
[PROOFSTEP]
pick_goal 3
[GOAL]
case e_a.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)
[PROOFSTEP]
rw [X.basicOpen_res, X.basicOpen_res]
[GOAL]
case e_a.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑S ⊓ Scheme.basicOpen X f ≤ U₁ ⊓ Scheme.basicOpen X f
[PROOFSTEP]
rintro x ⟨H₁, H₂⟩
[GOAL]
case e_a.convert_1.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x✝ : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x✝
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x✝
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
x : ↑↑X.toPresheafedSpace
H₁ : x ∈ ↑↑S
H₂ : x ∈ ↑(Scheme.basicOpen X f)
⊢ x ∈ ↑(U₁ ⊓ Scheme.basicOpen X f)
[PROOFSTEP]
exact ⟨h₁ H₁, H₂⟩
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f))).op)
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁)
[PROOFSTEP]
simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ≫
homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f))).op)
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x)
[PROOFSTEP]
simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ≫
homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁) ≫
homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ≫
homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x
[PROOFSTEP]
congr
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
(n₂ + n₁) *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₂)).op)
y₂
[PROOFSTEP]
rw [add_comm, pow_add, mul_assoc]
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x) =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₁ ⊔ U₂)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
U₂)).op)
y₂
[PROOFSTEP]
congr 1
[GOAL]
case e_a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂
[PROOFSTEP]
convert congr_arg (X.presheaf.map (homOfLE _).op) e₂.symm
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op)
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x)
[PROOFSTEP]
simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE ?e_a.convert_1✝ ≫
homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂) ≫
homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE ?e_a.convert_1✝ ≫
homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X f)).op)
x
[PROOFSTEP]
congr
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op)
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂)
[PROOFSTEP]
simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map
(homOfLE ?e_a.convert_1✝ ≫
homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂
[PROOFSTEP]
congr
[GOAL]
case e_a.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f)
[PROOFSTEP]
simp only [X.basicOpen_res]
[GOAL]
case e_a.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
⊢ ↑S ⊓ Scheme.basicOpen X f ≤ U₂ ⊓ Scheme.basicOpen X f
[PROOFSTEP]
rintro x ⟨H₁, H₂⟩
[GOAL]
case e_a.convert_1.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x✝ : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x✝
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x✝
h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S
x : ↑↑X.toPresheafedSpace
H₁ : x ∈ ↑↑S
H₂ : x ∈ ↑(Scheme.basicOpen X f)
⊢ x ∈ ↑(U₂ ⊓ Scheme.basicOpen X f)
[PROOFSTEP]
exact ⟨h₂ H₁, H₂⟩
[GOAL]
case intro.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y =
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } *
↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * y₁) =
↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y =
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } *
↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * y₂)
⊢ ∃ n,
↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₁) * y₂)
[PROOFSTEP]
use n
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y =
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } *
↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * y₁) =
↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y =
(fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } *
↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * y₂)
⊢ ↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₁) * y₂)
[PROOFSTEP]
simp only [pow_add, map_pow, map_mul, ← comp_apply, ← mul_assoc, ← Functor.map_comp, Subtype.coe_mk] at e ⊢
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
S : ↑(Scheme.affineOpens X)
U₁ U₂ : Opens ↑↑X.toPresheafedSpace
n₁ n₂ : ℕ
y₁ : ↑(X.presheaf.obj (op U₁))
y₂ : ↑(X.presheaf.obj (op U₂))
f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
h₁ : ↑S ≤ U₁
h₂ : ↑S ≤ U₂
e₁ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
y₁ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op)
(↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
e₂ :
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
y₂ =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op)
(↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n : ℕ
e :
↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f ^ n *
↑(X.presheaf.map ((homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₁).op)) f ^ n₂ *
↑(X.presheaf.map (homOfLE h₁).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f ^ n *
↑(X.presheaf.map ((homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₂).op)) f ^ n₁ *
↑(X.presheaf.map (homOfLE h₂).op) y₂
⊢ ↑(X.presheaf.map ((homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₁).op)) f ^ n *
↑(X.presheaf.map ((homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₁).op)) f ^ n₂ *
↑(X.presheaf.map (homOfLE h₁).op) y₁ =
↑(X.presheaf.map ((homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₂).op)) f ^ n *
↑(X.presheaf.map ((homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₂).op)) f ^ n₁ *
↑(X.presheaf.map (homOfLE h₂).op) y₂
[PROOFSTEP]
exact e
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x
[PROOFSTEP]
delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) f ^ n * x
[PROOFSTEP]
revert hU' f x
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
⊢ IsQuasiSeparated U.carrier →
∀ (f : ↑(X.presheaf.obj (op U))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) f ^
n *
x
[PROOFSTEP]
apply compact_open_induction_on (P := _) U hU
[GOAL]
case h₁
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
⊢ IsQuasiSeparated ⊥.carrier →
∀ (f : ↑(X.presheaf.obj (op ⊥))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f ^
n *
x
[PROOFSTEP]
intro _ f x
[GOAL]
case h₁
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU'✝ : IsQuasiSeparated ⊥.carrier
f : ↑(X.presheaf.obj (op ⊥))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f ^ n * x
[PROOFSTEP]
use 0, f
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU'✝ : IsQuasiSeparated ⊥.carrier
f : ↑(X.presheaf.obj (op ⊥))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f ^ 0 * x
[PROOFSTEP]
refine' @Subsingleton.elim _ (CommRingCat.subsingleton_of_isTerminal (X.sheaf.isTerminalOfEqEmpty _)) _ _
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU'✝ : IsQuasiSeparated ⊥.carrier
f : ↑(X.presheaf.obj (op ⊥))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ Scheme.basicOpen X f = ⊥
[PROOFSTEP]
erw [eq_bot_iff]
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU'✝ : IsQuasiSeparated ⊥.carrier
f : ↑(X.presheaf.obj (op ⊥))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ Scheme.basicOpen X f ≤ ⊥
[PROOFSTEP]
exact X.basicOpen_le f
[GOAL]
case h₂
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
⊢ ∀ (S : Opens ↑↑X.toPresheafedSpace),
IsCompact S.carrier →
∀ (U : ↑(Scheme.affineOpens X)),
(IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op)
y =
↑(X.presheaf.map
(homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op)
f ^
n *
x) →
IsQuasiSeparated (S ⊔ ↑U).carrier →
∀ (f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map
(homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
y =
↑(X.presheaf.map
(homOfLE
(_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
intro S hS U hU hSU f x
[GOAL]
case h₂
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
obtain ⟨n₁, y₁, hy₁⟩ :=
hU (hSU.of_subset <| Set.subset_union_left _ _) (X.presheaf.map (homOfLE le_sup_left).op f)
(X.presheaf.map (homOfLE _).op x)
-- · rw [X.basicOpen_res]; exact inf_le_right
-- We know that such `y₂, n₂` exists on `U` since `U` is affine.
[GOAL]
case h₂.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
obtain ⟨n₂, y₂, hy₂⟩ :=
exists_eq_pow_mul_of_isAffineOpen X _ U.2 (X.presheaf.map (homOfLE le_sup_right).op f)
(X.presheaf.map (homOfLE _).op x)
[GOAL]
case h₂.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
y₂ |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) =
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f |_
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict at hy₂
[GOAL]
case h₂.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
obtain ⟨s, hs', hs⟩ :=
(isCompact_open_iff_eq_finset_affine_union _).mp
⟨hSU _ _ (Set.subset_union_left _ _) S.2 hS (Set.subset_union_right _ _) U.1.2 U.2.isCompact, (S ⊓ U.1).2⟩
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
haveI := hs'.to_subtype
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
this : Finite ↑s
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
cases nonempty_fintype s
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
this : Finite ↑s
val✝ : Fintype ↑s
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
replace hs : S ⊓ U.1 = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
this : Finite ↑s
val✝ : Fintype ↑s
⊢ S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
ext1
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
this : Finite ↑s
val✝ : Fintype ↑s
⊢ ↑(S ⊓ ↑U) = ↑(⨆ (i : ↑s), ↑↑i)
[PROOFSTEP]
simpa using hs
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
have hs₁ : ∀ i : s, i.1.1 ≤ S := by
intro i; change (i : Opens X.carrier) ≤ S
refine' le_trans _ inf_le_left; swap; exact U.1;
erw [hs]
-- Porting note: have to add argument explicitly
exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
⊢ ∀ (i : ↑s), ↑↑i ≤ S
[PROOFSTEP]
intro i
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ S
[PROOFSTEP]
change (i : Opens X.carrier) ≤ S
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ S
[PROOFSTEP]
refine' le_trans _ inf_le_left
[GOAL]
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ S ⊓ ?refine'_2
case refine'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ Opens ↑↑X.toPresheafedSpace
[PROOFSTEP]
swap
[GOAL]
case refine'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ Opens ↑↑X.toPresheafedSpace
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ S ⊓ ?refine'_2
[PROOFSTEP]
exact U.1
[GOAL]
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ S ⊓ ↑U
[PROOFSTEP]
erw [hs]
-- Porting note: have to add argument explicitly
[GOAL]
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
have hs₂ : ∀ i : s, i.1.1 ≤ U.1 := by
intro i; change (i : Opens X.carrier) ≤ U
refine' le_trans _ inf_le_right; swap; exact S;
erw [hs]
-- Porting note: have to add argument explicitly
exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
⊢ ∀ (i : ↑s), ↑↑i ≤ ↑U
[PROOFSTEP]
intro i
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ ↑↑i ≤ ↑U
[PROOFSTEP]
change (i : Opens X.carrier) ≤ U
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ ↑↑i ≤ ↑U
[PROOFSTEP]
refine' le_trans _ inf_le_right
[GOAL]
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ ↑↑i ≤ ?refine'_2 ⊓ ↑U
case refine'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ Opens ↑↑X.toPresheafedSpace
[PROOFSTEP]
swap
[GOAL]
case refine'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ Opens ↑↑X.toPresheafedSpace
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ ↑↑i ≤ ?refine'_2 ⊓ ↑U
[PROOFSTEP]
exact S
[GOAL]
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ ↑↑i ≤ S ⊓ ↑U
[PROOFSTEP]
erw [hs]
-- Porting note: have to add argument explicitly
[GOAL]
case refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
i : ↑s
⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
have :
∀ i : s,
∃ n : ℕ,
X.presheaf.map (homOfLE <| hs₁ i).op (X.presheaf.map (homOfLE le_sup_left).op f ^ (n + n₂) * y₁) =
X.presheaf.map (homOfLE <| hs₂ i).op (X.presheaf.map (homOfLE le_sup_right).op f ^ (n + n₁) * y₂) :=
by
intro i
exact exists_eq_pow_mul_of_is_compact_of_quasi_separated_space_aux X i.1 S U (hs₁ i) (hs₂ i) hy₁ hy₂
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
⊢ ∀ (i : ↑s),
∃ n,
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n + n₁) * y₂)
[PROOFSTEP]
intro i
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map (homOfLE ?m.483627).op) x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map (homOfLE ?m.484649).op) x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
i : ↑s
⊢ ∃ n,
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n + n₁) * y₂)
[PROOFSTEP]
exact exists_eq_pow_mul_of_is_compact_of_quasi_separated_space_aux X i.1 S U (hs₁ i) (hs₂ i) hy₁ hy₂
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
this :
∀ (i : ↑s),
∃ n,
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n + n₁) * y₂)
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
choose n hn using this
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
have :
X.presheaf.map (homOfLE <| inf_le_left).op
(X.presheaf.map (homOfLE le_sup_left).op f ^ (Finset.univ.sup n + n₂) * y₁) =
X.presheaf.map (homOfLE <| inf_le_right).op
(X.presheaf.map (homOfLE le_sup_right).op f ^ (Finset.univ.sup n + n₁) * y₂) :=
by
fapply X.sheaf.eq_of_locally_eq' fun i : s => i.1.1
· refine' fun i => homOfLE _; erw [hs];
-- Porting note: have to add argument explicitlyexact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i
· exact le_of_eq hs
· intro i
replace hn :=
congr_arg (fun x => X.presheaf.map (homOfLE (le_trans (hs₁ i) le_sup_left)).op f ^ (Finset.univ.sup n - n i) * x)
(hn i)
dsimp only at hn
delta Scheme.sheaf SheafedSpace.sheaf
simp only [← map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp, ← mul_assoc] at hn ⊢
erw [← map_mul, ← map_mul] at hn
rw [← pow_add, ← pow_add, ← add_assoc, ← add_assoc, tsub_add_cancel_of_le] at hn
convert hn
exact Finset.le_sup (Finset.mem_univ _)
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
[PROOFSTEP]
fapply X.sheaf.eq_of_locally_eq' fun i : s => i.1.1
[GOAL]
case iUV
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ (i : ↑s) → ↑↑i ⟶ S ⊓ ↑U
[PROOFSTEP]
refine' fun i => homOfLE _
[GOAL]
case iUV
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
i : ↑s
⊢ ↑↑i ≤ S ⊓ ↑U
[PROOFSTEP]
erw [hs]
[GOAL]
case iUV
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
i : ↑s
⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i
[GOAL]
case hcover
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ S ⊓ ↑U ≤ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
exact le_of_eq hs
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ ∀ (i : ↑s),
↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) =
↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂))
[PROOFSTEP]
intro i
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
i : ↑s
⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) =
↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂))
[PROOFSTEP]
replace hn :=
congr_arg (fun x => X.presheaf.map (homOfLE (le_trans (hs₁ i) le_sup_left)).op f ^ (Finset.univ.sup n - n i) * x)
(hn i)
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
(fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * x)
(↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁)) =
(fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * x)
(↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂))
⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) =
↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂))
[PROOFSTEP]
dsimp only at hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) =
↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂))
[PROOFSTEP]
delta Scheme.sheaf SheafedSpace.sheaf
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) =
↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂))
[PROOFSTEP]
simp only [← map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp, ← mul_assoc] at hn ⊢
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) (f ^ (n i + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (f ^ (n i + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op)
(f ^ (Finset.sup Finset.univ n + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(f ^ (Finset.sup Finset.univ n + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) y₂
[PROOFSTEP]
erw [← map_mul, ← map_mul] at hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i) * f ^ (n i + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i) * f ^ (n i + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op)
(f ^ (Finset.sup Finset.univ n + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(f ^ (Finset.sup Finset.univ n + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) y₂
[PROOFSTEP]
rw [← pow_add, ← pow_add, ← add_assoc, ← add_assoc, tsub_add_cancel_of_le] at hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op)
(f ^ (Finset.sup Finset.univ n + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(f ^ (Finset.sup Finset.univ n + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) y₂
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂
⊢ n i ≤ Finset.sup Finset.univ n
[PROOFSTEP]
convert hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₂)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₁)) *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂
⊢ n i ≤ Finset.sup Finset.univ n
[PROOFSTEP]
exact Finset.le_sup (Finset.mem_univ _)
[GOAL]
case h₂.intro.intro.intro.intro.intro.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n *
x
[PROOFSTEP]
use Finset.univ.sup n + n₁ + n₂
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ∃ y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x
[PROOFSTEP]
use(X.sheaf.objSupIsoProdEqLocus S U.1).inv ⟨⟨_ * _, _ * _⟩, this⟩
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }) =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x
[PROOFSTEP]
refine'
X.sheaf.eq_of_locally_eq₂ (homOfLE (_ : X.basicOpen (X.presheaf.map (homOfLE le_sup_left).op f) ≤ _))
(homOfLE (_ : X.basicOpen (X.presheaf.map (homOfLE le_sup_right).op f) ≤ _)) _ _ _ _ _
[GOAL]
case h.refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f
[PROOFSTEP]
rw [X.basicOpen_res]
[GOAL]
case h.refine'_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ S ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f
[PROOFSTEP]
exact inf_le_right
[GOAL]
case h.refine'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f
[PROOFSTEP]
rw [X.basicOpen_res]
[GOAL]
case h.refine'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑U ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f
[PROOFSTEP]
exact inf_le_right
[GOAL]
case h.refine'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X f ≤
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ⊔
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)
[PROOFSTEP]
rw [X.basicOpen_res, X.basicOpen_res]
[GOAL]
case h.refine'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X f ≤ S ⊓ Scheme.basicOpen X f ⊔ ↑U ⊓ Scheme.basicOpen X f
[PROOFSTEP]
erw [← inf_sup_right]
[GOAL]
case h.refine'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X f ≤ (S ⊔ ↑U) ⊓ Scheme.basicOpen X f
[PROOFSTEP]
refine' le_inf_iff.mpr ⟨X.basicOpen_le f, le_of_eq rfl⟩
[GOAL]
case h.refine'_4
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x)
[PROOFSTEP]
convert
congr_arg
(X.presheaf.map
(homOfLE (by restrict_tac : X.basicOpen (X.presheaf.map (homOfLE (le_sup_left : S ≤ S ⊔ U.1)).op f) ≤ S)).op)
(X.sheaf.objSupIsoProdEqLocus_inv_fst S U.1 ⟨⟨_ * _, _ * _⟩, this⟩) using
1
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ S
[PROOFSTEP]
restrict_tac
[GOAL]
case h.e'_2.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑((Scheme.sheaf X).val.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
[PROOFSTEP]
delta Scheme.sheaf SheafedSpace.sheaf
[GOAL]
case h.e'_2.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
[PROOFSTEP]
simp only
[GOAL]
case h.e'_2.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
[PROOFSTEP]
erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply]
[GOAL]
case h.e'_2.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫
X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this } =
↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op ≫
X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }
[PROOFSTEP]
simp only [← Functor.map_comp, ← op_comp]
[GOAL]
case h.e'_2.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this } =
↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }).fst
[PROOFSTEP]
delta Scheme.sheaf SheafedSpace.sheaf
[GOAL]
case h.e'_3.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }).fst
[PROOFSTEP]
simp only [map_pow, map_mul]
[GOAL]
case h.e'_3.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map
(homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f) ^
(Finset.sup Finset.univ n + n₁ + n₂) *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
(Finset.sup Finset.univ n + n₂) *
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁
[PROOFSTEP]
erw [← comp_apply, ← comp_apply]
[GOAL]
case h.e'_3.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫
X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op ≫
X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
f ^
(Finset.sup Finset.univ n + n₂) *
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁
[PROOFSTEP]
simp only [← Functor.map_comp, ← op_comp, mul_assoc, pow_add]
[GOAL]
case h.e'_3.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x)) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁)
[PROOFSTEP]
erw [hy₁]
[GOAL]
case h.e'_3.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x)) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
n₂ *
(↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x))
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.h.e_a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x) =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
n₂ *
(↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x)
[PROOFSTEP]
rw [← mul_assoc, ← mul_assoc]
[GOAL]
case h.e'_3.h.e_a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.h.e_a.e_a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁
[PROOFSTEP]
rw [mul_comm, ← comp_apply, ← Functor.map_comp]
[GOAL]
case h.e'_3.h.e_a.e_a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
e_1✝ :
(fun x =>
(forget CommRingCat).obj
((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))))
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
(forget CommRingCat).obj
(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫
homOfLE (_ : S ≤ S ⊔ ↑U)).op)
f ^
n₂ *
↑(X.presheaf.map
((homOfLE (_ : S ≤ S ⊔ ↑U)).op ≫
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op))
f ^
n₁
[PROOFSTEP]
congr 1
[GOAL]
case h.refine'_5
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x)
[PROOFSTEP]
convert
congr_arg (X.presheaf.map (homOfLE _).op) (X.sheaf.objSupIsoProdEqLocus_inv_snd S U.1 ⟨⟨_ * _, _ * _⟩, this⟩) using 1
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map (homOfLE ?h.refine'_5.convert_1).op)
(↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x) =
↑(X.presheaf.map (homOfLE ?h.refine'_5.convert_1).op)
(↑{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }).snd
case h.refine'_5.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U
[PROOFSTEP]
pick_goal 3
[GOAL]
case h.refine'_5.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U
[PROOFSTEP]
rw [X.basicOpen_res]
[GOAL]
case h.refine'_5.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑U ⊓ Scheme.basicOpen X f ≤ ↑U
[PROOFSTEP]
restrict_tac
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
(↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
[PROOFSTEP]
delta Scheme.sheaf SheafedSpace.sheaf
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
(↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
[PROOFSTEP]
simp only
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this })) =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
(↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }))
[PROOFSTEP]
erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply]
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫
X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this } =
↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op ≫
X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }
[PROOFSTEP]
simp only [← Functor.map_comp, ← op_comp]
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this } =
↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S
↑U).inv ≫
X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑((Scheme.sheaf X).val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x) =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
(↑{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }).snd
[PROOFSTEP]
delta Scheme.sheaf SheafedSpace.sheaf
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
x) =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
(↑{
val :=
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁,
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂),
property := this }).snd
[PROOFSTEP]
simp only [map_pow, map_mul]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
(↑(X.presheaf.map
(homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f) ^
(Finset.sup Finset.univ n + n₁ + n₂) *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
(Finset.sup Finset.univ n + n₁) *
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
y₂
[PROOFSTEP]
erw [← comp_apply, ← comp_apply]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫
X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
f ^
(Finset.sup Finset.univ n + n₁ + n₂) *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x =
↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op ≫
X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
f ^
(Finset.sup Finset.univ n + n₁) *
↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
y₂
[PROOFSTEP]
simp only [← Functor.map_comp, ← op_comp, mul_assoc, pow_add]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x)) =
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
f ^
n₁ *
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op)
y₂)
[PROOFSTEP]
erw [hy₂]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x)) =
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x))
[PROOFSTEP]
rw [← comp_apply, ← Functor.map_comp]
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U✝ : Opens ↑↑X.toPresheafedSpace
hU✝ : IsCompact U✝.carrier
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
U : ↑(Scheme.affineOpens X)
hU :
IsQuasiSeparated S.carrier →
∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ n y,
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y =
↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^
n *
x
hSU : IsQuasiSeparated (S ⊔ ↑U).carrier
f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))
x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n₁ : ℕ
y₁ : ↑(X.presheaf.obj (op S))
hy₁ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
y₁ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^
n₁ *
↑(X.presheaf.map
(homOfLE
(_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
n₂ : ℕ
y₂ : ↑(X.presheaf.obj (op ↑U))
hy₂ :
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
y₂ =
↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op)
x
s : Set ↑(Scheme.affineOpens X)
hs' : Set.Finite s
this✝ : Finite ↑s
val✝ : Fintype ↑s
hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i
hs₁ : ∀ (i : ↑s), ↑↑i ≤ S
hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U
n : ↑s → ℕ
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)
this :
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op)
(↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) =
↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₁ *
(↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f) ≫
homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op)
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x)) =
↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
f ^
Finset.sup Finset.univ n *
(↑(X.presheaf.map
(homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫
homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op)
f ^
n₁ *
(↑(X.presheaf.map
((homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op ≫
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) →
a ∈ ↑↑U)).op))
f ^
n₂ *
↑(X.presheaf.map
(homOfLE
(_ :
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤
Scheme.basicOpen X f)).op)
x))
[PROOFSTEP]
congr 1
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
⊢ IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
[PROOFSTEP]
constructor
[GOAL]
case map_units'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
⊢ ∀ (y : { x // x ∈ Submonoid.powers f }),
IsUnit (↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑y)
[PROOFSTEP]
rintro ⟨_, n, rfl⟩
[GOAL]
case map_units'.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
n : ℕ
⊢ IsUnit
(↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
↑{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) })
[PROOFSTEP]
simp only [map_pow, Subtype.coe_mk, RingHom.algebraMap_toAlgebra]
[GOAL]
case map_units'.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
n : ℕ
⊢ IsUnit (↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) f ^ n)
[PROOFSTEP]
exact IsUnit.pow _ (RingedSpace.isUnit_res_basicOpen _ f)
[GOAL]
case surj'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
⊢ ∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))),
∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
[PROOFSTEP]
intro z
[GOAL]
case surj'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
⊢ ∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
[PROOFSTEP]
obtain ⟨n, y, e⟩ := exists_eq_pow_mul_of_isCompact_of_isQuasiSeparated X U hU hU' f z
[GOAL]
case surj'.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n : ℕ
y : ↑(X.presheaf.obj (op U))
e : y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * z
⊢ ∃ x,
z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst
[PROOFSTEP]
refine' ⟨⟨y, _, n, rfl⟩, _⟩
[GOAL]
case surj'.intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))
n : ℕ
y : ↑(X.presheaf.obj (op U))
e : y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * z
⊢ z *
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
↑(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))
(y,
{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst
[PROOFSTEP]
simpa only [map_pow, Subtype.coe_mk, RingHom.algebraMap_toAlgebra, mul_comm z] using e.symm
[GOAL]
case eq_iff_exists'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f : ↑(X.presheaf.obj (op U))
⊢ ∀ {x y : ↑(X.presheaf.obj (op U))},
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) y ↔
∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
intro x y
[GOAL]
case eq_iff_exists'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y : ↑(X.presheaf.obj (op U))
⊢ ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x =
↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) y ↔
∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
rw [← sub_eq_zero, ← map_sub, RingHom.algebraMap_toAlgebra]
[GOAL]
case eq_iff_exists'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y : ↑(X.presheaf.obj (op U))
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (x - y) = 0 ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
simp_rw [← @sub_eq_zero _ _ (_ * x) (_ * y), ← mul_sub]
[GOAL]
case eq_iff_exists'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y : ↑(X.presheaf.obj (op U))
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (x - y) = 0 ↔ ∃ c, ↑c * (x - y) = 0
[PROOFSTEP]
generalize x - y = z
[GOAL]
case eq_iff_exists'
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 ↔ ∃ c, ↑c * z = 0
[PROOFSTEP]
constructor
[GOAL]
case eq_iff_exists'.mp
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 → ∃ c, ↑c * z = 0
[PROOFSTEP]
intro H
[GOAL]
case eq_iff_exists'.mp
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0
⊢ ∃ c, ↑c * z = 0
[PROOFSTEP]
obtain ⟨n, e⟩ := exists_pow_mul_eq_zero_of_res_basicOpen_eq_zero_of_isCompact X hU _ _ H
[GOAL]
case eq_iff_exists'.mp.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0
n : ℕ
e : f ^ n * z = 0
⊢ ∃ c, ↑c * z = 0
[PROOFSTEP]
refine' ⟨⟨_, n, rfl⟩, _⟩
[GOAL]
case eq_iff_exists'.mp.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0
n : ℕ
e : f ^ n * z = 0
⊢ ↑{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } *
z =
0
[PROOFSTEP]
simpa [mul_comm z] using e
[GOAL]
case eq_iff_exists'.mpr
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
⊢ (∃ c, ↑c * z = 0) → ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0
[PROOFSTEP]
rintro ⟨⟨_, n, rfl⟩, e : f ^ n * z = 0⟩
[GOAL]
case eq_iff_exists'.mpr.intro.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
n : ℕ
e : f ^ n * z = 0
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0
[PROOFSTEP]
rw [← ((RingedSpace.isUnit_res_basicOpen _ f).pow n).mul_right_inj, mul_zero, ← map_pow]
-- Porting note: this one lemma needs `erw`
[GOAL]
case eq_iff_exists'.mpr.intro.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
n : ℕ
e : f ^ n * z = 0
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (f ^ n) *
↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z =
0
[PROOFSTEP]
erw [← map_mul]
[GOAL]
case eq_iff_exists'.mpr.intro.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
hU' : IsQuasiSeparated U.carrier
f x y z : ↑(X.presheaf.obj (op U))
n : ℕ
e : f ^ n * z = 0
⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (f ^ n * z) = 0
[PROOFSTEP]
rw [e, map_zero]
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.QuasiSeparated", "llama_tokens": 239101} |
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
ι : Type u_4
κ : Type u_5
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ↑(tensorProduct b c) (i, j) = ↑b i ⊗ₜ[R] ↑c j
[PROOFSTEP]
simp [Basis.tensorProduct]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
ι : Type u_4
κ : Type u_5
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι × κ
⊢ ↑(tensorProduct b c) i = ↑b i.fst ⊗ₜ[R] ↑c i.snd
[PROOFSTEP]
simp [Basis.tensorProduct]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
ι : Type u_4
κ : Type u_5
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
m : M
n : N
i : ι
j : κ
⊢ ↑(↑(tensorProduct b c).repr (m ⊗ₜ[R] n)) (i, j) = ↑(↑b.repr m) i * ↑(↑c.repr n) j
[PROOFSTEP]
simp [Basis.tensorProduct]
| {"mathlib_filename": "Mathlib.LinearAlgebra.TensorProductBasis", "llama_tokens": 535} |
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Subsingleton R
x✝ : Basis ι R M
b : M ≃ₗ[R] ι →₀ R
⊢ { repr := b } = default
[PROOFSTEP]
rw [Subsingleton.elim b]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
f g : Basis ι R M
h : f.repr = g.repr
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case ofRepr
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
g : Basis ι R M
repr✝ : M ≃ₗ[R] ι →₀ R
h : { repr := repr✝ }.repr = g.repr
⊢ { repr := repr✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case ofRepr.ofRepr
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
repr✝¹ repr✝ : M ≃ₗ[R] ι →₀ R
h : { repr := repr✝¹ }.repr = { repr := repr✝ }.repr
⊢ { repr := repr✝¹ } = { repr := repr✝ }
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
f g : Basis ι R M
h :
(fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) f =
(fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) g
⊢ ↑(LinearEquiv.symm f.repr) = ↑(LinearEquiv.symm g.repr)
[PROOFSTEP]
ext
[GOAL]
case h.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
f g : Basis ι R M
h :
(fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) f =
(fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) g
a✝ : ι
⊢ ↑(LinearMap.comp (↑(LinearEquiv.symm f.repr)) (Finsupp.lsingle a✝)) 1 =
↑(LinearMap.comp (↑(LinearEquiv.symm g.repr)) (Finsupp.lsingle a✝)) 1
[PROOFSTEP]
exact congr_fun h _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑(LinearEquiv.symm b.repr) (Finsupp.single i c) = ↑(LinearEquiv.symm b.repr) (c • Finsupp.single i 1)
[PROOFSTEP]
{rw [Finsupp.smul_single', mul_one]
}
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑(LinearEquiv.symm b.repr) (Finsupp.single i c) = ↑(LinearEquiv.symm b.repr) (c • Finsupp.single i 1)
[PROOFSTEP]
rw [Finsupp.smul_single', mul_one]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑(LinearEquiv.symm b.repr) (c • Finsupp.single i 1) = c • ↑b i
[PROOFSTEP]
rw [LinearEquiv.map_smul, repr_symm_single_one]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
j : ι
inst✝ : Decidable (i = j)
⊢ ↑(↑b.repr (↑b i)) j = if i = j then 1 else 0
[PROOFSTEP]
rw [repr_self, Finsupp.single_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
v : ι →₀ R
⊢ ↑(LinearEquiv.symm b.repr) v = ↑(LinearEquiv.symm b.repr) (Finsupp.sum v Finsupp.single)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
v : ι →₀ R
⊢ ↑(LinearEquiv.symm b.repr) (Finsupp.sum v Finsupp.single) =
∑ i in v.support, ↑(LinearEquiv.symm b.repr) (Finsupp.single i (↑v i))
[PROOFSTEP]
rw [Finsupp.sum, LinearEquiv.map_sum]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
v : ι →₀ R
⊢ ∑ i in v.support, ↑(LinearEquiv.symm b.repr) (Finsupp.single i (↑v i)) = ↑(Finsupp.total ι M R ↑b) v
[PROOFSTEP]
simp [repr_symm_single, Finsupp.total_apply, Finsupp.sum]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
v : ι →₀ R
⊢ ↑b.repr (↑(Finsupp.total ι M R ↑b) v) = v
[PROOFSTEP]
rw [← b.coe_repr_symm]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
v : ι →₀ R
⊢ ↑b.repr (↑↑(LinearEquiv.symm b.repr) v) = v
[PROOFSTEP]
exact b.repr.apply_symm_apply v
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x
[PROOFSTEP]
rw [← b.coe_repr_symm]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑↑(LinearEquiv.symm b.repr) (↑b.repr x) = x
[PROOFSTEP]
exact b.repr.symm_apply_apply x
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ LinearMap.range ↑b.repr = Finsupp.supported R R univ
[PROOFSTEP]
rw [LinearEquiv.range, Finsupp.supported_univ]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x m : M
⊢ ↑b.repr m ∈ Finsupp.supported R R ↑(↑b.repr m).support ∧ ↑(Finsupp.total ι M R ↑b) (↑b.repr m) = m
[PROOFSTEP]
simp [Finsupp.mem_supported_support]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
s : Set ι
m : M
hm : m ∈ span R (↑b '' s)
⊢ ↑(↑b.repr m).support ⊆ s
[PROOFSTEP]
rcases(Finsupp.mem_span_image_iff_total _).1 hm with ⟨l, hl, rfl⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
s : Set ι
l : ι →₀ R
hl : l ∈ Finsupp.supported R R s
hm : ↑(Finsupp.total ι M R ↑b) l ∈ span R (↑b '' s)
⊢ ↑(↑b.repr (↑(Finsupp.total ι M R ↑b) l)).support ⊆ s
[PROOFSTEP]
rwa [repr_total, ← Finsupp.mem_supported R l]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
inst✝ : Nontrivial R
i : ι
s : Set ι
⊢ ↑b i ∈ span R (↑b '' s) ↔ i ∈ s
[PROOFSTEP]
simp [mem_span_image, Finsupp.support_single_ne_zero]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ x : M
⊢ (∀ (i : ι), ↑(coord b i) x = 0) ↔ ↑b.repr x = 0
[PROOFSTEP]
simp only [b.coord_apply, FunLike.ext_iff, Finsupp.zero_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑(sumCoords b) = fun m => ∑ᶠ (i : ι), ↑(coord b i) m
[PROOFSTEP]
ext m
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x m : M
⊢ ↑(sumCoords b) m = ∑ᶠ (i : ι), ↑(coord b i) m
[PROOFSTEP]
simp only [Basis.sumCoords, Basis.coord, Finsupp.lapply_apply, LinearMap.id_coe, LinearEquiv.coe_coe,
Function.comp_apply, Finsupp.coe_lsum, LinearMap.coe_comp, finsum_eq_sum _ (b.repr m).finite_support, Finsupp.sum,
Finset.finite_toSet_toFinset, id.def, Finsupp.fun_support_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
inst✝ : Fintype ι
⊢ ↑(sumCoords b) = ↑(∑ i : ι, coord b i)
[PROOFSTEP]
ext m
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
inst✝ : Fintype ι
m : M
⊢ ↑(sumCoords b) m = ↑(∑ i : ι, coord b i) m
[PROOFSTEP]
simp only [sumCoords, Finsupp.sum_fintype, LinearMap.id_coe, LinearEquiv.coe_coe, coord_apply, id.def,
Fintype.sum_apply, imp_true_iff, Finsupp.coe_lsum, LinearMap.coe_comp, comp_apply, LinearMap.coeFn_sum]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
⊢ ↑(sumCoords b) (↑b i) = 1
[PROOFSTEP]
simp only [Basis.sumCoords, LinearMap.id_coe, LinearEquiv.coe_coe, id.def, Basis.repr_self, Function.comp_apply,
Finsupp.coe_lsum, LinearMap.coe_comp, Finsupp.sum_single_index]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
i : ι
m : M
r : R
⊢ ↑(coord b i) (r • m) = r * ↑(coord b i) m
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b✝ b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b : Basis ι R M
i : ι
f : ι →₀ R
⊢ ↑(coord b i) (↑(LinearEquiv.symm b.repr) f) = ↑f i
[PROOFSTEP]
simp only [repr_symm_apply, coord_apply, repr_total]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f₁ f₂ : M →ₛₗ[σ] M₁
h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i)
⊢ f₁ = f₂
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f₁ f₂ : M →ₛₗ[σ] M₁
h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i)
x : M
⊢ ↑f₁ x = ↑f₂ x
[PROOFSTEP]
rw [← b.total_repr x, Finsupp.total_apply, Finsupp.sum]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f₁ f₂ : M →ₛₗ[σ] M₁
h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i)
x : M
⊢ ↑f₁ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a) = ↑f₂ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a)
[PROOFSTEP]
simp only [LinearMap.map_sum, LinearMap.map_smulₛₗ, h]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f₁ f₂ : M ≃ₛₗ[σ] M₁
h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i)
⊢ f₁ = f₂
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f₁ f₂ : M ≃ₛₗ[σ] M₁
h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i)
x : M
⊢ ↑f₁ x = ↑f₂ x
[PROOFSTEP]
rw [← b.total_repr x, Finsupp.total_apply, Finsupp.sum]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f₁ f₂ : M ≃ₛₗ[σ] M₁
h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i)
x : M
⊢ ↑f₁ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a) = ↑f₂ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a)
[PROOFSTEP]
simp only [LinearEquiv.map_sum, LinearEquiv.map_smulₛₗ, h]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
x y : M
⊢ x = y ↔ ∀ (i : ι), ↑(↑b.repr x) i = ↑(↑b.repr y) i
[PROOFSTEP]
simp only [← FunLike.ext_iff, EmbeddingLike.apply_eq_iff_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
⊢ ↑(↑b.repr x) i = f x i
[PROOFSTEP]
let f_i : M →ₗ[R] R :=
{ toFun := fun x => f x i
map_add' := fun _ _ => by dsimp only []; rw [hadd, Pi.add_apply]
map_smul' := fun _ _ => by simp [hsmul, Pi.smul_apply] }
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝² : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
x✝¹ x✝ : M
⊢ (fun x => f x i) (x✝¹ + x✝) = (fun x => f x i) x✝¹ + (fun x => f x i) x✝
[PROOFSTEP]
dsimp only []
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝² : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
x✝¹ x✝ : M
⊢ f (x✝¹ + x✝) i = f x✝¹ i + f x✝ i
[PROOFSTEP]
rw [hadd, Pi.add_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝² : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
x✝¹ : R
x✝ : M
⊢ AddHom.toFun
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }
(x✝¹ • x✝) =
↑(RingHom.id R) x✝¹ •
AddHom.toFun
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }
x✝
[PROOFSTEP]
simp [hsmul, Pi.smul_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
⊢ ↑(↑b.repr x) i = f x i
[PROOFSTEP]
have : Finsupp.lapply i ∘ₗ ↑b.repr = f_i := by
refine' b.ext fun j => _
show b.repr (b j) i = f (b j) i
rw [b.repr_self, f_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
⊢ LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i
[PROOFSTEP]
refine' b.ext fun j => _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
j : ι
⊢ ↑(LinearMap.comp (Finsupp.lapply i) ↑b.repr) (↑b j) = ↑f_i (↑b j)
[PROOFSTEP]
show b.repr (b j) i = f (b j) i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
j : ι
⊢ ↑(↑b.repr (↑b j)) i = f (↑b j) i
[PROOFSTEP]
rw [b.repr_self, f_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i
⊢ ↑(↑b.repr x) i = f x i
[PROOFSTEP]
calc
b.repr x i = f_i x := by {
rw [← this]
rfl
}
_ = f x i := rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i
⊢ ↑(↑b.repr x) i = ↑f_i x
[PROOFSTEP]
{ rw [← this]
rfl
}
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i
⊢ ↑(↑b.repr x) i = ↑f_i x
[PROOFSTEP]
rw [← this]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M → ι → R
hadd : ∀ (x y : M), f (x + y) = f x + f y
hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x
f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1)
x : M
i : ι
f_i : M →ₗ[R] R :=
{
toAddHom :=
{ toFun := fun x => f x i,
map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) },
map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) }
this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i
⊢ ↑(↑b.repr x) i = ↑(LinearMap.comp (Finsupp.lapply i) ↑b.repr) x
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁✝ : Basis ι R M
i : ι
c : R
x : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
b₁ b₂ : Basis ι R M
h : ∀ (x : M) (i : ι), ↑(↑b₁.repr x) i = ↑(↑b₂.repr x) i
⊢ b₁.repr = b₂.repr
[PROOFSTEP]
ext
[GOAL]
case h.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : Module R M'
b b₁✝ : Basis ι R M
i : ι
c : R
x : M
R₁ : Type u_10
inst✝⁴ : Semiring R₁
σ : R →+* R₁
σ' : R₁ →+* R
inst✝³ : RingHomInvPair σ σ'
inst✝² : RingHomInvPair σ' σ
M₁ : Type u_11
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
b₁ b₂ : Basis ι R M
h : ∀ (x : M) (i : ι), ↑(↑b₁.repr x) i = ↑(↑b₂.repr x) i
x✝ : M
a✝ : ι
⊢ ↑(↑b₁.repr x✝) a✝ = ↑(↑b₂.repr x✝) a✝
[PROOFSTEP]
apply h
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
⊢ Basis ι R' M
[PROOFSTEP]
letI : Module R' R := Module.compHom R (↑f.symm : R' →+* R)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
this : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
⊢ Basis ι R' M
[PROOFSTEP]
haveI : IsScalarTower R' R M :=
{
smul_assoc := fun x y z => by
-- Porting note: `dsimp [(· • ·)]` is unavailable because
-- `HSMul.hsmul` becomes `SMul.smul`.
change (f.symm x * y) • z = x • (y • z)
rw [mul_smul, ← h, f.apply_symm_apply] }
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
this : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
x : R'
y : R
z : M
⊢ (x • y) • z = x • y • z
[PROOFSTEP]
change (f.symm x * y) • z = x • (y • z)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
this : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
x : R'
y : R
z : M
⊢ (↑(RingEquiv.symm f) x * y) • z = x • y • z
[PROOFSTEP]
rw [mul_smul, ← h, f.apply_symm_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
this✝ : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
this : IsScalarTower R' R M
⊢ Basis ι R' M
[PROOFSTEP]
exact
ofRepr <| (b.repr.restrictScalars R').trans <| Finsupp.mapRange.linearEquiv (Module.compHom.toLinearEquiv f.symm).symm
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
i : ι
⊢ ↑(mapCoeffs b f h).repr (↑b i) = Finsupp.single i 1
[PROOFSTEP]
letI : Module R' R := Module.compHom R (↑f.symm : R' →+* R)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
i : ι
this : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
⊢ ↑(mapCoeffs b f h).repr (↑b i) = Finsupp.single i 1
[PROOFSTEP]
haveI : IsScalarTower R' R M :=
{
smul_assoc := fun x y z => by
-- Porting note: `dsimp [(· • ·)]` is unavailable because
-- `HSMul.hsmul` becomes `SMul.smul`.
change (f.symm x * y) • z = x • (y • z)
rw [mul_smul, ← h, f.apply_symm_apply] }
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
i : ι
this : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
x : R'
y : R
z : M
⊢ (x • y) • z = x • y • z
[PROOFSTEP]
change (f.symm x * y) • z = x • (y • z)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
i : ι
this : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
x : R'
y : R
z : M
⊢ (↑(RingEquiv.symm f) x * y) • z = x • y • z
[PROOFSTEP]
rw [mul_smul, ← h, f.apply_symm_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
R' : Type u_10
inst✝¹ : Semiring R'
inst✝ : Module R' M
f : R ≃+* R'
h : ∀ (c : R) (x : M), ↑f c • x = c • x
i : ι
this✝ : Module R' R := Module.compHom R ↑(RingEquiv.symm f)
this : IsScalarTower R' R M
⊢ ↑(mapCoeffs b f h).repr (↑b i) = Finsupp.single i 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i' : ι'
⊢ ↑(LinearEquiv.symm (LinearEquiv.trans b.repr (Finsupp.domLCongr e))) (Finsupp.single i' 1) =
↑(LinearEquiv.symm b.repr) (Finsupp.single (↑e.symm i') 1)
[PROOFSTEP]
rw [LinearEquiv.symm_trans_apply, Finsupp.domLCongr_symm, Finsupp.domLCongr_single]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i' : ι'
⊢ ↑(↑(Finsupp.domLCongr e) (↑b.repr x)) i' = ↑(↑b.repr x) (↑e.symm i')
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
⊢ ∀ (x_1 : ι'), ↑(↑(reindex b e).repr x) x_1 = ↑(Finsupp.mapDomain (↑e) (↑b.repr x)) x_1
[PROOFSTEP]
simp [repr_reindex_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
⊢ ↑(reindex b (Equiv.refl ι)) i = ↑b i
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
⊢ range ↑(reindex b e) = range ↑b
[PROOFSTEP]
simp [coe_reindex, range_comp]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
⊢ sumCoords (reindex b e) = sumCoords b
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
⊢ ↑(sumCoords (reindex b e)) x = ↑(sumCoords b) x
[PROOFSTEP]
simp only [coe_sumCoords, repr_reindex]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
⊢ (Finsupp.sum (Finsupp.mapDomain (↑e) (↑b.repr x)) fun x => id) = Finsupp.sum (↑b.repr x) fun x => id
[PROOFSTEP]
exact Finsupp.sum_mapDomain_index (fun _ => rfl) fun _ _ _ => rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b)
⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
by_cases htr : Nontrivial R
[GOAL]
case pos
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b)
htr : Nontrivial R
⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
letI := htr
[GOAL]
case pos
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b)
htr : Nontrivial R
this : Nontrivial R := htr
⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
simp [htr, reindexRange, reindex_apply, Equiv.apply_ofInjective_symm b.injective, Subtype.coe_mk]
[GOAL]
case neg
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b)
htr : ¬Nontrivial R
⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
letI : Subsingleton R := not_nontrivial_iff_subsingleton.mp htr
[GOAL]
case neg
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b)
htr : ¬Nontrivial R
this : Subsingleton R := Iff.mp not_nontrivial_iff_subsingleton htr
⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
letI := Module.subsingleton R M
[GOAL]
case neg
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b)
htr : ¬Nontrivial R
this✝ : Subsingleton R := Iff.mp not_nontrivial_iff_subsingleton htr
this : Subsingleton M := Module.subsingleton R M
⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
simp [reindexRange]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : ↑(range ↑b)
⊢ ↑(reindexRange b) x = ↑x
[PROOFSTEP]
rcases x with ⟨bi, ⟨i, rfl⟩⟩
[GOAL]
case mk.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
⊢ ↑(reindexRange b) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) } =
↑{ val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }
[PROOFSTEP]
exact b.reindexRange_self i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x bi : M
i : ι
h : ↑b i = bi
⊢ ↑(↑(reindexRange b).repr x) { val := bi, property := (_ : ∃ y, ↑b y = bi) } = ↑(↑b.repr x) i
[PROOFSTEP]
nontriviality
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x bi : M
i : ι
h : ↑b i = bi
✝ : Nontrivial ((fun x => R) { val := bi, property := (_ : ∃ y, ↑b y = bi) })
⊢ ↑(↑(reindexRange b).repr x) { val := bi, property := (_ : ∃ y, ↑b y = bi) } = ↑(↑b.repr x) i
[PROOFSTEP]
subst h
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) })
⊢ ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) } = ↑(↑b.repr x) i
[PROOFSTEP]
apply (b.repr_apply_eq (fun x i => b.reindexRange.repr x ⟨b i, _⟩) _ _ _ x i).symm
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) })
⊢ ∀ (x y : M),
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (x + y) =
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x +
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) y
[PROOFSTEP]
intro x y
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝¹ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x✝ : M
i : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) })
x y : M
⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (x + y) =
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x +
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) y
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x✝¹ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x✝ : M
i✝ : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) })
x y : M
i : ι
⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (x + y) i =
((fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x +
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) y)
i
[PROOFSTEP]
simp only [Pi.add_apply, LinearEquiv.map_add, Finsupp.coe_add]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) })
⊢ ∀ (c : R) (x : M),
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (c • x) =
c • (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x
[PROOFSTEP]
intro c x
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c✝ : R
x✝¹ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x✝ : M
i : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) })
c : R
x : M
⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (c • x) =
c • (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c✝ : R
x✝¹ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x✝ : M
i✝ : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) })
c : R
x : M
i : ι
⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (c • x) i =
(c • (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x) i
[PROOFSTEP]
simp only [Pi.smul_apply, LinearEquiv.map_smul, Finsupp.coe_smul]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) })
⊢ ∀ (i : ι),
(fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (↑b i) =
↑(Finsupp.single i 1)
[PROOFSTEP]
intro i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i✝ : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) })
i : ι
⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (↑b i) =
↑(Finsupp.single i 1)
[PROOFSTEP]
ext j
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i✝ : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) })
i j : ι
⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (↑b i) j =
↑(Finsupp.single i 1) j
[PROOFSTEP]
simp only [reindexRange_repr_self]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i✝ : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) })
i j : ι
⊢ ↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ range ↑b) } 1)
{ val := ↑b j, property := (_ : ∃ y, ↑b y = ↑b j) } =
↑(Finsupp.single i 1) j
[PROOFSTEP]
apply Finsupp.single_apply_left (f := fun i => (⟨b i, _⟩ : Set.range b))
[GOAL]
case h.hf
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
x : M
i✝ : ι
✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) })
i j : ι
⊢ Injective fun i => { val := ↑b i, property := (_ : ↑b i ∈ range ↑b) }
[PROOFSTEP]
exact fun i j h => b.injective (Subtype.mk.inj h)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
⊢ ∀ (a : M), a ∈ range ↑b ↔ ↑(Equiv.refl M) a ∈ Finset.image (↑b) Finset.univ
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
i : ι
h : optParam (↑b i ∈ Finset.image (↑b) Finset.univ) (_ : ↑b i ∈ Finset.image (↑b) Finset.univ)
⊢ ↑(reindexFinsetRange b) { val := ↑b i, property := h } = ↑b i
[PROOFSTEP]
rw [reindexFinsetRange, reindex_apply, reindexRange_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
i : ι
h : optParam (↑b i ∈ Finset.image (↑b) Finset.univ) (_ : ↑b i ∈ Finset.image (↑b) Finset.univ)
⊢ ↑(↑(Equiv.subtypeEquiv (Equiv.refl M) (_ : ∀ (a : M), a ∈ range ↑b ↔ a ∈ Finset.image (↑b) Finset.univ)).symm
{ val := ↑b i, property := h }) =
↑b i
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
x : { x // x ∈ Finset.image (↑b) Finset.univ }
⊢ ↑(reindexFinsetRange b) x = ↑x
[PROOFSTEP]
rcases x with ⟨bi, hbi⟩
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
bi : M
hbi : bi ∈ Finset.image (↑b) Finset.univ
⊢ ↑(reindexFinsetRange b) { val := bi, property := hbi } = ↑{ val := bi, property := hbi }
[PROOFSTEP]
rcases Finset.mem_image.mp hbi with ⟨i, -, rfl⟩
[GOAL]
case mk.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
i : ι
hbi : ↑b i ∈ Finset.image (↑b) Finset.univ
⊢ ↑(reindexFinsetRange b) { val := ↑b i, property := hbi } = ↑{ val := ↑b i, property := hbi }
[PROOFSTEP]
exact b.reindexFinsetRange_self i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
i : ι
⊢ ↑(reindexFinsetRange b).repr (↑b i) =
Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) } 1
[PROOFSTEP]
ext ⟨bi, hbi⟩
[GOAL]
case h.mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
i : ι
bi : M
hbi : bi ∈ Finset.image (↑b) Finset.univ
⊢ ↑(↑(reindexFinsetRange b).repr (↑b i)) { val := bi, property := hbi } =
↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) } 1)
{ val := bi, property := hbi }
[PROOFSTEP]
rw [reindexFinsetRange, repr_reindex, Finsupp.mapDomain_equiv_apply, reindexRange_repr_self]
-- Porting note: replaced a `convert; refl` with `simp`
[GOAL]
case h.mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
i : ι
bi : M
hbi : bi ∈ Finset.image (↑b) Finset.univ
⊢ ↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ range ↑b) } 1)
(↑(Equiv.subtypeEquiv (Equiv.refl M) (_ : ∀ (a : M), a ∈ range ↑b ↔ a ∈ Finset.image (↑b) Finset.univ)).symm
{ val := bi, property := hbi }) =
↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) } 1)
{ val := bi, property := hbi }
[PROOFSTEP]
simp [Finsupp.single_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : Fintype ι
inst✝ : DecidableEq M
x : M
i : ι
h : optParam (↑b i ∈ Finset.image (↑b) Finset.univ) (_ : ↑b i ∈ Finset.image (↑b) Finset.univ)
⊢ ↑(↑(reindexFinsetRange b).repr x) { val := ↑b i, property := h } = ↑(↑b.repr x) i
[PROOFSTEP]
simp [reindexFinsetRange]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
l : ι →₀ R
hl : ↑(Finsupp.total ι M R ↑b) l = 0
⊢ ↑b.repr (↑(Finsupp.total ι M R ↑b) l) = 0
[PROOFSTEP]
rw [hl, LinearEquiv.map_zero]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x : M
b : Basis ι R M
inst✝ : Nontrivial M
⊢ Nonempty ι
[PROOFSTEP]
obtain ⟨x, y, ne⟩ : ∃ x y : M, x ≠ y := Nontrivial.exists_pair_ne
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
b : Basis ι R M
inst✝ : Nontrivial M
x y : M
ne : x ≠ y
⊢ Nonempty ι
[PROOFSTEP]
obtain ⟨i, _⟩ := not_forall.mp (mt b.ext_elem_iff.2 ne)
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
b : Basis ι R M
inst✝ : Nontrivial M
x y : M
ne : x ≠ y
i : ι
h✝ : ¬↑(↑b.repr x) i = ↑(↑b.repr y) i
⊢ Nonempty ι
[PROOFSTEP]
exact ⟨i⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
P : Submodule R M
b : Basis ι R { x // x ∈ P }
x : M
⊢ x ∈ P ↔ ∃ c, x = Finsupp.sum c fun i x => x • ↑(↑b i)
[PROOFSTEP]
conv_lhs =>
rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
P : Submodule R M
b : Basis ι R { x // x ∈ P }
x : M
| x ∈ P
[PROOFSTEP]
rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
P : Submodule R M
b : Basis ι R { x // x ∈ P }
x : M
| x ∈ P
[PROOFSTEP]
rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
P : Submodule R M
b : Basis ι R { x // x ∈ P }
x : M
| x ∈ P
[PROOFSTEP]
rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
P : Submodule R M
b : Basis ι R { x // x ∈ P }
x : M
⊢ x ∈ LinearMap.range (Finsupp.total ι M R (↑(Submodule.subtype P) ∘ ↑b)) ↔
∃ c, x = Finsupp.sum c fun i x => x • ↑(↑b i)
[PROOFSTEP]
simp [@eq_comm _ x, Function.comp, Finsupp.total_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f g : ι → M'
⊢ (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) =
(fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f +
(fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g
[PROOFSTEP]
refine' b.ext fun i => _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f g : ι → M'
i : ι
⊢ ↑((fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g))
(↑b i) =
↑((fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f +
(fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g)
(↑b i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c✝ : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
c : S
f : ι → M'
⊢ AddHom.toFun
{ toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
(c • f) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
f
[PROOFSTEP]
refine' b.ext fun i => _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c✝ : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
c : S
f : ι → M'
i : ι
⊢ ↑(AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
(c • f))
(↑b i) =
↑(↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
f)
(↑b i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
⊢ (fun f i => ↑f (↑b i))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) },
map_smul' :=
(_ :
∀ (c : S) (f : ι → M'),
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
(c • f) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
f) }.toAddHom
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x✝ : ι
⊢ (fun f i => ↑f (↑b i))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) },
map_smul' :=
(_ :
∀ (c : S) (f : ι → M'),
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
(c • f) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
f) }.toAddHom
f)
x✝ =
f x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : M →ₗ[R] M'
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) },
map_smul' :=
(_ :
∀ (c : S) (f : ι → M'),
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
(c • f) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
f) }.toAddHom
((fun f i => ↑f (↑b i)) f) =
f
[PROOFSTEP]
refine' b.ext fun i => _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : M →ₗ[R] M'
i : ι
⊢ ↑(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) },
map_smul' :=
(_ :
∀ (c : S) (f : ι → M'),
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
(c • f) =
↑(RingHom.id S) c •
AddHom.toFun
{
toFun := fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr),
map_add' :=
(_ :
∀ (f g : ι → M'),
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
(f + g) =
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
f +
(fun f =>
LinearMap.comp (Finsupp.total M' M' R id)
(LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr))
g) }
f) }.toAddHom
((fun f i => ↑f (↑b i)) f))
(↑b i) =
↑f (↑b i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x : M
⊢ ↑(↑(constr b S) f) x = Finsupp.sum (↑b.repr x) fun b a => a • f b
[PROOFSTEP]
simp only [constr_def, LinearMap.comp_apply, Finsupp.lmapDomain_apply, Finsupp.total_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x : M
⊢ (Finsupp.sum (Finsupp.mapDomain f (↑↑b.repr x)) fun i a => a • id i) = Finsupp.sum (↑b.repr x) fun b a => a • f b
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x : M
⊢ (Finsupp.sum (↑↑b.repr x) fun a m => m • id (f a)) = Finsupp.sum (↑b.repr x) fun b a => a • f b
[PROOFSTEP]
simp [add_smul]
[GOAL]
case h_zero
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x : M
⊢ ∀ (b : M'), 0 • id b = 0
[PROOFSTEP]
simp [add_smul]
[GOAL]
case h_add
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x✝ : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x : M
⊢ ∀ (b : M') (m₁ m₂ : R), (m₁ + m₂) • id b = m₁ • id b + m₂ • id b
[PROOFSTEP]
simp [add_smul]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
i : ι
⊢ ↑(↑(constr b S) f) (↑b i) = f i
[PROOFSTEP]
simp [Basis.constr_apply, b.repr_self]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
S : Type u_10
inst✝³ : Semiring S
inst✝² : Module S M'
inst✝¹ : SMulCommClass R S M'
inst✝ : Nonempty ι
f : ι → M'
⊢ LinearMap.range (↑(constr b S) f) = span R (range f)
[PROOFSTEP]
rw [b.constr_def S f, LinearMap.range_comp, LinearMap.range_comp, LinearEquiv.range, ← Finsupp.supported_univ,
Finsupp.lmapDomain_supported, ← Set.image_univ, ← Finsupp.span_image_eq_map_total, Set.image_id]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : M' →ₗ[R] M'
v : ι → M'
i : ι
⊢ ↑(↑(constr b S) (↑f ∘ v)) (↑b i) = ↑(LinearMap.comp f (↑(constr b S) v)) (↑b i)
[PROOFSTEP]
simp only [Basis.constr_basis, LinearMap.comp_apply, Function.comp]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
⊢ ↑(Basis.equiv b b' e) (↑b i) = ↑b' (↑e i)
[PROOFSTEP]
simp [Basis.equiv]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
i : ι
⊢ ↑(Basis.equiv b b (Equiv.refl ι)) (↑b i) = ↑(LinearEquiv.refl R M) (↑b i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e : ι ≃ ι'
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
i : ι'
⊢ ↑(Basis.equiv b b' e) (↑(LinearEquiv.symm (Basis.equiv b b' e)) (↑b' i)) =
↑(Basis.equiv b b' e) (↑(Basis.equiv b' b e.symm) (↑b' i))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
e✝ : ι ≃ ι'
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
ι'' : Type u_10
b'' : Basis ι'' R M''
e : ι ≃ ι'
e' : ι' ≃ ι''
i : ι
⊢ ↑(LinearEquiv.trans (Basis.equiv b b' e) (Basis.equiv b' b'' e')) (↑b i) = ↑(Basis.equiv b b'' (e.trans e')) (↑b i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x : M
b'✝ : Basis ι' R M'
e✝ : ι ≃ ι'
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
b : Basis ι R M
b' : Basis ι' R M'
e : ι ≃ ι'
⊢ Basis.map b (Basis.equiv b b' e) = reindex b' e.symm
[PROOFSTEP]
ext i
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
b✝ b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b'✝ : Basis ι' R M'
e✝ : ι ≃ ι'
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
b : Basis ι R M
b' : Basis ι' R M'
e : ι ≃ ι'
i : ι
⊢ ↑(Basis.map b (Basis.equiv b b' e)) i = ↑(reindex b' e.symm) i
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι
⊢ ↑b.repr (↑(Basis.prod b b') (Sum.inl i)).fst = ↑b.repr (↑b i)
[PROOFSTEP]
ext j
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i j : ι
⊢ ↑(↑b.repr (↑(Basis.prod b b') (Sum.inl i)).fst) j = ↑(↑b.repr (↑b i)) j
[PROOFSTEP]
simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply,
b.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe,
Finsupp.fst_sumFinsuppLEquivProdFinsupp]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i j : ι
⊢ ↑(Finsupp.single (Sum.inl i) 1) (Sum.inl j) = ↑(Finsupp.single i 1) j
[PROOFSTEP]
apply Finsupp.single_apply_left Sum.inl_injective
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι'
⊢ ↑b.repr (↑(Basis.prod b b') (Sum.inr i)).fst = ↑b.repr 0
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x : M
b' : Basis ι' R M'
i✝ : ι'
i : ι
⊢ ↑(↑b.repr (↑(Basis.prod b b') (Sum.inr i✝)).fst) i = ↑(↑b.repr 0) i
[PROOFSTEP]
simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply,
b.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe,
Finsupp.fst_sumFinsuppLEquivProdFinsupp, LinearEquiv.map_zero, Finsupp.zero_apply]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x : M
b' : Basis ι' R M'
i✝ : ι'
i : ι
⊢ ↑(Finsupp.single (Sum.inr i✝) 1) (Sum.inl i) = 0
[PROOFSTEP]
apply Finsupp.single_eq_of_ne Sum.inr_ne_inl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι
⊢ ↑b'.repr (↑(Basis.prod b b') (Sum.inl i)).snd = ↑b'.repr 0
[PROOFSTEP]
ext j
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι
j : ι'
⊢ ↑(↑b'.repr (↑(Basis.prod b b') (Sum.inl i)).snd) j = ↑(↑b'.repr 0) j
[PROOFSTEP]
simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply,
b'.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe,
Finsupp.snd_sumFinsuppLEquivProdFinsupp, LinearEquiv.map_zero, Finsupp.zero_apply]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι
j : ι'
⊢ ↑(Finsupp.single (Sum.inl i) 1) (Sum.inr j) = 0
[PROOFSTEP]
apply Finsupp.single_eq_of_ne Sum.inl_ne_inr
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι'
⊢ ↑b'.repr (↑(Basis.prod b b') (Sum.inr i)).snd = ↑b'.repr (↑b' i)
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x : M
b' : Basis ι' R M'
i✝ i : ι'
⊢ ↑(↑b'.repr (↑(Basis.prod b b') (Sum.inr i✝)).snd) i = ↑(↑b'.repr (↑b' i✝)) i
[PROOFSTEP]
simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply,
b'.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe,
Finsupp.snd_sumFinsuppLEquivProdFinsupp]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝¹ : ι
c : R
x : M
b' : Basis ι' R M'
i✝ i : ι'
⊢ ↑(Finsupp.single (Sum.inr i✝) 1) (Sum.inr i) = ↑(Finsupp.single i✝ 1) i
[PROOFSTEP]
apply Finsupp.single_apply_left Sum.inr_injective
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι ⊕ ι'
⊢ ↑(Basis.prod b b') i = Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') i
[PROOFSTEP]
ext
[GOAL]
case h₁
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι ⊕ ι'
⊢ (↑(Basis.prod b b') i).fst = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') i).fst
[PROOFSTEP]
cases i
[GOAL]
case h₂
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i✝ : ι
c : R
x : M
b' : Basis ι' R M'
i : ι ⊕ ι'
⊢ (↑(Basis.prod b b') i).snd = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') i).snd
[PROOFSTEP]
cases i
[GOAL]
case h₁.inl
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
val✝ : ι
⊢ (↑(Basis.prod b b') (Sum.inl val✝)).fst =
(Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inl val✝)).fst
[PROOFSTEP]
simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply,
prod_apply_inl_snd, prod_apply_inr_snd, Function.comp]
[GOAL]
case h₁.inr
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
val✝ : ι'
⊢ (↑(Basis.prod b b') (Sum.inr val✝)).fst =
(Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inr val✝)).fst
[PROOFSTEP]
simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply,
prod_apply_inl_snd, prod_apply_inr_snd, Function.comp]
[GOAL]
case h₂.inl
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
val✝ : ι
⊢ (↑(Basis.prod b b') (Sum.inl val✝)).snd =
(Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inl val✝)).snd
[PROOFSTEP]
simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply,
prod_apply_inl_snd, prod_apply_inr_snd, Function.comp]
[GOAL]
case h₂.inr
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b b₁ : Basis ι R M
i : ι
c : R
x : M
b' : Basis ι' R M'
val✝ : ι'
⊢ (↑(Basis.prod b b') (Sum.inr val✝)).snd =
(Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inr val✝)).snd
[PROOFSTEP]
simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply,
prod_apply_inl_snd, prod_apply_inr_snd, Function.comp]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c✝ : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
c : R
x : M
hcx : c • x = 0
⊢ c = 0 ∨ x = 0
[PROOFSTEP]
exact
or_iff_not_imp_right.mpr fun hx =>
by
rw [← b.total_repr x, ← LinearMap.map_smul] at hcx
have := linearIndependent_iff.mp b.linearIndependent (c • b.repr x) hcx
rw [smul_eq_zero] at this
exact this.resolve_right fun hr => hx (b.repr.map_eq_zero_iff.mp hr)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c✝ : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
c : R
x : M
hcx : c • x = 0
hx : ¬x = 0
⊢ c = 0
[PROOFSTEP]
rw [← b.total_repr x, ← LinearMap.map_smul] at hcx
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c✝ : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
c : R
x : M
hcx : ↑(Finsupp.total ι M R ↑b) (c • ↑b.repr x) = 0
hx : ¬x = 0
⊢ c = 0
[PROOFSTEP]
have := linearIndependent_iff.mp b.linearIndependent (c • b.repr x) hcx
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c✝ : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
c : R
x : M
hcx : ↑(Finsupp.total ι M R ↑b) (c • ↑b.repr x) = 0
hx : ¬x = 0
this : c • ↑b.repr x = 0
⊢ c = 0
[PROOFSTEP]
rw [smul_eq_zero] at this
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c✝ : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
c : R
x : M
hcx : ↑(Finsupp.total ι M R ↑b) (c • ↑b.repr x) = 0
hx : ¬x = 0
this : c = 0 ∨ ↑b.repr x = 0
⊢ c = 0
[PROOFSTEP]
exact this.resolve_right fun hr => hx (b.repr.map_eq_zero_iff.mp hr)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
rank_eq : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m = 0
⊢ N = ⊥
[PROOFSTEP]
rw [Submodule.eq_bot_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
rank_eq : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m = 0
⊢ ∀ (x : M), x ∈ N → x = 0
[PROOFSTEP]
intro x hx
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
rank_eq : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m = 0
x : M
hx : x ∈ N
⊢ x = 0
[PROOFSTEP]
contrapose! rank_eq with x_ne
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
x : M
hx : x ∈ N
x_ne : x ≠ 0
⊢ Exists fun {m} => ∃ v, LinearIndependent R (Subtype.val ∘ v) ∧ m ≠ 0
[PROOFSTEP]
refine' ⟨1, fun _ => ⟨x, hx⟩, _, one_ne_zero⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
x : M
hx : x ∈ N
x_ne : x ≠ 0
⊢ LinearIndependent R (Subtype.val ∘ fun x_1 => { val := x, property := hx })
[PROOFSTEP]
rw [Fintype.linearIndependent_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
x : M
hx : x ∈ N
x_ne : x ≠ 0
⊢ ∀ (g : Fin 1 → R),
∑ i : Fin 1, g i • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) i = 0 → ∀ (i : Fin 1), g i = 0
[PROOFSTEP]
rintro g sum_eq i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i✝ : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
x : M
hx : x ∈ N
x_ne : x ≠ 0
g : Fin 1 → R
sum_eq : ∑ i : Fin 1, g i • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) i = 0
i : Fin 1
⊢ g i = 0
[PROOFSTEP]
cases' i with _ hi
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
x : M
hx : x ∈ N
x_ne : x ≠ 0
g : Fin 1 → R
sum_eq : ∑ i : Fin 1, g i • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) i = 0
val✝ : ℕ
hi : val✝ < 1
⊢ g { val := val✝, isLt := hi } = 0
[PROOFSTEP]
simp only [Function.const_apply, Fin.default_eq_zero, Submodule.coe_mk, Finset.univ_unique, Function.comp_const,
Finset.sum_singleton] at sum_eq
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b✝ b₁ : Basis ι R M
i : ι
c : R
x✝ : M
inst✝ : NoZeroDivisors R
b : Basis ι R M
N : Submodule R M
x : M
hx : x ∈ N
x_ne : x ≠ 0
g : Fin 1 → R
val✝ : ℕ
hi : val✝ < 1
sum_eq : g 0 • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) 0 = 0
⊢ g { val := val✝, isLt := hi } = 0
[PROOFSTEP]
convert (b.smul_eq_zero.mp sum_eq).resolve_right x_ne
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R✝
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R✝ M
inst✝³ : AddCommMonoid M'
inst✝² : Module R✝ M'
b b₁ : Basis ι✝ R✝ M
i : ι✝
c : R✝
x✝ : M
ι : Type u_10
R : Type u_11
inst✝¹ : Unique ι
inst✝ : Semiring R
x y : R
⊢ (fun x => Finsupp.single default x) (x + y) =
(fun x => Finsupp.single default x) x + (fun x => Finsupp.single default x) y
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R✝
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R✝ M
inst✝³ : AddCommMonoid M'
inst✝² : Module R✝ M'
b b₁ : Basis ι✝ R✝ M
i : ι✝
c✝ : R✝
x✝ : M
ι : Type u_10
R : Type u_11
inst✝¹ : Unique ι
inst✝ : Semiring R
c x : R
⊢ AddHom.toFun
{ toFun := fun x => Finsupp.single default x,
map_add' :=
(_ : ∀ (x y : R), Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun x => Finsupp.single default x,
map_add' :=
(_ : ∀ (x y : R), Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) }
x
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R✝
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R✝ M
inst✝³ : AddCommMonoid M'
inst✝² : Module R✝ M'
b b₁ : Basis ι✝ R✝ M
i : ι✝
c : R✝
x✝ : M
ι : Type u_10
R : Type u_11
inst✝¹ : Unique ι
inst✝ : Semiring R
x : R
⊢ (fun f => ↑f default)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => Finsupp.single default x,
map_add' :=
(_ :
∀ (x y : R),
Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) },
map_smul' := (_ : ∀ (c x : R), Finsupp.single default (c * x) = c • Finsupp.single default x) }.toAddHom
x) =
x
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R✝
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R✝ M
inst✝³ : AddCommMonoid M'
inst✝² : Module R✝ M'
b b₁ : Basis ι✝ R✝ M
i : ι✝
c : R✝
x : M
ι : Type u_10
R : Type u_11
inst✝¹ : Unique ι
inst✝ : Semiring R
f : ι →₀ R
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => Finsupp.single default x,
map_add' :=
(_ :
∀ (x y : R),
Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) },
map_smul' := (_ : ∀ (c x : R), Finsupp.single default (c * x) = c • Finsupp.single default x) }.toAddHom
((fun f => ↑f default) f))
default =
↑f default
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R✝
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R✝ M
inst✝³ : AddCommMonoid M'
inst✝² : Module R✝ M'
b b₁ : Basis ι✝ R✝ M
i✝ : ι✝
c : R✝
x : M
ι : Type u_10
R : Type u_11
inst✝¹ : Unique ι
inst✝ : Semiring R
i : ι
⊢ ↑(Basis.singleton ι R).repr 1 = Finsupp.single i 1
[PROOFSTEP]
simp [Basis.singleton]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R✝
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R✝ M
inst✝³ : AddCommMonoid M'
inst✝² : Module R✝ M'
b b₁ : Basis ι✝ R✝ M
i✝ : ι✝
c : R✝
x✝ : M
ι : Type u_10
R : Type u_11
inst✝¹ : Unique ι
inst✝ : Semiring R
x : R
i : ι
⊢ ↑(↑(Basis.singleton ι R).repr x) i = x
[PROOFSTEP]
simp [Basis.singleton, Unique.eq_default i]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
⊢ Nonempty (Basis ι R M) ↔ ∃ x x_1, ∀ (y : M), ∃ r, r • x = y
[PROOFSTEP]
constructor
[GOAL]
case mp
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
⊢ Nonempty (Basis ι R M) → ∃ x x_1, ∀ (y : M), ∃ r, r • x = y
[PROOFSTEP]
rintro ⟨b⟩
[GOAL]
case mp.intro
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b✝ b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
b : Basis ι R M
⊢ ∃ x x_1, ∀ (y : M), ∃ r, r • x = y
[PROOFSTEP]
refine' ⟨b default, b.linearIndependent.ne_zero _, _⟩
[GOAL]
case mp.intro
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b✝ b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
b : Basis ι R M
⊢ ∀ (y : M), ∃ r, r • ↑b default = y
[PROOFSTEP]
simpa [span_singleton_eq_top_iff, Set.range_unique] using b.span_eq
[GOAL]
case mpr
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
⊢ (∃ x x_1, ∀ (y : M), ∃ r, r • x = y) → Nonempty (Basis ι R M)
[PROOFSTEP]
rintro ⟨x, nz, w⟩
[GOAL]
case mpr.intro.intro
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
⊢ Nonempty (Basis ι R M)
[PROOFSTEP]
refine
⟨ofRepr <|
LinearEquiv.symm
{ toFun := fun f => f default • x
invFun := fun y => Finsupp.single default (w y).choose
left_inv := fun f => Finsupp.unique_ext ?_
right_inv := fun y => ?_
map_add' := fun y z => ?_
map_smul' := fun c y => ?_ }⟩
[GOAL]
case mpr.intro.intro.refine_1
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
y z : ι →₀ R
⊢ (fun f => ↑f default • x) (y + z) = (fun f => ↑f default • x) y + (fun f => ↑f default • x) z
[PROOFSTEP]
simp [Finsupp.add_apply, add_smul]
[GOAL]
case mpr.intro.intro.refine_2
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c✝ : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
c : R
y : ι →₀ R
⊢ AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
(c • y) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
y
[PROOFSTEP]
simp only [Finsupp.coe_smul, Pi.smul_apply, RingHom.id_apply]
[GOAL]
case mpr.intro.intro.refine_2
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c✝ : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
c : R
y : ι →₀ R
⊢ (c • ↑y default) • x = c • ↑y default • x
[PROOFSTEP]
rw [← smul_assoc, smul_eq_mul]
[GOAL]
case mpr.intro.intro.refine_3
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
f : ι →₀ R
⊢ ↑((fun y => Finsupp.single default (Exists.choose (_ : ∃ r, r • x = y)))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) },
map_smul' :=
(_ :
∀ (c : R) (y : ι →₀ R),
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
(c • y) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ :
∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
y) }.toAddHom
f))
default =
↑f default
[PROOFSTEP]
refine' smul_left_injective _ nz _
[GOAL]
case mpr.intro.intro.refine_3
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
f : ι →₀ R
⊢ (fun c => c • x)
(↑((fun y => Finsupp.single default (Exists.choose (_ : ∃ r, r • x = y)))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) },
map_smul' :=
(_ :
∀ (c : R) (y : ι →₀ R),
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ :
∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
(c • y) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ :
∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
y) }.toAddHom
f))
default) =
(fun c => c • x) (↑f default)
[PROOFSTEP]
simp only [Finsupp.single_eq_same]
[GOAL]
case mpr.intro.intro.refine_3
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
f : ι →₀ R
⊢ Exists.choose
(_ :
∃ r,
r • x =
AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) },
map_smul' :=
(_ :
∀ (c : R) (y : ι →₀ R),
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ :
∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
(c • y) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ :
∀ (y z : ι →₀ R),
(↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
y) }.toAddHom
f) •
x =
↑f default • x
[PROOFSTEP]
exact (w (f default • x)).choose_spec
[GOAL]
case mpr.intro.intro.refine_4
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
y : M
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f default • x,
map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) },
map_smul' :=
(_ :
∀ (c : R) (y : ι →₀ R),
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
(c • y) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => ↑f default • x,
map_add' :=
(_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }
y) }.toAddHom
((fun y => Finsupp.single default (Exists.choose (_ : ∃ r, r • x = y))) y) =
y
[PROOFSTEP]
simp only [Finsupp.single_eq_same]
[GOAL]
case mpr.intro.intro.refine_4
ι✝ : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M✝ : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R✝ M'
b b₁ : Basis ι✝ R✝ M✝
i : ι✝
c : R✝
x✝ : M✝
R : Type u_10
M : Type u_11
inst✝⁵ : Ring R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
ι : Type u_12
inst✝ : Unique ι
x : M
nz : x ≠ 0
w : ∀ (y : M), ∃ r, r • x = y
y : M
⊢ Exists.choose (_ : ∃ r, r • x = y) • x = y
[PROOFSTEP]
exact (w y).choose_spec
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
inst✝² : Fintype ι
b✝ b : Basis ι R M
inst✝¹ : Fintype R
inst✝ : Fintype M
⊢ card M = card R ^ card ι
[PROOFSTEP]
classical calc
card M = card (ι → R) := card_congr b.equivFun.toEquiv
_ = card R ^ card ι := card_fun
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid M'
inst✝³ : Module R M'
inst✝² : Fintype ι
b✝ b : Basis ι R M
inst✝¹ : Fintype R
inst✝ : Fintype M
⊢ card M = card R ^ card ι
[PROOFSTEP]
calc
card M = card (ι → R) := card_congr b.equivFun.toEquiv
_ = card R ^ card ι := card_fun
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
x : ι → R
⊢ ↑(LinearEquiv.symm (equivFun b)) x = ∑ i : ι, x i • ↑b i
[PROOFSTEP]
simp [Basis.equivFun, Finsupp.total_apply, Finsupp.sum_fintype, Finsupp.equivFunOnFinite]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
u : M
⊢ ∑ i : ι, ↑(equivFun b) u i • ↑b i = u
[PROOFSTEP]
conv_rhs => rw [← b.total_repr u]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
u : M
| u
[PROOFSTEP]
rw [← b.total_repr u]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
u : M
| u
[PROOFSTEP]
rw [← b.total_repr u]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
u : M
| u
[PROOFSTEP]
rw [← b.total_repr u]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
u : M
⊢ ∑ i : ι, ↑(equivFun b) u i • ↑b i = ↑(Finsupp.total ι M R ↑b) (↑b.repr u)
[PROOFSTEP]
simp [Finsupp.total_apply, Finsupp.sum_fintype, b.equivFun_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
inst✝¹ : Fintype ι
b : Basis ι R M
inst✝ : DecidableEq ι
i j : ι
⊢ ↑(equivFun b) (↑b i) j = if i = j then 1 else 0
[PROOFSTEP]
rw [b.equivFun_apply, b.repr_self_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) = c
[PROOFSTEP]
ext j
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j : ι
⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) j = c j
[PROOFSTEP]
simp only [map_sum, LinearEquiv.map_smul, repr_self, Finsupp.smul_single, smul_eq_mul, mul_one, Finset.sum_apply']
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j : ι
⊢ ∑ x : ι, ↑(Finsupp.single x (c x)) j = c j
[PROOFSTEP]
rw [Finset.sum_eq_single j, Finsupp.single_eq_same]
[GOAL]
case h.h₀
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j : ι
⊢ ∀ (b : ι), b ∈ Finset.univ → b ≠ j → ↑(Finsupp.single b (c b)) j = 0
[PROOFSTEP]
rintro i - hi
[GOAL]
case h.h₀
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j i : ι
hi : i ≠ j
⊢ ↑(Finsupp.single i (c i)) j = 0
[PROOFSTEP]
exact Finsupp.single_eq_of_ne hi
[GOAL]
case h.h₁
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j : ι
⊢ ¬j ∈ Finset.univ → ↑(Finsupp.single j (c j)) j = 0
[PROOFSTEP]
intros
[GOAL]
case h.h₁
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j : ι
a✝ : ¬j ∈ Finset.univ
⊢ ↑(Finsupp.single j (c j)) j = 0
[PROOFSTEP]
have := Finset.mem_univ j
[GOAL]
case h.h₁
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
c : ι → R
j : ι
a✝ : ¬j ∈ Finset.univ
this : j ∈ Finset.univ
⊢ ↑(Finsupp.single j (c j)) j = 0
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
inst✝¹ : Fintype ι
b : Basis ι R M
inst✝ : DecidableEq ι
e : M ≃ₗ[R] ι → R
i j : ι
⊢ ↑e (↑(ofEquivFun e) i) j = ↑e (↑(LinearEquiv.symm e) (update 0 i 1)) j
[PROOFSTEP]
simp [Basis.ofEquivFun, ← Finsupp.single_eq_pi_single, Finsupp.single_eq_update]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b v : Basis ι R M
⊢ ofEquivFun (equivFun v) = v
[PROOFSTEP]
classical
ext j
simp only [Basis.equivFun_symm_apply, Basis.coe_ofEquivFun]
simp_rw [Function.update_apply, ite_smul]
simp only [Finset.mem_univ, if_true, Pi.zero_apply, one_smul, Finset.sum_ite_eq', zero_smul]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b v : Basis ι R M
⊢ ofEquivFun (equivFun v) = v
[PROOFSTEP]
ext j
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b v : Basis ι R M
j : ι
⊢ ↑(ofEquivFun (equivFun v)) j = ↑v j
[PROOFSTEP]
simp only [Basis.equivFun_symm_apply, Basis.coe_ofEquivFun]
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b v : Basis ι R M
j : ι
⊢ ∑ x : ι, update 0 j 1 x • ↑v x = ↑v j
[PROOFSTEP]
simp_rw [Function.update_apply, ite_smul]
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b v : Basis ι R M
j : ι
⊢ (∑ x : ι, if x = j then 1 • ↑v x else OfNat.ofNat 0 x • ↑v x) = ↑v j
[PROOFSTEP]
simp only [Finset.mem_univ, if_true, Pi.zero_apply, one_smul, Finset.sum_ite_eq', zero_smul]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
e : M ≃ₗ[R] ι → R
⊢ equivFun (ofEquivFun e) = e
[PROOFSTEP]
ext j
[GOAL]
case h.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
inst✝ : Fintype ι
b : Basis ι R M
e : M ≃ₗ[R] ι → R
j : M
x✝ : ι
⊢ ↑(equivFun (ofEquivFun e)) j x✝ = ↑e j x✝
[PROOFSTEP]
simp_rw [Basis.equivFun_apply, Basis.ofEquivFun_repr_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
inst✝³ : Fintype ι
b : Basis ι R M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
f : ι → M'
x : M
⊢ ↑(↑(constr b S) f) x = ∑ i : ι, ↑(equivFun b) x i • f i
[PROOFSTEP]
simp [b.constr_apply, b.equivFun_apply, Finsupp.sum_fintype]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
inst✝³ : Fintype ι
b✝ : Basis ι R M
S : Type u_10
inst✝² : Semiring S
inst✝¹ : Module S M'
inst✝ : SMulCommClass R S M'
P : Submodule R M
b : Basis ι R { x // x ∈ P }
x : M
c : ι → R
⊢ (x = Finsupp.sum (↑Finsupp.equivFunOnFinite.symm c) fun i x => x • ↑(↑b i)) ↔ x = ∑ i : ι, c i • ↑(↑b i)
[PROOFSTEP]
simp [Finsupp.sum_fintype, Finsupp.equivFunOnFinite]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b : Basis ι R M
b' : Basis ι' R M'
f : M → M'
g : M' → M
hf : ∀ (i : ι), f (↑b i) ∈ range ↑b'
hg : ∀ (i : ι'), g (↑b' i) ∈ range ↑b
hgf : ∀ (i : ι), g (f (↑b i)) = ↑b i
hfg : ∀ (i : ι'), f (g (↑b' i)) = ↑b' i
src✝ : (fun x => M →ₗ[R] M') (f ∘ ↑b) := ↑(constr b R) (f ∘ ↑b)
i : ι
i' : ι'
hi' : ↑b' i' = f (↑b i)
⊢ ↑(LinearMap.comp (↑(constr b' R) (g ∘ ↑b')) (↑(constr b R) (f ∘ ↑b))) (↑b i) = ↑LinearMap.id (↑b i)
[PROOFSTEP]
rw [LinearMap.comp_apply, b.constr_basis, Function.comp_apply, ← hi', b'.constr_basis, Function.comp_apply, hi', hgf,
LinearMap.id_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
b : Basis ι R M
b' : Basis ι' R M'
f : M → M'
g : M' → M
hf : ∀ (i : ι), f (↑b i) ∈ range ↑b'
hg : ∀ (i : ι'), g (↑b' i) ∈ range ↑b
hgf : ∀ (i : ι), g (f (↑b i)) = ↑b i
hfg : ∀ (i : ι'), f (g (↑b' i)) = ↑b' i
src✝ : (fun x => M →ₗ[R] M') (f ∘ ↑b) := ↑(constr b R) (f ∘ ↑b)
i : ι'
i' : ι
hi' : ↑b i' = g (↑b' i)
⊢ ↑(LinearMap.comp (↑(constr b R) (f ∘ ↑b)) (↑(constr b' R) (g ∘ ↑b'))) (↑b' i) = ↑LinearMap.id (↑b' i)
[PROOFSTEP]
rw [LinearMap.comp_apply, b'.constr_basis, Function.comp_apply, ← hi', b.constr_basis, Function.comp_apply, hi', hfg,
LinearMap.id_apply]
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
⊢ ∑ j : ι', ↑(↑b.repr (↑b' j)) i * ↑(↑b'.repr x) j = ↑(↑b.repr x) i
[PROOFSTEP]
conv_rhs => rw [← b'.sum_repr x]
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
| ↑(↑b.repr x) i
[PROOFSTEP]
rw [← b'.sum_repr x]
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
| ↑(↑b.repr x) i
[PROOFSTEP]
rw [← b'.sum_repr x]
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
| ↑(↑b.repr x) i
[PROOFSTEP]
rw [← b'.sum_repr x]
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
⊢ ∑ j : ι', ↑(↑b.repr (↑b' j)) i * ↑(↑b'.repr x) j = ↑(↑b.repr (∑ i : ι', ↑(↑b'.repr x) i • ↑b' i)) i
[PROOFSTEP]
simp_rw [LinearEquiv.map_sum, LinearEquiv.map_smul, Finset.sum_apply']
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
⊢ ∑ x_1 : ι', ↑(↑b.repr (↑b' x_1)) i * ↑(↑b'.repr x) x_1 = ∑ x_1 : ι', ↑(↑(↑b'.repr x) x_1 • ↑b.repr (↑b' x_1)) i
[PROOFSTEP]
refine' Finset.sum_congr rfl fun j _ => _
[GOAL]
ι : Type u_1
ι'✝ : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝⁵ : CommSemiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M'
b : Basis ι R M
b'✝ : Basis ι'✝ R M'
ι' : Type u_10
inst✝ : Fintype ι'
b' : Basis ι' R M
x : M
i : ι
j : ι'
x✝ : j ∈ Finset.univ
⊢ ↑(↑b.repr (↑b' j)) i * ↑(↑b'.repr x) j = ↑(↑(↑b'.repr x) j • ↑b.repr (↑b' j)) i
[PROOFSTEP]
rw [Finsupp.smul_apply, smul_eq_mul, mul_comm]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
⊢ Set.range ↑b = w
[PROOFSTEP]
apply le_antisymm h
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
⊢ w ≤ Set.range ↑b
[PROOFSTEP]
intro x p
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
⊢ x ∈ Set.range ↑b
[PROOFSTEP]
by_contra q
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
⊢ False
[PROOFSTEP]
have e := b.total_repr x
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
e : ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x
⊢ False
[PROOFSTEP]
let u : ι ↪ w := ⟨fun i => ⟨b i, h ⟨i, rfl⟩⟩, fun i i' r => b.injective (by simpa only [Subtype.mk_eq_mk] using r)⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
e : ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x
i i' : ι
r : (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i'
⊢ ↑b i = ↑b i'
[PROOFSTEP]
simpa only [Subtype.mk_eq_mk] using r
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
e : ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
⊢ False
[PROOFSTEP]
simp_rw [Finsupp.total_apply] at e
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
e : (Finsupp.sum (↑b.repr x) fun i a => a • ↑b i) = x
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
⊢ False
[PROOFSTEP]
change ((b.repr x).sum fun (i : ι) (a : R) ↦ a • (u i : M)) = ((⟨x, p⟩ : w) : M) at e
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
e : (Finsupp.sum (↑b.repr x) fun i a => a • ↑(↑u i)) = ↑{ val := x, property := p }
⊢ False
[PROOFSTEP]
rw [← Finsupp.sum_embDomain (f := u) (g := fun x r ↦ r • (x : M)), ← Finsupp.total_apply] at e
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p }
⊢ False
[PROOFSTEP]
refine' hi.total_ne_of_not_mem_support _ _ e
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p }
⊢ ¬{ val := x, property := p } ∈ (Finsupp.embDomain u (↑b.repr x)).support
[PROOFSTEP]
simp only [Finset.mem_map, Finsupp.support_embDomain]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p }
⊢ ¬∃ a,
a ∈ (↑b.repr x).support ∧
↑{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
a =
{ val := x, property := p }
[PROOFSTEP]
rintro ⟨j, -, W⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p }
j : ι
W :
↑{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
j =
{ val := x, property := p }
⊢ False
[PROOFSTEP]
simp only [Embedding.coeFn_mk, Subtype.mk_eq_mk] at W
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x✝ y : M
b✝ : Basis ι R M
inst✝ : Nontrivial R
b : Basis ι R M
w : Set M
hi : LinearIndependent R Subtype.val
h : Set.range ↑b ≤ w
x : M
p : x ∈ w
q : ¬x ∈ Set.range ↑b
u : ι ↪ ↑w :=
{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) },
inj' :=
(_ :
∀ (i i' : ι),
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i =
(fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' →
i = i') }
e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p }
j : ι
W : ↑b j = x
⊢ False
[PROOFSTEP]
apply q ⟨j, W⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i : ι
⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i 1) = v i
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i : ι
⊢ ↑(↑(LinearIndependent.repr hli) { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) i = 1
[PROOFSTEP]
simp [hli.repr_eq_single i]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i j : ι
h : j ≠ i
⊢ ↑(↑(LinearIndependent.repr hli) { val := v j, property := (_ : v j ∈ ↑(span R (Set.range v))) }) i = 0
[PROOFSTEP]
simp [hli.repr_eq_single j, h]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
inst✝ : DecidableEq ι
i j : ι
⊢ ↑(coord (Basis.mk hli hsp) i) (v j) = if j = i then 1 else 0
[PROOFSTEP]
cases' eq_or_ne j i with h h
[GOAL]
case inl
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
inst✝ : DecidableEq ι
i j : ι
h : j = i
⊢ ↑(coord (Basis.mk hli hsp) i) (v j) = if j = i then 1 else 0
[PROOFSTEP]
simp only [h, if_true, eq_self_iff_true, mk_coord_apply_eq i]
[GOAL]
case inr
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M
inst✝³ : Module R₂ M
inst✝² : Module R M'
inst✝¹ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
inst✝ : DecidableEq ι
i j : ι
h : j ≠ i
⊢ ↑(coord (Basis.mk hli hsp) i) (v j) = if j = i then 1 else 0
[PROOFSTEP]
simp only [h, if_false, mk_coord_apply_ne h]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
hli : LinearIndependent R v
⊢ ⊤ ≤ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
intro x _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
have : ∀ i, v i ∈ span R (range v) := fun i ↦ subset_span (Set.mem_range_self _)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
have h₁ : (((↑) : span R (range v) → M) '' range fun i => ⟨v i, this i⟩) = range v :=
by
simp only [SetLike.coe_sort_coe, ← Set.range_comp]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
⊢ (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
[PROOFSTEP]
simp only [SetLike.coe_sort_coe, ← Set.range_comp]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
⊢ Set.range (Subtype.val ∘ fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
have h₂ : map (Submodule.subtype (span R (range v))) (span R (range fun i => ⟨v i, this i⟩)) = span R (range v) :=
by
rw [← span_image, Submodule.coeSubtype]
-- Porting note: why doesn't `rw [h₁]` work here?
exact congr_arg _ h₁
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
⊢ map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
[PROOFSTEP]
rw [← span_image, Submodule.coeSubtype]
-- Porting note: why doesn't `rw [h₁]` work here?
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
⊢ span R (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) =
span R (Set.range v)
[PROOFSTEP]
exact congr_arg _ h₁
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
have h₃ : (x : M) ∈ map (Submodule.subtype (span R (range v))) (span R (Set.range fun i => Subtype.mk (v i) _)) :=
by
rw [h₂]
apply Subtype.mem x
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
⊢ ↑x ∈
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : ?m.886970 (v i)) }))
[PROOFSTEP]
rw [h₂]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
⊢ ↑x ∈ span R (Set.range v)
[PROOFSTEP]
apply Subtype.mem x
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
h₃ :
↑x ∈
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }))
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
rcases mem_map.1 h₃ with ⟨y, hy₁, hy₂⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y✝ : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
h₃ :
↑x ∈
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }))
y : { x // x ∈ span R (Set.range v) }
hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })
hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
have h_x_eq_y : x = y := by
rw [Subtype.ext_iff, ← hy₂]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y✝ : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
h₃ :
↑x ∈
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }))
y : { x // x ∈ span R (Set.range v) }
hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })
hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x
⊢ x = y
[PROOFSTEP]
rw [Subtype.ext_iff, ← hy₂]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y✝ : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
h₃ :
↑x ∈
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }))
y : { x // x ∈ span R (Set.range v) }
hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })
hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x
⊢ ↑(Submodule.subtype (span R (Set.range v))) y = ↑y
[PROOFSTEP]
simp
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝ y✝ : M
b : Basis ι R M
hli : LinearIndependent R v
x : { x // x ∈ span R (Set.range v) }
a✝ : x ∈ ⊤
this : ∀ (i : ι), v i ∈ span R (Set.range v)
h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v
h₂ :
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) =
span R (Set.range v)
h₃ :
↑x ∈
map (Submodule.subtype (span R (Set.range v)))
(span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }))
y : { x // x ∈ span R (Set.range v) }
hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })
hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x
h_x_eq_y : x = y
⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) })
[PROOFSTEP]
rwa [h_x_eq_y]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
⊢ span R (Set.range (w • v)) = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
⊢ ⊤ ≤ span R (Set.range (w • v))
[PROOFSTEP]
intro j hj
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
j : M
hj : j ∈ ⊤
⊢ j ∈ span R (Set.range (w • v))
[PROOFSTEP]
rw [← hv] at hj
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
j : M
hj : j ∈ span R (Set.range v)
⊢ j ∈ span R (Set.range (w • v))
[PROOFSTEP]
rw [Submodule.mem_span] at hj ⊢
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
j : M
hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p
⊢ ∀ (p : Submodule R M), Set.range (w • v) ⊆ ↑p → j ∈ p
[PROOFSTEP]
refine' fun p hp => hj p fun u hu => _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
j : M
hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p
p : Submodule R M
hp : Set.range (w • v) ⊆ ↑p
u : M
hu : u ∈ Set.range v
⊢ u ∈ ↑p
[PROOFSTEP]
obtain ⟨i, rfl⟩ := hu
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
j : M
hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p
p : Submodule R M
hp : Set.range (w • v) ⊆ ↑p
i : ι
⊢ v i ∈ ↑p
[PROOFSTEP]
have : ((w i)⁻¹ • (1 : R)) • w i • v i ∈ p := p.smul_mem ((w i)⁻¹ • (1 : R)) (hp ⟨i, rfl⟩)
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v✝ : ι → M
inst✝¹² : Ring R
inst✝¹¹ : CommRing R₂
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : AddCommGroup M'
inst✝⁸ : AddCommGroup M''
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
c d : R
x y : M
b : Basis ι R M
G : Type u_10
inst✝³ : Group G
inst✝² : DistribMulAction G R
inst✝¹ : DistribMulAction G M
inst✝ : IsScalarTower G R M
v : ι → M
hv : span R (Set.range v) = ⊤
w : ι → G
j : M
hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p
p : Submodule R M
hp : Set.range (w • v) ⊆ ↑p
i : ι
this : ((w i)⁻¹ • 1) • w i • v i ∈ p
⊢ v i ∈ ↑p
[PROOFSTEP]
rwa [smul_one_smul, inv_smul_smul] at this
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i : ι
⊢ coord (unitsSMul e w) i = (w i)⁻¹ • coord e i
[PROOFSTEP]
classical
apply e.ext
intro j
trans ((unitsSMul e w).coord i) ((w j)⁻¹ • (unitsSMul e w) j)
· congr
simp [Basis.unitsSMul, ← mul_smul]
simp only [Basis.coord_apply, LinearMap.smul_apply, Basis.repr_self, Units.smul_def, SMulHomClass.map_smul,
Finsupp.single_apply]
split_ifs with h <;> simp [h]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i : ι
⊢ coord (unitsSMul e w) i = (w i)⁻¹ • coord e i
[PROOFSTEP]
apply e.ext
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i : ι
⊢ ∀ (i_1 : ι), ↑(coord (unitsSMul e w) i) (↑e i_1) = ↑((w i)⁻¹ • coord e i) (↑e i_1)
[PROOFSTEP]
intro j
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
⊢ ↑(coord (unitsSMul e w) i) (↑e j) = ↑((w i)⁻¹ • coord e i) (↑e j)
[PROOFSTEP]
trans ((unitsSMul e w).coord i) ((w j)⁻¹ • (unitsSMul e w) j)
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
⊢ ↑(coord (unitsSMul e w) i) (↑e j) = ↑(coord (unitsSMul e w) i) ((w j)⁻¹ • ↑(unitsSMul e w) j)
[PROOFSTEP]
congr
[GOAL]
case h.e_6.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
⊢ ↑e j = (w j)⁻¹ • ↑(unitsSMul e w) j
[PROOFSTEP]
simp [Basis.unitsSMul, ← mul_smul]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
⊢ ↑(coord (unitsSMul e w) i) ((w j)⁻¹ • ↑(unitsSMul e w) j) = ↑((w i)⁻¹ • coord e i) (↑e j)
[PROOFSTEP]
simp only [Basis.coord_apply, LinearMap.smul_apply, Basis.repr_self, Units.smul_def, SMulHomClass.map_smul,
Finsupp.single_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
⊢ ↑(↑(w j)⁻¹ • Finsupp.single j 1) i = ↑(w i)⁻¹ • if j = i then 1 else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
h : j = i
⊢ ↑(↑(w j)⁻¹ • Finsupp.single j 1) i = ↑(w i)⁻¹ • 1
[PROOFSTEP]
simp [h]
[GOAL]
case neg
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y : M
b : Basis ι R M
e : Basis ι R₂ M
w : ι → R₂ˣ
i j : ι
h : ¬j = i
⊢ ↑(↑(w j)⁻¹ • Finsupp.single j 1) i = ↑(w i)⁻¹ • 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
⊢ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N
[PROOFSTEP]
rw [Set.range_comp, Submodule.span_image, b.span_eq, Submodule.map_subtype_top]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N
⊢ ∀ (c : R) (y_1 : { x // x ∈ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) }), c • y + ↑y_1 = 0 → c = 0
[PROOFSTEP]
rintro c ⟨x, hx⟩ hc
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c✝ d : R
x✝ y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N
c : R
x : M
hx : x ∈ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b))
hc : c • y + ↑{ val := x, property := hx } = 0
⊢ c = 0
[PROOFSTEP]
rw [span_b] at hx
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c✝ d : R
x✝ y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N
c : R
x : M
hx✝ : x ∈ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b))
hx : x ∈ N
hc : c • y + ↑{ val := x, property := hx✝ } = 0
⊢ c = 0
[PROOFSTEP]
exact hli c x hx hc
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝¹ y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N
x : M
x✝ : x ∈ ⊤
⊢ x ∈ span R (Set.range (Fin.cons y (↑(Submodule.subtype N) ∘ ↑b)))
[PROOFSTEP]
rw [Fin.range_cons, Submodule.mem_span_insert', span_b]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x✝¹ y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N
x : M
x✝ : x ∈ ⊤
⊢ ∃ a, x + a • y ∈ N
[PROOFSTEP]
exact hsp x
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
⊢ ↑(mkFinCons y b hli hsp) = Fin.cons y (Subtype.val ∘ ↑b)
[PROOFSTEP]
unfold mkFinCons
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁸ : Ring R
inst✝⁷ : CommRing R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R₂ M
inst✝¹ : Module R M'
inst✝ : Module R M''
c d : R
x y✝ : M
b✝ : Basis ι R M
n : ℕ
N : Submodule R M
y : M
b : Basis (Fin n) R { x // x ∈ N }
hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0
hsp : ∀ (z : M), ∃ c, z + c • y ∈ N
⊢ ↑(let_fun span_b := (_ : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N);
Basis.mk (_ : LinearIndependent R (Fin.cons y (↑(Submodule.subtype N) ∘ ↑b)))
(_ : ∀ (x : M), x ∈ ⊤ → x ∈ span R (Set.range (Fin.cons y (↑(Submodule.subtype N) ∘ ↑b))))) =
Fin.cons y (Subtype.val ∘ ↑b)
[PROOFSTEP]
exact coe_mk (v := Fin.cons y (N.subtype ∘ b)) _ _
[GOAL]
ι : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R✝
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R✝ M
inst✝³ : Module R₂ M
inst✝² : Module R✝ M'
inst✝¹ : Module R✝ M''
c d : R✝
x y : M
b : Basis ι R✝ M
R : Type u_10
inst✝ : Semiring R
⊢ ↑(Basis.finTwoProd R) 0 = (1, 0)
[PROOFSTEP]
simp [Basis.finTwoProd, LinearEquiv.finTwoArrow]
[GOAL]
ι : Type u_1
ι' : Type u_2
R✝ : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
v : ι → M
inst✝⁹ : Ring R✝
inst✝⁸ : CommRing R₂
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R✝ M
inst✝³ : Module R₂ M
inst✝² : Module R✝ M'
inst✝¹ : Module R✝ M''
c d : R✝
x y : M
b : Basis ι R✝ M
R : Type u_10
inst✝ : Semiring R
⊢ ↑(Basis.finTwoProd R) 1 = (0, 1)
[PROOFSTEP]
simp [Basis.finTwoProd, LinearEquiv.finTwoArrow]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
⊢ P N
[PROOFSTEP]
haveI : DecidableEq M := Classical.decEq M
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
⊢ P N
[PROOFSTEP]
have Pbot : P ⊥ := by
apply ih
intro N _ x x_mem x_ortho
exfalso
rw [mem_bot] at x_mem
simpa [x_mem] using x_ortho 1 0 N.zero_mem
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
⊢ P ⊥
[PROOFSTEP]
apply ih
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
⊢ (N' : Submodule R M) → N' ≤ ⊥ → (x : M) → x ∈ ⊥ → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N'
[PROOFSTEP]
intro N _ x x_mem x_ortho
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N✝ : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
N : Submodule R M
a✝ : N ≤ ⊥
x : M
x_mem : x ∈ ⊥
x_ortho : ∀ (c : R) (y : M), y ∈ N → c • x + y = 0 → c = 0
⊢ P N
[PROOFSTEP]
exfalso
[GOAL]
case a.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N✝ : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
N : Submodule R M
a✝ : N ≤ ⊥
x : M
x_mem : x ∈ ⊥
x_ortho : ∀ (c : R) (y : M), y ∈ N → c • x + y = 0 → c = 0
⊢ False
[PROOFSTEP]
rw [mem_bot] at x_mem
[GOAL]
case a.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N✝ : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
N : Submodule R M
a✝ : N ≤ ⊥
x : M
x_mem : x = 0
x_ortho : ∀ (c : R) (y : M), y ∈ N → c • x + y = 0 → c = 0
⊢ False
[PROOFSTEP]
simpa [x_mem] using x_ortho 1 0 N.zero_mem
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
Pbot : P ⊥
⊢ P N
[PROOFSTEP]
induction' n with n rank_ih generalizing N
[GOAL]
case zero
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
Pbot : P ⊥
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.zero
⊢ P N
[PROOFSTEP]
suffices N = ⊥ by rwa [this]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this✝ : DecidableEq M
Pbot : P ⊥
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.zero
this : N = ⊥
⊢ P N
[PROOFSTEP]
rwa [this]
[GOAL]
case zero
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
this : DecidableEq M
Pbot : P ⊥
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.zero
⊢ N = ⊥
[PROOFSTEP]
apply Basis.eq_bot_of_rank_eq_zero b _ fun m hv => le_zero_iff.mp (rank_le _ hv)
[GOAL]
case succ
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
⊢ P N
[PROOFSTEP]
apply ih
[GOAL]
case succ.a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
⊢ (N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N'
[PROOFSTEP]
intro N' N'_le x x_mem x_ortho
[GOAL]
case succ.a
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
⊢ P N'
[PROOFSTEP]
apply rank_ih
[GOAL]
case succ.a.rank_le
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
⊢ ∀ {m : ℕ} (v : Fin m → { x // x ∈ N' }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n
[PROOFSTEP]
intro m v hli
[GOAL]
case succ.a.rank_le
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
⊢ m ≤ n
[PROOFSTEP]
refine' Nat.succ_le_succ_iff.mp (rank_le (Fin.cons ⟨x, x_mem⟩ fun i => ⟨v i, N'_le (v i).2⟩) _)
[GOAL]
case succ.a.rank_le
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
⊢ LinearIndependent R
(Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) })
[PROOFSTEP]
convert hli.fin_cons' x _ ?_
[GOAL]
case h.e'_4
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
⊢ (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) =
Fin.cons x (Subtype.val ∘ v)
[PROOFSTEP]
ext i
[GOAL]
case h.e'_4.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
i : Fin (Nat.succ m)
⊢ (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) i =
Fin.cons x (Subtype.val ∘ v) i
[PROOFSTEP]
refine' Fin.cases _ _ i
[GOAL]
case h.e'_4.h.refine'_1
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
i : Fin (Nat.succ m)
⊢ (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) 0 =
Fin.cons x (Subtype.val ∘ v) 0
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.h.refine'_2
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
i : Fin (Nat.succ m)
⊢ ∀ (i : Fin m),
(Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) })
(Fin.succ i) =
Fin.cons x (Subtype.val ∘ v) (Fin.succ i)
[PROOFSTEP]
simp
[GOAL]
case succ.a.rank_le
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
⊢ ∀ (c : R) (y : { x // x ∈ span R (range (Subtype.val ∘ v)) }), c • x + ↑y = 0 → c = 0
[PROOFSTEP]
intro c y hcy
[GOAL]
case succ.a.rank_le
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
c : R
y : { x // x ∈ span R (range (Subtype.val ∘ v)) }
hcy : c • x + ↑y = 0
⊢ c = 0
[PROOFSTEP]
refine' x_ortho c y (Submodule.span_le.mpr _ y.2) hcy
[GOAL]
case succ.a.rank_le
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
c : R
y : { x // x ∈ span R (range (Subtype.val ∘ v)) }
hcy : c • x + ↑y = 0
⊢ range (Subtype.val ∘ v) ⊆ ↑N'
[PROOFSTEP]
rintro _ ⟨z, rfl⟩
[GOAL]
case succ.a.rank_le.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
inst✝³ : Ring R
inst✝² : IsDomain R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
b✝ : ι → M
b : Basis ι R M
P : Submodule R M → Sort u_10
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
n✝ : ℕ
N✝ : Submodule R M
rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝
this : DecidableEq M
Pbot : P ⊥
n : ℕ
rank_ih :
(N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N
N : Submodule R M
rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n
N' : Submodule R M
N'_le : N' ≤ N
x : M
x_mem : x ∈ N
x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0
m : ℕ
v : Fin m → { x // x ∈ N' }
hli : LinearIndependent R (Subtype.val ∘ v)
c : R
y : { x // x ∈ span R (range (Subtype.val ∘ v)) }
hcy : c • x + ↑y = 0
z : Fin m
⊢ (Subtype.val ∘ v) z ∈ ↑N'
[PROOFSTEP]
exact (v z).2
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
i : ι
⊢ ↑(↑(restrictScalars R b) i) = ↑b i
[PROOFSTEP]
simp only [Basis.restrictScalars, Basis.span_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : { x // x ∈ span R (range ↑b) }
i : ι
⊢ ↑(algebraMap R S) (↑(↑(restrictScalars R b).repr m) i) = ↑(↑b.repr ↑m) i
[PROOFSTEP]
suffices
Finsupp.mapRange.linearMap (Algebra.linearMap R S) ∘ₗ (b.restrictScalars R).repr.toLinearMap =
((b.repr : M →ₗ[S] ι →₀ S).restrictScalars R).domRestrict _
by exact FunLike.congr_fun (LinearMap.congr_fun this m) i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : { x // x ∈ span R (range ↑b) }
i : ι
this :
LinearMap.comp (Finsupp.mapRange.linearMap (Algebra.linearMap R S)) ↑(restrictScalars R b).repr =
LinearMap.domRestrict (↑R ↑b.repr) (span R (range ↑b))
⊢ ↑(algebraMap R S) (↑(↑(restrictScalars R b).repr m) i) = ↑(↑b.repr ↑m) i
[PROOFSTEP]
exact FunLike.congr_fun (LinearMap.congr_fun this m) i
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : { x // x ∈ span R (range ↑b) }
i : ι
⊢ LinearMap.comp (Finsupp.mapRange.linearMap (Algebra.linearMap R S)) ↑(restrictScalars R b).repr =
LinearMap.domRestrict (↑R ↑b.repr) (span R (range ↑b))
[PROOFSTEP]
refine Basis.ext (b.restrictScalars R) fun _ => ?_
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : { x // x ∈ span R (range ↑b) }
i x✝ : ι
⊢ ↑(LinearMap.comp (Finsupp.mapRange.linearMap (Algebra.linearMap R S)) ↑(restrictScalars R b).repr)
(↑(restrictScalars R b) x✝) =
↑(LinearMap.domRestrict (↑R ↑b.repr) (span R (range ↑b))) (↑(restrictScalars R b) x✝)
[PROOFSTEP]
simp only [LinearMap.coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_one, Basis.repr_self,
Finsupp.mapRange.linearMap_apply, Finsupp.mapRange_single, Algebra.linearMap_apply, LinearMap.domRestrict_apply,
LinearEquiv.coe_coe, Basis.restrictScalars_apply, LinearMap.coe_restrictScalars]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : M
⊢ m ∈ span R (range ↑b) ↔ ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S)
[PROOFSTEP]
refine ⟨fun hm i => ⟨(b.restrictScalars R).repr ⟨m, hm⟩ i, b.restrictScalars_repr_apply R ⟨m, hm⟩ i⟩, fun h => ?_⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : M
h : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S)
⊢ m ∈ span R (range ↑b)
[PROOFSTEP]
rw [← b.total_repr m, Finsupp.total_apply S _]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : M
h : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S)
⊢ (Finsupp.sum (↑b.repr m) fun i a => a • ↑b i) ∈ span R (range ↑b)
[PROOFSTEP]
refine sum_mem fun i _ => ?_
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : M
h : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S)
i : ι
x✝ : i ∈ (↑b.repr m).support
⊢ (fun i a => a • ↑b i) i (↑(↑b.repr m) i) ∈ span R (range ↑b)
[PROOFSTEP]
obtain ⟨_, h⟩ := h i
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : M
h✝ : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S)
i : ι
x✝ : i ∈ (↑b.repr m).support
w✝ : R
h : ↑(algebraMap R S) w✝ = ↑(↑b.repr m) i
⊢ (fun i a => a • ↑b i) i (↑(↑b.repr m) i) ∈ span R (range ↑b)
[PROOFSTEP]
simp_rw [← h, algebraMap_smul]
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
R₂ : Type u_4
K : Type u_5
M : Type u_6
M' : Type u_7
M'' : Type u_8
V : Type u
V' : Type u_9
S : Type u_10
inst✝⁸ : CommRing R
inst✝⁷ : Ring S
inst✝⁶ : Nontrivial S
inst✝⁵ : AddCommGroup M
inst✝⁴ : Algebra R S
inst✝³ : Module S M
inst✝² : Module R M
inst✝¹ : IsScalarTower R S M
inst✝ : NoZeroSMulDivisors R S
b : Basis ι S M
m : M
h✝ : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S)
i : ι
x✝ : i ∈ (↑b.repr m).support
w✝ : R
h : ↑(algebraMap R S) w✝ = ↑(↑b.repr m) i
⊢ w✝ • ↑b i ∈ span R (range ↑b)
[PROOFSTEP]
exact smul_mem _ _ (subset_span (Set.mem_range_self i))
| {"mathlib_filename": "Mathlib.LinearAlgebra.Basis", "llama_tokens": 115225} |
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
⊢ x ≡ y [SMOD U] ↔ x - y ∈ U
[PROOFSTEP]
rw [SModEq.def, Submodule.Quotient.eq]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
⊢ x ≡ y [SMOD ⊥] ↔ x = y
[PROOFSTEP]
rw [SModEq.def, Submodule.Quotient.eq, mem_bot, sub_eq_zero]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
hxy₁ : x₁ ≡ y₁ [SMOD U]
hxy₂ : x₂ ≡ y₂ [SMOD U]
⊢ x₁ + x₂ ≡ y₁ + y₂ [SMOD U]
[PROOFSTEP]
rw [SModEq.def] at hxy₁ hxy₂ ⊢
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
hxy₁ : Submodule.Quotient.mk x₁ = Submodule.Quotient.mk y₁
hxy₂ : Submodule.Quotient.mk x₂ = Submodule.Quotient.mk y₂
⊢ Submodule.Quotient.mk (x₁ + x₂) = Submodule.Quotient.mk (y₁ + y₂)
[PROOFSTEP]
simp_rw [Quotient.mk_add, hxy₁, hxy₂]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
hxy : x ≡ y [SMOD U]
c : R
⊢ c • x ≡ c • y [SMOD U]
[PROOFSTEP]
rw [SModEq.def] at hxy ⊢
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
hxy : Submodule.Quotient.mk x = Submodule.Quotient.mk y
c : R
⊢ Submodule.Quotient.mk (c • x) = Submodule.Quotient.mk (c • y)
[PROOFSTEP]
simp_rw [Quotient.mk_smul, hxy]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
U U₁ U₂ : Submodule R M
x x₁ x₂ y y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
V V₁ V₂ : Submodule R N
⊢ x ≡ 0 [SMOD U] ↔ x ∈ U
[PROOFSTEP]
rw [SModEq.def, Submodule.Quotient.eq, sub_zero]
[GOAL]
R✝ : Type u_1
inst✝⁵ : Ring R✝
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R✝ M
U U₁ U₂ : Submodule R✝ M
x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R✝ N
V V₁ V₂ : Submodule R✝ N
R : Type u_4
inst✝ : CommRing R
I : Ideal R
x y : R
h : x ≡ y [SMOD I]
f : R[X]
⊢ Polynomial.eval x f ≡ Polynomial.eval y f [SMOD I]
[PROOFSTEP]
rw [SModEq.def] at h ⊢
[GOAL]
R✝ : Type u_1
inst✝⁵ : Ring R✝
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R✝ M
U U₁ U₂ : Submodule R✝ M
x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R✝ N
V V₁ V₂ : Submodule R✝ N
R : Type u_4
inst✝ : CommRing R
I : Ideal R
x y : R
h : Submodule.Quotient.mk x = Submodule.Quotient.mk y
f : R[X]
⊢ Submodule.Quotient.mk (Polynomial.eval x f) = Submodule.Quotient.mk (Polynomial.eval y f)
[PROOFSTEP]
show Ideal.Quotient.mk I (f.eval x) = Ideal.Quotient.mk I (f.eval y)
[GOAL]
R✝ : Type u_1
inst✝⁵ : Ring R✝
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R✝ M
U U₁ U₂ : Submodule R✝ M
x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R✝ N
V V₁ V₂ : Submodule R✝ N
R : Type u_4
inst✝ : CommRing R
I : Ideal R
x y : R
h : Submodule.Quotient.mk x = Submodule.Quotient.mk y
f : R[X]
⊢ ↑(Ideal.Quotient.mk I) (Polynomial.eval x f) = ↑(Ideal.Quotient.mk I) (Polynomial.eval y f)
[PROOFSTEP]
replace h : Ideal.Quotient.mk I x = Ideal.Quotient.mk I y := h
[GOAL]
R✝ : Type u_1
inst✝⁵ : Ring R✝
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R✝ M
U U₁ U₂ : Submodule R✝ M
x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R✝ N
V V₁ V₂ : Submodule R✝ N
R : Type u_4
inst✝ : CommRing R
I : Ideal R
x y : R
f : R[X]
h : ↑(Ideal.Quotient.mk I) x = ↑(Ideal.Quotient.mk I) y
⊢ ↑(Ideal.Quotient.mk I) (Polynomial.eval x f) = ↑(Ideal.Quotient.mk I) (Polynomial.eval y f)
[PROOFSTEP]
rw [← Polynomial.eval₂_at_apply, ← Polynomial.eval₂_at_apply, h]
| {"mathlib_filename": "Mathlib.LinearAlgebra.SModEq", "llama_tokens": 2360} |
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
⊢ ↑(aeval f) (charpoly f) = 0
[PROOFSTEP]
apply (LinearEquiv.map_eq_zero_iff (algEquivMatrix (chooseBasis R M)).toLinearEquiv).1
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
⊢ ↑(AlgEquiv.toLinearEquiv (algEquivMatrix (chooseBasis R M))) (↑(aeval f) (charpoly f)) = 0
[PROOFSTEP]
rw [AlgEquiv.toLinearEquiv_apply, ← AlgEquiv.coe_algHom, ← Polynomial.aeval_algHom_apply _ _ _, charpoly_def]
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
⊢ ↑(aeval (↑↑(algEquivMatrix (chooseBasis R M)) f))
(Matrix.charpoly (↑(toMatrix (chooseBasis R M) (chooseBasis R M)) f)) =
0
[PROOFSTEP]
exact Matrix.aeval_self_charpoly _
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
k : ℕ
⊢ f ^ k = ↑(aeval f) (X ^ k %ₘ charpoly f)
[PROOFSTEP]
rw [← aeval_eq_aeval_mod_charpoly, map_pow, aeval_X]
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
⊢ coeff (minpoly R f) 0 ≠ 0
[PROOFSTEP]
intro h
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
⊢ False
[PROOFSTEP]
obtain ⟨P, hP⟩ := X_dvd_iff.2 h
[GOAL]
case intro
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
⊢ False
[PROOFSTEP]
have hdegP : P.degree < (minpoly R f).degree := by
rw [hP, mul_comm]
refine' degree_lt_degree_mul_X fun h => _
rw [h, mul_zero] at hP
exact minpoly.ne_zero (isIntegral f) hP
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
⊢ degree P < degree (minpoly R f)
[PROOFSTEP]
rw [hP, mul_comm]
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
⊢ degree P < degree (P * X)
[PROOFSTEP]
refine' degree_lt_degree_mul_X fun h => _
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h✝ : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
h : P = 0
⊢ False
[PROOFSTEP]
rw [h, mul_zero] at hP
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h✝ : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = 0
h : P = 0
⊢ False
[PROOFSTEP]
exact minpoly.ne_zero (isIntegral f) hP
[GOAL]
case intro
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
⊢ False
[PROOFSTEP]
have hPmonic : P.Monic :=
by
suffices (minpoly R f).Monic by rwa [Monic.def, hP, mul_comm, leadingCoeff_mul_X, ← Monic.def] at this
exact minpoly.monic (isIntegral f)
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
⊢ Monic P
[PROOFSTEP]
suffices (minpoly R f).Monic by rwa [Monic.def, hP, mul_comm, leadingCoeff_mul_X, ← Monic.def] at this
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
this : Monic (minpoly R f)
⊢ Monic P
[PROOFSTEP]
rwa [Monic.def, hP, mul_comm, leadingCoeff_mul_X, ← Monic.def] at this
[GOAL]
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
⊢ Monic (minpoly R f)
[PROOFSTEP]
exact minpoly.monic (isIntegral f)
[GOAL]
case intro
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
hPmonic : Monic P
⊢ False
[PROOFSTEP]
have hzero : aeval f (minpoly R f) = 0 := minpoly.aeval _ _
[GOAL]
case intro
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
hPmonic : Monic P
hzero : ↑(aeval f) (minpoly R f) = 0
⊢ False
[PROOFSTEP]
simp only [hP, mul_eq_comp, ext_iff, hf, aeval_X, map_eq_zero_iff, coe_comp, AlgHom.map_mul, zero_apply,
Function.comp_apply] at hzero
[GOAL]
case intro
R : Type u
M : Type v
inst✝⁵ : CommRing R
inst✝⁴ : Nontrivial R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
f : M →ₗ[R] M
hf : Function.Injective ↑f
h : coeff (minpoly R f) 0 = 0
P : R[X]
hP : minpoly R f = X * P
hdegP : degree P < degree (minpoly R f)
hPmonic : Monic P
hzero : ∀ (x : M), ↑(↑(aeval f) P) x = 0
⊢ False
[PROOFSTEP]
exact not_le.2 hdegP (minpoly.min _ _ hPmonic (ext hzero))
| {"mathlib_filename": "Mathlib.LinearAlgebra.Charpoly.Basic", "llama_tokens": 3388} |
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
f : (i : ι) → M₂ →ₗ[R] φ i
⊢ ker (pi f) = ⨅ (i : ι), ker (f i)
[PROOFSTEP]
ext c
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
f : (i : ι) → M₂ →ₗ[R] φ i
c : M₂
⊢ c ∈ ker (pi f) ↔ c ∈ ⨅ (i : ι), ker (f i)
[PROOFSTEP]
simp [funext_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
f : (i : ι) → M₂ →ₗ[R] φ i
⊢ pi f = 0 ↔ ∀ (i : ι), f i = 0
[PROOFSTEP]
simp only [LinearMap.ext_iff, pi_apply, funext_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
f : (i : ι) → M₂ →ₗ[R] φ i
⊢ (∀ (x : M₂) (a : ι), ↑(f a) x = ↑0 x a) ↔ ∀ (i : ι) (x : M₂), ↑(f i) x = ↑0 x
[PROOFSTEP]
exact ⟨fun h a b => h b a, fun h a b => h b a⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
⊢ (pi fun i => 0) = 0
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
x✝¹ : M₂
x✝ : ι
⊢ ↑(pi fun i => 0) x✝¹ x✝ = ↑0 x✝¹ x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
a : (i : ι) → φ i
h : a ∈ ⨅ (i : ι), ker (proj i)
⊢ a ∈ ⊥
[PROOFSTEP]
simp only [mem_iInf, mem_ker, proj_apply] at h
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
a : (i : ι) → φ i
h : ∀ (i : ι), a i = 0
⊢ a ∈ ⊥
[PROOFSTEP]
exact (mem_bot _).2 (funext fun i => h i)
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
f : M₂ →ₗ[R] M₃
I : Type u_1
src✝ : (I → M₂) →+ I → M₃ := AddMonoidHom.compLeft (toAddMonoidHom f) I
c : R
h : I → M₂
⊢ AddHom.toFun
{ toFun := fun h => ↑f ∘ h,
map_add' :=
(_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun h => ↑f ∘ h,
map_add' :=
(_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
h
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
φ : ι → Type i
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
f : M₂ →ₗ[R] M₃
I : Type u_1
src✝ : (I → M₂) →+ I → M₃ := AddMonoidHom.compLeft (toAddMonoidHom f) I
c : R
h : I → M₂
x : I
⊢ AddHom.toFun
{ toFun := fun h => ↑f ∘ h,
map_add' :=
(_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(c • h) x =
(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun h => ↑f ∘ h,
map_add' :=
(_ :
∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
h)
x
[PROOFSTEP]
exact f.map_smul' c (h x)
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f g : (i : ι) → φ i →ₗ[R] M
⊢ (fun f => ∑ i : ι, comp (f i) (proj i)) (f + g) =
(fun f => ∑ i : ι, comp (f i) (proj i)) f + (fun f => ∑ i : ι, comp (f i) (proj i)) g
[PROOFSTEP]
simp only [Pi.add_apply, add_comp, Finset.sum_add_distrib]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
c : S
f : (i : ι) → φ i →ₗ[R] M
⊢ AddHom.toFun
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }
(c • f) =
↑(RingHom.id S) c •
AddHom.toFun
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }
f
[PROOFSTEP]
simp only [Pi.smul_apply, smul_comp, Finset.smul_sum, RingHom.id_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : (i : ι) → φ i →ₗ[R] M
⊢ (fun f i => comp f (single i))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) =
∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) },
map_smul' :=
(_ :
∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom
f) =
f
[PROOFSTEP]
ext i x
[GOAL]
case h.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : (i : ι) → φ i →ₗ[R] M
i : ι
x : φ i
⊢ ↑((fun f i => comp f (single i))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) =
∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) },
map_smul' :=
(_ :
∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom
f)
i)
x =
↑(f i) x
[PROOFSTEP]
simp [apply_single]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : ((i : ι) → φ i) →ₗ[R] M
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) },
map_smul' :=
(_ :
∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom
((fun f i => comp f (single i)) f) =
f
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : ((i : ι) → φ i) →ₗ[R] M
x : (i : ι) → φ i
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) =
∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) },
map_smul' :=
(_ :
∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom
((fun f i => comp f (single i)) f))
x =
↑f x
[PROOFSTEP]
suffices f (∑ j, Pi.single j (x j)) = f x by simpa [apply_single]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : ((i : ι) → φ i) →ₗ[R] M
x : (i : ι) → φ i
this : ↑f (∑ j : ι, Pi.single j (x j)) = ↑f x
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ∑ i : ι, comp (f i) (proj i),
map_add' :=
(_ :
∀ (f g : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((f + g) i) (proj i) =
∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) },
map_smul' :=
(_ :
∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M),
∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom
((fun f i => comp f (single i)) f))
x =
↑f x
[PROOFSTEP]
simpa [apply_single]
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M₃
φ : ι → Type i
inst✝⁸ : (i : ι) → AddCommMonoid (φ i)
inst✝⁷ : (i : ι) → Module R (φ i)
S : Type ?u.45562
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : Semiring S
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : ((i : ι) → φ i) →ₗ[R] M
x : (i : ι) → φ i
⊢ ↑f (∑ j : ι, Pi.single j (x j)) = ↑f x
[PROOFSTEP]
rw [Finset.univ_sum_single]
[GOAL]
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι✝ : Type x
ι' : Type x'
inst✝¹¹ : Semiring R✝
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R✝ M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : Module R✝ M₃
φ : ι✝ → Type i
inst✝⁶ : (i : ι✝) → AddCommMonoid (φ i)
inst✝⁵ : (i : ι✝) → Module R✝ (φ i)
ι : Type u_1
R : Type u_2
inst✝⁴ : Fintype ι
inst✝³ : DecidableEq ι
inst✝² : CommRing R
M : ι → Type u_3
inst✝¹ : (i : ι) → AddCommGroup (M i)
inst✝ : (i : ι) → Module R (M i)
x : (i : ι) → M i
⊢ ↑(↑(lsum R M R) single) x = ↑id x
[PROOFSTEP]
simp [Finset.univ_sum_single]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
φ : ι → Type i
inst✝⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝⁴ : (i : ι) → Module R (φ i)
inst✝³ : Finite ι
inst✝² : DecidableEq ι
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f g : ((i : ι) → φ i) →ₗ[R] M
h : ∀ (i : ι), comp f (single i) = comp g (single i)
⊢ f = g
[PROOFSTEP]
refine' pi_ext fun i x => _
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
φ : ι → Type i
inst✝⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝⁴ : (i : ι) → Module R (φ i)
inst✝³ : Finite ι
inst✝² : DecidableEq ι
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f g : ((i : ι) → φ i) →ₗ[R] M
h : ∀ (i : ι), comp f (single i) = comp g (single i)
i : ι
x : φ i
⊢ ↑f (Pi.single i x) = ↑g (Pi.single i x)
[PROOFSTEP]
convert LinearMap.congr_fun (h i) x
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
⊢ { x // x ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) } ≃ₗ[R] (i : ↑I) → φ ↑i
[PROOFSTEP]
refine'
LinearEquiv.ofLinear (pi fun i => (proj (i : ι)).comp (Submodule.subtype _))
(codRestrict _ (pi fun i => if h : i ∈ I then proj (⟨i, h⟩ : I) else 0) _) _ _
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
⊢ ∀ (c : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) c ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
[PROOFSTEP]
intro b
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ↑I) → φ ↑i
⊢ ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
[PROOFSTEP]
simp only [mem_iInf, mem_ker, funext_iff, proj_apply, pi_apply]
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ↑I) → φ ↑i
⊢ ∀ (i : ι), i ∈ J → ↑(if h : i ∈ I then proj { val := i, property := h } else 0) b = 0
[PROOFSTEP]
intro j hjJ
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ↑I) → φ ↑i
j : ι
hjJ : j ∈ J
⊢ ↑(if h : j ∈ I then proj { val := j, property := h } else 0) b = 0
[PROOFSTEP]
have : j ∉ I := fun hjI => hd.le_bot ⟨hjI, hjJ⟩
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ↑I) → φ ↑i
j : ι
hjJ : j ∈ J
this : ¬j ∈ I
⊢ ↑(if h : j ∈ I then proj { val := j, property := h } else 0) b = 0
[PROOFSTEP]
rw [dif_neg this, zero_apply]
[GOAL]
case refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
⊢ comp (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))
(codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i))
(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0)
(_ :
∀ (b : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈
⨅ (i : ι) (_ : i ∈ J), ker (proj i))) =
id
[PROOFSTEP]
simp only [pi_comp, comp_assoc, subtype_comp_codRestrict, proj_pi, Subtype.coe_prop]
[GOAL]
case refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
⊢ (pi fun i => if h : True then proj { val := ↑i, property := (_ : ↑i ∈ I) } else 0) = id
[PROOFSTEP]
ext b ⟨j, hj⟩
[GOAL]
case refine'_2.h.h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ↑I) → φ ↑i
j : ι
hj : j ∈ I
⊢ ↑(pi fun i => if h : True then proj { val := ↑i, property := (_ : ↑i ∈ I) } else 0) b { val := j, property := hj } =
↑id b { val := j, property := hj }
[PROOFSTEP]
simp only [dif_pos, Function.comp_apply, Function.eval_apply, LinearMap.codRestrict_apply, LinearMap.coe_comp,
LinearMap.coe_proj, LinearMap.pi_apply, Submodule.subtype_apply, Subtype.coe_prop]
[GOAL]
case refine'_2.h.h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ↑I) → φ ↑i
j : ι
hj : j ∈ I
⊢ eval { val := j, property := (_ : j ∈ I) } b = ↑id b { val := j, property := hj }
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
⊢ comp
(codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i))
(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0)
(_ :
∀ (b : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈
⨅ (i : ι) (_ : i ∈ J), ker (proj i)))
(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))) =
id
[PROOFSTEP]
ext1 ⟨b, hb⟩
[GOAL]
case refine'_3.h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
⊢ ↑(comp
(codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i))
(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0)
(_ :
∀ (b : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈
⨅ (i : ι) (_ : i ∈ J), ker (proj i)))
(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))))
{ val := b, property := hb } =
↑id { val := b, property := hb }
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case refine'_3.h.mk.a
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
⊢ ↑(↑(comp
(codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i))
(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0)
(_ :
∀ (b : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈
⨅ (i : ι) (_ : i ∈ J), ker (proj i)))
(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))))
{ val := b, property := hb }) =
↑(↑id { val := b, property := hb })
[PROOFSTEP]
ext j
[GOAL]
case refine'_3.h.mk.a.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
j : ι
⊢ ↑(↑(comp
(codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i))
(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0)
(_ :
∀ (b : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈
⨅ (i : ι) (_ : i ∈ J), ker (proj i)))
(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))))
{ val := b, property := hb })
j =
↑(↑id { val := b, property := hb }) j
[PROOFSTEP]
have hb : ∀ i ∈ J, b i = 0 := by simpa only [mem_iInf, mem_ker, proj_apply] using (mem_iInf _).1 hb
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
j : ι
⊢ ∀ (i : ι), i ∈ J → b i = 0
[PROOFSTEP]
simpa only [mem_iInf, mem_ker, proj_apply] using (mem_iInf _).1 hb
[GOAL]
case refine'_3.h.mk.a.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
j : ι
hb : ∀ (i : ι), i ∈ J → b i = 0
⊢ ↑(↑(comp
(codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i))
(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0)
(_ :
∀ (b : (i : ↑I) → φ ↑i),
↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈
⨅ (i : ι) (_ : i ∈ J), ker (proj i)))
(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))))
{ val := b, property := hb✝ })
j =
↑(↑id { val := b, property := hb✝ }) j
[PROOFSTEP]
simp only [comp_apply, pi_apply, id_apply, proj_apply, subtype_apply, codRestrict_apply]
[GOAL]
case refine'_3.h.mk.a.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
j : ι
hb : ∀ (i : ι), i ∈ J → b i = 0
⊢ ↑(if h : j ∈ I then proj { val := j, property := h } else 0)
(↑(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))
{ val := b, property := hb✝ }) =
b j
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
j : ι
hb : ∀ (i : ι), i ∈ J → b i = 0
h : j ∈ I
⊢ ↑(proj { val := j, property := h })
(↑(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))
{ val := b, property := hb✝ }) =
b j
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I J : Set ι
inst✝ : DecidablePred fun i => i ∈ I
hd : Disjoint I J
hu : Set.univ ⊆ I ∪ J
b : (i : ι) → φ i
hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i)
j : ι
hb : ∀ (i : ι), i ∈ J → b i = 0
h : ¬j ∈ I
⊢ ↑0
(↑(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))
{ val := b, property := hb✝ }) =
b j
[PROOFSTEP]
exact (hb _ <| (hu trivial).resolve_left h).symm
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
f : (i : ι) → M₂ →ₗ[R] φ i
c : M₂
i j : ι
b : M₂ →ₗ[R] φ i
⊢ ↑(update f i b j) c = update (fun i => ↑(f i) c) i (↑b c) j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
f : (i : ι) → M₂ →ₗ[R] φ i
c : M₂
i j : ι
b : M₂ →ₗ[R] φ i
h : j = i
⊢ ↑(update f i b j) c = update (fun i => ↑(f i) c) i (↑b c) j
[PROOFSTEP]
rw [h, update_same, update_same]
[GOAL]
case neg
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M₃
φ : ι → Type i
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
inst✝ : DecidableEq ι
f : (i : ι) → M₂ →ₗ[R] φ i
c : M₂
i j : ι
b : M₂ →ₗ[R] φ i
h : ¬j = i
⊢ ↑(update f i b j) c = update (fun i => ↑(f i) c) i (↑b c) j
[PROOFSTEP]
rw [update_noteq h, update_noteq h]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝² : Semiring R
φ : ι → Type u_1
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
⊢ ⨅ (i : ι) (_ : i ∈ I), comap (proj i) (p i) = pi I p
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝² : Semiring R
φ : ι → Type u_1
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ x : (i : ι) → φ i
⊢ x ∈ ⨅ (i : ι) (_ : i ∈ I), comap (proj i) (p i) ↔ x ∈ pi I p
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝² : Semiring R
φ : ι → Type u_1
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
⊢ ⨅ (i : ι), comap (proj i) (p i) = pi Set.univ p
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝² : Semiring R
φ : ι → Type u_1
inst✝¹ : (i : ι) → AddCommMonoid (φ i)
inst✝ : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ x : (i : ι) → φ i
⊢ x ∈ ⨅ (i : ι), comap (proj i) (p i) ↔ x ∈ pi Set.univ p
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
⊢ ⨆ (i : ι), map (single i) (p i) = pi Set.univ p
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
⊢ ⨆ (i : ι), map (single i) (p i) = pi Set.univ p
[PROOFSTEP]
refine' (iSup_le fun i => _).antisymm _
[GOAL]
case intro.refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
i : ι
⊢ map (single i) (p i) ≤ pi Set.univ p
[PROOFSTEP]
rintro _ ⟨x, hx : x ∈ p i, rfl⟩ j -
[GOAL]
case intro.refine'_1.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
i : ι
x : φ i
hx : x ∈ p i
j : ι
⊢ ↑(single i) x j ∈ (fun i => ↑(p i)) j
[PROOFSTEP]
rcases em (j = i) with (rfl | hj)
[GOAL]
case intro.refine'_1.intro.intro.inl
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
j : ι
x : φ j
hx : x ∈ p j
⊢ ↑(single j) x j ∈ (fun i => ↑(p i)) j
[PROOFSTEP]
simp [*]
[GOAL]
case intro.refine'_1.intro.intro.inr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
i : ι
x : φ i
hx : x ∈ p i
j : ι
hj : ¬j = i
⊢ ↑(single i) x j ∈ (fun i => ↑(p i)) j
[PROOFSTEP]
simp [*]
[GOAL]
case intro.refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
⊢ pi Set.univ p ≤ ⨆ (i : ι), map (single i) (p i)
[PROOFSTEP]
intro x hx
[GOAL]
case intro.refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
x : (i : ι) → φ i
hx : x ∈ pi Set.univ p
⊢ x ∈ ⨆ (i : ι), map (single i) (p i)
[PROOFSTEP]
rw [← Finset.univ_sum_single x]
[GOAL]
case intro.refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁴ : Semiring R
φ : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (φ i)
inst✝² : (i : ι) → Module R (φ i)
I : Set ι
p q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝¹ : DecidableEq ι
inst✝ : Finite ι
val✝ : Fintype ι
x : (i : ι) → φ i
hx : x ∈ pi Set.univ p
⊢ ∑ i : ι, Pi.single i (x i) ∈ ⨆ (i : ι), map (single i) (p i)
[PROOFSTEP]
exact sum_mem_iSup fun i => mem_map_of_mem (hx i trivial)
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
⊢ p i ≤ comap (single i) (pi Set.univ p)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
x : φ i
hx : x ∈ p i
⊢ x ∈ comap (single i) (pi Set.univ p)
[PROOFSTEP]
rw [Submodule.mem_comap, Submodule.mem_pi]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
x : φ i
hx : x ∈ p i
⊢ ∀ (i_1 : ι), i_1 ∈ Set.univ → ↑(single i) x i_1 ∈ p i_1
[PROOFSTEP]
rintro j -
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
x : φ i
hx : x ∈ p i
j : ι
⊢ ↑(single i) x j ∈ p j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
x : φ i
hx : x ∈ p i
j : ι
h : j = i
⊢ ↑(single i) x j ∈ p j
[PROOFSTEP]
rwa [h, LinearMap.coe_single, Pi.single_eq_same]
[GOAL]
case neg
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
x : φ i
hx : x ∈ p i
j : ι
h : ¬j = i
⊢ ↑(single i) x j ∈ p j
[PROOFSTEP]
rw [LinearMap.coe_single, Pi.single_eq_of_ne h]
[GOAL]
case neg
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝³ : Semiring R
φ : ι → Type u_1
inst✝² : (i : ι) → AddCommMonoid (φ i)
inst✝¹ : (i : ι) → Module R (φ i)
I : Set ι
p✝ q : (i : ι) → Submodule R (φ i)
x✝ : (i : ι) → φ i
inst✝ : DecidableEq ι
p : (i : ι) → Submodule R (φ i)
i : ι
x : φ i
hx : x ∈ p i
j : ι
h : ¬j = i
⊢ 0 ∈ p j
[PROOFSTEP]
exact (p j).zero_mem
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝⁴ : (i : ι) → Module R (φ i)
inst✝³ : (i : ι) → AddCommMonoid (ψ i)
inst✝² : (i : ι) → Module R (ψ i)
inst✝¹ : (i : ι) → AddCommMonoid (χ i)
inst✝ : (i : ι) → Module R (χ i)
e : (i : ι) → φ i ≃ₗ[R] ψ i
src✝ : ((j : ι) → φ j) ≃+ ((j : ι) → ψ j) := AddEquiv.piCongrRight fun j => toAddEquiv (e j)
c : R
f : (i : ι) → φ i
⊢ AddHom.toFun
{ toFun := fun f i => ↑(e i) (f i),
map_add' :=
(_ :
∀ (x y : (j : ι) → φ j),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f i => ↑(e i) (f i),
map_add' :=
(_ :
∀ (x y : (j : ι) → φ j),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝⁴ : (i : ι) → Module R (φ i)
inst✝³ : (i : ι) → AddCommMonoid (ψ i)
inst✝² : (i : ι) → Module R (ψ i)
inst✝¹ : (i : ι) → AddCommMonoid (χ i)
inst✝ : (i : ι) → Module R (χ i)
e : (i : ι) → φ i ≃ₗ[R] ψ i
src✝ : ((j : ι) → φ j) ≃+ ((j : ι) → ψ j) := AddEquiv.piCongrRight fun j => toAddEquiv (e j)
c : R
f : (i : ι) → φ i
x✝ : ι
⊢ AddHom.toFun
{ toFun := fun f i => ↑(e i) (f i),
map_add' :=
(_ :
∀ (x y : (j : ι) → φ j),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(c • f) x✝ =
(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f i => ↑(e i) (f i),
map_add' :=
(_ :
∀ (x y : (j : ι) → φ j),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
f)
x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι✝ : Type x
ι' : Type x'
inst✝⁸ : Semiring R
φ : ι✝ → Type u_1
ψ : ι✝ → Type u_2
χ : ι✝ → Type u_3
inst✝⁷ : (i : ι✝) → AddCommMonoid (φ i)
inst✝⁶ : (i : ι✝) → Module R (φ i)
inst✝⁵ : (i : ι✝) → AddCommMonoid (ψ i)
inst✝⁴ : (i : ι✝) → Module R (ψ i)
inst✝³ : (i : ι✝) → AddCommMonoid (χ i)
inst✝² : (i : ι✝) → Module R (χ i)
ι : Type u_4
M : Option ι → Type u_5
inst✝¹ : (i : Option ι) → AddCommGroup (M i)
inst✝ : (i : Option ι) → Module R (M i)
src✝ : ((a : Option ι) → M a) ≃ M none × ((a : ι) → M (some a)) := Equiv.piOptionEquivProd
⊢ ∀ (x y : (i : Option ι) → M i), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
R : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι✝ : Type x
ι' : Type x'
inst✝⁸ : Semiring R
φ : ι✝ → Type u_1
ψ : ι✝ → Type u_2
χ : ι✝ → Type u_3
inst✝⁷ : (i : ι✝) → AddCommMonoid (φ i)
inst✝⁶ : (i : ι✝) → Module R (φ i)
inst✝⁵ : (i : ι✝) → AddCommMonoid (ψ i)
inst✝⁴ : (i : ι✝) → Module R (ψ i)
inst✝³ : (i : ι✝) → AddCommMonoid (χ i)
inst✝² : (i : ι✝) → Module R (χ i)
ι : Type u_4
M : Option ι → Type u_5
inst✝¹ : (i : Option ι) → AddCommGroup (M i)
inst✝ : (i : Option ι) → Module R (M i)
src✝ : ((a : Option ι) → M a) ≃ M none × ((a : ι) → M (some a)) := Equiv.piOptionEquivProd
⊢ ∀ (r : R) (x : (i : Option ι) → M i),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (a a_1 : (i : Option ι) → M i),
(a none + a_1 none, fun a_2 => a (some a_2) + a_1 (some a_2)) =
(a none + a_1 none, (fun a_2 => a (some a_2)) + fun a => a_1 (some a))) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (a a_1 : (i : Option ι) → M i),
(a none + a_1 none, fun a_2 => a (some a_2) + a_1 (some a_2)) =
(a none + a_1 none, (fun a_2 => a (some a_2)) + fun a => a_1 (some a))) }
x
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹³ : Semiring R
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹² : (i : ι) → AddCommMonoid (φ i)
inst✝¹¹ : (i : ι) → Module R (φ i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (ψ i)
inst✝⁹ : (i : ι) → Module R (ψ i)
inst✝⁸ : (i : ι) → AddCommMonoid (χ i)
inst✝⁷ : (i : ι) → Module R (χ i)
S : Type u_4
inst✝⁶ : Fintype ι
inst✝⁵ : DecidableEq ι
inst✝⁴ : Semiring S
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
f : ι → M
g : ι → R
⊢ ↑(↑(symm (piRing R M ι S)) f) g = ∑ i : ι, g i • f i
[PROOFSTEP]
simp [piRing, LinearMap.lsum_apply]
[GOAL]
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
⊢ ∀ (x y : α ⊕ β → M), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y
[PROOFSTEP]
intro f g
[GOAL]
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
f g : α ⊕ β → M
⊢ Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g
[PROOFSTEP]
ext
[GOAL]
case h₁.h
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
f g : α ⊕ β → M
x✝ : α
⊢ Prod.fst (Equiv.toFun src✝ (f + g)) x✝ = Prod.fst (Equiv.toFun src✝ f + Equiv.toFun src✝ g) x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂.h
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
f g : α ⊕ β → M
x✝ : β
⊢ Prod.snd (Equiv.toFun src✝ (f + g)) x✝ = Prod.snd (Equiv.toFun src✝ f + Equiv.toFun src✝ g) x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
⊢ ∀ (r : R) (x : α ⊕ β → M),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
x
[PROOFSTEP]
intro r f
[GOAL]
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
r : R
f : α ⊕ β → M
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
f
[PROOFSTEP]
ext
[GOAL]
case h₁.h
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
r : R
f : α ⊕ β → M
x✝ : α
⊢ Prod.fst
(AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
(r • f))
x✝ =
Prod.fst
(↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
f)
x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂.h
R✝ : Type u
K : Type u'
M✝ : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝¹⁶ : Semiring R✝
φ : ι → Type u_1
ψ : ι → Type u_2
χ : ι → Type u_3
inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i)
inst✝¹⁴ : (i : ι) → Module R✝ (φ i)
inst✝¹³ : (i : ι) → AddCommMonoid (ψ i)
inst✝¹² : (i : ι) → Module R✝ (ψ i)
inst✝¹¹ : (i : ι) → AddCommMonoid (χ i)
inst✝¹⁰ : (i : ι) → Module R✝ (χ i)
S : Type u_4
inst✝⁹ : Fintype ι
inst✝⁸ : DecidableEq ι
inst✝⁷ : Semiring S
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
inst✝⁴ : Module S M✝
inst✝³ : SMulCommClass R✝ S M✝
α : Type u_5
β : Type u_6
R : Type u_7
M : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M
r : R
f : α ⊕ β → M
x✝ : β
⊢ Prod.snd
(AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
(r • f))
x✝ =
Prod.snd
(↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) }
f)
x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
η : Type x
inst✝ : Semiring R
s : ι → η
src✝ : (ι → R) →+ η → R := hom R s
r : R
f : ι → R
⊢ AddHom.toFun
{ toFun := fun f => extend s f 0,
map_add' :=
(_ : ∀ (x y : ι → R), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => extend s f 0,
map_add' :=
(_ : ∀ (x y : ι → R), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
f
[PROOFSTEP]
simpa using Function.extend_smul r s f 0
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
n : ℕ
f : M →ₗ[R] M₂
g : M →ₗ[R] Fin n → M₂
x y : M
⊢ (fun m => Matrix.vecCons (↑f m) (↑g m)) (x + y) =
(fun m => Matrix.vecCons (↑f m) (↑g m)) x + (fun m => Matrix.vecCons (↑f m) (↑g m)) y
[PROOFSTEP]
simp only []
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
n : ℕ
f : M →ₗ[R] M₂
g : M →ₗ[R] Fin n → M₂
x y : M
⊢ Matrix.vecCons (↑f (x + y)) (↑g (x + y)) = Matrix.vecCons (↑f x) (↑g x) + Matrix.vecCons (↑f y) (↑g y)
[PROOFSTEP]
rw [f.map_add, g.map_add, Matrix.cons_add_cons (f x)]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
n : ℕ
f : M →ₗ[R] M₂
g : M →ₗ[R] Fin n → M₂
c : R
x : M
⊢ AddHom.toFun
{ toFun := fun m => Matrix.vecCons (↑f m) (↑g m),
map_add' :=
(_ :
∀ (x y : M),
(fun m => Matrix.vecCons (↑f m) (↑g m)) (x + y) =
(fun m => Matrix.vecCons (↑f m) (↑g m)) x + (fun m => Matrix.vecCons (↑f m) (↑g m)) y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun m => Matrix.vecCons (↑f m) (↑g m),
map_add' :=
(_ :
∀ (x y : M),
(fun m => Matrix.vecCons (↑f m) (↑g m)) (x + y) =
(fun m => Matrix.vecCons (↑f m) (↑g m)) x + (fun m => Matrix.vecCons (↑f m) (↑g m)) y) }
x
[PROOFSTEP]
simp only []
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
n : ℕ
f : M →ₗ[R] M₂
g : M →ₗ[R] Fin n → M₂
c : R
x : M
⊢ Matrix.vecCons (↑f (c • x)) (↑g (c • x)) = ↑(RingHom.id R) c • Matrix.vecCons (↑f x) (↑g x)
[PROOFSTEP]
rw [f.map_smul, g.map_smul, RingHom.id_apply, Matrix.smul_cons c (f x)]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
n : ℕ
f : M →ₗ[R] M₂ →ₗ[R] M₃
g : M →ₗ[R] M₂ →ₗ[R] Fin n → M₃
x y : M
z : M₂
⊢ ↑((fun m => vecCons (↑f m) (↑g m)) (x + y)) z =
↑((fun m => vecCons (↑f m) (↑g m)) x + (fun m => vecCons (↑f m) (↑g m)) y) z
[PROOFSTEP]
simp only [f.map_add, g.map_add, LinearMap.add_apply, LinearMap.vecCons_apply, Matrix.cons_add_cons (f x z)]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
ι' : Type x'
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
n : ℕ
f : M →ₗ[R] M₂ →ₗ[R] M₃
g : M →ₗ[R] M₂ →ₗ[R] Fin n → M₃
r : R
x : M
z : M₂
⊢ ↑(AddHom.toFun
{ toFun := fun m => vecCons (↑f m) (↑g m),
map_add' :=
(_ :
∀ (x y : M),
(fun m => vecCons (↑f m) (↑g m)) (x + y) =
(fun m => vecCons (↑f m) (↑g m)) x + (fun m => vecCons (↑f m) (↑g m)) y) }
(r • x))
z =
↑(↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun m => vecCons (↑f m) (↑g m),
map_add' :=
(_ :
∀ (x y : M),
(fun m => vecCons (↑f m) (↑g m)) (x + y) =
(fun m => vecCons (↑f m) (↑g m)) x + (fun m => vecCons (↑f m) (↑g m)) y) }
x)
z
[PROOFSTEP]
simp [Matrix.smul_cons r (f x z)]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Pi", "llama_tokens": 32152} |
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
i : ι₁ ⊕ ι₂
p q : N
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (p + q)) =
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) +
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i q)
[PROOFSTEP]
letI := (@Sum.inl_injective ι₁ ι₂).decidableEq
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
i : ι₁ ⊕ ι₂
p q : N
this : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (p + q)) =
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) +
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i q)
[PROOFSTEP]
letI := (@Sum.inr_injective ι₁ ι₂).decidableEq
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
i : ι₁ ⊕ ι₂
p q : N
this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr)
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (p + q)) =
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) +
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i q)
[PROOFSTEP]
cases i
[GOAL]
case inl
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
p q : N
this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr)
val✝ : ι₁
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) (p + q)) =
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) p) +
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) q)
[PROOFSTEP]
simp [TensorProduct.add_tmul, TensorProduct.tmul_add]
[GOAL]
case inr
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
p q : N
this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr)
val✝ : ι₂
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) (p + q)) =
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) p) +
(fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) q)
[PROOFSTEP]
simp [TensorProduct.add_tmul, TensorProduct.tmul_add]
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
i : ι₁ ⊕ ι₂
c : R
p : N
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (c • p)) =
c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p)
[PROOFSTEP]
letI := (@Sum.inl_injective ι₁ ι₂).decidableEq
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
i : ι₁ ⊕ ι₂
c : R
p : N
this : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (c • p)) =
c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p)
[PROOFSTEP]
letI := (@Sum.inr_injective ι₁ ι₂).decidableEq
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
i : ι₁ ⊕ ι₂
c : R
p : N
this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr)
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (c • p)) =
c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p)
[PROOFSTEP]
cases i
[GOAL]
case inl
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
c : R
p : N
this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr)
val✝ : ι₁
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) (c • p)) =
c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) p)
[PROOFSTEP]
simp [TensorProduct.smul_tmul', TensorProduct.tmul_smul]
[GOAL]
case inr
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁷ : CommSemiring R
N₁ : Type u_6
inst✝⁶ : AddCommMonoid N₁
inst✝⁵ : Module R N₁
N₂ : Type u_7
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N₂
N : Type u_8
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
a : MultilinearMap R (fun x => N) N₁
b : MultilinearMap R (fun x => N) N₂
inst✝ : DecidableEq (ι₁ ⊕ ι₂)
x✝ : ι₁ ⊕ ι₂ → N
c : R
p : N
this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl)
this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr)
val✝ : ι₂
⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) (c • p)) =
c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) p)
[PROOFSTEP]
simp [TensorProduct.smul_tmul', TensorProduct.tmul_smul]
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m₁ m₂ : MultilinearMap R (fun x => N) N₁
n : MultilinearMap R (fun x => N) N₂
⊢ domCoprod (m₁ + m₂) n = domCoprod m₁ n + domCoprod m₂ n
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m₁ m₂ : MultilinearMap R (fun x => N) N₁
n : MultilinearMap R (fun x => N) N₂
x✝ : ι₁ ⊕ ι₂ → N
⊢ ↑(domCoprod (m₁ + m₂) n) x✝ = ↑(domCoprod m₁ n + domCoprod m₂ n) x✝
[PROOFSTEP]
simp only [domCoprod_apply, TensorProduct.add_tmul, add_apply]
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
c : R
m : MultilinearMap R (fun x => N) N₁
n : MultilinearMap R (fun x => N) N₂
⊢ domCoprod (c • m) n = c • domCoprod m n
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
c : R
m : MultilinearMap R (fun x => N) N₁
n : MultilinearMap R (fun x => N) N₂
x✝ : ι₁ ⊕ ι₂ → N
⊢ ↑(domCoprod (c • m) n) x✝ = ↑(c • domCoprod m n) x✝
[PROOFSTEP]
simp only [domCoprod_apply, TensorProduct.smul_tmul', smul_apply]
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : MultilinearMap R (fun x => N) N₁
n₁ n₂ : MultilinearMap R (fun x => N) N₂
⊢ domCoprod m (n₁ + n₂) = domCoprod m n₁ + domCoprod m n₂
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
m : MultilinearMap R (fun x => N) N₁
n₁ n₂ : MultilinearMap R (fun x => N) N₂
x✝ : ι₁ ⊕ ι₂ → N
⊢ ↑(domCoprod m (n₁ + n₂)) x✝ = ↑(domCoprod m n₁ + domCoprod m n₂) x✝
[PROOFSTEP]
simp only [domCoprod_apply, TensorProduct.tmul_add, add_apply]
[GOAL]
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
c : R
m : MultilinearMap R (fun x => N) N₁
n : MultilinearMap R (fun x => N) N₂
⊢ domCoprod m (c • n) = c • domCoprod m n
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
ι₁ : Type u_2
ι₂ : Type u_3
ι₃ : Type u_4
ι₄ : Type u_5
inst✝⁶ : CommSemiring R
N₁ : Type u_6
inst✝⁵ : AddCommMonoid N₁
inst✝⁴ : Module R N₁
N₂ : Type u_7
inst✝³ : AddCommMonoid N₂
inst✝² : Module R N₂
N : Type u_8
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
c : R
m : MultilinearMap R (fun x => N) N₁
n : MultilinearMap R (fun x => N) N₂
x✝ : ι₁ ⊕ ι₂ → N
⊢ ↑(domCoprod m (c • n)) x✝ = ↑(c • domCoprod m n) x✝
[PROOFSTEP]
simp only [domCoprod_apply, TensorProduct.tmul_smul, smul_apply]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.TensorProduct", "llama_tokens": 6567} |
[GOAL]
R : Type u_1
ι : Type u_2
n : ℕ
M : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : (i : Fin n) → AddCommMonoid (M i)
inst✝² : (i : Fin n) → Module R (M i)
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f g : MultilinearMap R M M₂
ι₁ : Fin n → Type u_6
e : (i : Fin n) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin n) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
⊢ f = g
[PROOFSTEP]
induction' n with m hm
[GOAL]
case zero
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
M : Fin Nat.zero → Type u_3
inst✝¹ : (i : Fin Nat.zero) → AddCommMonoid (M i)
inst✝ : (i : Fin Nat.zero) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin Nat.zero → Type u_6
e : (i : Fin Nat.zero) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin Nat.zero) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
⊢ f = g
[PROOFSTEP]
ext x
[GOAL]
case zero.H
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
M : Fin Nat.zero → Type u_3
inst✝¹ : (i : Fin Nat.zero) → AddCommMonoid (M i)
inst✝ : (i : Fin Nat.zero) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin Nat.zero → Type u_6
e : (i : Fin Nat.zero) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin Nat.zero) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
x : (i : Fin Nat.zero) → M i
⊢ ↑f x = ↑g x
[PROOFSTEP]
convert h finZeroElim
[GOAL]
case succ
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
⊢ f = g
[PROOFSTEP]
apply Function.LeftInverse.injective uncurry_curryLeft
[GOAL]
case succ.a
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
⊢ (fun x => curryLeft x) f = (fun x => curryLeft x) g
[PROOFSTEP]
refine' Basis.ext (e 0) _
[GOAL]
case succ.a
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
⊢ ∀ (i : ι₁ 0), ↑((fun x => curryLeft x) f) (↑(e 0) i) = ↑((fun x => curryLeft x) g) (↑(e 0) i)
[PROOFSTEP]
intro i
[GOAL]
case succ.a
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
⊢ ↑((fun x => curryLeft x) f) (↑(e 0) i) = ↑((fun x => curryLeft x) g) (↑(e 0) i)
[PROOFSTEP]
apply hm (Fin.tail e)
[GOAL]
case succ.a
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
⊢ ∀ (v : (i : Fin m) → ι₁ (Fin.succ i)),
(↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (v i)) =
↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (v i)
[PROOFSTEP]
intro j
[GOAL]
case succ.a
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) =
↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)
[PROOFSTEP]
convert h (Fin.cons i j)
[GOAL]
case h.e'_2
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑f fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
iterate 2
rw [curryLeft_apply]
congr 1 with x
refine' Fin.cases rfl (fun x => _) x
dsimp [Fin.tail]
rw [Fin.cons_succ, Fin.cons_succ]
[GOAL]
case h.e'_2
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑f fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
rw [curryLeft_apply]
[GOAL]
case h.e'_2
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ ↑f (Fin.cons (↑(e 0) i) fun i => ↑(Fin.tail e i) (j i)) = ↑f fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
congr 1 with x
[GOAL]
case h.e'_2.h.e_6.h.h
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
x : Fin (m + 1)
⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) x = ↑(e x) (Fin.cons i j x)
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
refine' Fin.cases rfl (fun x => _) x
[GOAL]
case h.e'_2.h.e_6.h.h
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
x✝ : Fin (m + 1)
x : Fin m
⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x))
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
dsimp [Fin.tail]
[GOAL]
case h.e'_2.h.e_6.h.h
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
x✝ : Fin (m + 1)
x : Fin m
⊢ Fin.cons (↑(e 0) i) (fun i => ↑(e (Fin.succ i)) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x))
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
rw [Fin.cons_succ, Fin.cons_succ]
[GOAL]
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
rw [curryLeft_apply]
[GOAL]
case h.e'_3
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
⊢ ↑g (Fin.cons (↑(e 0) i) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1)
[PROOFSTEP]
congr 1 with x
[GOAL]
case h.e'_3.h.e_6.h.h
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
x : Fin (m + 1)
⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) x = ↑(e x) (Fin.cons i j x)
[PROOFSTEP]
refine' Fin.cases rfl (fun x => _) x
[GOAL]
case h.e'_3.h.e_6.h.h
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
x✝ : Fin (m + 1)
x : Fin m
⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x))
[PROOFSTEP]
dsimp [Fin.tail]
[GOAL]
case h.e'_3.h.e_6.h.h
R : Type u_1
ι : Type u_2
n : ℕ
M✝ : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i)
inst✝⁴ : (i : Fin n) → Module R (M✝ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
f✝ g✝ : MultilinearMap R M✝ M₂
ι₁✝ : Fin n → Type u_6
e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i)
h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i)
m : ℕ
hm :
∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)]
{f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)),
(∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g
M : Fin (Nat.succ m) → Type u_3
inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i)
inst✝ : (i : Fin (Nat.succ m)) → Module R (M i)
f g : MultilinearMap R M M₂
ι₁ : Fin (Nat.succ m) → Type u_6
e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i)
h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)
i : ι₁ 0
j : (i : Fin m) → ι₁ (Fin.succ i)
x✝ : Fin (m + 1)
x : Fin m
⊢ Fin.cons (↑(e 0) i) (fun i => ↑(e (Fin.succ i)) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x))
[PROOFSTEP]
rw [Fin.cons_succ, Fin.cons_succ]
[GOAL]
R : Type u_1
ι : Type u_2
n : ℕ
M : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁷ : CommSemiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : (i : Fin n) → AddCommMonoid (M i)
inst✝³ : (i : Fin n) → Module R (M i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Finite ι
f g : MultilinearMap R (fun x => M₂) M₃
ι₁ : Type u_6
e : Basis ι₁ R M₂
h : ∀ (v : ι → ι₁), (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
⊢ f = g
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u_1
ι : Type u_2
n : ℕ
M : Fin n → Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁷ : CommSemiring R
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : (i : Fin n) → AddCommMonoid (M i)
inst✝³ : (i : Fin n) → Module R (M i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Finite ι
f g : MultilinearMap R (fun x => M₂) M₃
ι₁ : Type u_6
e : Basis ι₁ R M₂
h : ∀ (v : ι → ι₁), (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
val✝ : Fintype ι
⊢ f = g
[PROOFSTEP]
exact (domDomCongr_eq_iff (Fintype.equivFin ι) f g).mp (Basis.ext_multilinear_fin (fun _ => e) fun i => h (i ∘ _))
| {"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.Basis", "llama_tokens": 19483} |
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ comap (Submodule.subtype p) (p ⊓ p') ≤ ker (subToSupQuotient p p')
[PROOFSTEP]
rw [LinearMap.ker_comp, Submodule.ofLe, comap_codRestrict, ker_mkQ, map_comap_subtype]
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ comap (Submodule.subtype p) (p ⊓ p') ≤ comap (Submodule.subtype p) ((p ⊔ p') ⊓ p')
[PROOFSTEP]
exact comap_mono (inf_le_inf_right _ le_sup_left)
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ Function.Injective ↑(quotientInfToSupQuotient p p')
[PROOFSTEP]
rw [← ker_eq_bot, quotientInfToSupQuotient, ker_liftQ_eq_bot]
[GOAL]
case h'
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ ker (subToSupQuotient p p') ≤ comap (Submodule.subtype p) (p ⊓ p')
[PROOFSTEP]
rw [ker_comp, ker_mkQ]
[GOAL]
case h'
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ comap (ofLe (_ : p ≤ p ⊔ p')) (comap (Submodule.subtype (p ⊔ p')) p') ≤ comap (Submodule.subtype p) (p ⊓ p')
[PROOFSTEP]
exact fun ⟨x, hx1⟩ hx2 =>
⟨hx1, hx2⟩
-- Porting note: breaking up original definition of quotientInfEquivSupQuotient to avoid timing out
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ Function.Surjective ↑(quotientInfToSupQuotient p p')
[PROOFSTEP]
rw [← range_eq_top, quotientInfToSupQuotient, range_liftQ, eq_top_iff']
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
⊢ ∀ (x : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p'), x ∈ range (subToSupQuotient p p')
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mk.mk
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p'
x : M
hx : x ∈ p ⊔ p'
⊢ Quot.mk Setoid.r { val := x, property := hx } ∈ range (subToSupQuotient p p')
[PROOFSTEP]
rcases mem_sup.1 hx with ⟨y, hy, z, hz, rfl⟩
[GOAL]
case mk.mk.intro.intro.intro.intro
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p'
y : M
hy : y ∈ p
z : M
hz : z ∈ p'
hx : y + z ∈ p ⊔ p'
⊢ Quot.mk Setoid.r { val := y + z, property := hx } ∈ range (subToSupQuotient p p')
[PROOFSTEP]
use⟨y, hy⟩
[GOAL]
case h
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p'
y : M
hy : y ∈ p
z : M
hz : z ∈ p'
hx : y + z ∈ p ⊔ p'
⊢ ↑(subToSupQuotient p p') { val := y, property := hy } = Quot.mk Setoid.r { val := y + z, property := hx }
[PROOFSTEP]
apply (Submodule.Quotient.eq _).2
[GOAL]
case h
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p'
y : M
hy : y ∈ p
z : M
hz : z ∈ p'
hx : y + z ∈ p ⊔ p'
⊢ ↑(ofLe (_ : p ≤ p ⊔ p')) { val := y, property := hy } - { val := y + z, property := hx } ∈
comap (Submodule.subtype (p ⊔ p')) p'
[PROOFSTEP]
simp only [mem_comap, map_sub, coeSubtype, coe_ofLe, sub_add_cancel', neg_mem_iff, hz]
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
x : { x // x ∈ p ⊔ p' }
hx : ↑x ∈ p
⊢ Submodule.Quotient.mk x = ↑(quotientInfEquivSupQuotient p p') (Submodule.Quotient.mk { val := ↑x, property := hx })
[PROOFSTEP]
rw [quotientInfEquivSupQuotient_apply_mk, ofLe_apply]
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
p p' : Submodule R M
x : { x // x ∈ p ⊔ p' }
⊢ Submodule.Quotient.mk x = ↑(quotientInfEquivSupQuotient p p') 0 ↔ ↑x ∈ p'
[PROOFSTEP]
rw [_root_.map_zero, Quotient.mk_eq_zero, mem_comap, Submodule.coeSubtype]
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
S T : Submodule R M
h✝ h : S ≤ T
⊢ map (mkQ S) T ≤ LinearMap.ker (mapQ S T LinearMap.id h)
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
S T : Submodule R M
h✝ h : S ≤ T
x : M
hx : x ∈ ↑T
⊢ ↑(mkQ S) x ∈ LinearMap.ker (mapQ S T LinearMap.id h)
[PROOFSTEP]
rw [LinearMap.mem_ker, mkQ_apply, mapQ_apply]
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
S T : Submodule R M
h✝ h : S ≤ T
x : M
hx : x ∈ ↑T
⊢ Quotient.mk (↑LinearMap.id x) = 0
[PROOFSTEP]
exact (Quotient.mk_eq_zero _).mpr hx
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
S T : Submodule R M
h : S ≤ T
x : M
⊢ ↑(quotientQuotientEquivQuotientAux S T h) (Quotient.mk (Quotient.mk x)) = Quotient.mk x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
S T : Submodule R M
h : S ≤ T
src✝ : (M ⧸ S) ⧸ map (mkQ S) T →ₗ[R] M ⧸ T := quotientQuotientEquivQuotientAux S T h
x✝¹ : (M ⧸ S) ⧸ map (mkQ S) T
x✝ : M ⧸ S
x : M
⊢ ↑(mapQ T (map (mkQ S) T) (mkQ S) (_ : T ≤ comap (mkQ S) (map (mkQ S) T)))
(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(quotientQuotientEquivQuotientAux S T h),
map_add' :=
(_ :
∀ (x y : (M ⧸ S) ⧸ map (mkQ S) T),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : (M ⧸ S) ⧸ map (mkQ S) T),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Quotient.mk'' (Quotient.mk'' x))) =
Quotient.mk'' (Quotient.mk'' x)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
S T : Submodule R M
h : S ≤ T
src✝ : (M ⧸ S) ⧸ map (mkQ S) T →ₗ[R] M ⧸ T := quotientQuotientEquivQuotientAux S T h
x✝ : M ⧸ T
x : M
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := ↑(quotientQuotientEquivQuotientAux S T h),
map_add' :=
(_ :
∀ (x y : (M ⧸ S) ⧸ map (mkQ S) T),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : (M ⧸ S) ⧸ map (mkQ S) T),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(↑(mapQ T (map (mkQ S) T) (mkQ S) (_ : T ≤ comap (mkQ S) (map (mkQ S) T))) (Quotient.mk'' x)) =
Quotient.mk'' x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
M₂ : Type u_3
M₃ : Type u_4
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
f : M →ₗ[R] M₂
S✝ T✝ : Submodule R M
h : S✝ ≤ T✝
S T : Submodule R M
hST : T ≤ S
inst✝² : DecidablePred fun x => x ∈ map (mkQ T) S
inst✝¹ : Fintype (M ⧸ S)
inst✝ : Fintype (M ⧸ T)
⊢ Fintype.card { x // x ∈ map (mkQ T) S } * Fintype.card (M ⧸ S) = Fintype.card (M ⧸ T)
[PROOFSTEP]
rw [Submodule.card_eq_card_quotient_mul_card (map T.mkQ S),
Fintype.card_eq.mpr ⟨(quotientQuotientEquivQuotient T S hST).toEquiv⟩]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Isomorphisms", "llama_tokens": 5229} |
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
x y : M
⊢ Pi.prod (↑f) (↑g) (x + y) = Pi.prod (↑f) (↑g) x + Pi.prod (↑f) (↑g) y
[PROOFSTEP]
simp only [Pi.prod, Prod.mk_add_mk, map_add]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
c : R
x : M
⊢ AddHom.toFun
{ toFun := Pi.prod ↑f ↑g, map_add' := (_ : ∀ (x y : M), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := Pi.prod ↑f ↑g, map_add' := (_ : ∀ (x y : M), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }
x
[PROOFSTEP]
simp only [Pi.prod, Prod.smul_mk, map_smul, RingHom.id_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝³ : Module S M₂
inst✝² : Module S M₃
inst✝¹ : SMulCommClass R S M₂
inst✝ : SMulCommClass R S M₃
f : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)
⊢ (fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a) =
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a)) }.toAddHom
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h₁.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝³ : Module S M₂
inst✝² : Module S M₃
inst✝¹ : SMulCommClass R S M₂
inst✝ : SMulCommClass R S M₃
f : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)
x✝ : M
⊢ ↑((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a) =
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a)) }.toAddHom
f)).fst
x✝ =
↑f.fst x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂.h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝³ : Module S M₂
inst✝² : Module S M₃
inst✝¹ : SMulCommClass R S M₂
inst✝ : SMulCommClass R S M₃
f : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)
x✝ : M
⊢ ↑((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a) =
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a)) }.toAddHom
f)).snd
x✝ =
↑f.snd x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝³ : Module S M₂
inst✝² : Module S M₃
inst✝¹ : SMulCommClass R S M₂
inst✝ : SMulCommClass R S M₃
f : M →ₗ[R] M₂ × M₃
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a) =
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a)) }.toAddHom
((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) f) =
f
[PROOFSTEP]
ext
[GOAL]
case h.h₁
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝³ : Module S M₂
inst✝² : Module S M₃
inst✝¹ : SMulCommClass R S M₂
inst✝ : SMulCommClass R S M₃
f : M →ₗ[R] M₂ × M₃
x✝ : M
⊢ (↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a) =
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a)) }.toAddHom
((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) f))
x✝).fst =
(↑f x✝).fst
[PROOFSTEP]
rfl
[GOAL]
case h.h₂
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝³ : Module S M₂
inst✝² : Module S M₃
inst✝¹ : SMulCommClass R S M₂
inst✝ : SMulCommClass R S M₃
f : M →ₗ[R] M₂ × M₃
x✝ : M
⊢ (↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a) =
AddHom.toFun
{ toFun := fun f => prod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)),
(fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }
(r • a)) }.toAddHom
((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) f))
x✝).snd =
(↑f x✝).snd
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
⊢ range (inl R M M₂) = ker (snd R M M₂)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ x ∈ range (inl R M M₂) ↔ x ∈ ker (snd R M M₂)
[PROOFSTEP]
simp only [mem_ker, mem_range]
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ (∃ y, ↑(inl R M M₂) y = x) ↔ ↑(snd R M M₂) x = 0
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ (∃ y, ↑(inl R M M₂) y = x) → ↑(snd R M M₂) x = 0
[PROOFSTEP]
rintro ⟨y, rfl⟩
[GOAL]
case h.mp.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
y : M
⊢ ↑(snd R M M₂) (↑(inl R M M₂) y) = 0
[PROOFSTEP]
rfl
[GOAL]
case h.mpr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ ↑(snd R M M₂) x = 0 → ∃ y, ↑(inl R M M₂) y = x
[PROOFSTEP]
intro h
[GOAL]
case h.mpr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
h : ↑(snd R M M₂) x = 0
⊢ ∃ y, ↑(inl R M M₂) y = x
[PROOFSTEP]
exact ⟨x.fst, Prod.ext rfl h.symm⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
⊢ range (inr R M M₂) = ker (fst R M M₂)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ x ∈ range (inr R M M₂) ↔ x ∈ ker (fst R M M₂)
[PROOFSTEP]
simp only [mem_ker, mem_range]
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ (∃ y, ↑(inr R M M₂) y = x) ↔ ↑(fst R M M₂) x = 0
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ (∃ y, ↑(inr R M M₂) y = x) → ↑(fst R M M₂) x = 0
[PROOFSTEP]
rintro ⟨y, rfl⟩
[GOAL]
case h.mp.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
y : M₂
⊢ ↑(fst R M M₂) (↑(inr R M M₂) y) = 0
[PROOFSTEP]
rfl
[GOAL]
case h.mpr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
⊢ ↑(fst R M M₂) x = 0 → ∃ y, ↑(inr R M M₂) y = x
[PROOFSTEP]
intro h
[GOAL]
case h.mpr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x : M × M₂
h : ↑(fst R M M₂) x = 0
⊢ ∃ y, ↑(inr R M M₂) y = x
[PROOFSTEP]
exact ⟨x.snd, Prod.ext h.symm rfl⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x✝ : M
⊢ ∀ ⦃a₂ : M⦄, ↑(inl R M M₂) x✝ = ↑(inl R M M₂) a₂ → x✝ = a₂
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x✝ : M₂
⊢ ∀ ⦃a₂ : M₂⦄, ↑(inr R M M₂) x✝ = ↑(inr R M M₂) a₂ → x✝ = a₂
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
⊢ comp (coprod f g) (inl R M M₂) = f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
x✝ : M
⊢ ↑(comp (coprod f g) (inl R M M₂)) x✝ = ↑f x✝
[PROOFSTEP]
simp only [map_zero, add_zero, coprod_apply, inl_apply, comp_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
⊢ comp (coprod f g) (inr R M M₂) = g
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
x✝ : M₂
⊢ ↑(comp (coprod f g) (inr R M M₂)) x✝ = ↑g x✝
[PROOFSTEP]
simp only [map_zero, coprod_apply, inr_apply, zero_add, comp_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
⊢ coprod (inl R M M₂) (inr R M M₂) = id
[PROOFSTEP]
ext
[GOAL]
case h.h₁
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x✝ : M × M₂
⊢ (↑(coprod (inl R M M₂) (inr R M M₂)) x✝).fst = (↑id x✝).fst
[PROOFSTEP]
simp only [Prod.mk_add_mk, add_zero, id_apply, coprod_apply, inl_apply, inr_apply, zero_add]
[GOAL]
case h.h₂
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x✝ : M × M₂
⊢ (↑(coprod (inl R M M₂) (inr R M M₂)) x✝).snd = (↑id x✝).snd
[PROOFSTEP]
simp only [Prod.mk_add_mk, add_zero, id_apply, coprod_apply, inl_apply, inr_apply, zero_add]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
⊢ fst R M M₂ = coprod id 0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x✝ : M × M₂
⊢ ↑(fst R M M₂) x✝ = ↑(coprod id 0) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
⊢ snd R M M₂ = coprod 0 id
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f : M →ₗ[R] M₂
x✝ : M × M₂
⊢ ↑(snd R M M₂) x✝ = ↑(coprod 0 id) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S✝ : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S✝
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
S : Submodule R M
S' : Submodule R M₂
⊢ ↑(Submodule.map (coprod f g) (Submodule.prod S S')) = ↑(Submodule.map f S ⊔ Submodule.map g S')
[PROOFSTEP]
simp only [LinearMap.coprod_apply, Submodule.coe_sup, Submodule.map_coe]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S✝ : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S✝
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
S : Submodule R M
S' : Submodule R M₂
⊢ (fun a => ↑f a.fst + ↑g a.snd) '' ↑(Submodule.prod S S') = (fun a => ↑f a) '' ↑S + (fun a => ↑g a) '' ↑S'
[PROOFSTEP]
rw [← Set.image2_add, Set.image2_image_left, Set.image2_image_right]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S✝ : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S✝
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ : M →ₗ[R] M₂
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
S : Submodule R M
S' : Submodule R M₂
⊢ (fun a => ↑f a.fst + ↑g a.snd) '' ↑(Submodule.prod S S') = Set.image2 (fun a b => ↑f a + ↑g b) ↑S ↑S'
[PROOFSTEP]
exact Set.image_prod fun m m₂ => f m + g m₂
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)
⊢ (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)
x✝ : M × M₂
⊢ ↑((fun f => coprod f.fst f.snd) (a + b)) x✝ = ↑((fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) x✝
[PROOFSTEP]
simp only [Prod.snd_add, add_apply, coprod_apply, Prod.fst_add, add_add_add_comm]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
r : S
a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)
⊢ AddHom.toFun
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }
(r • a) =
↑(RingHom.id S) r •
AddHom.toFun
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }
a
[PROOFSTEP]
dsimp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
r : S
a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)
⊢ coprod (r • a.fst) (r • a.snd) = r • coprod a.fst a.snd
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
r : S
a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)
x✝ : M × M₂
⊢ ↑(coprod (r • a.fst) (r • a.snd)) x✝ = ↑(r • coprod a.fst a.snd) x✝
[PROOFSTEP]
simp only [smul_add, smul_apply, Prod.smul_snd, Prod.smul_fst, coprod_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
f : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)
⊢ (fun f => (comp f (inl R M M₂), comp f (inr R M M₂)))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }
(r • a) =
↑(RingHom.id S) r •
AddHom.toFun
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }
a) }.toAddHom
f) =
f
[PROOFSTEP]
simp only [Prod.mk.eta, coprod_inl, coprod_inr]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁵ : Semiring R
inst✝¹⁴ : Semiring S
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : AddCommMonoid M₅
inst✝⁸ : AddCommMonoid M₆
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M₄
inst✝³ : Module R M₅
inst✝² : Module R M₆
f✝ : M →ₗ[R] M₂
inst✝¹ : Module S M₃
inst✝ : SMulCommClass R S M₃
f : M × M₂ →ₗ[R] M₃
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) },
map_smul' :=
(_ :
∀ (r : S) (a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
AddHom.toFun
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }
(r • a) =
↑(RingHom.id S) r •
AddHom.toFun
{ toFun := fun f => coprod f.fst f.snd,
map_add' :=
(_ :
∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)),
(fun f => coprod f.fst f.snd) (a + b) =
(fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }
a) }.toAddHom
((fun f => (comp f (inl R M M₂), comp f (inr R M M₂))) f) =
f
[PROOFSTEP]
simp only [← comp_coprod, comp_id, coprod_inl_inr]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
⊢ ker (prodMap f g) = Submodule.prod (ker f) (ker g)
[PROOFSTEP]
dsimp only [ker]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : AddCommMonoid M₅
inst✝⁶ : AddCommMonoid M₆
inst✝⁵ : Module R M
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M₄
inst✝¹ : Module R M₅
inst✝ : Module R M₆
f✝ f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
⊢ Submodule.comap (prodMap f g) ⊥ = Submodule.prod (Submodule.comap f ⊥) (Submodule.comap g ⊥)
[PROOFSTEP]
rw [← prodMap_comap_prod, Submodule.prod_bot]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f : M →ₗ[R] M₂
A : Type u_4
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module R A
B : Type u_5
inst✝¹ : NonUnitalNonAssocSemiring B
inst✝ : Module R B
a₁ a₂ : A
⊢ (↑(inl R A B) (a₁ * a₂)).snd = (↑(inl R A B) a₁ * ↑(inl R A B) a₂).snd
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
S : Type u_3
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring S
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M₄
inst✝¹¹ : AddCommMonoid M₅
inst✝¹⁰ : AddCommMonoid M₆
inst✝⁹ : Module R M
inst✝⁸ : Module R M₂
inst✝⁷ : Module R M₃
inst✝⁶ : Module R M₄
inst✝⁵ : Module R M₅
inst✝⁴ : Module R M₆
f : M →ₗ[R] M₂
A : Type u_4
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module R A
B : Type u_5
inst✝¹ : NonUnitalNonAssocSemiring B
inst✝ : Module R B
b₁ b₂ : B
⊢ (↑(inr R A B) (b₁ * b₂)).fst = (↑(inr R A B) b₁ * ↑(inr R A B) b₂).fst
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
x : M₃
⊢ x ∈ range (coprod f g) ↔ x ∈ range f ⊔ range g
[PROOFSTEP]
simp [mem_sup]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
⊢ IsCompl (range (inl R M M₂)) (range (inr R M M₂))
[PROOFSTEP]
constructor
[GOAL]
case disjoint
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
⊢ Disjoint (range (inl R M M₂)) (range (inr R M M₂))
[PROOFSTEP]
rw [disjoint_def]
[GOAL]
case disjoint
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
⊢ ∀ (x : M × M₂), x ∈ range (inl R M M₂) → x ∈ range (inr R M M₂) → x = 0
[PROOFSTEP]
rintro ⟨_, _⟩ ⟨x, hx⟩ ⟨y, hy⟩
[GOAL]
case disjoint.mk.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
fst✝ : M
snd✝ : M₂
x : M
hx : ↑(inl R M M₂) x = (fst✝, snd✝)
y : M₂
hy : ↑(inr R M M₂) y = (fst✝, snd✝)
⊢ (fst✝, snd✝) = 0
[PROOFSTEP]
simp only [Prod.ext_iff, inl_apply, inr_apply, mem_bot] at hx hy ⊢
[GOAL]
case disjoint.mk.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
fst✝ : M
snd✝ : M₂
x : M
y : M₂
hx : x = fst✝ ∧ 0 = snd✝
hy : 0 = fst✝ ∧ y = snd✝
⊢ fst✝ = 0.fst ∧ snd✝ = 0.snd
[PROOFSTEP]
exact ⟨hy.1.symm, hx.2.symm⟩
[GOAL]
case codisjoint
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
⊢ Codisjoint (range (inl R M M₂)) (range (inr R M M₂))
[PROOFSTEP]
rw [codisjoint_iff_le_sup]
[GOAL]
case codisjoint
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
⊢ ⊤ ≤ range (inl R M M₂) ⊔ range (inr R M M₂)
[PROOFSTEP]
rintro ⟨x, y⟩ -
[GOAL]
case codisjoint.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
x : M
y : M₂
⊢ (x, y) ∈ range (inl R M M₂) ⊔ range (inr R M M₂)
[PROOFSTEP]
simp only [mem_sup, mem_range, exists_prop]
[GOAL]
case codisjoint.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
x : M
y : M₂
⊢ ∃ y_1, (∃ y, ↑(inl R M M₂) y = y_1) ∧ ∃ z, (∃ y, ↑(inr R M M₂) y = z) ∧ y_1 + z = (x, y)
[PROOFSTEP]
refine' ⟨(x, 0), ⟨x, rfl⟩, (0, y), ⟨y, rfl⟩, _⟩
[GOAL]
case codisjoint.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
x : M
y : M₂
⊢ (x, 0) + (0, y) = (x, y)
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
⊢ Disjoint (range (inl R M M₂)) (range (inr R M M₂))
[PROOFSTEP]
simp (config := { contextual := true }) [disjoint_def, @eq_comm M 0, @eq_comm M₂ 0]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
⊢ map (coprod f g) (Submodule.prod p q) = map f p ⊔ map g q
[PROOFSTEP]
refine' le_antisymm _ (sup_le (map_le_iff_le_comap.2 _) (map_le_iff_le_comap.2 _))
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
⊢ map (coprod f g) (Submodule.prod p q) ≤ map f p ⊔ map g q
[PROOFSTEP]
rw [SetLike.le_def]
[GOAL]
case refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
⊢ ∀ ⦃x : M₃⦄, x ∈ map (coprod f g) (Submodule.prod p q) → x ∈ map f p ⊔ map g q
[PROOFSTEP]
rintro _ ⟨x, ⟨h₁, h₂⟩, rfl⟩
[GOAL]
case refine'_1.intro.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
x : M × M₂
h₁ : x.fst ∈ ↑p
h₂ : x.snd ∈ ↑q
⊢ ↑(coprod f g) x ∈ map f p ⊔ map g q
[PROOFSTEP]
exact mem_sup.2 ⟨_, ⟨_, h₁, rfl⟩, _, ⟨_, h₂, rfl⟩, rfl⟩
[GOAL]
case refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
⊢ p ≤ comap f (map (coprod f g) (Submodule.prod p q))
[PROOFSTEP]
exact fun x hx => ⟨(x, 0), by simp [hx]⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
x : M
hx : x ∈ p
⊢ (x, 0) ∈ ↑(Submodule.prod p q) ∧ ↑(coprod f g) (x, 0) = ↑f x
[PROOFSTEP]
simp [hx]
[GOAL]
case refine'_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
⊢ q ≤ comap g (map (coprod f g) (Submodule.prod p q))
[PROOFSTEP]
exact fun x hx => ⟨(0, x), by simp [hx]⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
p : Submodule R M
q : Submodule R M₂
x : M₂
hx : x ∈ q
⊢ (0, x) ∈ ↑(Submodule.prod p q) ∧ ↑(coprod f g) (0, x) = ↑g x
[PROOFSTEP]
simp [hx]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
p : Submodule R M
q : Submodule R M₂
⊢ Submodule.prod p q = map (inl R M M₂) p ⊔ map (inr R M M₂) q
[PROOFSTEP]
rw [← map_coprod_prod, coprod_inl_inr, map_id]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
s : Set M
t : Set M₂
⊢ span R (↑(inl R M M₂) '' s ∪ ↑(inr R M M₂) '' t) = Submodule.prod (span R s) (span R t)
[PROOFSTEP]
rw [span_union, prod_eq_sup_map, ← span_image, ← span_image]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
⊢ ker (prod f g) = ker f ⊓ ker g
[PROOFSTEP]
rw [ker, ← prod_bot, comap_prod_prod]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
⊢ comap f ⊥ ⊓ comap g ⊥ = ker f ⊓ ker g
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
⊢ range (prod f g) ≤ Submodule.prod (range f) (range g)
[PROOFSTEP]
simp only [SetLike.le_def, prod_apply, mem_range, SetLike.mem_coe, mem_prod, exists_imp]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
⊢ ∀ ⦃x : M₂ × M₃⦄ (x_1 : M), Pi.prod (↑f) (↑g) x_1 = x → (∃ y, ↑f y = x.fst) ∧ ∃ y, ↑g y = x.snd
[PROOFSTEP]
rintro _ x rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
x : M
⊢ (∃ y, ↑f y = (Pi.prod (↑f) (↑g) x).fst) ∧ ∃ y, ↑g y = (Pi.prod (↑f) (↑g) x).snd
[PROOFSTEP]
exact ⟨⟨x, rfl⟩, ⟨x, rfl⟩⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
⊢ Submodule.prod (ker f) (ker g) ≤ ker (coprod f g)
[PROOFSTEP]
rintro ⟨y, z⟩
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
y : M
z : M₂
⊢ (y, z) ∈ Submodule.prod (ker f) (ker g) → (y, z) ∈ ker (coprod f g)
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
⊢ ker (coprod f g) = Submodule.prod (ker f) (ker g)
[PROOFSTEP]
apply le_antisymm _ (ker_prod_ker_le_ker_coprod f g)
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
⊢ ker (coprod f g) ≤ Submodule.prod (ker f) (ker g)
[PROOFSTEP]
rintro ⟨y, z⟩ h
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : (y, z) ∈ ker (coprod f g)
⊢ (y, z) ∈ Submodule.prod (ker f) (ker g)
[PROOFSTEP]
simp only [mem_ker, mem_prod, coprod_apply] at h ⊢
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : ↑f y + ↑g z = 0
⊢ ↑f y = 0 ∧ ↑g z = 0
[PROOFSTEP]
have : f y ∈ (range f) ⊓ (range g) :=
by
simp only [true_and_iff, mem_range, mem_inf, exists_apply_eq_apply]
use-z
rwa [eq_comm, map_neg, ← sub_eq_zero, sub_neg_eq_add]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : ↑f y + ↑g z = 0
⊢ ↑f y ∈ range f ⊓ range g
[PROOFSTEP]
simp only [true_and_iff, mem_range, mem_inf, exists_apply_eq_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : ↑f y + ↑g z = 0
⊢ ∃ y_1, ↑g y_1 = ↑f y
[PROOFSTEP]
use-z
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : ↑f y + ↑g z = 0
⊢ ↑g (-z) = ↑f y
[PROOFSTEP]
rwa [eq_comm, map_neg, ← sub_eq_zero, sub_neg_eq_add]
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : ↑f y + ↑g z = 0
this : ↑f y ∈ range f ⊓ range g
⊢ ↑f y = 0 ∧ ↑g z = 0
[PROOFSTEP]
rw [hd.eq_bot, mem_bot] at this
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : ↑f y + ↑g z = 0
this : ↑f y = 0
⊢ ↑f y = 0 ∧ ↑g z = 0
[PROOFSTEP]
rw [this] at h
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂✝ : Type w
V₂ : Type w'
M₃✝ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝¹² : Semiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂✝
inst✝⁹ : AddCommMonoid M₃✝
inst✝⁸ : AddCommMonoid M₄
inst✝⁷ : Module R M
inst✝⁶ : Module R M₂✝
inst✝⁵ : Module R M₃✝
inst✝⁴ : Module R M₄
M₂ : Type u_3
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
M₃ : Type u_4
inst✝¹ : AddCommGroup M₃
inst✝ : Module R M₃
f : M →ₗ[R] M₃
g : M₂ →ₗ[R] M₃
hd : Disjoint (range f) (range g)
y : M
z : M₂
h : 0 + ↑g z = 0
this : ↑f y = 0
⊢ ↑f y = 0 ∧ ↑g z = 0
[PROOFSTEP]
simpa [this] using h
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p q : Submodule R M
x : M
⊢ x ∈ p ⊔ q ↔ x ∈ range (coprod (Submodule.subtype p) (Submodule.subtype q))
[PROOFSTEP]
simp [Submodule.mem_sup, SetLike.exists]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (inl R M M₂) p = prod p ⊥
[PROOFSTEP]
ext ⟨x, y⟩
[GOAL]
case h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
⊢ (x, y) ∈ map (inl R M M₂) p ↔ (x, y) ∈ prod p ⊥
[PROOFSTEP]
simp only [and_left_comm, eq_comm, mem_map, Prod.mk.inj_iff, inl_apply, mem_bot, exists_eq_left', mem_prod]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (inr R M M₂) q = prod ⊥ q
[PROOFSTEP]
ext ⟨x, y⟩
[GOAL]
case h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
⊢ (x, y) ∈ map (inr R M M₂) q ↔ (x, y) ∈ prod ⊥ q
[PROOFSTEP]
simp [and_left_comm, eq_comm, and_comm]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ comap (fst R M M₂) p = prod p ⊤
[PROOFSTEP]
ext ⟨x, y⟩
[GOAL]
case h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
⊢ (x, y) ∈ comap (fst R M M₂) p ↔ (x, y) ∈ prod p ⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ comap (snd R M M₂) q = prod ⊤ q
[PROOFSTEP]
ext ⟨x, y⟩
[GOAL]
case h.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
⊢ (x, y) ∈ comap (snd R M M₂) q ↔ (x, y) ∈ prod ⊤ q
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ comap (inl R M M₂) (prod p q) = p
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x✝ : M
⊢ x✝ ∈ comap (inl R M M₂) (prod p q) ↔ x✝ ∈ p
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ comap (inr R M M₂) (prod p q) = q
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x✝ : M₂
⊢ x✝ ∈ comap (inr R M M₂) (prod p q) ↔ x✝ ∈ q
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (fst R M M₂) (prod p q) = p
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
⊢ x ∈ map (fst R M M₂) (prod p q) ↔ x ∈ p
[PROOFSTEP]
simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ q)]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (snd R M M₂) (prod p q) = q
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M₂
⊢ x ∈ map (snd R M M₂) (prod p q) ↔ x ∈ q
[PROOFSTEP]
simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ p)]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ker (inl R M M₂) = ⊥
[PROOFSTEP]
rw [ker, ← prod_bot, prod_comap_inl]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ker (inr R M M₂) = ⊥
[PROOFSTEP]
rw [ker, ← prod_bot, prod_comap_inr]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ range (fst R M M₂) = ⊤
[PROOFSTEP]
rw [range_eq_map, ← prod_top, prod_map_fst]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ range (snd R M M₂) = ⊤
[PROOFSTEP]
rw [range_eq_map, ← prod_top, prod_map_snd]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ∀ (x y : { x // x ∈ fst R M M₂ }), (fun x => (↑x).fst) (x + y) = (fun x => (↑x).fst) x + (fun x => (↑x).fst) y
[PROOFSTEP]
simp only [AddSubmonoid.coe_add, coe_toAddSubmonoid, Prod.fst_add, Subtype.forall, implies_true, Prod.forall,
forall_const]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ∀ (r : R) (x : { x // x ∈ fst R M M₂ }),
AddHom.toFun
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }
x
[PROOFSTEP]
simp only [SetLike.val_smul, Prod.smul_fst, RingHom.id_apply, Subtype.forall, implies_true, Prod.forall, forall_const]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
⊢ (m, 0) ∈ fst R M M₂
[PROOFSTEP]
simp only [fst, comap_bot, mem_ker, snd_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ Function.LeftInverse (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) })
{
toAddHom :=
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom.toFun
[PROOFSTEP]
rintro ⟨⟨x, y⟩, hy⟩
[GOAL]
case mk.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
hy : (x, y) ∈ fst R M M₂
⊢ (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom
{ val := (x, y), property := hy }) =
{ val := (x, y), property := hy }
[PROOFSTEP]
simp only [fst, comap_bot, mem_ker, snd_apply] at hy
[GOAL]
case mk.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
hy✝ : (x, y) ∈ fst R M M₂
hy : y = 0
⊢ (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom
{ val := (x, y), property := hy✝ }) =
{ val := (x, y), property := hy✝ }
[PROOFSTEP]
simpa only [Subtype.mk.injEq, Prod.mk.injEq, true_and] using hy.symm
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ Function.RightInverse (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) })
{
toAddHom :=
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom.toFun
[PROOFSTEP]
rintro x
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun x => (↑x).fst,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom
((fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) }) x) =
x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (LinearMap.fst R M M₂) (fst R M M₂) = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ⊤ ≤ map (LinearMap.fst R M M₂) (fst R M M₂)
[PROOFSTEP]
rintro x -
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
⊢ x ∈ map (LinearMap.fst R M M₂) (fst R M M₂)
[PROOFSTEP]
simp only [fst, comap_bot, mem_map, mem_ker, snd_apply, fst_apply, Prod.exists, exists_eq_left, exists_eq]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (snd R M M₂) (fst R M M₂) = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (snd R M M₂) (fst R M M₂) ≤ ⊥
[PROOFSTEP]
intro x
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M₂
⊢ x ∈ map (snd R M M₂) (fst R M M₂) → x ∈ ⊥
[PROOFSTEP]
simp only [fst, comap_bot, mem_map, mem_ker, snd_apply, eq_comm, Prod.exists, exists_eq_left, exists_const, mem_bot,
imp_self]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ∀ (x y : { x // x ∈ snd R M M₂ }), (fun x => (↑x).snd) (x + y) = (fun x => (↑x).snd) x + (fun x => (↑x).snd) y
[PROOFSTEP]
simp only [AddSubmonoid.coe_add, coe_toAddSubmonoid, Prod.snd_add, Subtype.forall, implies_true, Prod.forall,
forall_const]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ∀ (r : R) (x : { x // x ∈ snd R M M₂ }),
AddHom.toFun
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }
x
[PROOFSTEP]
simp only [SetLike.val_smul, Prod.smul_snd, RingHom.id_apply, Subtype.forall, implies_true, Prod.forall, forall_const]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
n : M₂
⊢ (0, n) ∈ snd R M M₂
[PROOFSTEP]
simp only [snd, comap_bot, mem_ker, fst_apply]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ Function.LeftInverse (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) })
{
toAddHom :=
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom.toFun
[PROOFSTEP]
rintro ⟨⟨x, y⟩, hx⟩
[GOAL]
case mk.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
hx : (x, y) ∈ snd R M M₂
⊢ (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom
{ val := (x, y), property := hx }) =
{ val := (x, y), property := hx }
[PROOFSTEP]
simp only [snd, comap_bot, mem_ker, fst_apply] at hx
[GOAL]
case mk.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
hx✝ : (x, y) ∈ snd R M M₂
hx : x = 0
⊢ (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom
{ val := (x, y), property := hx✝ }) =
{ val := (x, y), property := hx✝ }
[PROOFSTEP]
simpa only [Subtype.mk.injEq, Prod.mk.injEq, and_true] using hx.symm
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ Function.RightInverse (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) })
{
toAddHom :=
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom.toFun
[PROOFSTEP]
rintro x
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M₂
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun x => (↑x).snd,
map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) },
map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom
((fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) }) x) =
x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (LinearMap.fst R M M₂) (snd R M M₂) = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (LinearMap.fst R M M₂) (snd R M M₂) ≤ ⊥
[PROOFSTEP]
intro x
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
⊢ x ∈ map (LinearMap.fst R M M₂) (snd R M M₂) → x ∈ ⊥
[PROOFSTEP]
simp only [snd, comap_bot, mem_map, mem_ker, fst_apply, eq_comm, Prod.exists, exists_eq_left, exists_const, mem_bot,
imp_self]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ map (LinearMap.snd R M M₂) (snd R M M₂) = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ⊤ ≤ map (LinearMap.snd R M M₂) (snd R M M₂)
[PROOFSTEP]
rintro x -
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M₂
⊢ x ∈ map (LinearMap.snd R M M₂) (snd R M M₂)
[PROOFSTEP]
simp only [snd, comap_bot, mem_map, mem_ker, snd_apply, fst_apply, Prod.exists, exists_eq_right, exists_eq]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ fst R M M₂ ⊔ snd R M M₂ = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ ⊤ ≤ fst R M M₂ ⊔ snd R M M₂
[PROOFSTEP]
rintro ⟨m, n⟩ -
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ (m, n) ∈ fst R M M₂ ⊔ snd R M M₂
[PROOFSTEP]
rw [show (m, n) = (m, 0) + (0, n) by simp]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ (m, n) = (m, 0) + (0, n)
[PROOFSTEP]
simp
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ (m, 0) + (0, n) ∈ fst R M M₂ ⊔ snd R M M₂
[PROOFSTEP]
apply Submodule.add_mem (Submodule.fst R M M₂ ⊔ Submodule.snd R M M₂)
[GOAL]
case mk.h₁
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ (m, 0) ∈ fst R M M₂ ⊔ snd R M M₂
[PROOFSTEP]
exact Submodule.mem_sup_left (Submodule.mem_comap.mpr (by simp))
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ ↑(LinearMap.snd R M M₂) (m, 0) ∈ ⊥
[PROOFSTEP]
simp
[GOAL]
case mk.h₂
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ (0, n) ∈ fst R M M₂ ⊔ snd R M M₂
[PROOFSTEP]
exact Submodule.mem_sup_right (Submodule.mem_comap.mpr (by simp))
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
m : M
n : M₂
⊢ ↑(LinearMap.fst R M M₂) (0, n) ∈ ⊥
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ fst R M M₂ ⊓ snd R M M₂ = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
⊢ fst R M M₂ ⊓ snd R M M₂ ≤ ⊥
[PROOFSTEP]
rintro ⟨x, y⟩
[GOAL]
case mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
x : M
y : M₂
⊢ (x, y) ∈ fst R M M₂ ⊓ snd R M M₂ → (x, y) ∈ ⊥
[PROOFSTEP]
simp only [fst, comap_bot, snd, ge_iff_le, mem_inf, mem_ker, snd_apply, fst_apply, mem_bot, Prod.mk_eq_zero, and_comm,
imp_self]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
⊢ q ≤ prod p₁ p₂ ↔ map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
⊢ q ≤ prod p₁ p₂ → map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : q ≤ prod p₁ p₂
⊢ map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂
[PROOFSTEP]
constructor
[GOAL]
case mp.left
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : q ≤ prod p₁ p₂
⊢ map (LinearMap.fst R M M₂) q ≤ p₁
[PROOFSTEP]
rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩
[GOAL]
case mp.left.intro.mk.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : q ≤ prod p₁ p₂
y1 : M
y2 : M₂
hy1 : (y1, y2) ∈ ↑q
⊢ ↑(LinearMap.fst R M M₂) (y1, y2) ∈ p₁
[PROOFSTEP]
exact (h hy1).1
[GOAL]
case mp.right
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : q ≤ prod p₁ p₂
⊢ map (LinearMap.snd R M M₂) q ≤ p₂
[PROOFSTEP]
rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩
[GOAL]
case mp.right.intro.mk.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : q ≤ prod p₁ p₂
y1 : M
y2 : M₂
hy1 : (y1, y2) ∈ ↑q
⊢ ↑(LinearMap.snd R M M₂) (y1, y2) ∈ p₂
[PROOFSTEP]
exact (h hy1).2
[GOAL]
case mpr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
⊢ map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂ → q ≤ prod p₁ p₂
[PROOFSTEP]
rintro ⟨hH, hK⟩ ⟨x1, x2⟩ h
[GOAL]
case mpr.intro.mk
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (LinearMap.fst R M M₂) q ≤ p₁
hK : map (LinearMap.snd R M M₂) q ≤ p₂
x1 : M
x2 : M₂
h : (x1, x2) ∈ q
⊢ (x1, x2) ∈ prod p₁ p₂
[PROOFSTEP]
exact ⟨hH ⟨_, h, rfl⟩, hK ⟨_, h, rfl⟩⟩
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
⊢ prod p₁ p₂ ≤ q ↔ map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
⊢ prod p₁ p₂ ≤ q → map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
⊢ map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q
[PROOFSTEP]
constructor
[GOAL]
case mp.left
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
⊢ map (inl R M M₂) p₁ ≤ q
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case mp.left.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
x : M
hx : x ∈ ↑p₁
⊢ ↑(inl R M M₂) x ∈ q
[PROOFSTEP]
apply h
[GOAL]
case mp.left.intro.intro.a
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
x : M
hx : x ∈ ↑p₁
⊢ ↑(inl R M M₂) x ∈ prod p₁ p₂
[PROOFSTEP]
exact ⟨hx, zero_mem p₂⟩
[GOAL]
case mp.right
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
⊢ map (inr R M M₂) p₂ ≤ q
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case mp.right.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
x : M₂
hx : x ∈ ↑p₂
⊢ ↑(inr R M M₂) x ∈ q
[PROOFSTEP]
apply h
[GOAL]
case mp.right.intro.intro.a
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
h : prod p₁ p₂ ≤ q
x : M₂
hx : x ∈ ↑p₂
⊢ ↑(inr R M M₂) x ∈ prod p₁ p₂
[PROOFSTEP]
exact ⟨zero_mem p₁, hx⟩
[GOAL]
case mpr
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
⊢ map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q → prod p₁ p₂ ≤ q
[PROOFSTEP]
rintro ⟨hH, hK⟩ ⟨x1, x2⟩ ⟨h1, h2⟩
[GOAL]
case mpr.intro.mk.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
⊢ (x1, x2) ∈ q
[PROOFSTEP]
have h1' : (LinearMap.inl R _ _) x1 ∈ q := by
apply hH
simpa using h1
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
⊢ ↑(inl R M M₂) x1 ∈ q
[PROOFSTEP]
apply hH
[GOAL]
case a
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
⊢ ↑(inl R M M₂) x1 ∈ map (inl R M M₂) p₁
[PROOFSTEP]
simpa using h1
[GOAL]
case mpr.intro.mk.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
h1' : ↑(inl R M M₂) x1 ∈ q
⊢ (x1, x2) ∈ q
[PROOFSTEP]
have h2' : (LinearMap.inr R _ _) x2 ∈ q := by
apply hK
simpa using h2
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
h1' : ↑(inl R M M₂) x1 ∈ q
⊢ ↑(inr R M M₂) x2 ∈ q
[PROOFSTEP]
apply hK
[GOAL]
case a
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
h1' : ↑(inl R M M₂) x1 ∈ q
⊢ ↑(inr R M M₂) x2 ∈ map (inr R M M₂) p₂
[PROOFSTEP]
simpa using h2
[GOAL]
case mpr.intro.mk.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q✝ : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
q : Submodule R (M × M₂)
hH : map (inl R M M₂) p₁ ≤ q
hK : map (inr R M M₂) p₂ ≤ q
x1 : M
x2 : M₂
h1 : (x1, x2).fst ∈ ↑p₁
h2 : (x1, x2).snd ∈ ↑p₂
h1' : ↑(inl R M M₂) x1 ∈ q
h2' : ↑(inr R M M₂) x2 ∈ q
⊢ (x1, x2) ∈ q
[PROOFSTEP]
simpa using add_mem h1' h2'
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
⊢ prod p₁ p₂ = ⊥ ↔ p₁ = ⊥ ∧ p₂ = ⊥
[PROOFSTEP]
simp only [eq_bot_iff, prod_le_iff, (gc_map_comap _).le_iff_le, comap_bot, ker_inl, ker_inr]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
p : Submodule R M
q : Submodule R M₂
p₁ : Submodule R M
p₂ : Submodule R M₂
⊢ prod p₁ p₂ = ⊤ ↔ p₁ = ⊤ ∧ p₂ = ⊤
[PROOFSTEP]
simp only [eq_top_iff, le_prod_iff, ← (gc_map_comap _).le_iff_le, map_top, range_fst, range_snd]
[GOAL]
N : Type u_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
inst✝¹ : Module R M
inst✝ : Module R N
⊢ LinearMap.comp (LinearMap.fst R N M) ↑(prodComm R M N) = LinearMap.snd R M N
[PROOFSTEP]
ext
[GOAL]
case hl.h
N : Type u_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
inst✝¹ : Module R M
inst✝ : Module R N
x✝ : M
⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.fst R N M) ↑(prodComm R M N)) (LinearMap.inl R M N)) x✝ =
↑(LinearMap.comp (LinearMap.snd R M N) (LinearMap.inl R M N)) x✝
[PROOFSTEP]
simp
[GOAL]
case hr.h
N : Type u_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
inst✝¹ : Module R M
inst✝ : Module R N
x✝ : N
⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.fst R N M) ↑(prodComm R M N)) (LinearMap.inr R M N)) x✝ =
↑(LinearMap.comp (LinearMap.snd R M N) (LinearMap.inr R M N)) x✝
[PROOFSTEP]
simp
[GOAL]
N : Type u_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
inst✝¹ : Module R M
inst✝ : Module R N
⊢ LinearMap.comp (LinearMap.snd R N M) ↑(prodComm R M N) = LinearMap.fst R M N
[PROOFSTEP]
ext
[GOAL]
case hl.h
N : Type u_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
inst✝¹ : Module R M
inst✝ : Module R N
x✝ : M
⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.snd R N M) ↑(prodComm R M N)) (LinearMap.inl R M N)) x✝ =
↑(LinearMap.comp (LinearMap.fst R M N) (LinearMap.inl R M N)) x✝
[PROOFSTEP]
simp
[GOAL]
case hr.h
N : Type u_3
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
inst✝¹ : Module R M
inst✝ : Module R N
x✝ : N
⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.snd R N M) ↑(prodComm R M N)) (LinearMap.inr R M N)) x✝ =
↑(LinearMap.comp (LinearMap.fst R M N) (LinearMap.inr R M N)) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommGroup M₄
module_M : Module R M
module_M₂ : Module R M₂
module_M₃ : Module R M₃
module_M₄ : Module R M₄
e₁ : M ≃ₗ[R] M₂
e₂ : M₃ ≃ₗ[R] M₄
f : M →ₗ[R] M₄
src✝ : M × M₃ →ₗ[R] M₂ × M₄ :=
LinearMap.prod (LinearMap.comp (↑e₁) (LinearMap.fst R M M₃))
(LinearMap.comp (↑e₂) (LinearMap.snd R M M₃) + LinearMap.comp f (LinearMap.fst R M M₃))
p : M × M₃
⊢ (fun p => (↑(symm e₁) p.fst, ↑(symm e₂) (p.snd - ↑f (↑(symm e₁) p.fst))))
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : M × M₃),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
p) =
p
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommGroup M₄
module_M : Module R M
module_M₂ : Module R M₂
module_M₃ : Module R M₃
module_M₄ : Module R M₄
e₁ : M ≃ₗ[R] M₂
e₂ : M₃ ≃ₗ[R] M₄
f : M →ₗ[R] M₄
src✝ : M × M₃ →ₗ[R] M₂ × M₄ :=
LinearMap.prod (LinearMap.comp (↑e₁) (LinearMap.fst R M M₃))
(LinearMap.comp (↑e₂) (LinearMap.snd R M M₃) + LinearMap.comp f (LinearMap.fst R M M₃))
p : M₂ × M₄
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : M × M₃),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun p => (↑(symm e₁) p.fst, ↑(symm e₂) (p.snd - ↑f (↑(symm e₁) p.fst)))) p) =
p
[PROOFSTEP]
simp
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
⊢ range (prod f g) = Submodule.prod (range f) (range g)
[PROOFSTEP]
refine' le_antisymm (f.range_prod_le g) _
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
⊢ Submodule.prod (range f) (range g) ≤ range (prod f g)
[PROOFSTEP]
simp only [SetLike.le_def, prod_apply, mem_range, SetLike.mem_coe, mem_prod, exists_imp, and_imp, Prod.forall, Pi.prod]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
⊢ ∀ (a : M₂) (b : M₃) (x : M), ↑f x = a → ∀ (x : M), ↑g x = b → ∃ y, (↑f y, ↑g y) = (a, b)
[PROOFSTEP]
rintro _ _ x rfl y rfl
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
⊢ ∃ y_1, (↑f y_1, ↑g y_1) = (↑f x, ↑g y)
[PROOFSTEP]
simp only [Prod.mk.inj_iff, ← sub_mem_ker_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
⊢ ∃ y_1, y_1 - x ∈ ker f ∧ y_1 - y ∈ ker g
[PROOFSTEP]
have : y - x ∈ ker f ⊔ ker g := by simp only [h, mem_top]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
⊢ y - x ∈ ker f ⊔ ker g
[PROOFSTEP]
simp only [h, mem_top]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
this : y - x ∈ ker f ⊔ ker g
⊢ ∃ y_1, y_1 - x ∈ ker f ∧ y_1 - y ∈ ker g
[PROOFSTEP]
rcases mem_sup.1 this with ⟨x', hx', y', hy', H⟩
[GOAL]
case intro.intro.intro.intro
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
this : y - x ∈ ker f ⊔ ker g
x' : M
hx' : x' ∈ ker f
y' : M
hy' : y' ∈ ker g
H : x' + y' = y - x
⊢ ∃ y_1, y_1 - x ∈ ker f ∧ y_1 - y ∈ ker g
[PROOFSTEP]
refine' ⟨x' + x, _, _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
this : y - x ∈ ker f ⊔ ker g
x' : M
hx' : x' ∈ ker f
y' : M
hy' : y' ∈ ker g
H : x' + y' = y - x
⊢ x' + x - x ∈ ker f
[PROOFSTEP]
rwa [add_sub_cancel]
[GOAL]
case intro.intro.intro.intro.refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f : M →ₗ[R] M₂
g : M →ₗ[R] M₃
h : ker f ⊔ ker g = ⊤
x y : M
this : y - x ∈ ker f ⊔ ker g
x' : M
hx' : x' ∈ ker f
y' : M
hy' : y' ∈ ker g
H : x' + y' = y - x
⊢ x' + x - y ∈ ker g
[PROOFSTEP]
simp [← eq_sub_iff_add_eq.1 H, map_add, add_left_inj, self_eq_add_right, mem_ker.mp hy']
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ ↑OrderDual.toDual (tunnel' f i n).fst ≤ ↑OrderDual.toDual (tunnel' f i (n + 1)).fst
[PROOFSTEP]
dsimp [tunnel', tunnelAux]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ ↑OrderDual.toDual (tunnel' f i n).fst ≤
↑OrderDual.toDual
(Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f)
(Submodule.fst R M N))
[PROOFSTEP]
rw [Submodule.map_comp, Submodule.map_comp]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ ↑OrderDual.toDual (tunnel' f i n).fst ≤
↑OrderDual.toDual
(Submodule.map (Submodule.subtype (tunnel' f i n).fst)
(Submodule.map (↑(LinearEquiv.symm (tunnel' f i n).snd)) (Submodule.map f (Submodule.fst R M N))))
[PROOFSTEP]
apply Submodule.map_subtype_le
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ tailing f i n ≤ ↑OrderDual.ofDual (↑(tunnel f i) n)
[PROOFSTEP]
dsimp [tailing, tunnelAux]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f)
(Submodule.snd R M N) ≤
↑OrderDual.ofDual (↑(tunnel f i) n)
[PROOFSTEP]
rw [Submodule.map_comp, Submodule.map_comp]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Submodule.map (Submodule.subtype (tunnel' f i n).fst)
(Submodule.map (↑(LinearEquiv.symm (tunnel' f i n).snd)) (Submodule.map f (Submodule.snd R M N))) ≤
↑OrderDual.ofDual (↑(tunnel f i) n)
[PROOFSTEP]
apply Submodule.map_subtype_le
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Disjoint (tailing f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
[PROOFSTEP]
rw [disjoint_iff]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ tailing f i n ⊓ ↑OrderDual.ofDual (↑(tunnel f i) (n + 1)) = ⊥
[PROOFSTEP]
dsimp [tailing, tunnel, tunnel']
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Submodule.map (tunnelAux f (tunnel' f i n)) (Submodule.snd R M N) ⊓
Submodule.map (tunnelAux f (tunnel' f i n)) (Submodule.fst R M N) =
⊥
[PROOFSTEP]
erw [Submodule.map_inf_eq_map_inf_comap, Submodule.comap_map_eq_of_injective (tunnelAux_injective _ i _), inf_comm,
Submodule.fst_inf_snd, Submodule.map_bot]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ tailing f i n ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (n + 1)) ≤ ↑OrderDual.ofDual (↑(tunnel f i) n)
[PROOFSTEP]
dsimp [tailing, tunnel, tunnel', tunnelAux]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f)
(Submodule.snd R M N) ⊔
Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f)
(Submodule.fst R M N) ≤
(tunnel' f i n).fst
[PROOFSTEP]
erw [← Submodule.map_sup, sup_comm, Submodule.fst_sup_snd, Submodule.map_comp, Submodule.map_comp]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Submodule.map (Submodule.subtype (tunnel' f i n).fst)
(Submodule.map (↑(LinearEquiv.symm (tunnel' f i n).snd)) (Submodule.map f ⊤)) ≤
(tunnel' f i n).fst
[PROOFSTEP]
apply Submodule.map_subtype_le
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
⊢ tailings f i 0 = tailing f i 0
[PROOFSTEP]
simp [tailings]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ tailings f i (n + 1) = tailings f i n ⊔ tailing f i (n + 1)
[PROOFSTEP]
simp [tailings]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
⊢ Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
⊢ Disjoint (tailings f i Nat.zero) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.zero + 1)))
[PROOFSTEP]
simp only [tailings_zero]
[GOAL]
case zero
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
⊢ Disjoint (tailing f i 0) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.zero + 1)))
[PROOFSTEP]
apply tailing_disjoint_tunnel_succ
[GOAL]
case succ
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
⊢ Disjoint (tailings f i (Nat.succ n)) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)))
[PROOFSTEP]
simp only [tailings_succ]
[GOAL]
case succ
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
⊢ Disjoint (tailings f i n ⊔ tailing f i (n + 1)) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)))
[PROOFSTEP]
refine' Disjoint.disjoint_sup_left_of_disjoint_sup_right _ _
[GOAL]
case succ.refine'_1
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
⊢ Disjoint (tailing f i (n + 1)) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)))
case succ.refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
⊢ Disjoint (tailings f i n) (tailing f i (n + 1) ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)))
[PROOFSTEP]
apply tailing_disjoint_tunnel_succ
[GOAL]
case succ.refine'_2
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
⊢ Disjoint (tailings f i n) (tailing f i (n + 1) ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)))
[PROOFSTEP]
apply Disjoint.mono_right _ ih
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁴ : Ring R
N : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : M × N →ₗ[R] M
i : Injective ↑f
n : ℕ
ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1)))
⊢ tailing f i (n + 1) ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)) ≤ ↑OrderDual.ofDual (↑(tunnel f i) (n + 1))
[PROOFSTEP]
apply tailing_sup_tunnel_succ_le_tunnel
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
a✝ b✝ : M × M₂
ha : a✝.snd = ↑f a✝.fst
hb : b✝.snd = ↑f b✝.fst
⊢ a✝ + b✝ ∈ {p | p.snd = ↑f p.fst}
[PROOFSTEP]
change _ + _ = f (_ + _)
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
a✝ b✝ : M × M₂
ha : a✝.snd = ↑f a✝.fst
hb : b✝.snd = ↑f b✝.fst
⊢ a✝.snd + b✝.snd = ↑f (a✝.fst + b✝.fst)
[PROOFSTEP]
rw [map_add, ha, hb]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
c : R
x : M × M₂
hx : x.snd = ↑f x.fst
⊢ c • x ∈
{
toAddSubsemigroup :=
{ carrier := {p | p.snd = ↑f p.fst},
add_mem' :=
(_ : ∀ {a b : M × M₂}, a.snd = ↑f a.fst → b.snd = ↑f b.fst → a.snd + b.snd = ↑f (a.fst + b.fst)) },
zero_mem' := (_ : 0.snd = ↑f 0.fst) }.toAddSubsemigroup.carrier
[PROOFSTEP]
change _ • _ = f (_ • _)
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
c : R
x : M × M₂
hx : x.snd = ↑f x.fst
⊢ c • x.snd = ↑f (c • x.fst)
[PROOFSTEP]
rw [map_smul, hx]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
⊢ graph g = ker (coprod (-g) id)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
x : M₃ × M₄
⊢ x ∈ graph g ↔ x ∈ ker (coprod (-g) id)
[PROOFSTEP]
change _ = _ ↔ -g x.1 + x.2 = _
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
x : M₃ × M₄
⊢ x.snd = ↑g x.fst ↔ -↑g x.fst + x.snd = 0
[PROOFSTEP]
rw [add_comm, add_neg_eq_zero]
[GOAL]
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
⊢ graph f = range (prod id f)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
K : Type u'
M : Type v
V : Type v'
M₂ : Type w
V₂ : Type w'
M₃ : Type y
V₃ : Type y'
M₄ : Type z
ι : Type x
M₅ : Type u_1
M₆ : Type u_2
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : AddCommGroup M₄
inst✝³ : Module R M
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M₄
f : M →ₗ[R] M₂
g : M₃ →ₗ[R] M₄
x : M × M₂
⊢ x ∈ graph f ↔ x ∈ range (prod id f)
[PROOFSTEP]
exact ⟨fun hx => ⟨x.1, Prod.ext rfl hx.symm⟩, fun ⟨u, hu⟩ => hu ▸ rfl⟩
| {"mathlib_filename": "Mathlib.LinearAlgebra.Prod", "llama_tokens": 69300} |
[GOAL]
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝⁹ : Finite ι
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : Module.Finite R M₂
inst✝⁴ : Module.Free R M₂
n : ℕ
N : Fin n → Type u_5
inst✝³ : (i : Fin n) → AddCommGroup (N i)
inst✝² : (i : Fin n) → Module R (N i)
inst✝¹ : ∀ (i : Fin n), Module.Finite R (N i)
inst✝ : ∀ (i : Fin n), Module.Free R (N i)
⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n : ℕ
N✝ : Fin n → Type u_5
inst✝⁷ : (i : Fin n) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n), Module.Free R (N✝ i)
N : Fin Nat.zero → Type u_5
inst✝³ : (i : Fin Nat.zero) → AddCommGroup (N i)
inst✝² : (i : Fin Nat.zero) → Module R (N i)
inst✝¹ : ∀ (i : Fin Nat.zero), Module.Finite R (N i)
inst✝ : ∀ (i : Fin Nat.zero), Module.Free R (N i)
⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
[PROOFSTEP]
haveI : IsEmpty (Fin Nat.zero) := inferInstanceAs (IsEmpty (Fin 0))
[GOAL]
case zero
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n : ℕ
N✝ : Fin n → Type u_5
inst✝⁷ : (i : Fin n) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n), Module.Free R (N✝ i)
N : Fin Nat.zero → Type u_5
inst✝³ : (i : Fin Nat.zero) → AddCommGroup (N i)
inst✝² : (i : Fin Nat.zero) → Module R (N i)
inst✝¹ : ∀ (i : Fin Nat.zero), Module.Finite R (N i)
inst✝ : ∀ (i : Fin Nat.zero), Module.Free R (N i)
this : IsEmpty (Fin Nat.zero)
⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
[PROOFSTEP]
exact ⟨Module.Free.of_equiv (constLinearEquivOfIsEmpty R N M₂), Module.Finite.equiv (constLinearEquivOfIsEmpty R N M₂)⟩
[GOAL]
case succ
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n✝ : ℕ
N✝ : Fin n✝ → Type u_5
inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n✝) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i)
n : ℕ
ih :
∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)]
[inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)],
Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
N : Fin (Nat.succ n) → Type u_5
inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i)
inst✝² : (i : Fin (Nat.succ n)) → Module R (N i)
inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i)
inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i)
⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
[PROOFSTEP]
suffices
Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i : Fin n => N i.succ) M₂) ∧
Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i : Fin n => N i.succ) M₂)
by
cases this
exact
⟨Module.Free.of_equiv (multilinearCurryLeftEquiv R N M₂), Module.Finite.equiv (multilinearCurryLeftEquiv R N M₂)⟩
[GOAL]
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n✝ : ℕ
N✝ : Fin n✝ → Type u_5
inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n✝) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i)
n : ℕ
ih :
∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)]
[inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)],
Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
N : Fin (Nat.succ n) → Type u_5
inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i)
inst✝² : (i : Fin (Nat.succ n)) → Module R (N i)
inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i)
inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i)
this :
Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ∧
Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂)
⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
[PROOFSTEP]
cases this
[GOAL]
case intro
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n✝ : ℕ
N✝ : Fin n✝ → Type u_5
inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n✝) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i)
n : ℕ
ih :
∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)]
[inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)],
Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
N : Fin (Nat.succ n) → Type u_5
inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i)
inst✝² : (i : Fin (Nat.succ n)) → Module R (N i)
inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i)
inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i)
left✝ : Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂)
right✝ : Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂)
⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
[PROOFSTEP]
exact ⟨Module.Free.of_equiv (multilinearCurryLeftEquiv R N M₂), Module.Finite.equiv (multilinearCurryLeftEquiv R N M₂)⟩
[GOAL]
case succ
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n✝ : ℕ
N✝ : Fin n✝ → Type u_5
inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n✝) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i)
n : ℕ
ih :
∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)]
[inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)],
Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
N : Fin (Nat.succ n) → Type u_5
inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i)
inst✝² : (i : Fin (Nat.succ n)) → Module R (N i)
inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i)
inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i)
⊢ Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ∧
Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂)
[PROOFSTEP]
cases ih fun i => N i.succ
[GOAL]
case succ.intro
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝¹³ : Finite ι
inst✝¹² : CommRing R
inst✝¹¹ : AddCommGroup M₂
inst✝¹⁰ : Module R M₂
inst✝⁹ : Module.Finite R M₂
inst✝⁸ : Module.Free R M₂
n✝ : ℕ
N✝ : Fin n✝ → Type u_5
inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i)
inst✝⁶ : (i : Fin n✝) → Module R (N✝ i)
inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i)
inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i)
n : ℕ
ih :
∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)]
[inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)],
Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂)
N : Fin (Nat.succ n) → Type u_5
inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i)
inst✝² : (i : Fin (Nat.succ n)) → Module R (N i)
inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i)
inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i)
left✝ : Module.Free R (MultilinearMap R (fun i => N (Fin.succ i)) M₂)
right✝ : Module.Finite R (MultilinearMap R (fun i => N (Fin.succ i)) M₂)
⊢ Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ∧
Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂)
[PROOFSTEP]
exact ⟨Module.Free.linearMap _ _ _, Module.Finite.linearMap _ _⟩
[GOAL]
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝⁹ : Finite ι
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : Module.Finite R M₂
inst✝⁴ : Module.Free R M₂
inst✝³ : (i : ι) → AddCommGroup (M₁ i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i)
inst✝ : ∀ (i : ι), Module.Free R (M₁ i)
⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂)
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝⁹ : Finite ι
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : Module.Finite R M₂
inst✝⁴ : Module.Free R M₂
inst✝³ : (i : ι) → AddCommGroup (M₁ i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i)
inst✝ : ∀ (i : ι), Module.Free R (M₁ i)
val✝ : Fintype ι
⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂)
[PROOFSTEP]
have := @free_and_finite_fin R M₂ _ _ _ _ _ (Fintype.card ι) (fun x => M₁ ((Fintype.equivFin ι).symm x))
[GOAL]
case intro
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝⁹ : Finite ι
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : Module.Finite R M₂
inst✝⁴ : Module.Free R M₂
inst✝³ : (i : ι) → AddCommGroup (M₁ i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i)
inst✝ : ∀ (i : ι), Module.Free R (M₁ i)
val✝ : Fintype ι
this :
∀ [inst : (i : Fin (Fintype.card ι)) → AddCommGroup (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_1 : (i : Fin (Fintype.card ι)) → Module R (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_2 : ∀ (i : Fin (Fintype.card ι)), Module.Finite R (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_3 : ∀ (i : Fin (Fintype.card ι)), Module.Free R (M₁ (↑(Fintype.equivFin ι).symm i))],
Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ∧
Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂)
[PROOFSTEP]
cases' this with l r
[GOAL]
case intro.intro
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝⁹ : Finite ι
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : Module.Finite R M₂
inst✝⁴ : Module.Free R M₂
inst✝³ : (i : ι) → AddCommGroup (M₁ i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i)
inst✝ : ∀ (i : ι), Module.Free R (M₁ i)
val✝ : Fintype ι
this :
∀ [inst : (i : Fin (Fintype.card ι)) → AddCommGroup (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_1 : (i : Fin (Fintype.card ι)) → Module R (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_2 : ∀ (i : Fin (Fintype.card ι)), Module.Finite R (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_3 : ∀ (i : Fin (Fintype.card ι)), Module.Free R (M₁ (↑(Fintype.equivFin ι).symm i))],
Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ∧
Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
l : Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
r : Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂)
[PROOFSTEP]
have e := domDomCongrLinearEquiv' R M₁ M₂ (Fintype.equivFin ι)
[GOAL]
case intro.intro
ι : Type u_1
R : Type u_2
M₂ : Type u_3
M₁ : ι → Type u_4
inst✝⁹ : Finite ι
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : Module.Finite R M₂
inst✝⁴ : Module.Free R M₂
inst✝³ : (i : ι) → AddCommGroup (M₁ i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i)
inst✝ : ∀ (i : ι), Module.Free R (M₁ i)
val✝ : Fintype ι
this :
∀ [inst : (i : Fin (Fintype.card ι)) → AddCommGroup (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_1 : (i : Fin (Fintype.card ι)) → Module R (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_2 : ∀ (i : Fin (Fintype.card ι)), Module.Finite R (M₁ (↑(Fintype.equivFin ι).symm i))]
[inst_3 : ∀ (i : Fin (Fintype.card ι)), Module.Free R (M₁ (↑(Fintype.equivFin ι).symm i))],
Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ∧
Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
l : Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
r : Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂)
e : MultilinearMap R M₁ M₂ ≃ₗ[R] MultilinearMap R (fun i => M₁ (↑(Fintype.equivFin ι).symm i)) M₂
⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂)
[PROOFSTEP]
exact ⟨Module.Free.of_equiv e.symm, Module.Finite.equiv e.symm⟩
| {"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.FiniteDimensional", "llama_tokens": 6830} |
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ ker (id - comp (Submodule.subtype p) f) = p
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
⊢ x ∈ ker (id - comp (Submodule.subtype p) f) ↔ x ∈ p
[PROOFSTEP]
simp only [comp_apply, mem_ker, subtype_apply, sub_apply, id_apply, sub_eq_zero]
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
⊢ x = ↑(↑f x) ↔ x ∈ p
[PROOFSTEP]
exact ⟨fun h => h.symm ▸ Submodule.coe_mem _, fun hx => by erw [hf ⟨x, hx⟩, Subtype.coe_mk]⟩
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
hx : x ∈ p
⊢ x = ↑(↑f x)
[PROOFSTEP]
erw [hf ⟨x, hx⟩, Subtype.coe_mk]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ IsCompl p (ker f)
[PROOFSTEP]
constructor
[GOAL]
case disjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ Disjoint p (ker f)
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case disjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ p ⊓ ker f ≤ ⊥
[PROOFSTEP]
rintro x ⟨hpx, hfx⟩
[GOAL]
case disjoint.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
hpx : x ∈ ↑p
hfx : x ∈ ↑(ker f)
⊢ x ∈ ⊥
[PROOFSTEP]
erw [SetLike.mem_coe, mem_ker, hf ⟨x, hpx⟩, mk_eq_zero] at hfx
[GOAL]
case disjoint.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
hpx : x ∈ ↑p
hfx : x = 0
⊢ x ∈ ⊥
[PROOFSTEP]
simp only [hfx, SetLike.mem_coe, zero_mem]
[GOAL]
case codisjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ Codisjoint p (ker f)
[PROOFSTEP]
rw [codisjoint_iff_le_sup]
[GOAL]
case codisjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ ⊤ ≤ p ⊔ ker f
[PROOFSTEP]
intro x _
[GOAL]
case codisjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
a✝ : x ∈ ⊤
⊢ x ∈ p ⊔ ker f
[PROOFSTEP]
rw [mem_sup']
[GOAL]
case codisjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
a✝ : x ∈ ⊤
⊢ ∃ y z, ↑y + ↑z = x
[PROOFSTEP]
refine' ⟨f x, ⟨x - f x, _⟩, add_sub_cancel'_right _ _⟩
[GOAL]
case codisjoint
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
a✝ : x ∈ ⊤
⊢ x - ↑(↑f x) ∈ ker f
[PROOFSTEP]
rw [mem_ker, LinearMap.map_sub, hf, sub_self]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Function.Injective ↑(comp (mkQ p) (Submodule.subtype q))
[PROOFSTEP]
rw [← ker_eq_bot, ker_comp, ker_mkQ, disjoint_iff_comap_eq_bot.1 h.symm.disjoint]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Function.Surjective ↑(comp (mkQ p) (Submodule.subtype q))
[PROOFSTEP]
rw [← range_eq_top, range_comp, range_subtype, map_mkQ_eq_top, h.sup_eq_top]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ ({ x // x ∈ p } × { x // x ∈ q }) ≃ₗ[R] E
[PROOFSTEP]
apply LinearEquiv.ofBijective (p.subtype.coprod q.subtype)
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Function.Bijective ↑(coprod (Submodule.subtype p) (Submodule.subtype q))
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Function.Injective ↑(coprod (Submodule.subtype p) (Submodule.subtype q))
[PROOFSTEP]
rw [← ker_eq_bot, ker_coprod_of_disjoint_range, ker_subtype, ker_subtype, prod_bot]
[GOAL]
case left.hd
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Disjoint (range (Submodule.subtype p)) (range (Submodule.subtype q))
[PROOFSTEP]
rw [range_subtype, range_subtype]
[GOAL]
case left.hd
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Disjoint p q
[PROOFSTEP]
exact h.1
[GOAL]
case right
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
⊢ Function.Surjective ↑(coprod (Submodule.subtype p) (Submodule.subtype q))
[PROOFSTEP]
rw [← range_eq_top, ← sup_eq_range, h.sup_eq_top]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : { x // x ∈ p }
⊢ ↑x = ↑(prodEquivOfIsCompl p q h) (x, 0)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : { x // x ∈ q }
⊢ ↑x = ↑(prodEquivOfIsCompl p q h) (0, x)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).fst = 0 ↔ x ∈ q
[PROOFSTEP]
conv_rhs => rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
| x ∈ q
[PROOFSTEP]
rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
| x ∈ q
[PROOFSTEP]
rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
| x ∈ q
[PROOFSTEP]
rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).fst = 0 ↔
↑(prodEquivOfIsCompl p q h) (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x) ∈ q
[PROOFSTEP]
rw [coe_prodEquivOfIsCompl', Submodule.add_mem_iff_left _ (Submodule.coe_mem _),
mem_right_iff_eq_zero_of_disjoint h.disjoint]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).snd = 0 ↔ x ∈ p
[PROOFSTEP]
conv_rhs => rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
| x ∈ p
[PROOFSTEP]
rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
| x ∈ p
[PROOFSTEP]
rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
| x ∈ p
[PROOFSTEP]
rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).snd = 0 ↔
↑(prodEquivOfIsCompl p q h) (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x) ∈ p
[PROOFSTEP]
rw [coe_prodEquivOfIsCompl', Submodule.add_mem_iff_right _ (Submodule.coe_mem _),
mem_left_iff_eq_zero_of_disjoint h.disjoint]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : { x // x ∈ p }
⊢ ↑(linearProjOfIsCompl p q h) ↑x = x
[PROOFSTEP]
simp [linearProjOfIsCompl]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
x : E
⊢ ↑(linearProjOfIsCompl p q h) x = 0 ↔ x ∈ q
[PROOFSTEP]
simp [linearProjOfIsCompl]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
hpq : IsCompl p q
x : E
⊢ ↑(↑(linearProjOfIsCompl p q hpq) x) + ↑(↑(linearProjOfIsCompl q p (_ : IsCompl q p)) x) = x
[PROOFSTEP]
dsimp only [linearProjOfIsCompl]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
hpq : IsCompl p q
x : E
⊢ ↑(↑(comp (LinearMap.fst R { x // x ∈ p } { x // x ∈ q }) ↑(LinearEquiv.symm (prodEquivOfIsCompl p q hpq))) x) +
↑(↑(comp (LinearMap.fst R { x // x ∈ q } { x // x ∈ p })
↑(LinearEquiv.symm (prodEquivOfIsCompl q p (_ : IsCompl q p))))
x) =
x
[PROOFSTEP]
rw [← prodComm_trans_prodEquivOfIsCompl _ _ hpq]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
hpq : IsCompl p q
x : E
⊢ ↑(↑(comp (LinearMap.fst R { x // x ∈ p } { x // x ∈ q }) ↑(LinearEquiv.symm (prodEquivOfIsCompl p q hpq))) x) +
↑(↑(comp (LinearMap.fst R { x // x ∈ q } { x // x ∈ p })
↑(LinearEquiv.symm
(LinearEquiv.trans (LinearEquiv.prodComm R { x // x ∈ q } { x // x ∈ p })
(prodEquivOfIsCompl p q hpq))))
x) =
x
[PROOFSTEP]
exact (prodEquivOfIsCompl _ _ hpq).apply_symm_apply x
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
u : { x // x ∈ p }
⊢ ↑(ofIsCompl h φ ψ) ↑u = ↑φ u
[PROOFSTEP]
simp [ofIsCompl]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
v : { x // x ∈ q }
⊢ ↑(ofIsCompl h φ ψ) ↑v = ↑ψ v
[PROOFSTEP]
simp [ofIsCompl]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
χ : E →ₗ[R] F
hφ : ∀ (u : { x // x ∈ p }), ↑φ u = ↑χ ↑u
hψ : ∀ (u : { x // x ∈ q }), ↑ψ u = ↑χ ↑u
⊢ ofIsCompl h φ ψ = χ
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
χ : E →ₗ[R] F
hφ : ∀ (u : { x // x ∈ p }), ↑φ u = ↑χ ↑u
hψ : ∀ (u : { x // x ∈ q }), ↑ψ u = ↑χ ↑u
x : E
⊢ ↑(ofIsCompl h φ ψ) x = ↑χ x
[PROOFSTEP]
obtain ⟨_, _, rfl, _⟩ := existsUnique_add_of_isCompl h x
[GOAL]
case h.intro.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
χ : E →ₗ[R] F
hφ : ∀ (u : { x // x ∈ p }), ↑φ u = ↑χ ↑u
hψ : ∀ (u : { x // x ∈ q }), ↑ψ u = ↑χ ↑u
w✝¹ : { x // x ∈ p }
w✝ : { x // x ∈ q }
right✝ : ∀ (r : { x // x ∈ p }) (s : { x // x ∈ q }), ↑r + ↑s = ↑w✝¹ + ↑w✝ → r = w✝¹ ∧ s = w✝
⊢ ↑(ofIsCompl h φ ψ) (↑w✝¹ + ↑w✝) = ↑χ (↑w✝¹ + ↑w✝)
[PROOFSTEP]
simp [ofIsCompl, hφ, hψ]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ₁ φ₂ : { x // x ∈ p } →ₗ[R] F
ψ₁ ψ₂ : { x // x ∈ q } →ₗ[R] F
⊢ ∀ (u : { x // x ∈ p }), ↑(φ₁ + φ₂) u = ↑(ofIsCompl h φ₁ ψ₁ + ofIsCompl h φ₂ ψ₂) ↑u
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
h : IsCompl p q
φ₁ φ₂ : { x // x ∈ p } →ₗ[R] F
ψ₁ ψ₂ : { x // x ∈ q } →ₗ[R] F
⊢ ∀ (u : { x // x ∈ q }), ↑(ψ₁ + ψ₂) u = ↑(ofIsCompl h φ₁ ψ₁ + ofIsCompl h φ₂ ψ₂) ↑u
[PROOFSTEP]
simp
[GOAL]
R✝ : Type u_1
inst✝¹⁴ : Ring R✝
E✝ : Type u_2
inst✝¹³ : AddCommGroup E✝
inst✝¹² : Module R✝ E✝
F✝ : Type u_3
inst✝¹¹ : AddCommGroup F✝
inst✝¹⁰ : Module R✝ F✝
G : Type u_4
inst✝⁹ : AddCommGroup G
inst✝⁸ : Module R✝ G
p✝ q✝ : Submodule R✝ E✝
S : Type u_5
inst✝⁷ : Semiring S
M : Type u_6
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module S M
m : Submodule S M
R : Type u_7
inst✝⁴ : CommRing R
E : Type u_8
inst✝³ : AddCommGroup E
inst✝² : Module R E
F : Type u_9
inst✝¹ : AddCommGroup F
inst✝ : Module R F
p q : Submodule R E
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
c : R
⊢ ∀ (u : { x // x ∈ p }), ↑(c • φ) u = ↑(c • ofIsCompl h φ ψ) ↑u
[PROOFSTEP]
simp
[GOAL]
R✝ : Type u_1
inst✝¹⁴ : Ring R✝
E✝ : Type u_2
inst✝¹³ : AddCommGroup E✝
inst✝¹² : Module R✝ E✝
F✝ : Type u_3
inst✝¹¹ : AddCommGroup F✝
inst✝¹⁰ : Module R✝ F✝
G : Type u_4
inst✝⁹ : AddCommGroup G
inst✝⁸ : Module R✝ G
p✝ q✝ : Submodule R✝ E✝
S : Type u_5
inst✝⁷ : Semiring S
M : Type u_6
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module S M
m : Submodule S M
R : Type u_7
inst✝⁴ : CommRing R
E : Type u_8
inst✝³ : AddCommGroup E
inst✝² : Module R E
F : Type u_9
inst✝¹ : AddCommGroup F
inst✝ : Module R F
p q : Submodule R E
h : IsCompl p q
φ : { x // x ∈ p } →ₗ[R] F
ψ : { x // x ∈ q } →ₗ[R] F
c : R
⊢ ∀ (u : { x // x ∈ q }), ↑(c • ψ) u = ↑(c • ofIsCompl h φ ψ) ↑u
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
⊢ ∀ (x y : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
(fun φ => ofIsCompl h φ.fst φ.snd) (x + y) =
(fun φ => ofIsCompl h φ.fst φ.snd) x + (fun φ => ofIsCompl h φ.fst φ.snd) y
[PROOFSTEP]
intro φ ψ
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)
⊢ (fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) =
(fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ
[PROOFSTEP]
dsimp only
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)
⊢ ofIsCompl h (φ + ψ).fst (φ + ψ).snd = ofIsCompl h φ.fst φ.snd + ofIsCompl h ψ.fst ψ.snd
[PROOFSTEP]
rw [Prod.snd_add, Prod.fst_add, ofIsCompl_add]
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
⊢ ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun
{ toFun := fun φ => ofIsCompl h φ.fst φ.snd,
map_add' :=
(_ :
∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
(fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) =
(fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) }
(r • x) =
↑(RingHom.id R₁) r •
AddHom.toFun
{ toFun := fun φ => ofIsCompl h φ.fst φ.snd,
map_add' :=
(_ :
∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
(fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) =
(fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) }
x
[PROOFSTEP]
intro c φ
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
c : R₁
φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)
⊢ AddHom.toFun
{ toFun := fun φ => ofIsCompl h φ.fst φ.snd,
map_add' :=
(_ :
∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
(fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) =
(fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) }
(c • φ) =
↑(RingHom.id R₁) c •
AddHom.toFun
{ toFun := fun φ => ofIsCompl h φ.fst φ.snd,
map_add' :=
(_ :
∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
(fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) =
(fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) }
φ
[PROOFSTEP]
simp [Prod.smul_snd, Prod.smul_fst, ofIsCompl_smul]
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)
⊢ (fun φ => (domRestrict φ p, domRestrict φ q))
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
φ) =
φ
[PROOFSTEP]
ext x
[GOAL]
case h₁.h
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)
x : { x // x ∈ p }
⊢ ↑((fun φ => (domRestrict φ p, domRestrict φ q))
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) =
↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
φ)).fst
x =
↑φ.fst x
[PROOFSTEP]
exact ofIsCompl_left_apply h x
[GOAL]
case h₂.h
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)
x : { x // x ∈ q }
⊢ ↑((fun φ => (domRestrict φ p, domRestrict φ q))
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) =
↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
φ)).snd
x =
↑φ.snd x
[PROOFSTEP]
exact ofIsCompl_right_apply h x
[GOAL]
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : E →ₗ[R₁] F
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun φ => (domRestrict φ p, domRestrict φ q)) φ) =
φ
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : E →ₗ[R₁] F
x : E
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun φ => (domRestrict φ p, domRestrict φ q)) φ))
x =
↑φ x
[PROOFSTEP]
obtain ⟨a, b, hab, _⟩ := existsUnique_add_of_isCompl h x
[GOAL]
case h.intro.intro.intro
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : E →ₗ[R₁] F
x : E
a : { x // x ∈ p }
b : { x // x ∈ q }
hab : ↑a + ↑b = x
right✝ : ∀ (r : { x // x ∈ p }) (s : { x // x ∈ q }), ↑r + ↑s = x → r = a ∧ s = b
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun φ => (domRestrict φ p, domRestrict φ q)) φ))
x =
↑φ x
[PROOFSTEP]
rw [← hab]
[GOAL]
case h.intro.intro.intro
R : Type u_1
inst✝¹² : Ring R
E : Type u_2
inst✝¹¹ : AddCommGroup E
inst✝¹⁰ : Module R E
F : Type u_3
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module R F
G : Type u_4
inst✝⁷ : AddCommGroup G
inst✝⁶ : Module R G
p✝ q✝ : Submodule R E
S : Type u_5
inst✝⁵ : Semiring S
M : Type u_6
inst✝⁴ : AddCommMonoid M
inst✝³ : Module S M
m : Submodule S M
R₁ : Type u_7
inst✝² : CommRing R₁
inst✝¹ : Module R₁ E
inst✝ : Module R₁ F
p q : Submodule R₁ E
h : IsCompl p q
src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h
φ : E →ₗ[R₁] F
x : E
a : { x // x ∈ p }
b : { x // x ∈ q }
hab : ↑a + ↑b = x
right✝ : ∀ (r : { x // x ∈ p }) (s : { x // x ∈ q }), ↑r + ↑s = x → r = a ∧ s = b
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun φ => (domRestrict φ p, domRestrict φ q)) φ))
(↑a + ↑b) =
↑φ (↑a + ↑b)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
⊢ linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f)) = f
[PROOFSTEP]
ext x
[GOAL]
case h.a
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
⊢ ↑(↑(linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f))) x) = ↑(↑f x)
[PROOFSTEP]
have : x ∈ p ⊔ (ker f) := by simp only [(isCompl_of_proj hf).sup_eq_top, mem_top]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
⊢ x ∈ p ⊔ ker f
[PROOFSTEP]
simp only [(isCompl_of_proj hf).sup_eq_top, mem_top]
[GOAL]
case h.a
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : E
this : x ∈ p ⊔ ker f
⊢ ↑(↑(linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f))) x) = ↑(↑f x)
[PROOFSTEP]
rcases mem_sup'.1 this with ⟨x, y, rfl⟩
[GOAL]
case h.a.intro.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] { x // x ∈ p }
hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x
x : { x // x ∈ p }
y : { x // x ∈ ker f }
this : ↑x + ↑y ∈ p ⊔ ker f
⊢ ↑(↑(linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f))) (↑x + ↑y)) = ↑(↑f (↑x + ↑y))
[PROOFSTEP]
simp [hf]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] F
g : E →ₗ[R] G
hf : range f = ⊤
hg : range g = ⊤
hfg : IsCompl (ker f) (ker g)
⊢ Function.Injective ↑(prod f g)
[PROOFSTEP]
simp [← ker_eq_bot, hfg.inf_eq_bot]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] F
g : E →ₗ[R] G
hf : range f = ⊤
hg : range g = ⊤
hfg : IsCompl (ker f) (ker g)
⊢ Function.Surjective ↑(prod f g)
[PROOFSTEP]
rw [← range_eq_top]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] F
g : E →ₗ[R] G
hf : range f = ⊤
hg : range g = ⊤
hfg : IsCompl (ker f) (ker g)
⊢ range (prod f g) = ⊤
[PROOFSTEP]
simp [range_prod_eq hfg.sup_eq_top, *]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q✝ : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
x✝ : { q // IsCompl p q }
q : Submodule R E
hq : IsCompl p q
⊢ (fun f => { val := ker ↑f, property := (_ : IsCompl p (ker ↑f)) })
((fun q =>
{ val := linearProjOfIsCompl p ↑q (_ : IsCompl p ↑q),
property := (_ : ∀ (x : { x // x ∈ p }), ↑(linearProjOfIsCompl p ↑q (_ : IsCompl p ↑q)) ↑x = x) })
{ val := q, property := hq }) =
{ val := q, property := hq }
[PROOFSTEP]
simp only [linearProjOfIsCompl_ker, Subtype.coe_mk]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
⊢ (∃ p, IsProj p f) ↔ comp f f = f
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
⊢ (∃ p, IsProj p f) → comp f f = f
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : ∃ p, IsProj p f
⊢ comp f f = f
[PROOFSTEP]
obtain ⟨p, hp⟩ := h
[GOAL]
case mp.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p✝ q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
p : Submodule S M
hp : IsProj p f
⊢ comp f f = f
[PROOFSTEP]
ext x
[GOAL]
case mp.intro.h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p✝ q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
p : Submodule S M
hp : IsProj p f
x : M
⊢ ↑(comp f f) x = ↑f x
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case mp.intro.h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p✝ q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
p : Submodule S M
hp : IsProj p f
x : M
⊢ ↑f (↑f x) = ↑f x
[PROOFSTEP]
exact hp.map_id (f x) (hp.map_mem x)
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
⊢ comp f f = f → ∃ p, IsProj p f
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
⊢ ∃ p, IsProj p f
[PROOFSTEP]
use range f
[GOAL]
case h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
⊢ IsProj (range f) f
[PROOFSTEP]
constructor
[GOAL]
case h.map_mem
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
⊢ ∀ (x : M), ↑f x ∈ range f
[PROOFSTEP]
intro x
[GOAL]
case h.map_mem
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
x : M
⊢ ↑f x ∈ range f
[PROOFSTEP]
exact mem_range_self f x
[GOAL]
case h.map_id
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
⊢ ∀ (x : M), x ∈ range f → ↑f x = x
[PROOFSTEP]
intro x hx
[GOAL]
case h.map_id
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
x : M
hx : x ∈ range f
⊢ ↑f x = x
[PROOFSTEP]
obtain ⟨y, hy⟩ := mem_range.1 hx
[GOAL]
case h.map_id.intro
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : comp f f = f
x : M
hx : x ∈ range f
y : M
hy : ↑f y = x
⊢ ↑f x = x
[PROOFSTEP]
rw [← hy, ← comp_apply, h]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : IsProj m f
x : { x // x ∈ m }
⊢ ↑(codRestrict h) ↑x = x
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : IsProj m f
x : { x // x ∈ m }
⊢ ↑(↑(codRestrict h) ↑x) = ↑x
[PROOFSTEP]
rw [codRestrict_apply]
[GOAL]
case a
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : M →ₗ[S] M
h : IsProj m f
x : { x // x ∈ m }
⊢ ↑f ↑x = ↑x
[PROOFSTEP]
exact h.map_id x x.2
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
⊢ IsCompl p (ker f)
[PROOFSTEP]
rw [← codRestrict_ker]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
⊢ IsCompl p (ker (codRestrict ?m.444391))
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
⊢ IsProj ?m.444132 f
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
⊢ Submodule R E
[PROOFSTEP]
exact isCompl_of_proj h.codRestrict_apply_cod
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
⊢ f =
comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f))))
(comp (prodMap id 0) ↑(LinearEquiv.symm (prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))))
[PROOFSTEP]
rw [← LinearMap.comp_assoc, LinearEquiv.eq_comp_toLinearMap_symm]
[GOAL]
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
⊢ comp f ↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f))) =
comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0)
[PROOFSTEP]
ext x
[GOAL]
case hl.h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
x : { x // x ∈ p }
⊢ ↑(comp (comp f ↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (inl R { x // x ∈ p } { x // x ∈ ker f })) x =
↑(comp (comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0))
(inl R { x // x ∈ p } { x // x ∈ ker f }))
x
[PROOFSTEP]
simp only [coe_prodEquivOfIsCompl, comp_apply, coe_inl, coprod_apply, coeSubtype, _root_.map_zero, add_zero,
h.map_id x x.2, prodMap_apply, id_apply]
[GOAL]
case hr.h
R : Type u_1
inst✝⁹ : Ring R
E : Type u_2
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module R E
F : Type u_3
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module R F
G : Type u_4
inst✝⁴ : AddCommGroup G
inst✝³ : Module R G
p q : Submodule R E
S : Type u_5
inst✝² : Semiring S
M : Type u_6
inst✝¹ : AddCommMonoid M
inst✝ : Module S M
m : Submodule S M
f : E →ₗ[R] E
h : IsProj p f
x : { x // x ∈ ker f }
⊢ ↑(comp (comp f ↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (inr R { x // x ∈ p } { x // x ∈ ker f })) x =
↑(comp (comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0))
(inr R { x // x ∈ p } { x // x ∈ ker f }))
x
[PROOFSTEP]
simp only [coe_prodEquivOfIsCompl, comp_apply, coe_inr, coprod_apply, _root_.map_zero, coeSubtype, zero_add,
map_coe_ker, prodMap_apply, zero_apply, add_zero]
[GOAL]
R : Type u_1
inst✝² : CommRing R
E : Type u_2
inst✝¹ : AddCommGroup E
inst✝ : Module R E
p : Submodule R E
f : E →ₗ[R] E
h : IsProj p f
⊢ f = ↑(LinearEquiv.conj (Submodule.prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0)
[PROOFSTEP]
rw [LinearEquiv.conj_apply]
[GOAL]
R : Type u_1
inst✝² : CommRing R
E : Type u_2
inst✝¹ : AddCommGroup E
inst✝ : Module R E
p : Submodule R E
f : E →ₗ[R] E
h : IsProj p f
⊢ f =
comp (comp (↑(Submodule.prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0))
↑(LinearEquiv.symm (Submodule.prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f))))
[PROOFSTEP]
exact h.eq_conj_prod_map'
| {"mathlib_filename": "Mathlib.LinearAlgebra.Projection", "llama_tokens": 27699} |
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
inst✝ : RingHomSurjective σ₁₂
f : F
s : Set M
N : Submodule R₂ M₂
⊢ map f (span R s) ≤ N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N
[PROOFSTEP]
rw [map_span, span_le, Set.image_subset_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
inst✝ : RingHomSurjective σ₁₂
f : F
s : Set M
N : Submodule R₂ M₂
⊢ s ⊆ ↑f ⁻¹' ↑N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ span R (insert 0 s) = span R s
[PROOFSTEP]
refine' le_antisymm _ (Submodule.span_mono (Set.subset_insert 0 s))
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ span R (insert 0 s) ≤ span R s
[PROOFSTEP]
rw [span_le, Set.insert_subset_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ 0 ∈ ↑(span R s) ∧ s ⊆ ↑(span R s)
[PROOFSTEP]
exact ⟨by simp only [SetLike.mem_coe, Submodule.zero_mem], Submodule.subset_span⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ 0 ∈ ↑(span R s)
[PROOFSTEP]
simp only [SetLike.mem_coe, Submodule.zero_mem]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
f : F
s : Set M₂
⊢ span R (↑f ⁻¹' s) ≤ comap f (span R₂ s)
[PROOFSTEP]
rw [span_le, comap_coe]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
f : F
s : Set M₂
⊢ ↑f ⁻¹' s ⊆ ↑f ⁻¹' ↑(span R₂ s)
[PROOFSTEP]
exact preimage_mono subset_span
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
p : M → Prop
h : x ∈ span R s✝
Hs : ∀ (x : M), x ∈ s✝ → p x
H0 : p 0
H1 : ∀ (x y : M), p x → p y → p (x + y)
H2 : ∀ (a : R) (x : M), p x → p (a • x)
s : Set M
⊢ ∀ {a b : M}, a ∈ p → b ∈ p → a + b ∈ p
[PROOFSTEP]
intros x y
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
p : M → Prop
h : x✝ ∈ span R s✝
Hs : ∀ (x : M), x ∈ s✝ → p x
H0 : p 0
H1 : ∀ (x y : M), p x → p y → p (x + y)
H2 : ∀ (a : R) (x : M), p x → p (a • x)
s : Set M
x y : M
⊢ x ∈ p → y ∈ p → x + y ∈ p
[PROOFSTEP]
exact H1 x y
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : (x : M) → x ∈ span R s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(span R s))
H0 : p 0 (_ : 0 ∈ span R s)
H1 : ∀ (x : M) (hx : x ∈ span R s) (y : M) (hy : y ∈ span R s), p x hx → p y hy → p (x + y) (_ : x + y ∈ span R s)
H2 : ∀ (a : R) (x : M) (hx : x ∈ span R s), p x hx → p (a • x) (_ : a • x ∈ span R s)
x : M
hx : x ∈ span R s
⊢ p x hx
[PROOFSTEP]
refine' Exists.elim _ fun (hx : x ∈ span R s) (hc : p x hx) => hc
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : (x : M) → x ∈ span R s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(span R s))
H0 : p 0 (_ : 0 ∈ span R s)
H1 : ∀ (x : M) (hx : x ∈ span R s) (y : M) (hy : y ∈ span R s), p x hx → p y hy → p (x + y) (_ : x + y ∈ span R s)
H2 : ∀ (a : R) (x : M) (hx : x ∈ span R s), p x hx → p (a • x) (_ : a • x ∈ span R s)
x : M
hx : x ∈ span R s
⊢ ∃ x_1, p x x_1
[PROOFSTEP]
refine'
span_induction hx (fun m hm => ⟨subset_span hm, Hs m hm⟩) ⟨zero_mem _, H0⟩
(fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy => ⟨add_mem hx' hy', H1 _ _ _ _ hx hy⟩)
fun r x hx => Exists.elim hx fun hx' hx => ⟨smul_mem _ _ hx', H2 r _ _ hx⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝² : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝¹ : { x // x ∈ ↑(span R s) }
x : M
hx : x ∈ ↑(span R s)
x✝ : { val := x, property := hx } ∈ ⊤
⊢ { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)
[PROOFSTEP]
refine'
span_induction' (p := fun x hx ↦ (⟨x, hx⟩ : span R s) ∈ span R (Subtype.val ⁻¹' s)) (fun x' hx' ↦ subset_span hx') _
(fun x _ y _ ↦ _) (fun r x _ ↦ _) hx
[GOAL]
case refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝² : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝¹ : { x // x ∈ ↑(span R s) }
x : M
hx : x ∈ ↑(span R s)
x✝ : { val := x, property := hx } ∈ ⊤
⊢ (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) 0 (_ : 0 ∈ span R s)
[PROOFSTEP]
exact zero_mem _
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝⁵ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝⁴ : { x // x ∈ ↑(span R s) }
x✝³ : M
hx : x✝³ ∈ ↑(span R s)
x✝² : { val := x✝³, property := hx } ∈ ⊤
x : M
x✝¹ : x ∈ span R s
y : M
x✝ : y ∈ span R s
⊢ (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) x x✝¹ →
(fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) y x✝ →
(fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) (x + y) (_ : x + y ∈ span R s)
[PROOFSTEP]
exact add_mem
[GOAL]
case refine'_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝⁴ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝³ : { x // x ∈ ↑(span R s) }
x✝² : M
hx : x✝² ∈ ↑(span R s)
x✝¹ : { val := x✝², property := hx } ∈ ⊤
r : R
x : M
x✝ : x ∈ span R s
⊢ (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) x x✝ →
(fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) (r • x) (_ : r • x ∈ span R s)
[PROOFSTEP]
exact smul_mem _ _
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
⊢ (span ℕ s).toAddSubmonoid = AddSubmonoid.closure s
[PROOFSTEP]
refine' Eq.symm (AddSubmonoid.closure_eq_of_le subset_span _)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
⊢ (span ℕ s).toAddSubmonoid ≤ AddSubmonoid.closure s
[PROOFSTEP]
apply
(OrderIso.to_galoisConnection (AddSubmonoid.toNatSubmodule (M := M)).symm).l_le (a := span ℕ s) (b :=
AddSubmonoid.closure s)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
⊢ span ℕ s ≤ ↑(OrderIso.symm (OrderIso.symm AddSubmonoid.toNatSubmodule)) (AddSubmonoid.closure s)
[PROOFSTEP]
rw [span_le]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
⊢ s ⊆ ↑(↑(OrderIso.symm (OrderIso.symm AddSubmonoid.toNatSubmodule)) (AddSubmonoid.closure s))
[PROOFSTEP]
exact AddSubmonoid.subset_closure
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
s : AddSubmonoid M
⊢ (span ℕ ↑s).toAddSubmonoid = s
[PROOFSTEP]
rw [span_nat_eq_addSubmonoid_closure, s.closure_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R M✝
x : M✝
p p' : Submodule R M✝
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M✝ M₂
s✝ t : Set M✝
M : Type u_9
inst✝ : AddCommGroup M
s : AddSubgroup M
⊢ toAddSubgroup (span ℤ ↑s) = s
[PROOFSTEP]
rw [span_int_eq_addSubgroup_closure, s.closure_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
inst✝ : DecidableEq M
α : Type u_9
s : Finset α
f : { x // x ∈ s } → Finset M
⊢ span R ↑(Finset.biUnion (Finset.attach s) f) = ⨆ (x : { x // x ∈ s }), span R ↑(f x)
[PROOFSTEP]
simp [span_iUnion]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ p ⊔ span R s = span R (↑p ∪ s)
[PROOFSTEP]
rw [Submodule.span_union, p.span_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ span R s ⊔ p = span R (s ∪ ↑p)
[PROOFSTEP]
rw [Submodule.span_union, p.span_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
⊢ span R s = ⨆ (x : M) (_ : x ∈ s), span R {x}
[PROOFSTEP]
simp only [← span_iUnion, Set.biUnion_of_singleton s]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Type u_9
v : ι → M
⊢ span R (range v) = ⨆ (i : ι), span R {v i}
[PROOFSTEP]
rw [span_eq_iSup_of_singleton_spans, iSup_range]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
⊢ span R (r • s) ≤ span R s
[PROOFSTEP]
rw [span_le]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
⊢ r • s ⊆ ↑(span R s)
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
x : M
hx : x ∈ s
⊢ (fun x => r • x) x ∈ ↑(span R s)
[PROOFSTEP]
exact smul_mem (span R s) r (subset_span hx)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
hr : IsUnit r
⊢ span R (r • s) = span R s
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
hr : IsUnit r
⊢ span R (r • s) ≤ span R s
[PROOFSTEP]
apply span_smul_le
[GOAL]
case a
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
hr : IsUnit r
⊢ span R s ≤ span R (r • s)
[PROOFSTEP]
convert span_smul_le (r • s) ((hr.unit⁻¹ : _) : R)
[GOAL]
case h.e'_3.h.e'_6
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
hr : IsUnit r
⊢ s = ↑(IsUnit.unit hr)⁻¹ • r • s
[PROOFSTEP]
rw [smul_smul]
[GOAL]
case h.e'_3.h.e'_6
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
hr : IsUnit r
⊢ s = (↑(IsUnit.unit hr)⁻¹ * r) • s
[PROOFSTEP]
erw [hr.unit.inv_val]
[GOAL]
case h.e'_3.h.e'_6
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t s : Set M
r : R
hr : IsUnit r
⊢ s = 1 • s
[PROOFSTEP]
rw [one_smul]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
⊢ ↑(iSup S) = ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
refine' Subset.antisymm _ (iUnion_subset <| le_iSup S)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
⊢ ↑(iSup S) ⊆ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
suffices (span R (⋃ i, (S i : Set M)) : Set M) ⊆ ⋃ i : ι, ↑(S i) by simpa only [span_iUnion, span_eq] using this
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
this : ↑(span R (⋃ (i : ι), ↑(S i))) ⊆ ⋃ (i : ι), ↑(S i)
⊢ ↑(iSup S) ⊆ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simpa only [span_iUnion, span_eq] using this
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
⊢ ↑(span R (⋃ (i : ι), ↑(S i))) ⊆ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
refine' fun x hx => span_induction hx (fun _ => id) _ _ _
[GOAL]
case refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
⊢ 0 ∈ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simp only [mem_iUnion, exists_imp]
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
⊢ ∀ (x y : M), x ∈ ⋃ (i : ι), ↑(S i) → y ∈ ⋃ (i : ι), ↑(S i) → x + y ∈ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simp only [mem_iUnion, exists_imp]
[GOAL]
case refine'_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
⊢ ∀ (a : R) (x : M), x ∈ ⋃ (i : ι), ↑(S i) → a • x ∈ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simp only [mem_iUnion, exists_imp]
[GOAL]
case refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
⊢ ∃ i, 0 ∈ ↑(S i)
[PROOFSTEP]
exact hι.elim fun i => ⟨i, (S i).zero_mem⟩
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
⊢ ∀ (x y : M) (x_1 : ι), x ∈ ↑(S x_1) → ∀ (x_2 : ι), y ∈ ↑(S x_2) → ∃ i, x + y ∈ ↑(S i)
[PROOFSTEP]
intro x y i hi j hj
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x✝ : M
hx : x✝ ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
x y : M
i : ι
hi : x ∈ ↑(S i)
j : ι
hj : y ∈ ↑(S j)
⊢ ∃ i, x + y ∈ ↑(S i)
[PROOFSTEP]
rcases H i j with ⟨k, ik, jk⟩
[GOAL]
case refine'_2.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x✝ : M
hx : x✝ ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
x y : M
i : ι
hi : x ∈ ↑(S i)
j : ι
hj : y ∈ ↑(S j)
k : ι
ik : S i ≤ S k
jk : S j ≤ S k
⊢ ∃ i, x + y ∈ ↑(S i)
[PROOFSTEP]
exact ⟨k, add_mem (ik hi) (jk hj)⟩
[GOAL]
case refine'_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
hι : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i)))
⊢ ∀ (a : R) (x : M) (x_1 : ι), x ∈ ↑(S x_1) → ∃ i, a • x ∈ ↑(S i)
[PROOFSTEP]
exact fun a x i hi => ⟨i, smul_mem _ a hi⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
inst✝ : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ iSup S ↔ ∃ i, x ∈ S i
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_iSup_of_directed S H, mem_iUnion]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
inst✝ : Nonempty ι
S : ι → Submodule R M
H : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ (∃ i, x ∈ ↑(S i)) ↔ ∃ i, x ∈ S i
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
s : Set (Submodule R M)
z : M
hs : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
⊢ z ∈ sSup s ↔ ∃ y, y ∈ s ∧ z ∈ y
[PROOFSTEP]
have : Nonempty s := hs.to_subtype
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
s : Set (Submodule R M)
z : M
hs : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
this : Nonempty ↑s
⊢ z ∈ sSup s ↔ ∃ y, y ∈ s ∧ z ∈ y
[PROOFSTEP]
simp only [sSup_eq_iSup', mem_iSup_of_directed _ hdir.directed_val, SetCoe.exists, Subtype.coe_mk, exists_prop]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ p ⊔ p'
⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x
[PROOFSTEP]
rw [← span_eq p, ← span_eq p', ← span_union] at h
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x
[PROOFSTEP]
refine span_induction h ?_ ?_ ?_ ?_
[GOAL]
case refine_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ ∀ (x : M), x ∈ ↑p ∪ ↑p' → ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x
[PROOFSTEP]
rintro y (h | h)
[GOAL]
case refine_1.inl
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h✝ : x ∈ span R (↑p ∪ ↑p')
y : M
h : y ∈ ↑p
⊢ ∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = y
[PROOFSTEP]
exact ⟨y, h, 0, by simp, by simp⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h✝ : x ∈ span R (↑p ∪ ↑p')
y : M
h : y ∈ ↑p
⊢ 0 ∈ p'
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h✝ : x ∈ span R (↑p ∪ ↑p')
y : M
h : y ∈ ↑p
⊢ y + 0 = y
[PROOFSTEP]
simp
[GOAL]
case refine_1.inr
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h✝ : x ∈ span R (↑p ∪ ↑p')
y : M
h : y ∈ ↑p'
⊢ ∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = y
[PROOFSTEP]
exact ⟨0, by simp, y, h, by simp⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h✝ : x ∈ span R (↑p ∪ ↑p')
y : M
h : y ∈ ↑p'
⊢ 0 ∈ p
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h✝ : x ∈ span R (↑p ∪ ↑p')
y : M
h : y ∈ ↑p'
⊢ 0 + y = y
[PROOFSTEP]
simp
[GOAL]
case refine_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = 0
[PROOFSTEP]
exact ⟨0, by simp, 0, by simp⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ 0 ∈ p
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ 0 ∈ p' ∧ 0 + 0 = 0
[PROOFSTEP]
simp
[GOAL]
case refine_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ ∀ (x y : M),
(∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) →
(∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = y) → ∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = x + y
[PROOFSTEP]
rintro _ _ ⟨y₁, hy₁, z₁, hz₁, rfl⟩ ⟨y₂, hy₂, z₂, hz₂, rfl⟩
[GOAL]
case refine_3.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
y₁ : M
hy₁ : y₁ ∈ p
z₁ : M
hz₁ : z₁ ∈ p'
y₂ : M
hy₂ : y₂ ∈ p
z₂ : M
hz₂ : z₂ ∈ p'
⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = y₁ + z₁ + (y₂ + z₂)
[PROOFSTEP]
exact
⟨_, add_mem hy₁ hy₂, _, add_mem hz₁ hz₂, by rw [add_assoc, add_assoc, ← add_assoc y₂, ← add_assoc z₁, add_comm y₂]⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
y₁ : M
hy₁ : y₁ ∈ p
z₁ : M
hz₁ : z₁ ∈ p'
y₂ : M
hy₂ : y₂ ∈ p
z₂ : M
hz₂ : z₂ ∈ p'
⊢ y₁ + y₂ + (z₁ + z₂) = y₁ + z₁ + (y₂ + z₂)
[PROOFSTEP]
rw [add_assoc, add_assoc, ← add_assoc y₂, ← add_assoc z₁, add_comm y₂]
[GOAL]
case refine_4
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
⊢ ∀ (a : R) (x : M), (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) → ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = a • x
[PROOFSTEP]
rintro a _ ⟨y, hy, z, hz, rfl⟩
[GOAL]
case refine_4.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
a : R
y : M
hy : y ∈ p
z : M
hz : z ∈ p'
⊢ ∃ y_1, y_1 ∈ p ∧ ∃ z_1, z_1 ∈ p' ∧ y_1 + z_1 = a • (y + z)
[PROOFSTEP]
exact ⟨_, smul_mem _ a hy, _, smul_mem _ a hz, by simp [smul_add]⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
h : x ∈ span R (↑p ∪ ↑p')
a : R
y : M
hy : y ∈ p
z : M
hz : z ∈ p'
⊢ a • y + a • z = a • (y + z)
[PROOFSTEP]
simp [smul_add]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) → x ∈ p ⊔ p'
[PROOFSTEP]
rintro ⟨y, hy, z, hz, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
hy : y ∈ p
z : M
hz : z ∈ p'
⊢ y + z ∈ p ⊔ p'
[PROOFSTEP]
exact add_mem ((le_sup_left : p ≤ p ⊔ p') hy) ((le_sup_right : p' ≤ p ⊔ p') hz)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y z, ↑y + ↑z = x
[PROOFSTEP]
simp only [Subtype.exists, exists_prop]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ ↑(p ⊔ p') = ↑p + ↑p'
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝ : M
⊢ x✝ ∈ ↑(p ⊔ p') ↔ x✝ ∈ ↑p + ↑p'
[PROOFSTEP]
rw [SetLike.mem_coe, mem_sup, Set.mem_add]
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝ : M
⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x✝) ↔ ∃ x y, x ∈ ↑p ∧ y ∈ ↑p' ∧ x + y = x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ (p ⊔ p').toAddSubmonoid = p.toAddSubmonoid ⊔ p'.toAddSubmonoid
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
⊢ x ∈ (p ⊔ p').toAddSubmonoid ↔ x ∈ p.toAddSubmonoid ⊔ p'.toAddSubmonoid
[PROOFSTEP]
rw [mem_toAddSubmonoid, mem_sup, AddSubmonoid.mem_sup]
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y, y ∈ p.toAddSubmonoid ∧ ∃ z, z ∈ p'.toAddSubmonoid ∧ y + z = x
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
x : M✝
p✝ p'✝ : Submodule R✝ M✝
inst✝⁶ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
⊢ toAddSubgroup (p ⊔ p') = toAddSubgroup p ⊔ toAddSubgroup p'
[PROOFSTEP]
ext x
[GOAL]
case h
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
x✝ : M✝
p✝ p'✝ : Submodule R✝ M✝
inst✝⁶ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
x : M
⊢ x ∈ toAddSubgroup (p ⊔ p') ↔ x ∈ toAddSubgroup p ⊔ toAddSubgroup p'
[PROOFSTEP]
rw [mem_toAddSubgroup, mem_sup, AddSubgroup.mem_sup]
[GOAL]
case h
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : Module R✝ M✝
x✝ : M✝
p✝ p'✝ : Submodule R✝ M✝
inst✝⁶ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : Submodule R M
x : M
⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y, y ∈ toAddSubgroup p ∧ ∃ z, z ∈ toAddSubgroup p' ∧ y + z = x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
h : x ≠ 0
⊢ ∃ x_1 y, x_1 ≠ y
[PROOFSTEP]
use 0, ⟨x, Submodule.mem_span_singleton_self x⟩
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
h : x ≠ 0
⊢ 0 ≠ { val := x, property := (_ : x ∈ span R {x}) }
[PROOFSTEP]
intro H
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
h : x ≠ 0
H : 0 = { val := x, property := (_ : x ∈ span R {x}) }
⊢ False
[PROOFSTEP]
rw [eq_comm, Submodule.mk_eq_zero] at H
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
h : x ≠ 0
H : x = 0
⊢ False
[PROOFSTEP]
exact h H
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ ∃ a, a • y = x
[PROOFSTEP]
refine span_induction h ?_ ?_ ?_ ?_
[GOAL]
case refine_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ ∀ (x : M), x ∈ {y} → ∃ a, a • y = x
[PROOFSTEP]
rintro y (rfl | ⟨⟨_⟩⟩)
[GOAL]
case refine_1.refl
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ ∃ a, a • y = y
[PROOFSTEP]
exact ⟨1, by simp⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ 1 • y = y
[PROOFSTEP]
simp
[GOAL]
case refine_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ ∃ a, a • y = 0
[PROOFSTEP]
exact ⟨0, by simp⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ 0 • y = 0
[PROOFSTEP]
simp
[GOAL]
case refine_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ ∀ (x y_1 : M), (∃ a, a • y = x) → (∃ a, a • y = y_1) → ∃ a, a • y = x + y_1
[PROOFSTEP]
rintro _ _ ⟨a, rfl⟩ ⟨b, rfl⟩
[GOAL]
case refine_3.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
a b : R
⊢ ∃ a_1, a_1 • y = a • y + b • y
[PROOFSTEP]
exact ⟨a + b, by simp [add_smul]⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
a b : R
⊢ (a + b) • y = a • y + b • y
[PROOFSTEP]
simp [add_smul]
[GOAL]
case refine_4
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
⊢ ∀ (a : R) (x : M), (∃ a, a • y = x) → ∃ a_2, a_2 • y = a • x
[PROOFSTEP]
rintro a _ ⟨b, rfl⟩
[GOAL]
case refine_4.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
a b : R
⊢ ∃ a_1, a_1 • y = a • b • y
[PROOFSTEP]
exact ⟨a * b, by simp [smul_smul]⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
h : x ∈ span R {y}
a b : R
⊢ (a * b) • y = a • b • y
[PROOFSTEP]
simp [smul_smul]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
⊢ (∃ a, a • y = x) → x ∈ span R {y}
[PROOFSTEP]
rintro ⟨a, y, rfl⟩
[GOAL]
case intro.refl
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
a : R
⊢ a • y ∈ span R {y}
[PROOFSTEP]
exact smul_mem _ _ (subset_span <| by simp)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
a : R
⊢ y ∈ {y}
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
s : Submodule R M
v₀ : M
⊢ s ≤ span R {v₀} ↔ ∀ (v : M), v ∈ s → ∃ r, r • v₀ = v
[PROOFSTEP]
simp_rw [SetLike.le_def, mem_span_singleton]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
⊢ span R {x} = ⊤ ↔ ∀ (v : M), ∃ r, r • x = v
[PROOFSTEP]
rw [eq_top_iff, le_span_singleton_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
⊢ (∀ (v : M), v ∈ ⊤ → ∃ r, r • x = v) ↔ ∀ (v : M), ∃ r, r • x = v
[PROOFSTEP]
tauto
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ span R {0} = ⊥
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x✝ : M
⊢ x✝ ∈ span R {0} ↔ x✝ ∈ ⊥
[PROOFSTEP]
simp [mem_span_singleton, eq_comm]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁷ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
S : Type u_9
inst✝³ : Monoid S
inst✝² : SMul S R
inst✝¹ : MulAction S M
inst✝ : IsScalarTower S R M
r : S
x : M
⊢ span R {r • x} ≤ span R {x}
[PROOFSTEP]
rw [span_le, Set.singleton_subset_iff, SetLike.mem_coe]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁷ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
S : Type u_9
inst✝³ : Monoid S
inst✝² : SMul S R
inst✝¹ : MulAction S M
inst✝ : IsScalarTower S R M
r : S
x : M
⊢ r • x ∈ span R {x}
[PROOFSTEP]
exact smul_of_tower_mem _ _ (mem_span_singleton_self _)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁷ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
G : Type u_9
inst✝³ : Group G
inst✝² : SMul G R
inst✝¹ : MulAction G M
inst✝ : IsScalarTower G R M
g : G
x : M
⊢ span R {g • x} = span R {x}
[PROOFSTEP]
refine' le_antisymm (span_singleton_smul_le R g x) _
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁷ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
G : Type u_9
inst✝³ : Group G
inst✝² : SMul G R
inst✝¹ : MulAction G M
inst✝ : IsScalarTower G R M
g : G
x : M
⊢ span R {x} ≤ span R {g • x}
[PROOFSTEP]
convert span_singleton_smul_le R g⁻¹ (g • x)
[GOAL]
case h.e'_3.h.e'_6.h.e'_4
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁷ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
G : Type u_9
inst✝³ : Group G
inst✝² : SMul G R
inst✝¹ : MulAction G M
inst✝ : IsScalarTower G R M
g : G
x : M
⊢ x = g⁻¹ • g • x
[PROOFSTEP]
exact (inv_smul_smul g x).symm
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
r : R
hr : IsUnit r
x : M
⊢ span R {r • x} = span R {x}
[PROOFSTEP]
lift r to Rˣ using hr
[GOAL]
case intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
r : Rˣ
⊢ span R {↑r • x} = span R {x}
[PROOFSTEP]
rw [← Units.smul_def]
[GOAL]
case intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
r : Rˣ
⊢ span R {r • x} = span R {x}
[PROOFSTEP]
exact span_singleton_group_smul_eq R r x
[GOAL]
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
⊢ Disjoint s (span K {x}) ↔ x ∈ s → x = 0
[PROOFSTEP]
refine' disjoint_def.trans ⟨fun H hx => H x hx <| subset_span <| mem_singleton x, _⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
⊢ (x ∈ s → x = 0) → ∀ (x_1 : E), x_1 ∈ s → x_1 ∈ span K {x} → x_1 = 0
[PROOFSTEP]
intro H y hy hyx
[GOAL]
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
H : x ∈ s → x = 0
y : E
hy : y ∈ s
hyx : y ∈ span K {x}
⊢ y = 0
[PROOFSTEP]
obtain ⟨c, rfl⟩ := mem_span_singleton.1 hyx
[GOAL]
case intro
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
H : x ∈ s → x = 0
c : K
hy : c • x ∈ s
hyx : c • x ∈ span K {x}
⊢ c • x = 0
[PROOFSTEP]
by_cases hc : c = 0
[GOAL]
case pos
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
H : x ∈ s → x = 0
c : K
hy : c • x ∈ s
hyx : c • x ∈ span K {x}
hc : c = 0
⊢ c • x = 0
[PROOFSTEP]
rw [hc, zero_smul]
[GOAL]
case neg
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
H : x ∈ s → x = 0
c : K
hy : c • x ∈ s
hyx : c • x ∈ span K {x}
hc : ¬c = 0
⊢ c • x = 0
[PROOFSTEP]
rw [s.smul_mem_iff hc] at hy
[GOAL]
case neg
R : Type u_1
R₂ : Type u_2
K✝ : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁶ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R₂ M₂
F : Type u_8
inst✝³ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
K : Type u_9
E : Type u_10
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup E
inst✝ : Module K E
s : Submodule K E
x : E
H : x ∈ s → x = 0
c : K
hy : x ∈ s
hyx : c • x ∈ span K {x}
hc : ¬c = 0
⊢ c • x = 0
[PROOFSTEP]
rw [H hy, smul_zero]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x y z : M
hxy : x ∈ span R {y}
hyz : y ∈ span R {z}
⊢ x ∈ span R {z}
[PROOFSTEP]
rw [← SetLike.mem_coe, ← singleton_subset_iff] at *
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x y z : M
hxy : {x} ⊆ ↑(span R {y})
hyz : {y} ⊆ ↑(span R {z})
⊢ {x} ⊆ ↑(span R {z})
[PROOFSTEP]
exact Submodule.subset_span_trans hxy hyz
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
⊢ x ∈ span R (insert y s) ↔ ∃ a z, z ∈ span R s ∧ x = a • y + z
[PROOFSTEP]
simp only [← union_singleton, span_union, mem_sup, mem_span_singleton, exists_prop, exists_exists_eq_and]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
⊢ (∃ y_1, y_1 ∈ span R s ∧ ∃ a, y_1 + a • y = x) ↔ ∃ a z, z ∈ span R s ∧ x = a • y + z
[PROOFSTEP]
rw [exists_comm]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
y : M
⊢ (∃ y_1, y_1 ∈ span R s ∧ ∃ a, y_1 + a • y = x) ↔ ∃ b a, b ∈ span R s ∧ x = a • y + b
[PROOFSTEP]
simp only [eq_comm, add_comm, exists_and_left]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x y z : M
⊢ z ∈ span R {x, y} ↔ ∃ a b, a • x + b • y = z
[PROOFSTEP]
simp_rw [mem_span_insert, mem_span_singleton, exists_exists_eq_and, eq_comm]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
x : M
s : Set M
⊢ span R (insert x s) = span R {x} ⊔ span R s
[PROOFSTEP]
rw [insert_eq, span_union]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ (∀ (x_1 : M), x_1 ∈ {x} → x_1 = 0) ↔ x = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
⊢ span R 0 = ⊥
[PROOFSTEP]
rw [← singleton_zero, span_singleton_eq_bot]
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : x = 0
⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y
[PROOFSTEP]
rw [hx, span_zero_singleton, eq_comm, span_singleton_eq_bot]
[GOAL]
case pos
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : x = 0
⊢ y = 0 ↔ ∃ z, z • 0 = y
[PROOFSTEP]
exact ⟨fun hy => ⟨1, by rw [hy, smul_zero]⟩, fun ⟨_, hz⟩ => by rw [← hz, smul_zero]⟩
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : x = 0
hy : y = 0
⊢ 1 • 0 = y
[PROOFSTEP]
rw [hy, smul_zero]
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝¹ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : x = 0
x✝ : ∃ z, z • 0 = y
w✝ : Rˣ
hz : w✝ • 0 = y
⊢ y = 0
[PROOFSTEP]
rw [← hz, smul_zero]
[GOAL]
case neg
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : y = 0
⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y
[PROOFSTEP]
rw [hy, span_zero_singleton, span_singleton_eq_bot]
[GOAL]
case pos
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : y = 0
⊢ x = 0 ↔ ∃ z, z • x = 0
[PROOFSTEP]
exact ⟨fun hx => ⟨1, by rw [hx, smul_zero]⟩, fun ⟨z, hz⟩ => (smul_eq_zero_iff_eq z).mp hz⟩
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx✝ : ¬x = 0
hy : y = 0
hx : x = 0
⊢ 1 • x = 0
[PROOFSTEP]
rw [hx, smul_zero]
[GOAL]
case neg
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
⊢ span R {x} = span R {y} → ∃ z, z • x = y
[PROOFSTEP]
intro hxy
[GOAL]
case neg.mp
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
⊢ ∃ z, z • x = y
[PROOFSTEP]
cases'
mem_span_singleton.mp
(by
rw [hxy]
apply mem_span_singleton_self) with
v hv
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
⊢ ?m.246152 ∈ span ?m.246042 {?m.246153}
[PROOFSTEP]
rw [hxy]
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
⊢ ?m.246152 ∈ span R {y}
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
⊢ M
[PROOFSTEP]
apply mem_span_singleton_self
[GOAL]
case neg.mp.intro
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
⊢ ∃ z, z • x = y
[PROOFSTEP]
cases'
mem_span_singleton.mp
(by
rw [← hxy]
apply mem_span_singleton_self) with
i hi
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
⊢ ?m.246933 ∈ span ?m.246823 {?m.246934}
[PROOFSTEP]
rw [← hxy]
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
⊢ ?m.246933 ∈ span R {x}
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
⊢ M
[PROOFSTEP]
apply mem_span_singleton_self
[GOAL]
case neg.mp.intro.intro
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
i : R
hi : i • y = x
⊢ ∃ z, z • x = y
[PROOFSTEP]
have vi : v * i = 1 := by
rw [← one_smul R y, ← hi, smul_smul] at hv
exact smul_left_injective R hy hv
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
i : R
hi : i • y = x
⊢ v * i = 1
[PROOFSTEP]
rw [← one_smul R y, ← hi, smul_smul] at hv
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v i : R
hv : (v * i) • y = 1 • y
hi : i • y = x
⊢ v * i = 1
[PROOFSTEP]
exact smul_left_injective R hy hv
[GOAL]
case neg.mp.intro.intro
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
i : R
hi : i • y = x
vi : v * i = 1
⊢ ∃ z, z • x = y
[PROOFSTEP]
have iv : i * v = 1 := by
rw [← one_smul R x, ← hv, smul_smul] at hi
exact smul_left_injective R hx hi
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
i : R
hi : i • y = x
vi : v * i = 1
⊢ i * v = 1
[PROOFSTEP]
rw [← one_smul R x, ← hv, smul_smul] at hi
[GOAL]
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
i : R
hi : (i * v) • x = 1 • x
vi : v * i = 1
⊢ i * v = 1
[PROOFSTEP]
exact smul_left_injective R hx hi
[GOAL]
case neg.mp.intro.intro
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
hxy : span R {x} = span R {y}
v : R
hv : v • x = y
i : R
hi : i • y = x
vi : v * i = 1
iv : i * v = 1
⊢ ∃ z, z • x = y
[PROOFSTEP]
exact ⟨⟨v, i, vi, iv⟩, hv⟩
[GOAL]
case neg.mpr
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x y : M
hx : ¬x = 0
hy : ¬y = 0
⊢ (∃ z, z • x = y) → span R {x} = span R {y}
[PROOFSTEP]
rintro ⟨v, rfl⟩
[GOAL]
case neg.mpr.intro
R✝ : Type u_1
R₂ : Type u_2
K : Type u_3
M✝ : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝¹⁰ : Semiring R✝
inst✝⁹ : AddCommMonoid M✝
inst✝⁸ : Module R✝ M✝
x✝ : M✝
p p' : Submodule R✝ M✝
inst✝⁷ : Semiring R₂
σ₁₂ : R✝ →+* R₂
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R₂ M₂
F : Type u_8
inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂
s t : Set M✝
R : Type u_9
M : Type u_10
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x : M
hx : ¬x = 0
v : Rˣ
hy : ¬v • x = 0
⊢ span R {x} = span R {v • x}
[PROOFSTEP]
rw [span_singleton_group_smul_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
inst✝ : RingHomSurjective σ₁₂
f : F
x : M
s : Set M
h : x ∈ span R s
⊢ ↑f x ∈ span R₂ (↑f '' s)
[PROOFSTEP]
rw [Submodule.span_image]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
inst✝ : RingHomSurjective σ₁₂
f : F
x : M
s : Set M
h : x ∈ span R s
⊢ ↑f x ∈ map f (span R s)
[PROOFSTEP]
exact Submodule.mem_map_of_mem h
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁴ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₂ M₂
F : Type u_8
inst✝¹ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
inst✝ : RingHomSurjective σ₁₂
f : F
x : M
s : Set M
hf : Injective ↑f
⊢ ↑f x ∈ span R₂ (↑f '' s) ↔ x ∈ span R s
[PROOFSTEP]
rw [← Submodule.mem_comap, ← Submodule.map_span, Submodule.comap_map_eq_of_injective hf]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
x : { x // x ∈ p }
⊢ map (Submodule.subtype p) (span R {x}) = span R {↑x}
[PROOFSTEP]
simp [← span_image]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
⊢ ⨆ (i : ι), p i = span R (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
simp_rw [← iSup_span, span_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
⊢ (⨆ (i : ι), p i).toAddSubmonoid = ⨆ (i : ι), (p i).toAddSubmonoid
[PROOFSTEP]
refine' le_antisymm (fun x => _) (iSup_le fun i => toAddSubmonoid_mono <| le_iSup _ i)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x : M
⊢ x ∈ (⨆ (i : ι), p i).toAddSubmonoid → x ∈ ⨆ (i : ι), (p i).toAddSubmonoid
[PROOFSTEP]
simp_rw [iSup_eq_span, AddSubmonoid.iSup_eq_closure, mem_toAddSubmonoid, coe_toAddSubmonoid]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x : M
⊢ x ∈ span R (⋃ (i : ι), ↑(p i)) → x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
intro hx
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x : M
hx : x ∈ span R (⋃ (i : ι), ↑(p i))
⊢ x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
refine' Submodule.span_induction hx (fun x hx => _) _ (fun x y hx hy => _) fun r x hx => _
[GOAL]
case refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
x : M
hx : x ∈ ⋃ (i : ι), ↑(p i)
⊢ x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
exact AddSubmonoid.subset_closure hx
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x : M
hx : x ∈ span R (⋃ (i : ι), ↑(p i))
⊢ 0 ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
exact AddSubmonoid.zero_mem _
[GOAL]
case refine'_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
x y : M
hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
hy : y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ x + y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
exact AddSubmonoid.add_mem _ hx hy
[GOAL]
case refine'_4
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x : M
hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
refine AddSubmonoid.closure_induction hx ?_ ?_ ?_
[GOAL]
case refine'_4.refine_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x : M
hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ ∀ (x : M), x ∈ ⋃ (i : ι), ↑(p i) → r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
rintro x ⟨_, ⟨i, rfl⟩, hix : x ∈ p i⟩
[GOAL]
case refine'_4.refine_1.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝² : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝¹ : M
hx✝ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x✝ : M
hx : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
x : M
i : ι
hix : x ∈ p i
⊢ r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
apply AddSubmonoid.subset_closure (Set.mem_iUnion.mpr ⟨i, _⟩)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝² : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝¹ : M
hx✝ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x✝ : M
hx : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
x : M
i : ι
hix : x ∈ p i
⊢ r • x ∈ ↑(p i)
[PROOFSTEP]
exact smul_mem _ r hix
[GOAL]
case refine'_4.refine_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x : M
hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ r • 0 ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
rw [smul_zero]
[GOAL]
case refine'_4.refine_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x : M
hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ 0 ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
exact AddSubmonoid.zero_mem _
[GOAL]
case refine'_4.refine_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝ : M
hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x : M
hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ ∀ (x y : M),
r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) →
r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) → r • (x + y) ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
intro x y hx hy
[GOAL]
case refine'_4.refine_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝² : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝¹ : M
hx✝¹ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x✝ : M
hx✝ : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
x y : M
hx : r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
hy : r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ r • (x + y) ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
rw [smul_add]
[GOAL]
case refine'_4.refine_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝² : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
x✝¹ : M
hx✝¹ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i))
r : R
x✝ : M
hx✝ : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
x y : M
hx : r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
hy : r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
⊢ r • x + r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
exact AddSubmonoid.add_mem _ hx hy
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : M → Prop
x : M
hx : x ∈ ⨆ (i : ι), p i
hp : ∀ (i : ι) (x : M), x ∈ p i → C x
h0 : C 0
hadd : ∀ (x y : M), C x → C y → C (x + y)
⊢ C x
[PROOFSTEP]
rw [← mem_toAddSubmonoid, iSup_toAddSubmonoid] at hx
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : M → Prop
x : M
hx : x ∈ ⨆ (i : ι), (p i).toAddSubmonoid
hp : ∀ (i : ι) (x : M), x ∈ p i → C x
h0 : C 0
hadd : ∀ (x y : M), C x → C y → C (x + y)
⊢ C x
[PROOFSTEP]
exact AddSubmonoid.iSup_induction (x := x) _ hx hp h0 hadd
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop
hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i)
h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i)
hadd :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i),
C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i)
x : M
hx : x ∈ ⨆ (i : ι), p i
⊢ C x hx
[PROOFSTEP]
refine' Exists.elim _ fun (hx : x ∈ ⨆ i, p i) (hc : C x hx) => hc
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop
hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i)
h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i)
hadd :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i),
C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i)
x : M
hx : x ∈ ⨆ (i : ι), p i
⊢ ∃ x_1, C x x_1
[PROOFSTEP]
refine' iSup_induction p (C := fun x : M ↦ ∃ (hx : x ∈ ⨆ i, p i), C x hx) hx (fun i x hx => _) _ fun x y => _
[GOAL]
case refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop
hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i)
h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i)
hadd :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i),
C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i)
x✝ : M
hx✝ : x✝ ∈ ⨆ (i : ι), p i
i : ι
x : M
hx : x ∈ p i
⊢ (fun x => ∃ hx, C x hx) x
[PROOFSTEP]
exact ⟨_, hp _ _ hx⟩
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop
hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i)
h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i)
hadd :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i),
C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i)
x : M
hx : x ∈ ⨆ (i : ι), p i
⊢ (fun x => ∃ hx, C x hx) 0
[PROOFSTEP]
exact ⟨_, h0⟩
[GOAL]
case refine'_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop
hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i)
h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i)
hadd :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i),
C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i)
x✝ : M
hx : x✝ ∈ ⨆ (i : ι), p i
x y : M
⊢ (fun x => ∃ hx, C x hx) x → (fun x => ∃ hx, C x hx) y → (fun x => ∃ hx, C x hx) (x + y)
[PROOFSTEP]
rintro ⟨_, Cx⟩ ⟨_, Cy⟩
[GOAL]
case refine'_3.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop
hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i)
h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i)
hadd :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i),
C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i)
x✝ : M
hx : x✝ ∈ ⨆ (i : ι), p i
x y : M
w✝¹ : x ∈ ⨆ (i : ι), p i
Cx : C x w✝¹
w✝ : y ∈ ⨆ (i : ι), p i
Cy : C y w✝
⊢ ∃ hx, C (x + y) hx
[PROOFSTEP]
refine' ⟨_, hadd _ _ _ _ Cx Cy⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
m : M
p : Submodule R M
⊢ span R {m} ≤ p ↔ m ∈ p
[PROOFSTEP]
rw [span_le, singleton_subset_iff, SetLike.mem_coe]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
⊢ CompleteLattice.IsCompactElement (span R {x})
[PROOFSTEP]
rw [CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
⊢ ∀ (s : Set (Submodule R M)),
Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → span R {x} ≤ sSup s → ∃ x_1, x_1 ∈ s ∧ span R {x} ≤ x_1
[PROOFSTEP]
intro d hemp hdir hsup
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
d : Set (Submodule R M)
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : span R {x} ≤ sSup d
⊢ ∃ x_1, x_1 ∈ d ∧ span R {x} ≤ x_1
[PROOFSTEP]
have : x ∈ (sSup d) := (SetLike.le_def.mp hsup) (mem_span_singleton_self x)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
d : Set (Submodule R M)
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : span R {x} ≤ sSup d
this : x ∈ sSup d
⊢ ∃ x_1, x_1 ∈ d ∧ span R {x} ≤ x_1
[PROOFSTEP]
obtain ⟨y, ⟨hyd, hxy⟩⟩ := (mem_sSup_of_directed hemp hdir).mp this
[GOAL]
case intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
d : Set (Submodule R M)
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : span R {x} ≤ sSup d
this : x ∈ sSup d
y : Submodule R M
hyd : y ∈ d
hxy : x ∈ y
⊢ ∃ x_1, x_1 ∈ d ∧ span R {x} ≤ x_1
[PROOFSTEP]
exact ⟨y, ⟨hyd, by simpa only [span_le, singleton_subset_iff]⟩⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
x : M
d : Set (Submodule R M)
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : span R {x} ≤ sSup d
this : x ∈ sSup d
y : Submodule R M
hyd : y ∈ d
hxy : x ∈ y
⊢ span R {x} ≤ y
[PROOFSTEP]
simpa only [span_le, singleton_subset_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
S : Finset M
⊢ CompleteLattice.IsCompactElement (span R ↑S)
[PROOFSTEP]
rw [span_eq_iSup_of_singleton_spans]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
S : Finset M
⊢ CompleteLattice.IsCompactElement (⨆ (x : M) (_ : x ∈ ↑S), span R {x})
[PROOFSTEP]
simp only [Finset.mem_coe]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
S : Finset M
⊢ CompleteLattice.IsCompactElement (⨆ (x : M) (_ : x ∈ S), span R {x})
[PROOFSTEP]
rw [← Finset.sup_eq_iSup]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
S : Finset M
⊢ CompleteLattice.IsCompactElement (Finset.sup S fun x => span R {x})
[PROOFSTEP]
exact CompleteLattice.finset_sup_compact_of_compact S fun x _ => singleton_span_isCompactElement x
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t✝ : Set M
s t : Submodule R M
ht : t ∈ (fun x => span R {x}) '' ↑s
⊢ CompleteLattice.IsCompactElement t
[PROOFSTEP]
rcases(Set.mem_image _ _ _).1 ht with ⟨x, _, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
s : Submodule R M
x : M
left✝ : x ∈ ↑s
ht : span R {x} ∈ (fun x => span R {x}) '' ↑s
⊢ CompleteLattice.IsCompactElement (span R {x})
[PROOFSTEP]
apply singleton_span_isCompactElement
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s✝ t : Set M
s : Submodule R M
⊢ sSup ((fun x => span R {x}) '' ↑s) = s
[PROOFSTEP]
rw [sSup_eq_iSup, iSup_image, ← span_eq_iSup_of_singleton_spans, span_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
⊢ p = sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
let S := {T : Submodule R M | ∃ (m : M) (_ : m ∈ p) (_ : m ≠ 0), T = span R { m }}
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
⊢ p = sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
⊢ p ≤ sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
intro m hm
[GOAL]
case a
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
m : M
hm : m ∈ p
⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
by_cases h : m = 0
[GOAL]
case pos
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
m : M
hm : m ∈ p
h : m = 0
⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
rw [h]
[GOAL]
case pos
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
m : M
hm : m ∈ p
h : m = 0
⊢ 0 ∈ sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
m : M
hm : m ∈ p
h : ¬m = 0
⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}
[PROOFSTEP]
exact @le_sSup _ _ S _ ⟨m, ⟨hm, ⟨h, rfl⟩⟩⟩ m (mem_span_singleton_self m)
[GOAL]
case a
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
⊢ sSup {T | ∃ m x x, T = span R {m}} ≤ p
[PROOFSTEP]
rw [sSup_le_iff]
[GOAL]
case a
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
⊢ ∀ (b : Submodule R M), b ∈ {T | ∃ m x x, T = span R {m}} → b ≤ p
[PROOFSTEP]
rintro S ⟨_, ⟨_, ⟨_, rfl⟩⟩⟩
[GOAL]
case a.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
p : Submodule R M
S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}
w✝² : M
w✝¹ : w✝² ∈ p
w✝ : w✝² ≠ 0
⊢ span R {w✝²} ≤ p
[PROOFSTEP]
rwa [span_singleton_le_iff_mem]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
⊢ I < I ⊔ span R {a} ↔ ¬a ∈ I
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
⊢ I < I ⊔ span R {a} → ¬a ∈ I
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
⊢ ¬a ∈ I
[PROOFSTEP]
by_contra akey
[GOAL]
case mp
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
⊢ False
[PROOFSTEP]
have h1 : (I ⊔ R ∙ a) ≤ I := by
simp only [sup_le_iff]
constructor
· exact le_refl I
· exact (span_singleton_le_iff_mem a I).mpr akey
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
⊢ I ⊔ span R {a} ≤ I
[PROOFSTEP]
simp only [sup_le_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
⊢ I ≤ I ∧ span R {a} ≤ I
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
⊢ I ≤ I
[PROOFSTEP]
exact le_refl I
[GOAL]
case right
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
⊢ span R {a} ≤ I
[PROOFSTEP]
exact (span_singleton_le_iff_mem a I).mpr akey
[GOAL]
case mp
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
h1 : I ⊔ span R {a} ≤ I
⊢ False
[PROOFSTEP]
have h2 := gt_of_ge_of_gt h1 h
[GOAL]
case mp
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : I < I ⊔ span R {a}
akey : a ∈ I
h1 : I ⊔ span R {a} ≤ I
h2 : I > I
⊢ False
[PROOFSTEP]
exact lt_irrefl I h2
[GOAL]
case mpr
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
⊢ ¬a ∈ I → I < I ⊔ span R {a}
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ I < I ⊔ span R {a}
[PROOFSTEP]
apply SetLike.lt_iff_le_and_exists.mpr
[GOAL]
case mpr
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ I ≤ I ⊔ span R {a} ∧ ∃ x, x ∈ I ⊔ span R {a} ∧ ¬x ∈ I
[PROOFSTEP]
constructor
[GOAL]
case mpr.left
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ I ≤ I ⊔ span R {a}
case mpr.right
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ ∃ x, x ∈ I ⊔ span R {a} ∧ ¬x ∈ I
[PROOFSTEP]
simp only [le_sup_left]
[GOAL]
case mpr.right
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ ∃ x, x ∈ I ⊔ span R {a} ∧ ¬x ∈ I
[PROOFSTEP]
use a
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ a ∈ I ⊔ span R {a} ∧ ¬a ∈ I
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ a ∈ I ⊔ span R {a}
case h.right
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ ¬a ∈ I
[PROOFSTEP]
swap
[GOAL]
case h.right
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ ¬a ∈ I
[PROOFSTEP]
assumption
[GOAL]
case h.left
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
⊢ a ∈ I ⊔ span R {a}
[PROOFSTEP]
have : (R ∙ a) ≤ I ⊔ R ∙ a := le_sup_right
[GOAL]
case h.left
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
I : Submodule R M
a : M
h : ¬a ∈ I
this : span R {a} ≤ I ⊔ span R {a}
⊢ a ∈ I ⊔ span R {a}
[PROOFSTEP]
exact this (mem_span_singleton_self a)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
m : M
⊢ m ∈ ⨆ (i : ι), p i ↔ ∀ (N : Submodule R M), (∀ (i : ι), p i ≤ N) → m ∈ N
[PROOFSTEP]
rw [← span_singleton_le_iff_mem, le_iSup_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x : M
p✝ p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
ι : Sort u_9
p : ι → Submodule R M
m : M
⊢ (∀ (b : Submodule R M), (∀ (i : ι), p i ≤ b) → span R {m} ≤ b) ↔ ∀ (N : Submodule R M), (∀ (i : ι), p i ≤ N) → m ∈ N
[PROOFSTEP]
simp only [span_singleton_le_iff_mem]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x : M
hx : x ∈ span R S
⊢ ∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T
[PROOFSTEP]
classical
refine' span_induction hx (fun x hx => _) _ _ _
· refine' ⟨{ x }, _, _⟩
· rwa [Finset.coe_singleton, Set.singleton_subset_iff]
· rw [Finset.coe_singleton]
exact Submodule.mem_span_singleton_self x
· use∅
simp
· rintro x y ⟨X, hX, hxX⟩ ⟨Y, hY, hyY⟩
refine' ⟨X ∪ Y, _, _⟩
· rw [Finset.coe_union]
exact Set.union_subset hX hY
rw [Finset.coe_union, span_union, mem_sup]
exact ⟨x, hxX, y, hyY, rfl⟩
· rintro a x ⟨T, hT, h2⟩
exact ⟨T, hT, smul_mem _ _ h2⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x : M
hx : x ∈ span R S
⊢ ∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T
[PROOFSTEP]
refine' span_induction hx (fun x hx => _) _ _ _
[GOAL]
case refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx✝ : x✝ ∈ span R S
x : M
hx : x ∈ S
⊢ ∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T
[PROOFSTEP]
refine' ⟨{ x }, _, _⟩
[GOAL]
case refine'_1.refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx✝ : x✝ ∈ span R S
x : M
hx : x ∈ S
⊢ ↑{x} ⊆ S
[PROOFSTEP]
rwa [Finset.coe_singleton, Set.singleton_subset_iff]
[GOAL]
case refine'_1.refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx✝ : x✝ ∈ span R S
x : M
hx : x ∈ S
⊢ x ∈ span R ↑{x}
[PROOFSTEP]
rw [Finset.coe_singleton]
[GOAL]
case refine'_1.refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx✝ : x✝ ∈ span R S
x : M
hx : x ∈ S
⊢ x ∈ span R {x}
[PROOFSTEP]
exact Submodule.mem_span_singleton_self x
[GOAL]
case refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x : M
hx : x ∈ span R S
⊢ ∃ T, ↑T ⊆ S ∧ 0 ∈ span R ↑T
[PROOFSTEP]
use∅
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x : M
hx : x ∈ span R S
⊢ ↑∅ ⊆ S ∧ 0 ∈ span R ↑∅
[PROOFSTEP]
simp
[GOAL]
case refine'_3
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x : M
hx : x ∈ span R S
⊢ ∀ (x y : M), (∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T) → (∃ T, ↑T ⊆ S ∧ y ∈ span R ↑T) → ∃ T, ↑T ⊆ S ∧ x + y ∈ span R ↑T
[PROOFSTEP]
rintro x y ⟨X, hX, hxX⟩ ⟨Y, hY, hyY⟩
[GOAL]
case refine'_3.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx : x✝ ∈ span R S
x y : M
X : Finset M
hX : ↑X ⊆ S
hxX : x ∈ span R ↑X
Y : Finset M
hY : ↑Y ⊆ S
hyY : y ∈ span R ↑Y
⊢ ∃ T, ↑T ⊆ S ∧ x + y ∈ span R ↑T
[PROOFSTEP]
refine' ⟨X ∪ Y, _, _⟩
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx : x✝ ∈ span R S
x y : M
X : Finset M
hX : ↑X ⊆ S
hxX : x ∈ span R ↑X
Y : Finset M
hY : ↑Y ⊆ S
hyY : y ∈ span R ↑Y
⊢ ↑(X ∪ Y) ⊆ S
[PROOFSTEP]
rw [Finset.coe_union]
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_1
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx : x✝ ∈ span R S
x y : M
X : Finset M
hX : ↑X ⊆ S
hxX : x ∈ span R ↑X
Y : Finset M
hY : ↑Y ⊆ S
hyY : y ∈ span R ↑Y
⊢ ↑X ∪ ↑Y ⊆ S
[PROOFSTEP]
exact Set.union_subset hX hY
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx : x✝ ∈ span R S
x y : M
X : Finset M
hX : ↑X ⊆ S
hxX : x ∈ span R ↑X
Y : Finset M
hY : ↑Y ⊆ S
hyY : y ∈ span R ↑Y
⊢ x + y ∈ span R ↑(X ∪ Y)
[PROOFSTEP]
rw [Finset.coe_union, span_union, mem_sup]
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx : x✝ ∈ span R S
x y : M
X : Finset M
hX : ↑X ⊆ S
hxX : x ∈ span R ↑X
Y : Finset M
hY : ↑Y ⊆ S
hyY : y ∈ span R ↑Y
⊢ ∃ y_1, y_1 ∈ span R ↑X ∧ ∃ z, z ∈ span R ↑Y ∧ y_1 + z = x + y
[PROOFSTEP]
exact ⟨x, hxX, y, hyY, rfl⟩
[GOAL]
case refine'_4
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x : M
hx : x ∈ span R S
⊢ ∀ (a : R) (x : M), (∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T) → ∃ T, ↑T ⊆ S ∧ a • x ∈ span R ↑T
[PROOFSTEP]
rintro a x ⟨T, hT, h2⟩
[GOAL]
case refine'_4.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S✝ : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
x✝¹ : M
p p' : Submodule R M
inst✝³ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s t S : Set M
x✝ : M
hx : x✝ ∈ span R S
a : R
x : M
T : Finset M
hT : ↑T ⊆ S
h2 : x ∈ span R ↑T
⊢ ∃ T, ↑T ⊆ S ∧ a • x ∈ span R ↑T
[PROOFSTEP]
exact ⟨T, hT, smul_mem _ _ h2⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
src✝ : AddSubmonoid (M × M') := AddSubmonoid.prod p.toAddSubmonoid q₁.toAddSubmonoid
⊢ ∀ (c : R) {x : M × M'},
x ∈
{
toAddSubsemigroup :=
{ carrier := ↑p ×ˢ ↑q₁,
add_mem' := (_ : ∀ {a b : M × M'}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier →
c • x ∈
{
toAddSubsemigroup :=
{ carrier := ↑p ×ˢ ↑q₁,
add_mem' := (_ : ∀ {a b : M × M'}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
rintro a ⟨x, y⟩ ⟨hx, hy⟩
[GOAL]
case mk.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
src✝ : AddSubmonoid (M × M') := AddSubmonoid.prod p.toAddSubmonoid q₁.toAddSubmonoid
a : R
x : M
y : M'
hx : (x, y).fst ∈ ↑p
hy : (x, y).snd ∈ ↑q₁
⊢ a • (x, y) ∈
{
toAddSubsemigroup :=
{ carrier := ↑p ×ˢ ↑q₁,
add_mem' := (_ : ∀ {a b : M × M'}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
exact ⟨smul_mem _ a hx, smul_mem _ a hy⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
⊢ prod ⊤ ⊤ = ⊤
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
x✝ : M × M'
⊢ x✝ ∈ prod ⊤ ⊤ ↔ x✝ ∈ ⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
⊢ prod ⊥ ⊥ = ⊥
[PROOFSTEP]
ext ⟨x, y⟩
[GOAL]
case h.mk
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
x : M
y : M'
⊢ (x, y) ∈ prod ⊥ ⊥ ↔ (x, y) ∈ ⊥
[PROOFSTEP]
simp [Prod.zero_eq_mk]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
⊢ prod p q₁ ⊔ prod p' q₁' = prod (p ⊔ p') (q₁ ⊔ q₁')
[PROOFSTEP]
refine' le_antisymm (sup_le (prod_mono le_sup_left le_sup_left) (prod_mono le_sup_right le_sup_right)) _
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
⊢ prod (p ⊔ p') (q₁ ⊔ q₁') ≤ prod p q₁ ⊔ prod p' q₁'
[PROOFSTEP]
simp [SetLike.le_def]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
⊢ ∀ (a : M) (b : M'), a ∈ p ⊔ p' → b ∈ q₁ ⊔ q₁' → (a, b) ∈ prod p q₁ ⊔ prod p' q₁'
[PROOFSTEP]
intro xx yy hxx hyy
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
xx : M
yy : M'
hxx : xx ∈ p ⊔ p'
hyy : yy ∈ q₁ ⊔ q₁'
⊢ (xx, yy) ∈ prod p q₁ ⊔ prod p' q₁'
[PROOFSTEP]
rcases mem_sup.1 hxx with ⟨x, hx, x', hx', rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
yy : M'
hyy : yy ∈ q₁ ⊔ q₁'
x : M
hx : x ∈ p
x' : M
hx' : x' ∈ p'
hxx : x + x' ∈ p ⊔ p'
⊢ (x + x', yy) ∈ prod p q₁ ⊔ prod p' q₁'
[PROOFSTEP]
rcases mem_sup.1 hyy with ⟨y, hy, y', hy', rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
x✝ : M
p p' : Submodule R M
inst✝⁵ : Semiring R₂
σ₁₂ : R →+* R₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R₂ M₂
F : Type u_8
inst✝² : SemilinearMapClass F σ₁₂ M M₂
s t : Set M
M' : Type u_9
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
q₁ q₁' : Submodule R M'
x : M
hx : x ∈ p
x' : M
hx' : x' ∈ p'
hxx : x + x' ∈ p ⊔ p'
y : M'
hy : y ∈ q₁
y' : M'
hy' : y' ∈ q₁'
hyy : y + y' ∈ q₁ ⊔ q₁'
⊢ (x + x', y + y') ∈ prod p q₁ ⊔ prod p' q₁'
[PROOFSTEP]
refine' mem_sup.2 ⟨(x, y), ⟨hx, hy⟩, (x', y'), ⟨hx', hy'⟩, rfl⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
s : Set M
⊢ span R (-s) = span R (↑(-LinearMap.id) '' s)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
s : Set M
⊢ map (-LinearMap.id) (span R s) = span R s
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
s : Set M
⊢ x ∈ span R (insert y s) ↔ ∃ a, x + a • y ∈ span R s
[PROOFSTEP]
rw [mem_span_insert]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
s : Set M
⊢ (∃ a z, z ∈ span R s ∧ x = a • y + z) ↔ ∃ a, x + a • y ∈ span R s
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
s : Set M
⊢ (∃ a z, z ∈ span R s ∧ x = a • y + z) → ∃ a, x + a • y ∈ span R s
[PROOFSTEP]
rintro ⟨a, z, hz, rfl⟩
[GOAL]
case mp.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
y : M
s : Set M
a : R
z : M
hz : z ∈ span R s
⊢ ∃ a_1, a • y + z + a_1 • y ∈ span R s
[PROOFSTEP]
exact ⟨-a, by simp [hz, add_assoc]⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
y : M
s : Set M
a : R
z : M
hz : z ∈ span R s
⊢ a • y + z + -a • y ∈ span R s
[PROOFSTEP]
simp [hz, add_assoc]
[GOAL]
case mpr
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
s : Set M
⊢ (∃ a, x + a • y ∈ span R s) → ∃ a z, z ∈ span R s ∧ x = a • y + z
[PROOFSTEP]
rintro ⟨a, h⟩
[GOAL]
case mpr.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
s : Set M
a : R
h : x + a • y ∈ span R s
⊢ ∃ a z, z ∈ span R s ∧ x = a • y + z
[PROOFSTEP]
exact ⟨-a, _, h, by simp [add_comm, add_left_comm]⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
s : Set M
a : R
h : x + a • y ∈ span R s
⊢ x = -a • y + (x + a • y)
[PROOFSTEP]
simp [add_comm, add_left_comm]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x✝ y z : Submodule R M
xz : x✝ ≤ z
a : M
ha : a ∈ (x✝ ⊔ y) ⊓ z
⊢ a ∈ x✝ ⊔ y ⊓ z
[PROOFSTEP]
rw [mem_inf, mem_sup] at ha
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x✝ y z : Submodule R M
xz : x✝ ≤ z
a : M
ha : (∃ y_1, y_1 ∈ x✝ ∧ ∃ z, z ∈ y ∧ y_1 + z = a) ∧ a ∈ z
⊢ a ∈ x✝ ⊔ y ⊓ z
[PROOFSTEP]
rcases ha with ⟨⟨b, hb, c, hc, rfl⟩, haz⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x✝ y z : Submodule R M
xz : x✝ ≤ z
b : M
hb : b ∈ x✝
c : M
hc : c ∈ y
haz : b + c ∈ z
⊢ b + c ∈ x✝ ⊔ y ⊓ z
[PROOFSTEP]
rw [mem_sup]
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x✝ y z : Submodule R M
xz : x✝ ≤ z
b : M
hb : b ∈ x✝
c : M
hc : c ∈ y
haz : b + c ∈ z
⊢ ∃ y_1, y_1 ∈ x✝ ∧ ∃ z_1, z_1 ∈ y ⊓ z ∧ y_1 + z_1 = b + c
[PROOFSTEP]
refine' ⟨b, hb, c, mem_inf.2 ⟨hc, _⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x✝ y z : Submodule R M
xz : x✝ ≤ z
b : M
hb : b ∈ x✝
c : M
hc : c ∈ y
haz : b + c ∈ z
⊢ c ∈ z
[PROOFSTEP]
rw [← add_sub_cancel c b, add_comm]
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x✝ y z : Submodule R M
xz : x✝ ≤ z
b : M
hb : b ∈ x✝
c : M
hc : c ∈ y
haz : b + c ∈ z
⊢ b + c - b ∈ z
[PROOFSTEP]
apply z.sub_mem haz (xz hb)
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
⊢ comap f (map f p) = p ⊔ LinearMap.ker f
[PROOFSTEP]
refine' le_antisymm _ (sup_le (le_comap_map _ _) (comap_mono bot_le))
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
⊢ comap f (map f p) ≤ p ⊔ LinearMap.ker f
[PROOFSTEP]
rintro x ⟨y, hy, e⟩
[GOAL]
case intro.intro
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
x y : M
hy : y ∈ ↑p
e : ↑f y = ↑f x
⊢ x ∈ p ⊔ LinearMap.ker f
[PROOFSTEP]
exact mem_sup.2 ⟨y, hy, x - y, by simpa using sub_eq_zero.2 e.symm, by simp⟩
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
x y : M
hy : y ∈ ↑p
e : ↑f y = ↑f x
⊢ x - y ∈ LinearMap.ker f
[PROOFSTEP]
simpa using sub_eq_zero.2 e.symm
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
x y : M
hy : y ∈ ↑p
e : ↑f y = ↑f x
⊢ y + (x - y) = x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup M₂
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
h : LinearMap.ker f ≤ p
⊢ comap f (map f p) = p
[PROOFSTEP]
rw [Submodule.comap_map_eq, sup_of_le_left h]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p p' : Submodule R M
⊢ map f p ≤ map f p' ↔ p ≤ p' ⊔ ker f
[PROOFSTEP]
rw [map_le_iff_le_comap, Submodule.comap_map_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : ker f = ⊥
p p' : Submodule R M
⊢ map f p ≤ map f p' ↔ p ≤ p'
[PROOFSTEP]
rw [LinearMap.map_le_map_iff, hf, sup_bot_eq]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : Semiring R₂
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
F : Type u_8
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : range f = ⊤
p : Submodule R M
⊢ map f p = ⊤ ↔ p ⊔ ker f = ⊤
[PROOFSTEP]
simp_rw [← top_le_iff, ← hf, range_eq_map, LinearMap.map_le_map_iff]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : M
⊢ y ∈ span R {x} ↔ y ∈ range (toSpanSingleton R M x)
[PROOFSTEP]
refine' Iff.trans _ LinearMap.mem_range.symm
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : M
⊢ y ∈ span R {x} ↔ ∃ y_1, ↑(toSpanSingleton R M x) y_1 = y
[PROOFSTEP]
exact mem_span_singleton
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ toSpanSingleton R M 0 = 0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ ↑(toSpanSingleton R M 0) 1 = ↑0 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : Semiring R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
σ₁₂ : R →+* R₂
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s : Set M
f g : F
⊢ Set.EqOn ↑f ↑g ↑(span R s) ↔ Set.EqOn (↑f) (↑g) s
[PROOFSTEP]
rw [← le_eqLocus, span_le]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : Semiring R₂
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R₂ M₂
F : Type u_8
σ₁₂ : R →+* R₂
inst✝ : SemilinearMapClass F σ₁₂ M M₂
s : Set M
f g : F
⊢ s ⊆ ↑(eqLocus f g) ↔ Set.EqOn (↑f) (↑g) s
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : V →ₗ[K] K
x : V
hx : ↑f x ≠ 0
y : V
x✝ : y ∈ ⊤
⊢ y - (↑f y * (↑f x)⁻¹) • x ∈ ker f
[PROOFSTEP]
rw [LinearMap.mem_ker, f.map_sub, f.map_smul, smul_eq_mul, mul_assoc, inv_mul_cancel hx, mul_one, sub_self]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : V →ₗ[K] K
x : V
hx : ↑f x ≠ 0
y : V
x✝ : y ∈ ⊤
⊢ (↑f y * (↑f x)⁻¹) • x + (y - (↑f y * (↑f x)⁻¹) • x) = y
[PROOFSTEP]
simp only [add_sub_cancel'_right]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x : M
h : x ≠ 0
⊢ ↑(toSpanNonzeroSingleton R M x h) 1 = { val := x, property := (_ : x ∈ Submodule.span R {x}) }
[PROOFSTEP]
apply SetLike.coe_eq_coe.mp
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x : M
h : x ≠ 0
⊢ ↑(↑(toSpanNonzeroSingleton R M x h) 1) = ↑{ val := x, property := (_ : x ∈ Submodule.span R {x}) }
[PROOFSTEP]
have : ↑(toSpanNonzeroSingleton R M x h 1) = toSpanSingleton R M x 1 := rfl
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x : M
h : x ≠ 0
this : ↑(↑(toSpanNonzeroSingleton R M x h) 1) = ↑(toSpanSingleton R M x) 1
⊢ ↑(↑(toSpanNonzeroSingleton R M x h) 1) = ↑{ val := x, property := (_ : x ∈ Submodule.span R {x}) }
[PROOFSTEP]
rw [this, toSpanSingleton_one, Submodule.coe_mk]
[GOAL]
R : Type u_1
R₂ : Type u_2
K : Type u_3
M : Type u_4
M₂ : Type u_5
V : Type u_6
S : Type u_7
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
x : M
h : x ≠ 0
⊢ ↑(coord R M x h) { val := x, property := (_ : x ∈ Submodule.span R {x}) } = 1
[PROOFSTEP]
rw [← toSpanNonzeroSingleton_one R M x h, LinearEquiv.symm_apply_apply]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Span", "llama_tokens": 85273} |
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : Anisotropic (prod Q₁ Q₂)
⊢ Anisotropic Q₁ ∧ Anisotropic Q₂
[PROOFSTEP]
simp_rw [Anisotropic, prod_apply, Prod.forall, Prod.mk_eq_zero] at h
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
⊢ Anisotropic Q₁ ∧ Anisotropic Q₂
[PROOFSTEP]
constructor
[GOAL]
case left
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
⊢ Anisotropic Q₁
[PROOFSTEP]
intro x hx
[GOAL]
case left
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
x : M₁
hx : ↑Q₁ x = 0
⊢ x = 0
[PROOFSTEP]
refine' (h x 0 _).1
[GOAL]
case left
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
x : M₁
hx : ↑Q₁ x = 0
⊢ ↑Q₁ x + ↑Q₂ 0 = 0
[PROOFSTEP]
rw [hx, zero_add, map_zero]
[GOAL]
case right
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
⊢ Anisotropic Q₂
[PROOFSTEP]
intro x hx
[GOAL]
case right
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
x : M₂
hx : ↑Q₂ x = 0
⊢ x = 0
[PROOFSTEP]
refine' (h 0 x _).2
[GOAL]
case right
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0
x : M₂
hx : ↑Q₂ x = 0
⊢ ↑Q₁ 0 + ↑Q₂ x = 0
[PROOFSTEP]
rw [hx, add_zero, map_zero]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ (∀ (x : M₁ × M₂), 0 ≤ ↑(prod Q₁ Q₂) x) ↔ (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x
[PROOFSTEP]
simp_rw [Prod.forall, prod_apply]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ (∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b) ↔ (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ (∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b) → (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x
[PROOFSTEP]
intro h
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b
⊢ (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x
[PROOFSTEP]
constructor
[GOAL]
case mp.left
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b
⊢ ∀ (x : M₁), 0 ≤ ↑Q₁ x
[PROOFSTEP]
intro x
[GOAL]
case mp.left
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b
x : M₁
⊢ 0 ≤ ↑Q₁ x
[PROOFSTEP]
simpa only [add_zero, map_zero] using h x 0
[GOAL]
case mp.right
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b
⊢ ∀ (x : M₂), 0 ≤ ↑Q₂ x
[PROOFSTEP]
intro x
[GOAL]
case mp.right
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b
x : M₂
⊢ 0 ≤ ↑Q₂ x
[PROOFSTEP]
simpa only [zero_add, map_zero] using h 0 x
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) → ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b
[PROOFSTEP]
rintro ⟨h₁, h₂⟩ x₁ x₂
[GOAL]
case mpr.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
h₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
h₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
x₁ : M₁
x₂ : M₂
⊢ 0 ≤ ↑Q₁ x₁ + ↑Q₂ x₂
[PROOFSTEP]
exact add_nonneg (h₁ x₁) (h₂ x₂)
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ PosDef (prod Q₁ Q₂) ↔ PosDef Q₁ ∧ PosDef Q₂
[PROOFSTEP]
simp_rw [posDef_iff_nonneg, nonneg_prod_iff]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂) ↔
((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂) →
((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂
[PROOFSTEP]
rintro ⟨⟨hle₁, hle₂⟩, ha⟩
[GOAL]
case mp.intro.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
ha : Anisotropic (prod Q₁ Q₂)
hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂
[PROOFSTEP]
obtain ⟨ha₁, ha₂⟩ := anisotropic_of_prod ha
[GOAL]
case mp.intro.intro.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
ha : Anisotropic (prod Q₁ Q₂)
hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
ha₁ : Anisotropic Q₁
ha₂ : Anisotropic Q₂
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂
[PROOFSTEP]
refine' ⟨⟨hle₁, ha₁⟩, ⟨hle₂, ha₂⟩⟩
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂ →
((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂)
[PROOFSTEP]
rintro ⟨⟨hle₁, ha₁⟩, ⟨hle₂, ha₂⟩⟩
[GOAL]
case mpr.intro.intro.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
ha₁ : Anisotropic Q₁
hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
ha₂ : Anisotropic Q₂
⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂)
[PROOFSTEP]
refine' ⟨⟨hle₁, hle₂⟩, _⟩
[GOAL]
case mpr.intro.intro.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
ha₁ : Anisotropic Q₁
hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
ha₂ : Anisotropic Q₂
⊢ Anisotropic (prod Q₁ Q₂)
[PROOFSTEP]
rintro ⟨x₁, x₂⟩ (hx : Q₁ x₁ + Q₂ x₂ = 0)
[GOAL]
case mpr.intro.intro.intro.mk
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
ha₁ : Anisotropic Q₁
hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
ha₂ : Anisotropic Q₂
x₁ : M₁
x₂ : M₂
hx : ↑Q₁ x₁ + ↑Q₂ x₂ = 0
⊢ (x₁, x₂) = 0
[PROOFSTEP]
rw [add_eq_zero_iff' (hle₁ x₁) (hle₂ x₂), ha₁.eq_zero_iff, ha₂.eq_zero_iff] at hx
[GOAL]
case mpr.intro.intro.intro.mk
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
R : Type u_9
inst✝² : OrderedRing R
inst✝¹ : Module R M₁
inst✝ : Module R M₂
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x
ha₁ : Anisotropic Q₁
hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x
ha₂ : Anisotropic Q₂
x₁ : M₁
x₂ : M₂
hx : x₁ = 0 ∧ x₂ = 0
⊢ (x₁, x₂) = 0
[PROOFSTEP]
rwa [Prod.mk_eq_zero]
[GOAL]
ι : Type u_1
R : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid N₁
inst✝⁹ : AddCommMonoid N₂
inst✝⁸ : Module R M₁
inst✝⁷ : Module R M₂
inst✝⁶ : Module R N₁
inst✝⁵ : Module R N₂
inst✝⁴ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝³ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝² : (i : ι) → Module R (Mᵢ i)
inst✝¹ : (i : ι) → Module R (Nᵢ i)
inst✝ : Fintype ι
Q : (i : ι) → QuadraticForm R (Mᵢ i)
Q' : (i : ι) → QuadraticForm R (Nᵢ i)
e : (i : ι) → IsometryEquiv (Q i) (Q' i)
x : (i : ι) → Mᵢ i
⊢ ↑(QuadraticForm.pi Q') (AddHom.toFun (↑(LinearEquiv.piCongrRight fun i => (e i).toLinearEquiv)).toAddHom x) =
↑(QuadraticForm.pi Q) x
[PROOFSTEP]
simp only [pi_apply, LinearEquiv.piCongrRight, LinearEquiv.toFun_eq_coe, IsometryEquiv.coe_toLinearEquiv,
IsometryEquiv.map_app]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : Anisotropic (pi Q)
⊢ ∀ (i : ι), Anisotropic (Q i)
[PROOFSTEP]
simp_rw [Anisotropic, pi_apply, Function.funext_iff, Pi.zero_apply] at h
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
⊢ ∀ (i : ι), Anisotropic (Q i)
[PROOFSTEP]
intro i x hx
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
⊢ x = 0
[PROOFSTEP]
classical
have := h (Pi.single i x) ?_ i
· rw [Pi.single_eq_same] at this
exact this
apply Finset.sum_eq_zero
intro j _
by_cases hji : j = i
· subst hji; rw [Pi.single_eq_same, hx]
· rw [Pi.single_eq_of_ne hji, map_zero]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
⊢ x = 0
[PROOFSTEP]
have := h (Pi.single i x) ?_ i
[GOAL]
case refine_2
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
this : Pi.single i x i = 0
⊢ x = 0
[PROOFSTEP]
rw [Pi.single_eq_same] at this
[GOAL]
case refine_2
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
this : x = 0
⊢ x = 0
[PROOFSTEP]
exact this
[GOAL]
case refine_1
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
⊢ ∑ i_1 : ι, ↑(Q i_1) (Pi.single i x i_1) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case refine_1.h
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
⊢ ∀ (x_1 : ι), x_1 ∈ Finset.univ → ↑(Q x_1) (Pi.single i x x_1) = 0
[PROOFSTEP]
intro j _
[GOAL]
case refine_1.h
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
j : ι
a✝ : j ∈ Finset.univ
⊢ ↑(Q j) (Pi.single i x j) = 0
[PROOFSTEP]
by_cases hji : j = i
[GOAL]
case pos
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
j : ι
a✝ : j ∈ Finset.univ
hji : j = i
⊢ ↑(Q j) (Pi.single i x j) = 0
[PROOFSTEP]
subst hji
[GOAL]
case pos
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
j : ι
a✝ : j ∈ Finset.univ
x : Mᵢ j
hx : ↑(Q j) x = 0
⊢ ↑(Q j) (Pi.single j x j) = 0
[PROOFSTEP]
rw [Pi.single_eq_same, hx]
[GOAL]
case neg
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0
i : ι
x : Mᵢ i
hx : ↑(Q i) x = 0
j : ι
a✝ : j ∈ Finset.univ
hji : ¬j = i
⊢ ↑(Q j) (Pi.single i x j) = 0
[PROOFSTEP]
rw [Pi.single_eq_of_ne hji, map_zero]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (x : (i : ι) → Mᵢ i), 0 ≤ ↑(pi Q) x) ↔ ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x
[PROOFSTEP]
simp_rw [pi, sum_apply, comp_apply, LinearMap.proj_apply]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)) ↔ ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x
[PROOFSTEP]
constructor
-- TODO: does this generalize to a useful lemma independent of `QuadraticForm`?
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)) → ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x
[PROOFSTEP]
intro h i x
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)
i : ι
x : Mᵢ i
⊢ 0 ≤ ↑(Q i) x
[PROOFSTEP]
classical
convert h (Pi.single i x) using 1
rw [Finset.sum_eq_single_of_mem i (Finset.mem_univ _) fun j _ hji => ?_, Pi.single_eq_same]
rw [Pi.single_eq_of_ne hji, map_zero]
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)
i : ι
x : Mᵢ i
⊢ 0 ≤ ↑(Q i) x
[PROOFSTEP]
convert h (Pi.single i x) using 1
[GOAL]
case h.e'_4
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)
i : ι
x : Mᵢ i
⊢ ↑(Q i) x = ∑ x_1 : ι, ↑(Q x_1) (Pi.single i x x_1)
[PROOFSTEP]
rw [Finset.sum_eq_single_of_mem i (Finset.mem_univ _) fun j _ hji => ?_, Pi.single_eq_same]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)
i : ι
x : Mᵢ i
j : ι
x✝ : j ∈ Finset.univ
hji : j ≠ i
⊢ ↑(Q j) (Pi.single i x j) = 0
[PROOFSTEP]
rw [Pi.single_eq_of_ne hji, map_zero]
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) → ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)
[PROOFSTEP]
rintro h x
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x
x : (i : ι) → Mᵢ i
⊢ 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)
[PROOFSTEP]
exact Finset.sum_nonneg fun i _ => h i (x i)
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ PosDef (pi Q) ↔ ∀ (i : ι), PosDef (Q i)
[PROOFSTEP]
simp_rw [posDef_iff_nonneg, nonneg_pi_iff]
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q) ↔
∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q) →
∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
[PROOFSTEP]
rintro ⟨hle, ha⟩
[GOAL]
case mp.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
hle : ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x
ha : Anisotropic (pi Q)
⊢ ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
[PROOFSTEP]
intro i
[GOAL]
case mp.intro
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
hle : ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x
ha : Anisotropic (pi Q)
i : ι
⊢ (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
[PROOFSTEP]
exact ⟨hle i, anisotropic_of_pi ha i⟩
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
⊢ (∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)) →
(∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q)
[PROOFSTEP]
intro h
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q)
[PROOFSTEP]
refine' ⟨fun i => (h i).1, fun x hx => funext fun i => (h i).2 _ _⟩
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
x : (i : ι) → Mᵢ i
hx : ↑(pi Q) x = 0
i : ι
⊢ ↑(Q i) (x i) = 0
[PROOFSTEP]
rw [pi_apply, Finset.sum_eq_zero_iff_of_nonneg fun j _ => ?_] at hx
[GOAL]
case mpr
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
x : (i : ι) → Mᵢ i
hx : ∀ (i : ι), i ∈ Finset.univ → ↑(Q i) (x i) = 0
i : ι
⊢ ↑(Q i) (x i) = 0
[PROOFSTEP]
exact hx _ (Finset.mem_univ _)
[GOAL]
ι : Type u_1
R✝ : Type u_2
M₁ : Type u_3
M₂ : Type u_4
N₁ : Type u_5
N₂ : Type u_6
Mᵢ : ι → Type u_7
Nᵢ : ι → Type u_8
inst✝¹⁵ : Semiring R✝
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid N₁
inst✝¹¹ : AddCommMonoid N₂
inst✝¹⁰ : Module R✝ M₁
inst✝⁹ : Module R✝ M₂
inst✝⁸ : Module R✝ N₁
inst✝⁷ : Module R✝ N₂
inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i)
inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i)
inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i)
inst✝³ : (i : ι) → Module R✝ (Nᵢ i)
inst✝² : Fintype ι
R : Type u_9
inst✝¹ : OrderedRing R
inst✝ : (i : ι) → Module R (Mᵢ i)
Q : (i : ι) → QuadraticForm R (Mᵢ i)
h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)
x : (i : ι) → Mᵢ i
hx : ∑ i : ι, ↑(Q i) (x i) = 0
i j : ι
x✝ : j ∈ Finset.univ
⊢ 0 ≤ ↑(Q j) (x j)
[PROOFSTEP]
exact (h j).1 _
| {"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Prod", "llama_tokens": 29681} |
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Type u_2
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : Module R M✝
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝³ : CommRing A
m : Type u_6
n : Type u_7
inst✝² : Fintype m
inst✝¹ : Fintype n
inst✝ : DecidableEq n
M N : Matrix n n A
⊢ det (M * N) = det (N * M)
[PROOFSTEP]
rw [det_mul, det_mul, mul_comm]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M✝ : Type u_2
inst✝¹⁰ : AddCommGroup M✝
inst✝⁹ : Module R M✝
M'✝ : Type u_3
inst✝⁸ : AddCommGroup M'✝
inst✝⁷ : Module R M'✝
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁴ : CommRing A
m : Type u_6
n : Type u_7
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
M : Matrix n m A
N M' : Matrix m n A
hMM' : M * M' = 1
hM'M : M' * M = 1
⊢ det (M * N) = det (N * M)
[PROOFSTEP]
nontriviality A
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M✝ : Type u_2
inst✝¹⁰ : AddCommGroup M✝
inst✝⁹ : Module R M✝
M'✝ : Type u_3
inst✝⁸ : AddCommGroup M'✝
inst✝⁷ : Module R M'✝
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁴ : CommRing A
m : Type u_6
n : Type u_7
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
M : Matrix n m A
N M' : Matrix m n A
hMM' : M * M' = 1
hM'M : M' * M = 1
✝ : Nontrivial A
⊢ det (M * N) = det (N * M)
[PROOFSTEP]
let e := indexEquivOfInv hMM' hM'M
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M✝ : Type u_2
inst✝¹⁰ : AddCommGroup M✝
inst✝⁹ : Module R M✝
M'✝ : Type u_3
inst✝⁸ : AddCommGroup M'✝
inst✝⁷ : Module R M'✝
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M✝
A : Type u_5
inst✝⁴ : CommRing A
m : Type u_6
n : Type u_7
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
M : Matrix n m A
N M' : Matrix m n A
hMM' : M * M' = 1
hM'M : M' * M = 1
✝ : Nontrivial A
e : n ≃ m := indexEquivOfInv hMM' hM'M
⊢ det (M * N) = det (N * M)
[PROOFSTEP]
rw [← det_submatrix_equiv_self e, ← submatrix_mul_equiv _ _ _ (Equiv.refl n) _, det_comm, submatrix_mul_equiv,
Equiv.coe_refl, submatrix_id_id]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M✝ : Type u_2
inst✝¹⁰ : AddCommGroup M✝
inst✝⁹ : Module R M✝
M'✝ : Type u_3
inst✝⁸ : AddCommGroup M'✝
inst✝⁷ : Module R M'✝
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁴ : CommRing A
m : Type u_6
n : Type u_7
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
M : Matrix m n A
M' : Matrix n m A
N : Matrix n n A
hMM' : M * M' = 1
hM'M : M' * M = 1
⊢ det (M * N * M') = det N
[PROOFSTEP]
rw [← det_comm' hM'M hMM', ← Matrix.mul_assoc, hM'M, Matrix.one_mul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq κ
b : Basis ι A M
c : Basis κ A M
f : M →ₗ[A] M
⊢ det (↑(toMatrix b b) f) = det (↑(toMatrix c c) f)
[PROOFSTEP]
rw [← linearMap_toMatrix_mul_basis_toMatrix c b c, ← basis_toMatrix_mul_linearMap_toMatrix b c b,
Matrix.det_conj_of_mul_eq_one]
[GOAL]
case hMM'
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq κ
b : Basis ι A M
c : Basis κ A M
f : M →ₗ[A] M
⊢ Basis.toMatrix c ↑b * Basis.toMatrix b ↑c = 1
[PROOFSTEP]
rw [Basis.toMatrix_mul_toMatrix, Basis.toMatrix_self]
[GOAL]
case hM'M
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq κ
b : Basis ι A M
c : Basis κ A M
f : M →ₗ[A] M
⊢ Basis.toMatrix b ↑c * Basis.toMatrix c ↑b = 1
[PROOFSTEP]
rw [Basis.toMatrix_mul_toMatrix, Basis.toMatrix_self]
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
b : Basis ι A M
f : M →ₗ[A] M
⊢ ↑(detAux (Trunc.mk b)) f = det (↑(toMatrix b b) f)
[PROOFSTEP]
rw [detAux]
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
b : Basis ι A M
f : M →ₗ[A] M
⊢ ↑(Trunc.lift (fun b => MonoidHom.comp detMonoidHom ↑(toMatrixAlgEquiv b))
(_ :
∀ (b c : Basis ι A M),
(fun b => MonoidHom.comp detMonoidHom ↑(toMatrixAlgEquiv b)) b =
(fun b => MonoidHom.comp detMonoidHom ↑(toMatrixAlgEquiv b)) c)
(Trunc.mk b))
f =
det (↑(toMatrix b b) f)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι' : Type u_7
inst✝¹ : Fintype ι'
inst✝ : DecidableEq ι'
tb : Trunc (Basis ι A M)
b' : Basis ι' A M
f : M →ₗ[A] M
⊢ ↑(detAux tb) f = det (↑(toMatrix b' b') f)
[PROOFSTEP]
induction tb using Trunc.induction_on with
| h b => rw [detAux_def', det_toMatrix_eq_det_toMatrix b b']
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι' : Type u_7
inst✝¹ : Fintype ι'
inst✝ : DecidableEq ι'
tb : Trunc (Basis ι A M)
b' : Basis ι' A M
f : M →ₗ[A] M
⊢ ↑(detAux tb) f = det (↑(toMatrix b' b') f)
[PROOFSTEP]
induction tb using Trunc.induction_on with
| h b => rw [detAux_def', det_toMatrix_eq_det_toMatrix b b']
[GOAL]
case h
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι' : Type u_7
inst✝¹ : Fintype ι'
inst✝ : DecidableEq ι'
b' : Basis ι' A M
f : M →ₗ[A] M
b : Basis ι A M
⊢ ↑(detAux (Trunc.mk b)) f = det (↑(toMatrix b' b') f)
[PROOFSTEP]
| h b => rw [detAux_def', det_toMatrix_eq_det_toMatrix b b']
[GOAL]
case h
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι' : Type u_7
inst✝¹ : Fintype ι'
inst✝ : DecidableEq ι'
b' : Basis ι' A M
f : M →ₗ[A] M
b : Basis ι A M
⊢ ↑(detAux (Trunc.mk b)) f = det (↑(toMatrix b' b') f)
[PROOFSTEP]
rw [detAux_def', det_toMatrix_eq_det_toMatrix b b']
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
⊢ ↑LinearMap.det =
↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then
detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M))))
else 1)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
x✝ : M →ₗ[A] M
⊢ ↑LinearMap.det x✝ =
↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then
detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M))))
else 1)
x✝
[PROOFSTEP]
rw [LinearMap.det_def]
[GOAL]
case h
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
x✝ : M →ₗ[A] M
⊢ ↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then
detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M))))
else 1)
x✝ =
↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then
detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M))))
else 1)
x✝
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
x✝ : M →ₗ[A] M
h✝ : ∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h✝ } A M))))) x✝ =
↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h✝ } A M))))) x✝
[PROOFSTEP]
congr
-- use the correct `DecidableEq` instance
[GOAL]
case neg
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
x✝ : M →ₗ[A] M
h✝ : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ↑1 x✝ = ↑1 x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
s : Finset M
b : Basis { x // x ∈ s } A M
f : M →ₗ[A] M
⊢ ↑LinearMap.det f = det (↑(toMatrix b b) f)
[PROOFSTEP]
have : ∃ s : Finset M, Nonempty (Basis s A M) := ⟨s, ⟨b⟩⟩
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
s : Finset M
b : Basis { x // x ∈ s } A M
f : M →ₗ[A] M
this : ∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ↑LinearMap.det f = det (↑(toMatrix b b) f)
[PROOFSTEP]
rw [LinearMap.coe_det, dif_pos, detAux_def'' _ b]
[GOAL]
case hc
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
s : Finset M
b : Basis { x // x ∈ s } A M
f : M →ₗ[A] M
this : ∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ∃ s, Nonempty (Basis { x // x ∈ s } A M)
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
b : Basis ι A M
f : M →ₗ[A] M
⊢ det (↑(toMatrix b b) f) = ↑LinearMap.det f
[PROOFSTEP]
haveI := Classical.decEq M
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
b : Basis ι A M
f : M →ₗ[A] M
this : DecidableEq M
⊢ det (↑(toMatrix b b) f) = ↑LinearMap.det f
[PROOFSTEP]
rw [det_eq_det_toMatrix_of_finset b.reindexFinsetRange]
-- Porting note: moved out of `rw` due to error
-- typeclass instance problem is stuck, it is often due to metavariables `DecidableEq ?m.628881`
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
b : Basis ι A M
f : M →ₗ[A] M
this : DecidableEq M
⊢ det (↑(toMatrix b b) f) = det (↑(toMatrix (Basis.reindexFinsetRange b) (Basis.reindexFinsetRange b)) f)
[PROOFSTEP]
apply det_toMatrix_eq_det_toMatrix b
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι✝ : Type u_4
inst✝⁶ : DecidableEq ι✝
inst✝⁵ : Fintype ι✝
e : Basis ι✝ R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι : Type u_7
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → A) →ₗ[A] ι → A
⊢ det (↑toMatrix' f) = ↑LinearMap.det f
[PROOFSTEP]
simp [← toMatrix_eq_toMatrix']
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
b : Basis ι R M
f : Matrix ι ι R
⊢ ↑LinearMap.det (↑(toLin b b) f) = det f
[PROOFSTEP]
rw [← LinearMap.det_toMatrix b, LinearMap.toMatrix_toLin]
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
κ : Type u_6
inst✝ : Fintype κ
f : Matrix ι ι R
⊢ ↑LinearMap.det (↑toLin' f) = det f
[PROOFSTEP]
simp only [← toLin_eq_toLin', det_toLin]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
P : A → Prop
f : M →ₗ[A] M
hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f))
h1 : P 1
⊢ P (↑LinearMap.det f)
[PROOFSTEP]
rw [LinearMap.det_def]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
P : A → Prop
f : M →ₗ[A] M
hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f))
h1 : P 1
⊢ P
(↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then
detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M))))
else 1)
f)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
P : A → Prop
f : M →ₗ[A] M
hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f))
h1 : P 1
h : ∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ P (↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M))))) f)
[PROOFSTEP]
convert hb _ h.choose_spec.some
[GOAL]
case h.e'_1
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
P : A → Prop
f : M →ₗ[A] M
hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f))
h1 : P 1
h : ∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M))))) f =
det
(↑(toMatrix (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M)))
(Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M))))
f)
[PROOFSTEP]
convert detAux_def'' (Trunc.mk h.choose_spec.some) h.choose_spec.some f
[GOAL]
case neg
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : DecidableEq M
P : A → Prop
f : M →ₗ[A] M
hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f))
h1 : P 1
h : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ P (↑1 f)
[PROOFSTEP]
exact h1
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f
[PROOFSTEP]
by_cases H : ∃ s : Finset M, Nonempty (Basis s 𝕜 M)
[GOAL]
case pos
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f
[PROOFSTEP]
have : FiniteDimensional 𝕜 M := by
rcases H with ⟨s, ⟨hs⟩⟩
exact FiniteDimensional.of_fintype_basis hs
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
rcases H with ⟨s, ⟨hs⟩⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
s : Finset M
hs : Basis { x // x ∈ s } 𝕜 M
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
exact FiniteDimensional.of_fintype_basis hs
[GOAL]
case pos
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
this : FiniteDimensional 𝕜 M
⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f
[PROOFSTEP]
simp only [← det_toMatrix (FiniteDimensional.finBasis 𝕜 M), LinearEquiv.map_smul, Fintype.card_fin, Matrix.det_smul]
[GOAL]
case neg
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f
[PROOFSTEP]
classical
have : FiniteDimensional.finrank 𝕜 M = 0 := finrank_eq_zero_of_not_exists_basis H
simp [coe_det, H, this]
[GOAL]
case neg
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f
[PROOFSTEP]
have : FiniteDimensional.finrank 𝕜 M = 0 := finrank_eq_zero_of_not_exists_basis H
[GOAL]
case neg
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
c : 𝕜
f : M →ₗ[𝕜] M
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
this : FiniteDimensional.finrank 𝕜 M = 0
⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f
[PROOFSTEP]
simp [coe_det, H, this]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι✝ : Type u_4
inst✝⁶ : DecidableEq ι✝
inst✝⁵ : Fintype ι✝
e : Basis ι✝ R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι : Type u_7
inst✝¹ : Finite ι
inst✝ : Nonempty ι
b : Basis ι A M
⊢ ↑LinearMap.det 0 = 0
[PROOFSTEP]
haveI := Classical.decEq ι
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι✝ : Type u_4
inst✝⁶ : DecidableEq ι✝
inst✝⁵ : Fintype ι✝
e : Basis ι✝ R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι : Type u_7
inst✝¹ : Finite ι
inst✝ : Nonempty ι
b : Basis ι A M
this : DecidableEq ι
⊢ ↑LinearMap.det 0 = 0
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι✝ : Type u_4
inst✝⁶ : DecidableEq ι✝
inst✝⁵ : Fintype ι✝
e : Basis ι✝ R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
ι : Type u_7
inst✝¹ : Finite ι
inst✝ : Nonempty ι
b : Basis ι A M
this : DecidableEq ι
val✝ : Fintype ι
⊢ ↑LinearMap.det 0 = 0
[PROOFSTEP]
rwa [← det_toMatrix b, LinearEquiv.map_zero, det_zero]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
⊢ ↑LinearMap.det 0 = 0 ^ FiniteDimensional.finrank 𝕜 M
[PROOFSTEP]
simp only [← zero_smul 𝕜 (1 : M →ₗ[𝕜] M), det_smul, mul_one, MonoidHom.map_one]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : Subsingleton M
f : M →ₗ[R] M
⊢ ↑LinearMap.det f = 1
[PROOFSTEP]
have b : Basis (Fin 0) R M := Basis.empty M
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : Subsingleton M
f : M →ₗ[R] M
b : Basis (Fin 0) R M
⊢ ↑LinearMap.det f = 1
[PROOFSTEP]
rw [← f.det_toMatrix b]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
κ : Type u_6
inst✝¹ : Fintype κ
inst✝ : Subsingleton M
f : M →ₗ[R] M
b : Basis (Fin 0) R M
⊢ det (↑(toMatrix b b) f) = 1
[PROOFSTEP]
exact Matrix.det_isEmpty
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
⊢ ↑LinearMap.det f = 1
[PROOFSTEP]
classical
refine' @LinearMap.det_cases M _ 𝕜 _ _ _ (fun t => t = 1) f _ rfl
intro s b
have : IsEmpty s := by
rw [← Fintype.card_eq_zero_iff]
exact (FiniteDimensional.finrank_eq_card_basis b).symm.trans h
exact Matrix.det_isEmpty
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
⊢ ↑LinearMap.det f = 1
[PROOFSTEP]
refine' @LinearMap.det_cases M _ 𝕜 _ _ _ (fun t => t = 1) f _ rfl
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
⊢ ∀ (s : Finset M) (b : Basis { x // x ∈ s } 𝕜 M), (fun t => t = 1) (det (↑(toMatrix b b) f))
[PROOFSTEP]
intro s b
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
s : Finset M
b : Basis { x // x ∈ s } 𝕜 M
⊢ det (↑(toMatrix b b) f) = 1
[PROOFSTEP]
have : IsEmpty s := by
rw [← Fintype.card_eq_zero_iff]
exact (FiniteDimensional.finrank_eq_card_basis b).symm.trans h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
s : Finset M
b : Basis { x // x ∈ s } 𝕜 M
⊢ IsEmpty { x // x ∈ s }
[PROOFSTEP]
rw [← Fintype.card_eq_zero_iff]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
s : Finset M
b : Basis { x // x ∈ s } 𝕜 M
⊢ Fintype.card { x // x ∈ s } = 0
[PROOFSTEP]
exact (FiniteDimensional.finrank_eq_card_basis b).symm.trans h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M✝ : Type u_2
inst✝¹¹ : AddCommGroup M✝
inst✝¹⁰ : Module R M✝
M' : Type u_3
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
ι : Type u_4
inst✝⁷ : DecidableEq ι
inst✝⁶ : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝⁵ : CommRing A
inst✝⁴ : Module A M✝
κ : Type u_6
inst✝³ : Fintype κ
𝕜 : Type u_7
inst✝² : Field 𝕜
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module 𝕜 M
h : FiniteDimensional.finrank 𝕜 M = 0
f : M →ₗ[𝕜] M
s : Finset M
b : Basis { x // x ∈ s } 𝕜 M
this : IsEmpty { x // x ∈ s }
⊢ det (↑(toMatrix b b) f) = 1
[PROOFSTEP]
exact Matrix.det_isEmpty
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f
[PROOFSTEP]
classical
by_cases H : ∃ s : Finset M, Nonempty (Basis s A M)
· rcases H with ⟨s, ⟨b⟩⟩
rw [← det_toMatrix b f, ← det_toMatrix (b.map e), toMatrix_comp (b.map e) b (b.map e), toMatrix_comp (b.map e) b b, ←
Matrix.mul_assoc, Matrix.det_conj_of_mul_eq_one]
· rw [← toMatrix_comp, LinearEquiv.comp_coe, e.symm_trans_self, LinearEquiv.refl_toLinearMap, toMatrix_id]
· rw [← toMatrix_comp, LinearEquiv.comp_coe, e.self_trans_symm, LinearEquiv.refl_toLinearMap, toMatrix_id]
· have H' : ¬∃ t : Finset N, Nonempty (Basis t A N) :=
by
contrapose! H
rcases H with ⟨s, ⟨b⟩⟩
exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩
simp only [coe_det, H, H', MonoidHom.one_apply, dif_neg]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f
[PROOFSTEP]
by_cases H : ∃ s : Finset M, Nonempty (Basis s A M)
[GOAL]
case pos
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
H : ∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f
[PROOFSTEP]
rcases H with ⟨s, ⟨b⟩⟩
[GOAL]
case pos.intro.intro
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
s : Finset M
b : Basis { x // x ∈ s } A M
⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f
[PROOFSTEP]
rw [← det_toMatrix b f, ← det_toMatrix (b.map e), toMatrix_comp (b.map e) b (b.map e), toMatrix_comp (b.map e) b b, ←
Matrix.mul_assoc, Matrix.det_conj_of_mul_eq_one]
[GOAL]
case pos.intro.intro.hMM'
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
s : Finset M
b : Basis { x // x ∈ s } A M
⊢ ↑(toMatrix b (Basis.map b e)) ↑e * ↑(toMatrix (Basis.map b e) b) ↑(LinearEquiv.symm e) = 1
[PROOFSTEP]
rw [← toMatrix_comp, LinearEquiv.comp_coe, e.symm_trans_self, LinearEquiv.refl_toLinearMap, toMatrix_id]
[GOAL]
case pos.intro.intro.hM'M
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
s : Finset M
b : Basis { x // x ∈ s } A M
⊢ ↑(toMatrix (Basis.map b e) b) ↑(LinearEquiv.symm e) * ↑(toMatrix b (Basis.map b e)) ↑e = 1
[PROOFSTEP]
rw [← toMatrix_comp, LinearEquiv.comp_coe, e.self_trans_symm, LinearEquiv.refl_toLinearMap, toMatrix_id]
[GOAL]
case neg
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f
[PROOFSTEP]
have H' : ¬∃ t : Finset N, Nonempty (Basis t A N) := by
contrapose! H
rcases H with ⟨s, ⟨b⟩⟩
exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M)
⊢ ¬∃ t, Nonempty (Basis { x // x ∈ t } A N)
[PROOFSTEP]
contrapose! H
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
H : ∃ t, Nonempty (Basis { x // x ∈ t } A N)
⊢ ∃ s, Nonempty (Basis { x // x ∈ s } A M)
[PROOFSTEP]
rcases H with ⟨s, ⟨b⟩⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
s : Finset N
b : Basis { x // x ∈ s } A N
⊢ ∃ s, Nonempty (Basis { x // x ∈ s } A M)
[PROOFSTEP]
exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩
[GOAL]
case neg
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
N : Type u_7
inst✝¹ : AddCommGroup N
inst✝ : Module A N
f : M →ₗ[A] M
e : M ≃ₗ[A] N
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M)
H' : ¬∃ t, Nonempty (Basis { x // x ∈ t } A N)
⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f
[PROOFSTEP]
simp only [coe_det, H, H', MonoidHom.one_apply, dif_neg]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A✝ : Type u_5
inst✝⁴ : CommRing A✝
inst✝³ : Module A✝ M
κ : Type u_6
inst✝² : Fintype κ
A : Type u_7
inst✝¹ : CommRing A
inst✝ : Module A M
f : M →ₗ[A] M
hf : IsUnit f
⊢ IsUnit (↑LinearMap.det f)
[PROOFSTEP]
obtain ⟨g, hg⟩ : ∃ g, f.comp g = 1 := hf.exists_right_inv
[GOAL]
case intro
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A✝ : Type u_5
inst✝⁴ : CommRing A✝
inst✝³ : Module A✝ M
κ : Type u_6
inst✝² : Fintype κ
A : Type u_7
inst✝¹ : CommRing A
inst✝ : Module A M
f : M →ₗ[A] M
hf : IsUnit f
g : M →ₗ[A] M
hg : comp f g = 1
⊢ IsUnit (↑LinearMap.det f)
[PROOFSTEP]
have : LinearMap.det f * LinearMap.det g = 1 := by simp only [← LinearMap.det_comp, hg, MonoidHom.map_one]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A✝ : Type u_5
inst✝⁴ : CommRing A✝
inst✝³ : Module A✝ M
κ : Type u_6
inst✝² : Fintype κ
A : Type u_7
inst✝¹ : CommRing A
inst✝ : Module A M
f : M →ₗ[A] M
hf : IsUnit f
g : M →ₗ[A] M
hg : comp f g = 1
⊢ ↑LinearMap.det f * ↑LinearMap.det g = 1
[PROOFSTEP]
simp only [← LinearMap.det_comp, hg, MonoidHom.map_one]
[GOAL]
case intro
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A✝ : Type u_5
inst✝⁴ : CommRing A✝
inst✝³ : Module A✝ M
κ : Type u_6
inst✝² : Fintype κ
A : Type u_7
inst✝¹ : CommRing A
inst✝ : Module A M
f : M →ₗ[A] M
hf : IsUnit f
g : M →ₗ[A] M
hg : comp f g = 1
this : ↑LinearMap.det f * ↑LinearMap.det g = 1
⊢ IsUnit (↑LinearMap.det f)
[PROOFSTEP]
exact isUnit_of_mul_eq_one _ _ this
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 1
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
by_cases H : ∃ s : Finset M, Nonempty (Basis s 𝕜 M)
[GOAL]
case pos
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 1
H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
rcases H with ⟨s, ⟨hs⟩⟩
[GOAL]
case pos.intro.intro
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 1
s : Finset M
hs : Basis { x // x ∈ s } 𝕜 M
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
exact FiniteDimensional.of_fintype_basis hs
[GOAL]
case neg
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 1
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
classical simp [LinearMap.coe_det, H] at hf
[GOAL]
case neg
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 1
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M)
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
simp [LinearMap.coe_det, H] at hf
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f = 0
⊢ range f < ⊤
[PROOFSTEP]
have : FiniteDimensional 𝕜 M := by simp [f.finiteDimensional_of_det_ne_one, hf]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f = 0
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
simp [f.finiteDimensional_of_det_ne_one, hf]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f = 0
this : FiniteDimensional 𝕜 M
⊢ range f < ⊤
[PROOFSTEP]
contrapose hf
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
this : FiniteDimensional 𝕜 M
hf : ¬range f < ⊤
⊢ ¬↑LinearMap.det f = 0
[PROOFSTEP]
simp only [lt_top_iff_ne_top, Classical.not_not, ← isUnit_iff_range_eq_top] at hf
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
this : FiniteDimensional 𝕜 M
hf : IsUnit f
⊢ ¬↑LinearMap.det f = 0
[PROOFSTEP]
exact isUnit_iff_ne_zero.1 (f.isUnit_det hf)
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f = 0
⊢ ⊥ < ker f
[PROOFSTEP]
have : FiniteDimensional 𝕜 M := by simp [f.finiteDimensional_of_det_ne_one, hf]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f = 0
⊢ FiniteDimensional 𝕜 M
[PROOFSTEP]
simp [f.finiteDimensional_of_det_ne_one, hf]
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f = 0
this : FiniteDimensional 𝕜 M
⊢ ⊥ < ker f
[PROOFSTEP]
contrapose hf
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
this : FiniteDimensional 𝕜 M
hf : ¬⊥ < ker f
⊢ ¬↑LinearMap.det f = 0
[PROOFSTEP]
simp only [bot_lt_iff_ne_bot, Classical.not_not, ← isUnit_iff_ker_eq_bot] at hf
[GOAL]
R : Type u_1
inst✝¹¹ : CommRing R
M : Type u_2
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
M' : Type u_3
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
ι : Type u_4
inst✝⁶ : DecidableEq ι
inst✝⁵ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝⁴ : CommRing A
inst✝³ : Module A M
κ : Type u_6
inst✝² : Fintype κ
𝕜 : Type u_7
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M →ₗ[𝕜] M
this : FiniteDimensional 𝕜 M
hf : IsUnit f
⊢ ¬↑LinearMap.det f = 0
[PROOFSTEP]
exact isUnit_iff_ne_zero.1 (f.isUnit_det hf)
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
f : M ≃ₗ[R] M
e : M ≃ₗ[R] M'
⊢ ↑LinearEquiv.det (trans (trans (symm e) f) e) = ↑LinearEquiv.det f
[PROOFSTEP]
rw [← Units.eq_iff, coe_det, coe_det, ← comp_coe, ← comp_coe, LinearMap.det_conj]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
f : M ≃ₗ[A] M
⊢ ↑LinearMap.det ↑f * ↑LinearMap.det ↑(symm f) = 1
[PROOFSTEP]
simp [← LinearMap.det_comp]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
f : M ≃ₗ[A] M
⊢ ↑LinearMap.det ↑(symm f) * ↑LinearMap.det ↑f = 1
[PROOFSTEP]
simp [← LinearMap.det_comp]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M ≃ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
⊢ IsUnit (det (↑(toMatrix v v') ↑f))
[PROOFSTEP]
apply isUnit_det_of_left_inverse
[GOAL]
case h
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M ≃ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
⊢ ?B * ↑(toMatrix v v') ↑f = 1
case B
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M ≃ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
⊢ Matrix ι ι R
[PROOFSTEP]
simpa using (LinearMap.toMatrix_comp v v' v f.symm f).symm
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
𝕜 : Type u_5
inst✝¹ : Field 𝕜
inst✝ : Module 𝕜 M
f : M ≃ₗ[𝕜] M
⊢ ↑LinearMap.det ↑(symm f) = (↑LinearMap.det ↑f)⁻¹
[PROOFSTEP]
field_simp [IsUnit.ne_zero f.isUnit_det']
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M →ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
h : IsUnit (det (↑(toMatrix v v') f))
x : M
⊢ ↑(↑(toLin v' v) (↑(toMatrix v v') f)⁻¹) (↑f x) = ↑(↑(toLin v v) ((↑(toMatrix v v') f)⁻¹ * ↑(toMatrix v v') f)) x
[PROOFSTEP]
rw [toLin_mul v v' v, toLin_toMatrix, LinearMap.comp_apply]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M →ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
h : IsUnit (det (↑(toMatrix v v') f))
x : M
⊢ ↑(↑(toLin v v) ((↑(toMatrix v v') f)⁻¹ * ↑(toMatrix v v') f)) x = x
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M →ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
h : IsUnit (det (↑(toMatrix v v') f))
x : M'
⊢ ↑f (↑(↑(toLin v' v) (↑(toMatrix v v') f)⁻¹) x) = ↑(↑(toLin v' v') (↑(toMatrix v v') f * (↑(toMatrix v v') f)⁻¹)) x
[PROOFSTEP]
rw [toLin_mul v' v v', LinearMap.comp_apply, toLin_toMatrix v v']
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M →ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
h : IsUnit (det (↑(toMatrix v v') f))
x : M'
⊢ ↑(↑(toLin v' v') (↑(toMatrix v v') f * (↑(toMatrix v v') f)⁻¹)) x = x
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M →ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
h : IsUnit (det (↑(toMatrix v v') f))
⊢ ↑(ofIsUnitDet h) = f
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : M →ₗ[R] M'
v : Basis ι R M
v' : Basis ι R M'
h : IsUnit (det (↑(toMatrix v v') f))
x : M
⊢ ↑↑(ofIsUnitDet h) x = ↑f x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Type u_2
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : Module R M✝
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M✝
𝕜 : Type u_5
inst✝³ : Field 𝕜
M : Type u_6
inst✝² : AddCommGroup M
inst✝¹ : Module 𝕜 M
inst✝ : FiniteDimensional 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 0
⊢ IsUnit (det (↑(toMatrix (FiniteDimensional.finBasis 𝕜 M) (FiniteDimensional.finBasis 𝕜 M)) f))
[PROOFSTEP]
rw [LinearMap.det_toMatrix]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Type u_2
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : Module R M✝
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e : Basis ι R M✝
𝕜 : Type u_5
inst✝³ : Field 𝕜
M : Type u_6
inst✝² : AddCommGroup M
inst✝¹ : Module 𝕜 M
inst✝ : FiniteDimensional 𝕜 M
f : M →ₗ[𝕜] M
hf : ↑LinearMap.det f ≠ 0
⊢ IsUnit (↑LinearMap.det f)
[PROOFSTEP]
exact isUnit_iff_ne_zero.2 hf
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
e : M ≃ₗ[R] M
f f' : M →ₗ[R] M
h : ∀ (x : M), ↑f x = ↑f' (↑e x)
⊢ Associated (↑LinearMap.det f) (↑LinearMap.det f')
[PROOFSTEP]
suffices Associated (LinearMap.det (f' ∘ₗ ↑e)) (LinearMap.det f')
by
convert this using 2
ext x
exact h x
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
e : M ≃ₗ[R] M
f f' : M →ₗ[R] M
h : ∀ (x : M), ↑f x = ↑f' (↑e x)
this : Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f')
⊢ Associated (↑LinearMap.det f) (↑LinearMap.det f')
[PROOFSTEP]
convert this using 2
[GOAL]
case h.e'_3.h.e'_6
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
e : M ≃ₗ[R] M
f f' : M →ₗ[R] M
h : ∀ (x : M), ↑f x = ↑f' (↑e x)
this : Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f')
⊢ f = comp f' ↑e
[PROOFSTEP]
ext x
[GOAL]
case h.e'_3.h.e'_6.h
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
e : M ≃ₗ[R] M
f f' : M →ₗ[R] M
h : ∀ (x : M), ↑f x = ↑f' (↑e x)
this : Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f')
x : M
⊢ ↑f x = ↑(comp f' ↑e) x
[PROOFSTEP]
exact h x
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
e : M ≃ₗ[R] M
f f' : M →ₗ[R] M
h : ∀ (x : M), ↑f x = ↑f' (↑e x)
⊢ Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f')
[PROOFSTEP]
rw [← mul_one (LinearMap.det f'), LinearMap.det_comp]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e✝ : Basis ι R M
e : M ≃ₗ[R] M
f f' : M →ₗ[R] M
h : ∀ (x : M), ↑f x = ↑f' (↑e x)
⊢ Associated (↑LinearMap.det f' * ↑LinearMap.det ↑e) (↑LinearMap.det f' * 1)
[PROOFSTEP]
exact Associated.mul_left _ (associated_one_iff_isUnit.mpr e.isUnit_det')
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : N →ₗ[R] M
e e' : M ≃ₗ[R] N
⊢ Associated (↑LinearMap.det (comp f ↑e)) (↑LinearMap.det (comp f ↑e'))
[PROOFSTEP]
refine' LinearMap.associated_det_of_eq_comp (e.trans e'.symm) _ _ _
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : N →ₗ[R] M
e e' : M ≃ₗ[R] N
⊢ ∀ (x : M), ↑(comp f ↑e) x = ↑(comp f ↑e') (↑(LinearEquiv.trans e (LinearEquiv.symm e')) x)
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : N →ₗ[R] M
e e' : M ≃ₗ[R] N
x : M
⊢ ↑(comp f ↑e) x = ↑(comp f ↑e') (↑(LinearEquiv.trans e (LinearEquiv.symm e')) x)
[PROOFSTEP]
simp only [LinearMap.comp_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply, LinearEquiv.apply_symm_apply]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
⊢ ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
(fun v => Matrix.det (toMatrix e v)) (update m i (x + y)) =
(fun v => Matrix.det (toMatrix e v)) (update m i x) + (fun v => Matrix.det (toMatrix e v)) (update m i y)
[PROOFSTEP]
intro inst v i x y
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
inst : DecidableEq ι
v : ι → M
i : ι
x y : M
⊢ (fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) =
(fun v => Matrix.det (toMatrix e v)) (update v i x) + (fun v => Matrix.det (toMatrix e v)) (update v i y)
[PROOFSTEP]
cases Subsingleton.elim inst ‹_›
[GOAL]
case refl
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
inst : DecidableEq ι
v : ι → M
i : ι
x y : M
⊢ (fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) =
(fun v => Matrix.det (toMatrix e v)) (update v i x) + (fun v => Matrix.det (toMatrix e v)) (update v i y)
[PROOFSTEP]
simp only [e.toMatrix_update, LinearEquiv.map_add, Finsupp.coe_add]
-- Porting note: was `exact det_update_column_add _ _ _ _`
[GOAL]
case refl
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
inst : DecidableEq ι
v : ι → M
i : ι
x y : M
⊢ Matrix.det (updateColumn (toMatrix e v) i (↑(↑e.repr x) + ↑(↑e.repr y))) =
Matrix.det (updateColumn (toMatrix e v) i ↑(↑e.repr x)) + Matrix.det (updateColumn (toMatrix e v) i ↑(↑e.repr y))
[PROOFSTEP]
convert det_updateColumn_add (e.toMatrix v) i (e.repr x) (e.repr y)
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
⊢ ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
(fun v => Matrix.det (toMatrix e v)) (update m i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update m i x)
[PROOFSTEP]
intro inst u i c x
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
inst : DecidableEq ι
u : ι → M
i : ι
c : R
x : M
⊢ (fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update u i x)
[PROOFSTEP]
cases Subsingleton.elim inst ‹_›
[GOAL]
case refl
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
inst : DecidableEq ι
u : ι → M
i : ι
c : R
x : M
⊢ (fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update u i x)
[PROOFSTEP]
simp only [e.toMatrix_update, Algebra.id.smul_eq_mul, LinearEquiv.map_smul]
-- Porting note: was `apply det_update_column_smul`
[GOAL]
case refl
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
inst : DecidableEq ι
u : ι → M
i : ι
c : R
x : M
⊢ Matrix.det (updateColumn (toMatrix e u) i ↑(c • ↑e.repr x)) =
c * Matrix.det (updateColumn (toMatrix e u) i ↑(↑e.repr x))
[PROOFSTEP]
convert det_updateColumn_smul (e.toMatrix u) i c (e.repr x)
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
⊢ ∀ (v : ι → M) (i j : ι),
v i = v j →
i ≠ j →
MultilinearMap.toFun
{ toFun := fun v => Matrix.det (toMatrix e v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (v : ι → M) (i : ι) (x y : M),
(fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) =
(fun v => Matrix.det (toMatrix e v)) (update v i x) +
(fun v => Matrix.det (toMatrix e v)) (update v i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (u : ι → M) (i : ι) (c : R) (x : M),
(fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) =
c • (fun v => Matrix.det (toMatrix e v)) (update u i x)) }
v =
0
[PROOFSTEP]
intro v i j h hij
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := fun v => Matrix.det (toMatrix e v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (v : ι → M) (i : ι) (x y : M),
(fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) =
(fun v => Matrix.det (toMatrix e v)) (update v i x) +
(fun v => Matrix.det (toMatrix e v)) (update v i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (u : ι → M) (i : ι) (c : R) (x : M),
(fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) =
c • (fun v => Matrix.det (toMatrix e v)) (update u i x)) }
v =
0
[PROOFSTEP]
simp only
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ Matrix.det (toMatrix e v) = 0
[PROOFSTEP]
rw [← Function.update_eq_self i v, h, ← det_transpose, e.toMatrix_update, ← updateRow_transpose, ←
e.toMatrix_transpose_apply]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ Matrix.det (updateRow (toMatrix e v)ᵀ i ((toMatrix e v)ᵀ j)) = 0
[PROOFSTEP]
apply det_zero_of_row_eq hij
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ updateRow (toMatrix e v)ᵀ i ((toMatrix e v)ᵀ j) i = updateRow (toMatrix e v)ᵀ i ((toMatrix e v)ᵀ j) j
[PROOFSTEP]
rw [updateRow_ne hij.symm, updateRow_self]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
⊢ ↑(det e) ↑e = 1
[PROOFSTEP]
simp [e.det_apply]
[GOAL]
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type u_3
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
ι : Type u_4
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
e : Basis ι R M
inst✝ : IsEmpty ι
⊢ det e = AlternatingMap.constOfIsEmpty R M ι 1
[PROOFSTEP]
ext v
[GOAL]
case H
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type u_3
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
ι : Type u_4
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
e : Basis ι R M
inst✝ : IsEmpty ι
v : ι → M
⊢ ↑(det e) v = ↑(AlternatingMap.constOfIsEmpty R M ι 1) v
[PROOFSTEP]
exact Matrix.det_isEmpty
[GOAL]
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type u_3
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
ι : Type u_4
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
e : Basis ι R M
inst✝ : Nontrivial R
h : det e = 0
⊢ False
[PROOFSTEP]
simpa [h] using e.det_self
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ ↔ IsUnit (↑(Basis.det e) v)
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ → IsUnit (↑(Basis.det e) v)
[PROOFSTEP]
rintro ⟨hli, hspan⟩
[GOAL]
case mp.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
hli : LinearIndependent R v
hspan : span R (Set.range v) = ⊤
⊢ IsUnit (↑(Basis.det e) v)
[PROOFSTEP]
set v' := Basis.mk hli hspan.ge
[GOAL]
case mp.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
hli : LinearIndependent R v
hspan : span R (Set.range v) = ⊤
v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v))
⊢ IsUnit (↑(Basis.det e) v)
[PROOFSTEP]
rw [e.det_apply]
[GOAL]
case mp.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
hli : LinearIndependent R v
hspan : span R (Set.range v) = ⊤
v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v))
⊢ IsUnit (det (Basis.toMatrix e v))
[PROOFSTEP]
convert LinearEquiv.isUnit_det (LinearEquiv.refl R M) v' e using 2
[GOAL]
case h.e'_3.h.e'_6
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
hli : LinearIndependent R v
hspan : span R (Set.range v) = ⊤
v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v))
⊢ Basis.toMatrix e v = ↑(toMatrix v' e) ↑(LinearEquiv.refl R M)
[PROOFSTEP]
ext i j
[GOAL]
case h.e'_3.h.e'_6.a.h
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
hli : LinearIndependent R v
hspan : span R (Set.range v) = ⊤
v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v))
i j : ι
⊢ Basis.toMatrix e v i j = ↑(toMatrix v' e) (↑(LinearEquiv.refl R M)) i j
[PROOFSTEP]
simp
[GOAL]
case mpr
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
⊢ IsUnit (↑(Basis.det e) v) → LinearIndependent R v ∧ span R (Set.range v) = ⊤
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (↑(Basis.det e) v)
⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤
[PROOFSTEP]
rw [Basis.det_apply, Basis.toMatrix_eq_toMatrix_constr] at h
[GOAL]
case mpr
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v)))
⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤
[PROOFSTEP]
set v' := Basis.map e (LinearEquiv.ofIsUnitDet h) with v'_def
[GOAL]
case mpr
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v)))
v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h)
v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h)
⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤
[PROOFSTEP]
have : ⇑v' = v := by
ext i
rw [v'_def, Basis.map_apply, LinearEquiv.ofIsUnitDet_apply, e.constr_basis]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v)))
v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h)
v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h)
⊢ ↑v' = v
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v)))
v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h)
v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h)
i : ι
⊢ ↑v' i = v i
[PROOFSTEP]
rw [v'_def, Basis.map_apply, LinearEquiv.ofIsUnitDet_apply, e.constr_basis]
[GOAL]
case mpr
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v)))
v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h)
v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h)
this : ↑v' = v
⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤
[PROOFSTEP]
rw [← this]
[GOAL]
case mpr
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
v : ι → M
h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v)))
v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h)
v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h)
this : ↑v' = v
⊢ LinearIndependent R ↑v' ∧ span R (Set.range ↑v') = ⊤
[PROOFSTEP]
exact ⟨v'.linearIndependent, v'.span_eq⟩
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : AlternatingMap R M R ι
⊢ f = ↑f ↑e • Basis.det e
[PROOFSTEP]
refine' Basis.ext_alternating e fun i h => _
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : AlternatingMap R M R ι
i : ι → ι
h : Injective i
⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1)
[PROOFSTEP]
let σ : Equiv.Perm ι := Equiv.ofBijective i (Finite.injective_iff_bijective.1 h)
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : AlternatingMap R M R ι
i : ι → ι
h : Injective i
σ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i)
⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1)
[PROOFSTEP]
change f (e ∘ σ) = (f e • e.det) (e ∘ σ)
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type u_3
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
ι : Type u_4
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
e : Basis ι R M
f : AlternatingMap R M R ι
i : ι → ι
h : Injective i
σ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i)
⊢ ↑f (↑e ∘ ↑σ) = ↑(↑f ↑e • Basis.det e) (↑e ∘ ↑σ)
[PROOFSTEP]
simp [AlternatingMap.map_perm, Basis.det_self]
[GOAL]
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type u_3
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
ι✝ : Type u_4
inst✝² : DecidableEq ι✝
inst✝¹ : Fintype ι✝
e✝ : Basis ι✝ R M
ι : Type u_5
inst✝ : Finite ι
e : Basis ι R M
f : AlternatingMap R M R ι
h : ↑f ↑e = 0
⊢ f = 0
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type u_3
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
ι✝ : Type u_4
inst✝² : DecidableEq ι✝
inst✝¹ : Fintype ι✝
e✝ : Basis ι✝ R M
ι : Type u_5
inst✝ : Finite ι
e : Basis ι R M
f : AlternatingMap R M R ι
h : ↑f ↑e = 0
val✝ : Fintype ι
⊢ f = 0
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
case intro
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type u_3
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
ι✝ : Type u_4
inst✝² : DecidableEq ι✝
inst✝¹ : Fintype ι✝
e✝ : Basis ι✝ R M
ι : Type u_5
inst✝ : Finite ι
e : Basis ι R M
f : AlternatingMap R M R ι
h : ↑f ↑e = 0
val✝ : Fintype ι
this : DecidableEq ι := Classical.decEq ι
⊢ f = 0
[PROOFSTEP]
simpa [h] using f.eq_smul_basis_det e
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι A M
f : M →ₗ[A] M
v : ι → M
⊢ ↑(det e) (↑f ∘ v) = ↑LinearMap.det f * ↑(det e) v
[PROOFSTEP]
rw [Basis.det_apply, Basis.det_apply, ← f.det_toMatrix e, ← Matrix.det_mul, e.toMatrix_eq_toMatrix_constr (f ∘ v),
e.toMatrix_eq_toMatrix_constr v, ← toMatrix_comp, e.constr_comp]
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
inst✝ : Module A M'
b : Basis ι A M
b' : Basis ι A M'
f : M →ₗ[A] M'
⊢ ↑(det b') (↑f ∘ ↑b) = ↑LinearMap.det (LinearMap.comp f ↑(Basis.equiv b' b (Equiv.refl ι)))
[PROOFSTEP]
rw [Basis.det_apply, ← LinearMap.det_toMatrix b', LinearMap.toMatrix_comp _ b, Matrix.det_mul,
LinearMap.toMatrix_basis_equiv, Matrix.det_one, mul_one]
[GOAL]
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
inst✝ : Module A M'
b : Basis ι A M
b' : Basis ι A M'
f : M →ₗ[A] M'
⊢ Matrix.det (toMatrix b' (↑f ∘ ↑b)) = Matrix.det (↑(LinearMap.toMatrix b b') f)
[PROOFSTEP]
congr 1
[GOAL]
case e_M
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
inst✝ : Module A M'
b : Basis ι A M
b' : Basis ι A M'
f : M →ₗ[A] M'
⊢ toMatrix b' (↑f ∘ ↑b) = ↑(LinearMap.toMatrix b b') f
[PROOFSTEP]
ext i j
[GOAL]
case e_M.a.h
R : Type u_1
inst✝⁹ : CommRing R
M : Type u_2
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
M' : Type u_3
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
ι : Type u_4
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝² : CommRing A
inst✝¹ : Module A M
inst✝ : Module A M'
b : Basis ι A M
b' : Basis ι A M'
f : M →ₗ[A] M'
i j : ι
⊢ toMatrix b' (↑f ∘ ↑b) i j = ↑(LinearMap.toMatrix b b') f i j
[PROOFSTEP]
rw [Basis.toMatrix_apply, LinearMap.toMatrix_apply, Function.comp_apply]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
ι' : Type u_6
inst✝¹ : Fintype ι'
inst✝ : DecidableEq ι'
b : Basis ι R M
v : ι' → M
e : ι ≃ ι'
⊢ ↑(det (reindex b e)) v = ↑(det b) (v ∘ ↑e)
[PROOFSTEP]
rw [Basis.det_apply, Basis.toMatrix_reindex', det_reindexAlgEquiv, Basis.det_apply]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M : Type u_2
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
M' : Type u_3
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
ι : Type u_4
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝³ : CommRing A
inst✝² : Module A M
ι' : Type u_6
inst✝¹ : Fintype ι'
inst✝ : DecidableEq ι'
b : Basis ι R M
v : ι → M
e : ι' ≃ ι
⊢ ↑(det (reindex b e.symm)) (v ∘ ↑e) = ↑(det b) v
[PROOFSTEP]
rw [Basis.det_reindex, Function.comp.assoc, e.self_comp_symm, Function.comp.right_id]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
b : Basis ι R M
f : M ≃ₗ[R] M'
v : ι → M'
⊢ ↑(det (Basis.map b f)) v = ↑(det b) (↑(LinearEquiv.symm f) ∘ v)
[PROOFSTEP]
rw [Basis.det_apply, Basis.toMatrix_map, Basis.det_apply]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
⊢ Basis.det (basisFun R ι) = detRowAlternating
[PROOFSTEP]
ext M
[GOAL]
case H
R : Type u_1
inst✝⁸ : CommRing R
M✝ : Type u_2
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : Module R M✝
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M✝
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M✝
M : ι → ι → R
⊢ ↑(Basis.det (basisFun R ι)) M = ↑detRowAlternating M
[PROOFSTEP]
rw [Basis.det_apply, Basis.coePiBasisFun.toMatrix_eq_transpose, det_transpose]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i : ι
⊢ ↑(det e) v • coord (Basis.mk hli hsp) i = MultilinearMap.toLinearMap (↑(det e)) v i
[PROOFSTEP]
apply (Basis.mk hli hsp).ext
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i : ι
⊢ ∀ (i_1 : ι),
↑(↑(det e) v • coord (Basis.mk hli hsp) i) (↑(Basis.mk hli hsp) i_1) =
↑(MultilinearMap.toLinearMap (↑(det e)) v i) (↑(Basis.mk hli hsp) i_1)
[PROOFSTEP]
intro k
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i k : ι
⊢ ↑(↑(det e) v • coord (Basis.mk hli hsp) i) (↑(Basis.mk hli hsp) k) =
↑(MultilinearMap.toLinearMap (↑(det e)) v i) (↑(Basis.mk hli hsp) k)
[PROOFSTEP]
rcases eq_or_ne k i with (rfl | hik)
[GOAL]
case inl
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
k : ι
⊢ ↑(↑(det e) v • coord (Basis.mk hli hsp) k) (↑(Basis.mk hli hsp) k) =
↑(MultilinearMap.toLinearMap (↑(det e)) v k) (↑(Basis.mk hli hsp) k)
[PROOFSTEP]
simp only [Algebra.id.smul_eq_mul, Basis.coe_mk, LinearMap.smul_apply, LinearMap.coe_mk,
MultilinearMap.toLinearMap_apply]
[GOAL]
case inr
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i k : ι
hik : k ≠ i
⊢ ↑(↑(det e) v • coord (Basis.mk hli hsp) i) (↑(Basis.mk hli hsp) k) =
↑(MultilinearMap.toLinearMap (↑(det e)) v i) (↑(Basis.mk hli hsp) k)
[PROOFSTEP]
simp only [Algebra.id.smul_eq_mul, Basis.coe_mk, LinearMap.smul_apply, LinearMap.coe_mk,
MultilinearMap.toLinearMap_apply]
[GOAL]
case inl
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
k : ι
⊢ ↑(det e) v * ↑(coord (Basis.mk hli hsp) k) (v k) = ↑↑(det e) (update v k (v k))
[PROOFSTEP]
rw [Basis.mk_coord_apply_eq, mul_one, update_eq_self]
[GOAL]
case inl
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
k : ι
⊢ ↑(det e) v = ↑↑(det e) v
[PROOFSTEP]
congr
[GOAL]
case inr
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i k : ι
hik : k ≠ i
⊢ ↑(det e) v * ↑(coord (Basis.mk hli hsp) i) (v k) = ↑↑(det e) (update v i (v k))
[PROOFSTEP]
rw [Basis.mk_coord_apply_ne hik, mul_zero, eq_comm]
[GOAL]
case inr
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i k : ι
hik : k ≠ i
⊢ ↑↑(det e) (update v i (v k)) = 0
[PROOFSTEP]
exact e.det.map_eq_zero_of_eq _ (by simp [hik, Function.update_apply]) hik
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
v : ι → M
hli : LinearIndependent R v
hsp : ⊤ ≤ span R (Set.range v)
i k : ι
hik : k ≠ i
⊢ update v i (v k) k = update v i (v k) i
[PROOFSTEP]
simp [hik, Function.update_apply]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι R M
w : ι → Rˣ
⊢ det (unitsSMul e w) = ↑(∏ i : ι, w i)⁻¹ • det e
[PROOFSTEP]
ext f
[GOAL]
case H
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι R M
w : ι → Rˣ
f : ι → M
⊢ ↑(det (unitsSMul e w)) f = ↑(↑(∏ i : ι, w i)⁻¹ • det e) f
[PROOFSTEP]
change (Matrix.det fun i j => (e.unitsSMul w).repr (f j) i) = (↑(∏ i, w i)⁻¹ : R) • Matrix.det fun i j => e.repr (f j) i
[GOAL]
case H
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι R M
w : ι → Rˣ
f : ι → M
⊢ (Matrix.det fun i j => ↑(↑(unitsSMul e w).repr (f j)) i) =
↑(∏ i : ι, w i)⁻¹ • Matrix.det fun i j => ↑(↑e.repr (f j)) i
[PROOFSTEP]
simp only [e.repr_unitsSMul]
[GOAL]
case H
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι R M
w : ι → Rˣ
f : ι → M
⊢ (Matrix.det fun i j => (w i)⁻¹ • ↑(↑e.repr (f j)) i) = ↑(∏ i : ι, w i)⁻¹ • Matrix.det fun i j => ↑(↑e.repr (f j)) i
[PROOFSTEP]
convert Matrix.det_mul_column (fun i => (↑(w i)⁻¹ : R)) fun i j => e.repr (f j) i
[GOAL]
case h.e'_3.h.e'_1
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι R M
w : ι → Rˣ
f : ι → M
⊢ ↑(∏ i : ι, w i)⁻¹ = ∏ i : ι, ↑(w i)⁻¹
[PROOFSTEP]
simp only [← Finset.prod_inv_distrib]
-- Porting note: was `simp [← Finset.prod_inv_distrib]`
[GOAL]
case h.e'_3.h.e'_1
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e✝ : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
e : Basis ι R M
w : ι → Rˣ
f : ι → M
⊢ ↑(∏ x : ι, (w x)⁻¹) = ∏ i : ι, ↑(w i)⁻¹
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type u_3
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
ι : Type u_4
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
e : Basis ι R M
A : Type u_5
inst✝¹ : CommRing A
inst✝ : Module A M
w : ι → Rˣ
⊢ ↑(det e) ↑(unitsSMul e w) = ∏ i : ι, ↑(w i)
[PROOFSTEP]
simp [Basis.det_apply]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Determinant", "llama_tokens": 47443} |
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f : M →ₗ[R] M
⊢ trace (↑(toMatrix b b) f) = trace (↑(toMatrix b b) (comp (comp id f) id))
[PROOFSTEP]
rw [LinearMap.id_comp, LinearMap.comp_id]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f : M →ₗ[R] M
⊢ trace (↑(toMatrix b b) (comp (comp id f) id)) = trace (↑(toMatrix c b) id * ↑(toMatrix c c) f * ↑(toMatrix b c) id)
[PROOFSTEP]
rw [LinearMap.toMatrix_comp _ c, LinearMap.toMatrix_comp _ c]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f : M →ₗ[R] M
⊢ trace (↑(toMatrix c b) id * ↑(toMatrix c c) f * ↑(toMatrix b c) id) =
trace (↑(toMatrix c c) f * ↑(toMatrix b c) id * ↑(toMatrix c b) id)
[PROOFSTEP]
rw [Matrix.mul_assoc, Matrix.trace_mul_comm]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f : M →ₗ[R] M
⊢ trace (↑(toMatrix c c) f * ↑(toMatrix b c) id * ↑(toMatrix c b) id) = trace (↑(toMatrix c c) (comp (comp f id) id))
[PROOFSTEP]
rw [LinearMap.toMatrix_comp _ b, LinearMap.toMatrix_comp _ c]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f : M →ₗ[R] M
⊢ trace (↑(toMatrix c c) (comp (comp f id) id)) = trace (↑(toMatrix c c) f)
[PROOFSTEP]
rw [LinearMap.comp_id, LinearMap.comp_id]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b✝ : Basis ι R M
c : Basis κ R M
s : Finset M
b : Basis { x // x ∈ s } R M
f : M →ₗ[R] M
⊢ ↑(trace R M) f = Matrix.trace (↑(toMatrix b b) f)
[PROOFSTEP]
have : ∃ s : Finset M, Nonempty (Basis s R M) := ⟨s, ⟨b⟩⟩
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b✝ : Basis ι R M
c : Basis κ R M
s : Finset M
b : Basis { x // x ∈ s } R M
f : M →ₗ[R] M
this : ∃ s, Nonempty (Basis { x // x ∈ s } R M)
⊢ ↑(trace R M) f = Matrix.trace (↑(toMatrix b b) f)
[PROOFSTEP]
rw [trace, dif_pos this, ← traceAux_def]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b✝ : Basis ι R M
c : Basis κ R M
s : Finset M
b : Basis { x // x ∈ s } R M
f : M →ₗ[R] M
this : ∃ s, Nonempty (Basis { x // x ∈ s } R M)
⊢ ↑(traceAux R (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose this } R M)))) f = ↑(traceAux R b) f
[PROOFSTEP]
congr 1
[GOAL]
case e_a
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b✝ : Basis ι R M
c : Basis κ R M
s : Finset M
b : Basis { x // x ∈ s } R M
f : M →ₗ[R] M
this : ∃ s, Nonempty (Basis { x // x ∈ s } R M)
⊢ traceAux R (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose this } R M))) = traceAux R b
[PROOFSTEP]
apply traceAux_eq
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f : M →ₗ[R] M
⊢ ↑(trace R M) f = Matrix.trace (↑(toMatrix b b) f)
[PROOFSTEP]
rw [trace_eq_matrix_trace_of_finset R b.reindexFinsetRange, ← traceAux_def, ← traceAux_def,
traceAux_eq R b b.reindexFinsetRange]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f g : M →ₗ[R] M
H : ∃ s, Nonempty (Basis { x // x ∈ s } R M)
⊢ ↑(trace R M) (f * g) = ↑(trace R M) (g * f)
[PROOFSTEP]
let ⟨s, ⟨b⟩⟩ := H
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b✝ : Basis ι R M
c : Basis κ R M
f g : M →ₗ[R] M
H : ∃ s, Nonempty (Basis { x // x ∈ s } R M)
s : Finset M
b : Basis { x // x ∈ s } R M
⊢ ↑(trace R M) (f * g) = ↑(trace R M) (g * f)
[PROOFSTEP]
simp_rw [trace_eq_matrix_trace R b, LinearMap.toMatrix_mul]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b✝ : Basis ι R M
c : Basis κ R M
f g : M →ₗ[R] M
H : ∃ s, Nonempty (Basis { x // x ∈ s } R M)
s : Finset M
b : Basis { x // x ∈ s } R M
⊢ Matrix.trace (↑(toMatrix b b) f * ↑(toMatrix b b) g) = Matrix.trace (↑(toMatrix b b) g * ↑(toMatrix b b) f)
[PROOFSTEP]
apply Matrix.trace_mul_comm
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f g : M →ₗ[R] M
H : ¬∃ s, Nonempty (Basis { x // x ∈ s } R M)
⊢ ↑(trace R M) (f * g) = ↑(trace R M) (g * f)
[PROOFSTEP]
rw [trace, dif_neg H, LinearMap.zero_apply, LinearMap.zero_apply]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f g h : M →ₗ[R] M
⊢ ↑(trace R M) (f * g * h) = ↑(trace R M) (h * f * g)
[PROOFSTEP]
rw [LinearMap.trace_mul_comm, ← mul_assoc]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
f g h : M →ₗ[R] M
⊢ ↑(trace R M) (f * (g * h)) = ↑(trace R M) (h * (f * g))
[PROOFSTEP]
rw [← mul_assoc, LinearMap.trace_mul_comm]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
g : M →ₗ[R] M
f : (M →ₗ[R] M)ˣ
⊢ ↑(trace R M) (↑f * g * ↑f⁻¹) = ↑(trace R M) g
[PROOFSTEP]
rw [trace_mul_comm]
[GOAL]
R : Type u
inst✝⁶ : CommSemiring R
M : Type v
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
ι : Type w
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
κ : Type u_1
inst✝¹ : DecidableEq κ
inst✝ : Fintype κ
b : Basis ι R M
c : Basis κ R M
g : M →ₗ[R] M
f : (M →ₗ[R] M)ˣ
⊢ ↑(trace R M) (↑f⁻¹ * (↑f * g)) = ↑(trace R M) g
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
⊢ comp (trace R M) (dualTensorHom R M M) = contractLeft R M
[PROOFSTEP]
classical
cases nonempty_fintype ι
apply Basis.ext (Basis.tensorProduct (Basis.dualBasis b) b)
rintro ⟨i, j⟩
simp only [Function.comp_apply, Basis.tensorProduct_apply, Basis.coe_dualBasis, coe_comp]
rw [trace_eq_matrix_trace R b, toMatrix_dualTensorHom]
by_cases hij : i = j
· rw [hij]
simp
rw [Matrix.StdBasisMatrix.trace_zero j i (1 : R) hij]
simp [Finsupp.single_eq_pi_single, hij]
[GOAL]
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
⊢ comp (trace R M) (dualTensorHom R M M) = contractLeft R M
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
⊢ comp (trace R M) (dualTensorHom R M M) = contractLeft R M
[PROOFSTEP]
apply Basis.ext (Basis.tensorProduct (Basis.dualBasis b) b)
[GOAL]
case intro
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
⊢ ∀ (i : ι × ι),
↑(comp (trace R M) (dualTensorHom R M M)) (↑(Basis.tensorProduct (Basis.dualBasis b) b) i) =
↑(contractLeft R M) (↑(Basis.tensorProduct (Basis.dualBasis b) b) i)
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case intro.mk
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
⊢ ↑(comp (trace R M) (dualTensorHom R M M)) (↑(Basis.tensorProduct (Basis.dualBasis b) b) (i, j)) =
↑(contractLeft R M) (↑(Basis.tensorProduct (Basis.dualBasis b) b) (i, j))
[PROOFSTEP]
simp only [Function.comp_apply, Basis.tensorProduct_apply, Basis.coe_dualBasis, coe_comp]
[GOAL]
case intro.mk
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
⊢ ↑(trace R M) (↑(dualTensorHom R M M) (Basis.coord b i ⊗ₜ[R] ↑b j)) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j)
[PROOFSTEP]
rw [trace_eq_matrix_trace R b, toMatrix_dualTensorHom]
[GOAL]
case intro.mk
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
⊢ Matrix.trace (stdBasisMatrix j i 1) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j)
[PROOFSTEP]
by_cases hij : i = j
[GOAL]
case pos
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
hij : i = j
⊢ Matrix.trace (stdBasisMatrix j i 1) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j)
[PROOFSTEP]
rw [hij]
[GOAL]
case pos
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
hij : i = j
⊢ Matrix.trace (stdBasisMatrix j j 1) = ↑(contractLeft R M) (Basis.coord b j ⊗ₜ[R] ↑b j)
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
hij : ¬i = j
⊢ Matrix.trace (stdBasisMatrix j i 1) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j)
[PROOFSTEP]
rw [Matrix.StdBasisMatrix.trace_zero j i (1 : R) hij]
[GOAL]
case neg
R : Type u_1
inst✝⁷ : CommRing R
M : Type u_2
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
N : Type u_3
P : Type u_4
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
ι : Type u_5
inst✝ : Finite ι
b : Basis ι R M
val✝ : Fintype ι
i j : ι
hij : ¬i = j
⊢ 0 = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j)
[PROOFSTEP]
simp [Finsupp.single_eq_pi_single, hij]
[GOAL]
R : Type u_1
inst✝⁸ : CommRing R
M : Type u_2
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
N : Type u_3
P : Type u_4
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
ι : Type u_5
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
b : Basis ι R M
⊢ trace R M = comp (contractLeft R M) ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b))
[PROOFSTEP]
simp [LinearEquiv.eq_comp_toLinearMap_symm, trace_eq_contract_of_basis b]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
x : Module.Dual R M ⊗[R] M
⊢ ↑(trace R M) (↑(dualTensorHom R M M) x) = ↑(contractLeft R M) x
[PROOFSTEP]
rw [← comp_apply, trace_eq_contract]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ ↑(trace R M) 1 = ↑(finrank R M)
[PROOFSTEP]
cases subsingleton_or_nontrivial R
[GOAL]
case inl
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
h✝ : Subsingleton R
⊢ ↑(trace R M) 1 = ↑(finrank R M)
case inr
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
h✝ : Nontrivial R
⊢ ↑(trace R M) 1 = ↑(finrank R M)
[PROOFSTEP]
simp
[GOAL]
case inr
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
h✝ : Nontrivial R
⊢ ↑(trace R M) 1 = ↑(finrank R M)
[PROOFSTEP]
have b := Module.Free.chooseBasis R M
[GOAL]
case inr
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
h✝ : Nontrivial R
b : Basis (Module.Free.ChooseBasisIndex R M) R M
⊢ ↑(trace R M) 1 = ↑(finrank R M)
[PROOFSTEP]
rw [trace_eq_matrix_trace R b, toMatrix_one, finrank_eq_card_chooseBasisIndex]
[GOAL]
case inr
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
h✝ : Nontrivial R
b : Basis (Module.Free.ChooseBasisIndex R M) R M
⊢ Matrix.trace 1 = ↑(Fintype.card (Module.Free.ChooseBasisIndex R M))
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ ↑(trace R M) id = ↑(finrank R M)
[PROOFSTEP]
rw [← one_eq_id, trace_one]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ comp (trace R (Module.Dual R M)) Module.Dual.transpose = trace R M
[PROOFSTEP]
let e := dualTensorHomEquiv R M M
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M
⊢ comp (trace R (Module.Dual R M)) Module.Dual.transpose = trace R M
[PROOFSTEP]
have h : Function.Surjective e.toLinearMap := e.surjective
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M
h : Function.Surjective ↑↑e
⊢ comp (trace R (Module.Dual R M)) Module.Dual.transpose = trace R M
[PROOFSTEP]
refine' (cancel_right h).1 _
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M
h : Function.Surjective ↑↑e
⊢ comp (comp (trace R (Module.Dual R M)) Module.Dual.transpose) ↑e = comp (trace R M) ↑e
[PROOFSTEP]
ext f m
[GOAL]
case a.h.h
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M
h : Function.Surjective ↑↑e
f : Module.Dual R M
m : M
⊢ ↑(↑(AlgebraTensorModule.curry (comp (comp (trace R (Module.Dual R M)) Module.Dual.transpose) ↑e)) f) m =
↑(↑(AlgebraTensorModule.curry (comp (trace R M) ↑e)) f) m
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ comp (trace R (M × N)) (prodMapLinear R M N M N R) = comp (coprod id id) (prodMap (trace R M) (trace R N))
[PROOFSTEP]
let e := (dualTensorHomEquiv R M M).prod (dualTensorHomEquiv R N N)
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) :=
LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N)
⊢ comp (trace R (M × N)) (prodMapLinear R M N M N R) = comp (coprod id id) (prodMap (trace R M) (trace R N))
[PROOFSTEP]
have h : Function.Surjective e.toLinearMap := e.surjective
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) :=
LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N)
h : Function.Surjective ↑↑e
⊢ comp (trace R (M × N)) (prodMapLinear R M N M N R) = comp (coprod id id) (prodMap (trace R M) (trace R N))
[PROOFSTEP]
refine' (cancel_right h).1 _
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) :=
LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N)
h : Function.Surjective ↑↑e
⊢ comp (comp (trace R (M × N)) (prodMapLinear R M N M N R)) ↑e =
comp (comp (coprod id id) (prodMap (trace R M) (trace R N))) ↑e
[PROOFSTEP]
ext
[GOAL]
case hl.a.h.h
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) :=
LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N)
h : Function.Surjective ↑↑e
x✝¹ : Module.Dual R M
x✝ : M
⊢ ↑(↑(AlgebraTensorModule.curry
(comp (comp (comp (trace R (M × N)) (prodMapLinear R M N M N R)) ↑e)
(inl R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N))))
x✝¹)
x✝ =
↑(↑(AlgebraTensorModule.curry
(comp (comp (comp (coprod id id) (prodMap (trace R M) (trace R N))) ↑e)
(inl R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N))))
x✝¹)
x✝
[PROOFSTEP]
simp only [dualTensorHomEquiv, LinearEquiv.coe_prod, dualTensorHomEquivOfBasis_toLinearMap,
AlgebraTensorModule.curry_apply, curry_apply, coe_restrictScalars, coe_comp, coe_inl, Function.comp_apply,
prodMap_apply, map_zero, prodMapLinear_apply, dualTensorHom_prodMap_zero, trace_eq_contract_apply, contractLeft_apply,
fst_apply, coprod_apply, id_coe, id_eq, add_zero]
[GOAL]
case hr.a.h.h
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) :=
LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N)
h : Function.Surjective ↑↑e
x✝¹ : Module.Dual R N
x✝ : N
⊢ ↑(↑(AlgebraTensorModule.curry
(comp (comp (comp (trace R (M × N)) (prodMapLinear R M N M N R)) ↑e)
(inr R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N))))
x✝¹)
x✝ =
↑(↑(AlgebraTensorModule.curry
(comp (comp (comp (coprod id id) (prodMap (trace R M) (trace R N))) ↑e)
(inr R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N))))
x✝¹)
x✝
[PROOFSTEP]
simp only [dualTensorHomEquiv, LinearEquiv.coe_prod, dualTensorHomEquivOfBasis_toLinearMap,
AlgebraTensorModule.curry_apply, curry_apply, coe_restrictScalars, coe_comp, coe_inr, Function.comp_apply,
prodMap_apply, map_zero, prodMapLinear_apply, zero_prodMap_dualTensorHom, trace_eq_contract_apply, contractLeft_apply,
snd_apply, coprod_apply, id_coe, id_eq, zero_add]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
g : N →ₗ[R] N
⊢ ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g
[PROOFSTEP]
have h := ext_iff.1 (trace_prodMap R M N) (f, g)
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
g : N →ₗ[R] N
h :
↑(comp (trace R (M × N)) (prodMapLinear R M N M N R)) (f, g) =
↑(comp (coprod id id) (prodMap (trace R M) (trace R N))) (f, g)
⊢ ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, prodMap_apply, coprod_apply, id_coe, id.def, prodMapLinear_apply] at h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
g : N →ₗ[R] N
h : ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g
⊢ ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N)) = compl₁₂ (lsmul R R) (trace R M) (trace R N)
[PROOFSTEP]
apply
(compl₁₂_inj (show Surjective (dualTensorHom R M M) from (dualTensorHomEquiv R M M).surjective)
(show Surjective (dualTensorHom R N N) from (dualTensorHomEquiv R N N).surjective)).1
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ compl₁₂ (compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N))) (dualTensorHom R M M) (dualTensorHom R N N) =
compl₁₂ (compl₁₂ (lsmul R R) (trace R M) (trace R N)) (dualTensorHom R M M) (dualTensorHom R N N)
[PROOFSTEP]
ext f m g n
[GOAL]
case a.h.h.a.h.h
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : Module.Dual R M
m : M
g : Module.Dual R N
n : N
⊢ ↑(↑(AlgebraTensorModule.curry
(↑(↑(AlgebraTensorModule.curry
(compl₁₂ (compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N))) (dualTensorHom R M M)
(dualTensorHom R N N)))
f)
m))
g)
n =
↑(↑(AlgebraTensorModule.curry
(↑(↑(AlgebraTensorModule.curry
(compl₁₂ (compl₁₂ (lsmul R R) (trace R M) (trace R N)) (dualTensorHom R M M)
(dualTensorHom R N N)))
f)
m))
g)
n
[PROOFSTEP]
simp only [AlgebraTensorModule.curry_apply, toFun_eq_coe, TensorProduct.curry_apply, coe_restrictScalars, compl₁₂_apply,
compr₂_apply, mapBilinear_apply, trace_eq_contract_apply, contractLeft_apply, lsmul_apply, Algebra.id.smul_eq_mul,
map_dualTensorHom, dualDistrib_apply]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ compr₂ (llcomp R M N M) (trace R M) = compr₂ (flip (llcomp R N M N)) (trace R N)
[PROOFSTEP]
apply
(compl₁₂_inj (show Surjective (dualTensorHom R N M) from (dualTensorHomEquiv R N M).surjective)
(show Surjective (dualTensorHom R M N) from (dualTensorHomEquiv R M N).surjective)).1
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
⊢ compl₁₂ (compr₂ (llcomp R M N M) (trace R M)) (dualTensorHom R N M) (dualTensorHom R M N) =
compl₁₂ (compr₂ (flip (llcomp R N M N)) (trace R N)) (dualTensorHom R N M) (dualTensorHom R M N)
[PROOFSTEP]
ext g m f n
[GOAL]
case a.h.h.a.h.h
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
g : Module.Dual R N
m : M
f : Module.Dual R M
n : N
⊢ ↑(↑(AlgebraTensorModule.curry
(↑(↑(AlgebraTensorModule.curry
(compl₁₂ (compr₂ (llcomp R M N M) (trace R M)) (dualTensorHom R N M) (dualTensorHom R M N)))
g)
m))
f)
n =
↑(↑(AlgebraTensorModule.curry
(↑(↑(AlgebraTensorModule.curry
(compl₁₂ (compr₂ (flip (llcomp R N M N)) (trace R N)) (dualTensorHom R N M)
(dualTensorHom R M N)))
g)
m))
f)
n
[PROOFSTEP]
simp only [AlgebraTensorModule.curry_apply, TensorProduct.curry_apply, coe_restrictScalars, compl₁₂_apply, compr₂_apply,
llcomp_apply', comp_dualTensorHom, map_smulₛₗ, RingHom.id_apply, trace_eq_contract_apply, contractLeft_apply,
smul_eq_mul, mul_comm, flip_apply]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
⊢ ↑(trace R (Module.Dual R M)) (↑Module.Dual.transpose f) = ↑(trace R M) f
[PROOFSTEP]
rw [← comp_apply, trace_transpose]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
g : N →ₗ[R] N
⊢ ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g
[PROOFSTEP]
have h := ext_iff.1 (ext_iff.1 (trace_tensorProduct R M N) f) g
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
g : N →ₗ[R] N
h :
↑(↑(compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N))) f) g = ↑(↑(compl₁₂ (lsmul R R) (trace R M) (trace R N)) f) g
⊢ ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g
[PROOFSTEP]
simp only [compr₂_apply, mapBilinear_apply, compl₁₂_apply, lsmul_apply, Algebra.id.smul_eq_mul] at h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
g : N →ₗ[R] N
h : ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g
⊢ ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] N
g : N →ₗ[R] M
⊢ ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g)
[PROOFSTEP]
have h := ext_iff.1 (ext_iff.1 (trace_comp_comm R M N) g) f
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] N
g : N →ₗ[R] M
h : ↑(↑(compr₂ (llcomp R M N M) (trace R M)) g) f = ↑(↑(compr₂ (flip (llcomp R N M N)) (trace R N)) g) f
⊢ ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g)
[PROOFSTEP]
simp only [llcomp_apply', compr₂_apply, flip_apply] at h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] N
g : N →ₗ[R] M
h : ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g)
⊢ ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g)
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] N
g : N →ₗ[R] P
h : P →ₗ[R] M
⊢ ↑(trace R P) (comp g (comp f h)) = ↑(trace R N) (comp f (comp h g))
[PROOFSTEP]
rw [trace_comp_comm', comp_assoc]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] N
g : N →ₗ[R] P
h : P →ₗ[R] M
⊢ ↑(trace R P) (comp (comp g f) h) = ↑(trace R M) (comp (comp h g) f)
[PROOFSTEP]
rw [trace_comp_comm', ← comp_assoc]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Type u_2
inst✝¹¹ : AddCommGroup M
inst✝¹⁰ : Module R M
N : Type u_3
P : Type u_4
inst✝⁹ : AddCommGroup N
inst✝⁸ : Module R N
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R P
ι : Type u_5
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
inst✝¹ : Module.Free R P
inst✝ : Module.Finite R P
f : M →ₗ[R] M
e : M ≃ₗ[R] N
⊢ ↑(trace R N) (↑(LinearEquiv.conj e) f) = ↑(trace R M) f
[PROOFSTEP]
rw [e.conj_apply, trace_comp_comm', ← comp_assoc, LinearEquiv.comp_coe, LinearEquiv.self_trans_symm,
LinearEquiv.refl_toLinearMap, id_comp]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommRing R
M : Type u_2
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
N : Type u_3
P : Type u_4
inst✝¹³ : AddCommGroup N
inst✝¹² : Module R N
inst✝¹¹ : AddCommGroup P
inst✝¹⁰ : Module R P
ι : Type u_5
inst✝⁹ : Module.Free R M
inst✝⁸ : Module.Finite R M
inst✝⁷ : Module.Free R N
inst✝⁶ : Module.Finite R N
inst✝⁵ : Module.Free R P
inst✝⁴ : Module.Finite R P
p : Submodule R M
f : M →ₗ[R] M
h : IsProj p f
inst✝³ : Module.Free R { x // x ∈ p }
inst✝² : Module.Finite R { x // x ∈ p }
inst✝¹ : Module.Free R { x // x ∈ ker f }
inst✝ : Module.Finite R { x // x ∈ ker f }
⊢ ↑(LinearMap.trace R M) f = ↑(finrank R { x // x ∈ p })
[PROOFSTEP]
rw [h.eq_conj_prodMap, trace_conj', trace_prodMap', trace_id, map_zero, add_zero]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Trace", "llama_tokens": 19350} |
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let A := toMatrix b b f
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let b' := chooseBasis R M
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let ι' := ChooseBasisIndex R M
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let A' := toMatrix b' b' f
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let e := Basis.indexEquiv b b'
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let φ := reindexLinearEquiv R R e e
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let φ₁ := reindexLinearEquiv R R e (Equiv.refl ι')
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let φ₂ := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let φ₃ := reindexLinearEquiv R R (Equiv.refl ι') e
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let P := b.toMatrix b'
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
let Q := b'.toMatrix b
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
have hPQ : C.mapMatrix (φ₁ P) * C.mapMatrix (φ₃ Q) = 1 := by
rw [RingHom.mapMatrix_apply, RingHom.mapMatrix_apply, ← Matrix.map_mul, reindexLinearEquiv_mul R R,
Basis.toMatrix_mul_toMatrix_flip, reindexLinearEquiv_one, ← RingHom.mapMatrix_apply, RingHom.map_one]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
⊢ ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
[PROOFSTEP]
rw [RingHom.mapMatrix_apply, RingHom.mapMatrix_apply, ← Matrix.map_mul, reindexLinearEquiv_mul R R,
Basis.toMatrix_mul_toMatrix_flip, reindexLinearEquiv_one, ← RingHom.mapMatrix_apply, RingHom.map_one]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f
[PROOFSTEP]
calc
A.charpoly = (reindex e e A).charpoly := (charpoly_reindex _ _).symm
_ = det (scalar ι' X - C.mapMatrix (φ A)) := rfl
_ = det (scalar ι' X - C.mapMatrix (φ (P * A' * Q))) := by
rw [basis_toMatrix_mul_linearMap_toMatrix_mul_basis_toMatrix]
_ = det (scalar ι' X - C.mapMatrix (φ₁ P * φ₂ A' * φ₃ Q)) := by rw [reindexLinearEquiv_mul, reindexLinearEquiv_mul]
_ = det (scalar ι' X - C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)) := by simp
_ =
det
(scalar ι' X * C.mapMatrix (φ₁ P) * C.mapMatrix (φ₃ Q) -
C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)) :=
by rw [Matrix.mul_assoc ((scalar ι') X), hPQ, Matrix.mul_one]
_ =
det
(C.mapMatrix (φ₁ P) * scalar ι' X * C.mapMatrix (φ₃ Q) -
C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)) :=
by simp
_ = det (C.mapMatrix (φ₁ P) * (scalar ι' X - C.mapMatrix A') * C.mapMatrix (φ₃ Q)) := by
rw [← Matrix.sub_mul, ← Matrix.mul_sub]
_ = det (C.mapMatrix (φ₁ P)) * det (scalar ι' X - C.mapMatrix A') * det (C.mapMatrix (φ₃ Q)) := by
rw [det_mul, det_mul]
_ = det (C.mapMatrix (φ₁ P)) * det (C.mapMatrix (φ₃ Q)) * det (scalar ι' X - C.mapMatrix A') := by ring
_ = det (scalar ι' X - C.mapMatrix A') := by rw [← det_mul, hPQ, det_one, one_mul]
_ = f.charpoly := rfl
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ A)) = det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ (P * A' * Q)))
[PROOFSTEP]
rw [basis_toMatrix_mul_linearMap_toMatrix_mul_basis_toMatrix]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ (P * A' * Q))) =
det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P * ↑φ₂ A' * ↑φ₃ Q))
[PROOFSTEP]
rw [reindexLinearEquiv_mul, reindexLinearEquiv_mul]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P * ↑φ₂ A' * ↑φ₃ Q)) =
det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q))
[PROOFSTEP]
simp
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) =
det
(↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) -
↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q))
[PROOFSTEP]
rw [Matrix.mul_assoc ((scalar ι') X), hPQ, Matrix.mul_one]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det
(↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) -
↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) =
det
(↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₃ Q) -
↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q))
[PROOFSTEP]
simp
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det
(↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₃ Q) -
↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) =
det (↑(RingHom.mapMatrix C) (↑φ₁ P) * (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') * ↑(RingHom.mapMatrix C) (↑φ₃ Q))
[PROOFSTEP]
rw [← Matrix.sub_mul, ← Matrix.mul_sub]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P) * (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) =
det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') *
det (↑(RingHom.mapMatrix C) (↑φ₃ Q))
[PROOFSTEP]
rw [det_mul, det_mul]
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') *
det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) =
det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) *
det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A')
[PROOFSTEP]
ring
[GOAL]
R : Type u
M : Type v
inst✝⁷ : CommRing R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : Module.Finite R M
f : M →ₗ[R] M
ι : Type w
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f
b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M
ι' : Type v := ChooseBasisIndex R M
A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f
e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b'
φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e
φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι')
φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι')
φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e
P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b'
Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b
hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1
⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) *
det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') =
det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A')
[PROOFSTEP]
rw [← det_mul, hPQ, det_one, one_mul]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Charpoly.ToMatrix", "llama_tokens": 12322} |
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f g : IsometryEquiv Q₁ Q₂
⊢ (fun f => ↑f.toLinearEquiv) f = (fun f => ↑f.toLinearEquiv) g →
(fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) f = (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) g → f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
g : IsometryEquiv Q₁ Q₂
toLinearEquiv✝ : M₁ ≃ₗ[R] M₂
map_app'✝ : ∀ (m : M₁), ↑Q₂ (AddHom.toFun toLinearEquiv✝.toAddHom m) = ↑Q₁ m
⊢ (fun f => ↑f.toLinearEquiv) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } =
(fun f => ↑f.toLinearEquiv) g →
(fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } =
(fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) g →
{ toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
toLinearEquiv✝¹ : M₁ ≃ₗ[R] M₂
map_app'✝¹ : ∀ (m : M₁), ↑Q₂ (AddHom.toFun toLinearEquiv✝¹.toAddHom m) = ↑Q₁ m
toLinearEquiv✝ : M₁ ≃ₗ[R] M₂
map_app'✝ : ∀ (m : M₁), ↑Q₂ (AddHom.toFun toLinearEquiv✝.toAddHom m) = ↑Q₁ m
⊢ (fun f => ↑f.toLinearEquiv) { toLinearEquiv := toLinearEquiv✝¹, map_app' := map_app'✝¹ } =
(fun f => ↑f.toLinearEquiv) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } →
(fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) { toLinearEquiv := toLinearEquiv✝¹, map_app' := map_app'✝¹ } =
(fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } →
{ toLinearEquiv := toLinearEquiv✝¹, map_app' := map_app'✝¹ } =
{ toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ }
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv
⊢ ∀ (m : M₂),
↑Q₁
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
↑Q₂ m
[PROOFSTEP]
intro m
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv
m : M₂
⊢ ↑Q₁
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
↑Q₂ m
[PROOFSTEP]
rw [← f.map_app]
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv
m : M₂
⊢ ↑Q₂
(↑f
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m)) =
↑Q₂ m
[PROOFSTEP]
congr
[GOAL]
case h.e_6.h
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv
m : M₂
⊢ ↑f
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
m
[PROOFSTEP]
exact f.toLinearEquiv.apply_symm_apply m
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
g : IsometryEquiv Q₂ Q₃
src✝ : M₁ ≃ₗ[R] M₃ := LinearEquiv.trans f.toLinearEquiv g.toLinearEquiv
⊢ ∀ (m : M₁),
↑Q₃
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
↑Q₁ m
[PROOFSTEP]
intro m
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
g : IsometryEquiv Q₂ Q₃
src✝ : M₁ ≃ₗ[R] M₃ := LinearEquiv.trans f.toLinearEquiv g.toLinearEquiv
m : M₁
⊢ ↑Q₃
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
↑Q₁ m
[PROOFSTEP]
rw [← f.map_app, ← g.map_app]
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₁
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R M₃
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Q₃ : QuadraticForm R M₃
f : IsometryEquiv Q₁ Q₂
g : IsometryEquiv Q₂ Q₃
src✝ : M₁ ≃ₗ[R] M₃ := LinearEquiv.trans f.toLinearEquiv g.toLinearEquiv
m : M₁
⊢ ↑Q₃
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
↑Q₃ (↑g (↑f m))
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Fintype ι
v : Basis ι R M
Q : QuadraticForm R M
f : M₁ ≃ₗ[R] M
src✝ : M ≃ₗ[R] M₁ := LinearEquiv.symm f
⊢ ∀ (m : M),
↑(comp Q ↑f)
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m) =
↑Q m
[PROOFSTEP]
intro
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝⁹ : Semiring R
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : Module R M
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Fintype ι
v : Basis ι R M
Q : QuadraticForm R M
f : M₁ ≃ₗ[R] M
src✝ : M ≃ₗ[R] M₁ := LinearEquiv.symm f
m✝ : M
⊢ ↑(comp Q ↑f)
(AddHom.toFun
(↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom
m✝) =
↑Q m✝
[PROOFSTEP]
simp only [comp_apply, LinearEquiv.coe_coe, LinearEquiv.toFun_eq_coe, LinearEquiv.apply_symm_apply, f.apply_symm_apply]
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M
inst✝¹¹ : AddCommMonoid M₁
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Fintype ι
v✝ : Basis ι R M
inst✝³ : Field K
inst✝² : Invertible 2
inst✝¹ : AddCommGroup V
inst✝ : Module K V
Q : QuadraticForm K V
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v
⊢ IsometryEquiv Q (weightedSumSquares K fun i => ↑Q (↑v i))
[PROOFSTEP]
let iso := Q.isometryEquivBasisRepr v
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M
inst✝¹¹ : AddCommMonoid M₁
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Fintype ι
v✝ : Basis ι R M
inst✝³ : Field K
inst✝² : Invertible 2
inst✝¹ : AddCommGroup V
inst✝ : Module K V
Q : QuadraticForm K V
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v
iso : IsometryEquiv Q (basisRepr Q v) := isometryEquivBasisRepr Q v
⊢ IsometryEquiv Q (weightedSumSquares K fun i => ↑Q (↑v i))
[PROOFSTEP]
refine' ⟨iso, fun m => _⟩
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M
inst✝¹¹ : AddCommMonoid M₁
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Fintype ι
v✝ : Basis ι R M
inst✝³ : Field K
inst✝² : Invertible 2
inst✝¹ : AddCommGroup V
inst✝ : Module K V
Q : QuadraticForm K V
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v
iso : IsometryEquiv Q (basisRepr Q v) := isometryEquivBasisRepr Q v
m : V
⊢ ↑(weightedSumSquares K fun i => ↑Q (↑v i)) (AddHom.toFun iso.toAddHom m) = ↑Q m
[PROOFSTEP]
convert iso.map_app m
[GOAL]
case h.e'_2.h.e'_5
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹³ : Semiring R
inst✝¹² : AddCommMonoid M
inst✝¹¹ : AddCommMonoid M₁
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Fintype ι
v✝ : Basis ι R M
inst✝³ : Field K
inst✝² : Invertible 2
inst✝¹ : AddCommGroup V
inst✝ : Module K V
Q : QuadraticForm K V
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v
iso : IsometryEquiv Q (basisRepr Q v) := isometryEquivBasisRepr Q v
m : V
⊢ (weightedSumSquares K fun i => ↑Q (↑v i)) = basisRepr Q v
[PROOFSTEP]
rw [basisRepr_eq_of_iIsOrtho _ _ hv₁]
[GOAL]
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Fintype ι
v : Basis ι R M
inst✝⁴ : Field K
inst✝³ : Invertible 2
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
Q : QuadraticForm K V
hQ : Nondegenerate (↑associated Q)
⊢ ∃ w, Equivalent Q (weightedSumSquares K w)
[PROOFSTEP]
obtain ⟨v, hv₁⟩ := exists_orthogonal_basis (associated_isSymm K Q)
[GOAL]
case intro
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Fintype ι
v✝ : Basis ι R M
inst✝⁴ : Field K
inst✝³ : Invertible 2
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
Q : QuadraticForm K V
hQ : Nondegenerate (↑associated Q)
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : iIsOrtho (↑(associatedHom K) Q) ↑v
⊢ ∃ w, Equivalent Q (weightedSumSquares K w)
[PROOFSTEP]
have hv₂ := hv₁.not_isOrtho_basis_self_of_nondegenerate hQ
[GOAL]
case intro
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Fintype ι
v✝ : Basis ι R M
inst✝⁴ : Field K
inst✝³ : Invertible 2
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
Q : QuadraticForm K V
hQ : Nondegenerate (↑associated Q)
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : iIsOrtho (↑(associatedHom K) Q) ↑v
hv₂ : ∀ (i : Fin (FiniteDimensional.finrank K V)), ¬IsOrtho (↑(associatedHom K) Q) (↑v i) (↑v i)
⊢ ∃ w, Equivalent Q (weightedSumSquares K w)
[PROOFSTEP]
simp_rw [IsOrtho, associated_eq_self_apply] at hv₂
[GOAL]
case intro
ι : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
V : Type u_8
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Fintype ι
v✝ : Basis ι R M
inst✝⁴ : Field K
inst✝³ : Invertible 2
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
Q : QuadraticForm K V
hQ : Nondegenerate (↑associated Q)
v : Basis (Fin (FiniteDimensional.finrank K V)) K V
hv₁ : iIsOrtho (↑(associatedHom K) Q) ↑v
hv₂ : ∀ (i : Fin (FiniteDimensional.finrank K V)), ¬↑Q (↑v i) = 0
⊢ ∃ w, Equivalent Q (weightedSumSquares K w)
[PROOFSTEP]
exact ⟨fun i => Units.mk0 _ (hv₂ i), ⟨Q.isometryEquivWeightedSumSquares v hv₁⟩⟩
| {"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv", "llama_tokens": 7896} |
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
⊢ IsometryEquiv (weightedSumSquares ℂ w') (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1)
[PROOFSTEP]
let w i := if h : w' i = 0 then (1 : Units ℂ) else Units.mk0 (w' i) h
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
⊢ IsometryEquiv (weightedSumSquares ℂ w') (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1)
[PROOFSTEP]
have hw' : ∀ i : ι, (w i : ℂ) ^ (-(1 / 2 : ℂ)) ≠ 0 := by
intro i hi
exact (w i).ne_zero ((Complex.cpow_eq_zero_iff _ _).1 hi).1
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
⊢ ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
[PROOFSTEP]
intro i hi
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
i : ι
hi : ↑(w i) ^ (-(1 / 2)) = 0
⊢ False
[PROOFSTEP]
exact (w i).ne_zero ((Complex.cpow_eq_zero_iff _ _).1 hi).1
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
⊢ IsometryEquiv (weightedSumSquares ℂ w') (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1)
[PROOFSTEP]
convert
(weightedSumSquares ℂ w').isometryEquivBasisRepr
((Pi.basisFun ℂ ι).unitsSMul fun i => (isUnit_iff_ne_zero.2 <| hw' i).unit)
[GOAL]
case h.e'_10
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
⊢ (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) =
basisRepr (weightedSumSquares ℂ w')
(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2)))))
[PROOFSTEP]
ext1 v
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
⊢ ↑(weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) v =
↑(basisRepr (weightedSumSquares ℂ w')
(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))))
v
[PROOFSTEP]
erw [basisRepr_apply, weightedSumSquares_apply, weightedSumSquares_apply]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
⊢ ∑ i : ι, (if w' i = 0 then 0 else 1) • (v i * v i) =
∑ i : ι,
w' i •
(Finset.sum univ
(fun i =>
v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i)
i *
Finset.sum univ
(fun i =>
v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i)
i)
[PROOFSTEP]
refine' sum_congr rfl fun j hj => _
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
⊢ (if w' j = 0 then 0 else 1) • (v j * v j) =
w' j •
(Finset.sum univ
(fun i =>
v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i)
j *
Finset.sum univ
(fun i =>
v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i)
j)
[PROOFSTEP]
have hsum :
(∑ i : ι, v i • ((isUnit_iff_ne_zero.2 <| hw' i).unit : ℂ) • (Pi.basisFun ℂ ι) i) j = v j • w j ^ (-(1 / 2 : ℂ)) :=
by
rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply,
Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one]
intro i _ hij
rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm,
Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero]
intro hj'; exact False.elim (hj' hj)
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
⊢ Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
[PROOFSTEP]
rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply,
Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one]
[GOAL]
case h₀
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
⊢ ∀ (b : ι), b ∈ univ → b ≠ j → (v b • ↑(IsUnit.unit (_ : IsUnit (↑(w b) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) b) j = 0
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0
[PROOFSTEP]
intro i _ hij
[GOAL]
case h₀
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
i : ι
a✝ : i ∈ univ
hij : i ≠ j
⊢ (v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = 0
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0
[PROOFSTEP]
rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm,
Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero]
[GOAL]
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0
[PROOFSTEP]
intro hj'
[GOAL]
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hj' : ¬j ∈ univ
⊢ (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0
[PROOFSTEP]
exact False.elim (hj' hj)
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
⊢ (if w' j = 0 then 0 else 1) • (v j * v j) =
w' j •
(Finset.sum univ
(fun i =>
v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i)
j *
Finset.sum univ
(fun i =>
v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i)
j)
[PROOFSTEP]
simp_rw [Basis.unitsSMul_apply]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
⊢ (if w' j = 0 then 0 else 1) • (v j * v j) =
w' j •
(Finset.sum univ (fun x => v x • IsUnit.unit (_ : IsUnit (↑(w x) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℂ ι) x) j *
Finset.sum univ (fun x => v x • IsUnit.unit (_ : IsUnit (↑(w x) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℂ ι) x) j)
[PROOFSTEP]
erw [hsum, smul_eq_mul]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
⊢ (if w' j = 0 then 0 else 1) * (v j * v j) = w' j • (v j • ↑(w j) ^ (-(1 / 2)) * v j • ↑(w j) ^ (-(1 / 2)))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : w' j = 0
⊢ 0 * (v j * v j) = w' j • (v j • ↑1 ^ (-(1 / 2)) * v j • ↑1 ^ (-(1 / 2)))
[PROOFSTEP]
simp only [h, zero_smul, zero_mul]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
⊢ 1 * (v j * v j) = w' j • (v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2)) * v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2)))
[PROOFSTEP]
have hww' : w' j = w j := by simp only [dif_neg h, Units.val_mk0]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
⊢ w' j = ↑(w j)
[PROOFSTEP]
simp only [dif_neg h, Units.val_mk0]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
⊢ 1 * (v j * v j) = w' j • (v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2)) * v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2)))
[PROOFSTEP]
simp only [one_mul, Units.val_mk0, smul_eq_mul]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
⊢ v j * v j = w' j * (v j * w' j ^ (-(1 / 2)) * (v j * w' j ^ (-(1 / 2))))
[PROOFSTEP]
rw [hww']
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
⊢ v j * v j = ↑(w j) * (v j * ↑(w j) ^ (-(1 / 2)) * (v j * ↑(w j) ^ (-(1 / 2))))
[PROOFSTEP]
suffices v j * v j = w j ^ (-(1 / 2 : ℂ)) * w j ^ (-(1 / 2 : ℂ)) * w j * v j * v j by rw [this]; ring
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
this : v j * v j = ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j
⊢ v j * v j = ↑(w j) * (v j * ↑(w j) ^ (-(1 / 2)) * (v j * ↑(w j) ^ (-(1 / 2))))
[PROOFSTEP]
rw [this]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
this : v j * v j = ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j
⊢ ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j =
↑(w j) * (v j * ↑(w j) ^ (-(1 / 2)) * (v j * ↑(w j) ^ (-(1 / 2))))
[PROOFSTEP]
ring
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
⊢ v j * v j = ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j
[PROOFSTEP]
rw [← Complex.cpow_add _ _ (w j).ne_zero, show -(1 / 2 : ℂ) + -(1 / 2) = -1 by simp [← two_mul], Complex.cpow_neg_one,
inv_mul_cancel (w j).ne_zero, one_mul]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w' : ι → ℂ
w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h
hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0
v : ι → ℂ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j =
v j • ↑(w j) ^ (-(1 / 2))
h : ¬w' j = 0
hww' : w' j = ↑(w j)
⊢ -(1 / 2) + -(1 / 2) = -1
[PROOFSTEP]
simp [← two_mul]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℂˣ
⊢ IsometryEquiv (weightedSumSquares ℂ w) (weightedSumSquares ℂ 1)
[PROOFSTEP]
simpa using isometryEquivSumSquares ((↑) ∘ w)
| {"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Complex", "llama_tokens": 8420} |
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Module.Free R M
inst✝¹ : Module.Finite R M
inst✝ : Nontrivial M
⊢ ↑LinearMap.det 0 = 0
[PROOFSTEP]
letI : Nonempty (Module.Free.ChooseBasisIndex R M) := (Module.Free.chooseBasis R M).index_nonempty
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Module.Free R M
inst✝¹ : Module.Finite R M
inst✝ : Nontrivial M
this : Nonempty (Module.Free.ChooseBasisIndex R M) := Basis.index_nonempty (Module.Free.chooseBasis R M)
⊢ ↑LinearMap.det 0 = 0
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Module.Free R M
inst✝¹ : Module.Finite R M
inst✝ : Nontrivial M
this : Nonempty (Module.Free.ChooseBasisIndex R M) := Basis.index_nonempty (Module.Free.chooseBasis R M)
✝ : Nontrivial R
⊢ ↑LinearMap.det 0 = 0
[PROOFSTEP]
exact LinearMap.det_zero' (Module.Free.chooseBasis R M)
| {"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Determinant", "llama_tokens": 463} |
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
⊢ IsometryEquiv (weightedSumSquares ℝ w) (weightedSumSquares ℝ (sign ∘ w))
[PROOFSTEP]
let u i := if h : w i = 0 then (1 : ℝˣ) else Units.mk0 (w i) h
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
⊢ IsometryEquiv (weightedSumSquares ℝ w) (weightedSumSquares ℝ (sign ∘ w))
[PROOFSTEP]
have hu' : ∀ i : ι, (Real.sign (u i) * u i) ^ (-(1 / 2 : ℝ)) ≠ 0 :=
by
intro i
refine' (ne_of_lt (Real.rpow_pos_of_pos (sign_mul_pos_of_ne_zero _ <| Units.ne_zero _) _)).symm
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
⊢ ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
[PROOFSTEP]
intro i
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
i : ι
⊢ (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
[PROOFSTEP]
refine' (ne_of_lt (Real.rpow_pos_of_pos (sign_mul_pos_of_ne_zero _ <| Units.ne_zero _) _)).symm
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
⊢ IsometryEquiv (weightedSumSquares ℝ w) (weightedSumSquares ℝ (sign ∘ w))
[PROOFSTEP]
convert
(weightedSumSquares ℝ w).isometryEquivBasisRepr
((Pi.basisFun ℝ ι).unitsSMul fun i => (isUnit_iff_ne_zero.2 <| hu' i).unit)
[GOAL]
case h.e'_10
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
⊢ weightedSumSquares ℝ (sign ∘ w) =
basisRepr (weightedSumSquares ℝ w)
(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
[PROOFSTEP]
ext1 v
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
⊢ ↑(weightedSumSquares ℝ (sign ∘ w)) v =
↑(basisRepr (weightedSumSquares ℝ w)
(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))))
v
[PROOFSTEP]
rw [basisRepr_apply, weightedSumSquares_apply, weightedSumSquares_apply]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
⊢ ∑ i : ι, (sign ∘ w) i • (v i * v i) =
∑ i : ι,
w i •
(Finset.sum univ
(fun i =>
v i •
↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i =>
IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
i)
i *
Finset.sum univ
(fun i =>
v i •
↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i =>
IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
i)
i)
[PROOFSTEP]
refine' sum_congr rfl fun j hj => _
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
⊢ (sign ∘ w) j • (v j * v j) =
w j •
(Finset.sum univ
(fun i =>
v i •
↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i =>
IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
i)
j *
Finset.sum univ
(fun i =>
v i •
↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i =>
IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
i)
j)
[PROOFSTEP]
have hsum :
(∑ i : ι, v i • ((isUnit_iff_ne_zero.2 <| hu' i).unit : ℝ) • (Pi.basisFun ℝ ι) i) j =
v j • (Real.sign (u j) * u j) ^ (-(1 / 2 : ℝ)) :=
by
rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply,
Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one]
intro i _ hij
rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm,
Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero]
intro hj'; exact False.elim (hj' hj)
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
⊢ Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
[PROOFSTEP]
rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply,
Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one]
[GOAL]
case h₀
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
⊢ ∀ (b : ι),
b ∈ univ →
b ≠ j → (v b • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u b) * ↑(u b)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) b) j = 0
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0
[PROOFSTEP]
intro i _ hij
[GOAL]
case h₀
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
i : ι
a✝ : i ∈ univ
hij : i ≠ j
⊢ (v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = 0
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0
[PROOFSTEP]
rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm,
Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero]
[GOAL]
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0
[PROOFSTEP]
intro hj'
[GOAL]
case h₁
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hj' : ¬j ∈ univ
⊢ (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0
[PROOFSTEP]
exact False.elim (hj' hj)
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
⊢ (sign ∘ w) j • (v j * v j) =
w j •
(Finset.sum univ
(fun i =>
v i •
↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i =>
IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
i)
j *
Finset.sum univ
(fun i =>
v i •
↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i =>
IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))
i)
j)
[PROOFSTEP]
simp_rw [Basis.unitsSMul_apply]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
⊢ (sign ∘ w) j • (v j * v j) =
w j •
(Finset.sum univ
(fun x => v x • IsUnit.unit (_ : IsUnit ((sign ↑(u x) * ↑(u x)) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℝ ι) x) j *
Finset.sum univ
(fun x => v x • IsUnit.unit (_ : IsUnit ((sign ↑(u x) * ↑(u x)) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℝ ι) x) j)
[PROOFSTEP]
erw [hsum]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
⊢ (sign ∘ w) j • (v j * v j) =
w j • (v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)))
[PROOFSTEP]
simp only [Function.comp, smul_eq_mul]
[GOAL]
case h.e'_10.H
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
⊢ sign (w j) * (v j * v j) =
w j *
(v j *
(sign ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h) * ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h)) ^
(-(1 / 2)) *
(v j *
(sign ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h) * ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h)) ^
(-(1 / 2))))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : w j = 0
⊢ sign (w j) * (v j * v j) = w j * (v j * (sign ↑1 * ↑1) ^ (-(1 / 2)) * (v j * (sign ↑1 * ↑1) ^ (-(1 / 2))))
[PROOFSTEP]
simp only [h, zero_smul, zero_mul, Real.sign_zero]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
⊢ sign (w j) * (v j * v j) =
w j *
(v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2)) *
(v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2))))
[PROOFSTEP]
have hwu : w j = u j := by simp only [dif_neg h, Units.val_mk0]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
⊢ w j = ↑(u j)
[PROOFSTEP]
simp only [dif_neg h, Units.val_mk0]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
⊢ sign (w j) * (v j * v j) =
w j *
(v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2)) *
(v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2))))
[PROOFSTEP]
simp only [Units.val_mk0]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
⊢ sign (w j) * (v j * v j) = w j * (v j * (sign (w j) * w j) ^ (-(1 / 2)) * (v j * (sign (w j) * w j) ^ (-(1 / 2))))
[PROOFSTEP]
rw [hwu]
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
⊢ sign ↑(u j) * (v j * v j) =
↑(u j) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))
[PROOFSTEP]
suffices
(u j : ℝ).sign * v j * v j =
(Real.sign (u j) * u j) ^ (-(1 / 2 : ℝ)) * (Real.sign (u j) * u j) ^ (-(1 / 2 : ℝ)) * u j * v j * v j
by erw [← mul_assoc, this]; ring
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
this :
sign ↑(u j) * v j * v j =
(sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j
⊢ sign ↑(u j) * (v j * v j) =
↑(u j) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))
[PROOFSTEP]
erw [← mul_assoc, this]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
this :
sign ↑(u j) * v j * v j =
(sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j
⊢ (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j =
↑(u j) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))
[PROOFSTEP]
ring
[GOAL]
case neg
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
⊢ sign ↑(u j) * v j * v j =
(sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j
[PROOFSTEP]
rw [← Real.rpow_add (sign_mul_pos_of_ne_zero _ <| Units.ne_zero _), show -(1 / 2 : ℝ) + -(1 / 2) = -1 by ring,
Real.rpow_neg_one, mul_inv, inv_sign, mul_assoc (Real.sign (u j)) (u j)⁻¹, inv_mul_cancel (Units.ne_zero _), mul_one]
[GOAL]
ι : Type u_1
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
w : ι → ℝ
u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h
hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0
v : ι → ℝ
j : ι
hj : j ∈ univ
hsum :
Finset.sum univ
(fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j =
v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))
h : ¬w j = 0
hwu : w j = ↑(u j)
⊢ -(1 / 2) + -(1 / 2) = -1
[PROOFSTEP]
ring
| {"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Real", "llama_tokens": 9686} |
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Basic", "llama_tokens": 0} |
|
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
x : M
⊢ bilin B 0 x = 0
[PROOFSTEP]
rw [← @zero_smul R _ _ _ _ (0 : M), smul_left, zero_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
x : M
⊢ bilin B x 0 = 0
[PROOFSTEP]
rw [← @zero_smul R _ _ _ _ (0 : M), smul_right, zero_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
x y : M₁
⊢ bilin B₁ (-x) y = -bilin B₁ x y
[PROOFSTEP]
rw [← @neg_one_smul R₁ _ _, smul_left, neg_one_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
x y : M₁
⊢ bilin B₁ x (-y) = -bilin B₁ x y
[PROOFSTEP]
rw [← @neg_one_smul R₁ _ _, smul_right, neg_one_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
x y z : M₁
⊢ bilin B₁ (x - y) z = bilin B₁ x z - bilin B₁ y z
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, add_left, neg_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
x y z : M₁
⊢ bilin B₁ x (y - z) = bilin B₁ x y - bilin B₁ x z
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, add_right, neg_right]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ : BilinForm R₁ M₁
B D : BilinForm R M
h : B.bilin = D.bilin
⊢ B = D
[PROOFSTEP]
cases B
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ : BilinForm R₁ M₁
D : BilinForm R M
bilin✝ : M → M → R
bilin_add_left✝ : ∀ (x y z : M), bilin✝ (x + y) z = bilin✝ x z + bilin✝ y z
bilin_smul_left✝ : ∀ (a : R) (x y : M), bilin✝ (a • x) y = a * bilin✝ x y
bilin_add_right✝ : ∀ (x y z : M), bilin✝ x (y + z) = bilin✝ x y + bilin✝ x z
bilin_smul_right✝ : ∀ (a : R) (x y : M), bilin✝ x (a • y) = a * bilin✝ x y
h :
{ bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝,
bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ }.bilin =
D.bilin
⊢ { bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝,
bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ } =
D
[PROOFSTEP]
cases D
[GOAL]
case mk.mk
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
bilin✝¹ : M → M → R
bilin_add_left✝¹ : ∀ (x y z : M), bilin✝¹ (x + y) z = bilin✝¹ x z + bilin✝¹ y z
bilin_smul_left✝¹ : ∀ (a : R) (x y : M), bilin✝¹ (a • x) y = a * bilin✝¹ x y
bilin_add_right✝¹ : ∀ (x y z : M), bilin✝¹ x (y + z) = bilin✝¹ x y + bilin✝¹ x z
bilin_smul_right✝¹ : ∀ (a : R) (x y : M), bilin✝¹ x (a • y) = a * bilin✝¹ x y
bilin✝ : M → M → R
bilin_add_left✝ : ∀ (x y z : M), bilin✝ (x + y) z = bilin✝ x z + bilin✝ y z
bilin_smul_left✝ : ∀ (a : R) (x y : M), bilin✝ (a • x) y = a * bilin✝ x y
bilin_add_right✝ : ∀ (x y z : M), bilin✝ x (y + z) = bilin✝ x y + bilin✝ x z
bilin_smul_right✝ : ∀ (a : R) (x y : M), bilin✝ x (a • y) = a * bilin✝ x y
h :
{ bilin := bilin✝¹, bilin_add_left := bilin_add_left✝¹, bilin_smul_left := bilin_smul_left✝¹,
bilin_add_right := bilin_add_right✝¹, bilin_smul_right := bilin_smul_right✝¹ }.bilin =
{ bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝,
bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ }.bilin
⊢ { bilin := bilin✝¹, bilin_add_left := bilin_add_left✝¹, bilin_smul_left := bilin_smul_left✝¹,
bilin_add_right := bilin_add_right✝¹, bilin_smul_right := bilin_smul_right✝¹ } =
{ bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝,
bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
H : ∀ (x y : M), bilin B x y = bilin D x y
⊢ B.bilin = D.bilin
[PROOFSTEP]
funext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
H : ∀ (x y : M), bilin B x y = bilin D x y
x✝¹ x✝ : M
⊢ bilin B x✝¹ x✝ = bilin D x✝¹ x✝
[PROOFSTEP]
exact H _ _
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ : BilinForm R₁ M₁
B D : BilinForm R M
x y z : M
⊢ (fun x y => bilin B x y + bilin D x y) (x + y) z =
(fun x y => bilin B x y + bilin D x y) x z + (fun x y => bilin B x y + bilin D x y) y z
[PROOFSTEP]
simp only [add_left, add_left, add_add_add_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ : BilinForm R₁ M₁
B D : BilinForm R M
a : R
x y : M
⊢ (fun x y => bilin B x y + bilin D x y) (a • x) y = a * (fun x y => bilin B x y + bilin D x y) x y
[PROOFSTEP]
simp only [smul_left, smul_left, mul_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ : BilinForm R₁ M₁
B D : BilinForm R M
x y z : M
⊢ (fun x y => bilin B x y + bilin D x y) x (y + z) =
(fun x y => bilin B x y + bilin D x y) x y + (fun x y => bilin B x y + bilin D x y) x z
[PROOFSTEP]
simp only [add_right, add_right, add_add_add_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ : BilinForm R₁ M₁
B D : BilinForm R M
a : R
x y : M
⊢ (fun x y => bilin B x y + bilin D x y) x (a • y) = a * (fun x y => bilin B x y + bilin D x y) x y
[PROOFSTEP]
simp only [smul_right, smul_right, mul_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
α : Type ?u.105863
inst✝² : Monoid α
inst✝¹ : DistribMulAction α R
inst✝ : SMulCommClass α R R
c : α
B : BilinForm R M
x y z : M
⊢ (fun x y => c • bilin B x y) (x + y) z = (fun x y => c • bilin B x y) x z + (fun x y => c • bilin B x y) y z
[PROOFSTEP]
simp only [add_left, smul_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
α : Type ?u.105863
inst✝² : Monoid α
inst✝¹ : DistribMulAction α R
inst✝ : SMulCommClass α R R
c : α
B : BilinForm R M
a : R
x y : M
⊢ (fun x y => c • bilin B x y) (a • x) y = a * (fun x y => c • bilin B x y) x y
[PROOFSTEP]
simp only [smul_left, mul_smul_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
α : Type ?u.105863
inst✝² : Monoid α
inst✝¹ : DistribMulAction α R
inst✝ : SMulCommClass α R R
c : α
B : BilinForm R M
x y z : M
⊢ (fun x y => c • bilin B x y) x (y + z) = (fun x y => c • bilin B x y) x y + (fun x y => c • bilin B x y) x z
[PROOFSTEP]
simp only [add_right, smul_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
α : Type ?u.105863
inst✝² : Monoid α
inst✝¹ : DistribMulAction α R
inst✝ : SMulCommClass α R R
c : α
B : BilinForm R M
a : R
x y : M
⊢ (fun x y => c • bilin B x y) x (a • y) = a * (fun x y => c • bilin B x y) x y
[PROOFSTEP]
simp only [smul_right, mul_smul_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ B : BilinForm R₁ M₁
x y z : M₁
⊢ (fun x y => -bilin B x y) (x + y) z = (fun x y => -bilin B x y) x z + (fun x y => -bilin B x y) y z
[PROOFSTEP]
simp only [add_left, neg_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ B : BilinForm R₁ M₁
a : R₁
x y : M₁
⊢ (fun x y => -bilin B x y) (a • x) y = a * (fun x y => -bilin B x y) x y
[PROOFSTEP]
simp only [smul_left, mul_neg]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ B : BilinForm R₁ M₁
x y z : M₁
⊢ (fun x y => -bilin B x y) x (y + z) = (fun x y => -bilin B x y) x y + (fun x y => -bilin B x y) x z
[PROOFSTEP]
simp only [add_right, neg_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ B : BilinForm R₁ M₁
a : R₁
x y : M₁
⊢ (fun x y => -bilin B x y) x (a • y) = a * (fun x y => -bilin B x y) x y
[PROOFSTEP]
simp only [smul_right, mul_neg]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ B D : BilinForm R₁ M₁
x y z : M₁
⊢ (fun x y => bilin B x y - bilin D x y) (x + y) z =
(fun x y => bilin B x y - bilin D x y) x z + (fun x y => bilin B x y - bilin D x y) y z
[PROOFSTEP]
simp only [add_left, add_left, add_sub_add_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ B D : BilinForm R₁ M₁
a : R₁
x y : M₁
⊢ (fun x y => bilin B x y - bilin D x y) (a • x) y = a * (fun x y => bilin B x y - bilin D x y) x y
[PROOFSTEP]
simp only [smul_left, smul_left, mul_sub]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ B D : BilinForm R₁ M₁
x y z : M₁
⊢ (fun x y => bilin B x y - bilin D x y) x (y + z) =
(fun x y => bilin B x y - bilin D x y) x y + (fun x y => bilin B x y - bilin D x y) x z
[PROOFSTEP]
simp only [add_right, add_right, add_sub_add_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D✝ : BilinForm R M
D₁ B D : BilinForm R₁ M₁
a : R₁
x y : M₁
⊢ (fun x y => bilin B x y - bilin D x y) x (a • y) = a * (fun x y => bilin B x y - bilin D x y) x y
[PROOFSTEP]
simp only [smul_right, smul_right, mul_sub]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
A₁ A₂ : BilinForm R M
⊢ (fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
(A₁ + A₂) =
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₁ +
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₂
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
A₁ A₂ : BilinForm R M
x✝ y✝ : M
⊢ bilin
((fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
(A₁ + A₂))
x✝ y✝ =
bilin
((fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₁ +
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₂)
x✝ y✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
c : R₂
A : BilinForm R M
⊢ AddHom.toFun
{
toFun := fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) },
map_add' :=
(_ :
∀ (A₁ A₂ : BilinForm R M),
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
(A₁ + A₂) =
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₁ +
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₂) }
(c • A) =
↑(RingHom.id R₂) c •
AddHom.toFun
{
toFun := fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) },
map_add' :=
(_ :
∀ (A₁ A₂ : BilinForm R M),
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
(A₁ + A₂) =
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₁ +
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₂) }
A
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
c : R₂
A : BilinForm R M
x✝ y✝ : M
⊢ bilin
(AddHom.toFun
{
toFun := fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) },
map_add' :=
(_ :
∀ (A₁ A₂ : BilinForm R M),
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
(A₁ + A₂) =
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₁ +
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₂) }
(c • A))
x✝ y✝ =
bilin
(↑(RingHom.id R₂) c •
AddHom.toFun
{
toFun := fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) },
map_add' :=
(_ :
∀ (A₁ A₂ : BilinForm R M),
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
(A₁ + A₂) =
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₁ +
(fun A =>
{ bilin := fun i j => bilin A j i,
bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y),
bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x),
bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x),
bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) })
A₂) }
A)
x✝ y✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
A : BilinForm R M
⊢ ↑(flipHomAux R₂) (↑(flipHomAux R₂) A) = A
[PROOFSTEP]
ext A
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
A✝ : BilinForm R M
A y✝ : M
⊢ bilin (↑(flipHomAux R₂) (↑(flipHomAux R₂) A✝)) A y✝ = bilin A✝ A y✝
[PROOFSTEP]
simp [flipHomAux]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
⊢ LinearEquiv.trans (flipHom R₂) (flipHom R₂) = LinearEquiv.refl R₂ (BilinForm R M)
[PROOFSTEP]
ext A
[GOAL]
case h.H
R : Type u_1
M : Type u_2
inst✝¹⁵ : Semiring R
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹² : Ring R₁
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁹ : CommSemiring R₂
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁶ : CommRing R₃
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝ : Algebra R₂ R
A : BilinForm R M
x✝ y✝ : M
⊢ bilin (↑(LinearEquiv.trans (flipHom R₂) (flipHom R₂)) A) x✝ y✝ =
bilin (↑(LinearEquiv.refl R₂ (BilinForm R M)) A) x✝ y✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A : BilinForm R M
x₁ x₂ x : M
⊢ ↑(toLinHomAux₁ A (x₁ + x₂)) x = ↑(toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) x
[PROOFSTEP]
simp only [toLinHomAux₁, LinearMap.coe_mk, LinearMap.add_apply, add_left, AddHom.coe_mk]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A : BilinForm R M
c : R₂
x : M
⊢ ∀ (x_1 : M),
↑(AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
(c • x))
x_1 =
↑(↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
x)
x_1
[PROOFSTEP]
dsimp [toLinHomAux₁]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A : BilinForm R M
c : R₂
x : M
⊢ ∀ (x_1 : M), bilin A (c • x) x_1 = c • bilin A x x_1
[PROOFSTEP]
intros
-- Porting note: moved out of `simp only`
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A : BilinForm R M
c : R₂
x x✝ : M
⊢ bilin A (c • x) x✝ = c • bilin A x x✝
[PROOFSTEP]
rw [← algebraMap_smul R c x]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A : BilinForm R M
c : R₂
x x✝ : M
⊢ bilin A (↑(algebraMap R₂ R) c • x) x✝ = c • bilin A x x✝
[PROOFSTEP]
simp only [Algebra.smul_def, LinearMap.coe_mk, LinearMap.smul_apply, smul_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A₁ A₂ : BilinForm R M
x : M
⊢ ↑(toLinHomAux₂ (A₁ + A₂)) x = ↑(toLinHomAux₂ A₁ + toLinHomAux₂ A₂) x
[PROOFSTEP]
dsimp only [toLinHomAux₁, toLinHomAux₂]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A₁ A₂ : BilinForm R M
x : M
⊢ ↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin (A₁ + A₂) x y,
map_add' :=
(_ : ∀ (y z : M), bilin (A₁ + A₂) x (y + z) = bilin (A₁ + A₂) x y + bilin (A₁ + A₂) x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin (A₁ + A₂) x (c • y) = c * bilin (A₁ + A₂) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (A₁ + A₂),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ (A₁ + A₂),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) =
toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }
x) }
x =
↑({
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A₁ x y,
map_add' := (_ : ∀ (y z : M), bilin A₁ x (y + z) = bilin A₁ x y + bilin A₁ x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A₁ x (c • y) = c * bilin A₁ x y) },
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A₁,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A₁,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }
x) } +
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A₂ x y,
map_add' := (_ : ∀ (y z : M), bilin A₂ x (y + z) = bilin A₂ x y + bilin A₂ x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A₂ x (c • y) = c * bilin A₂ x y) },
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A₂,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A₂,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }
x) })
x
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A₁ A₂ : BilinForm R M
x : M
⊢ ∀ (x_1 : M),
↑(↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin (A₁ + A₂) x y,
map_add' :=
(_ :
∀ (y z : M), bilin (A₁ + A₂) x (y + z) = bilin (A₁ + A₂) x y + bilin (A₁ + A₂) x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin (A₁ + A₂) x (c • y) = c * bilin (A₁ + A₂) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (A₁ + A₂),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) =
toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ (A₁ + A₂),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) =
toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }
x) }
x)
x_1 =
↑(↑({
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A₁ x y,
map_add' := (_ : ∀ (y z : M), bilin A₁ x (y + z) = bilin A₁ x y + bilin A₁ x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A₁ x (c • y) = c * bilin A₁ x y) },
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A₁,
map_add' :=
(_ :
∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A₁,
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }
x) } +
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A₂ x y,
map_add' := (_ : ∀ (y z : M), bilin A₂ x (y + z) = bilin A₂ x y + bilin A₂ x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A₂ x (c • y) = c * bilin A₂ x y) },
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A₂,
map_add' :=
(_ :
∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A₂,
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }
x) })
x)
x_1
[PROOFSTEP]
intro y
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
A₁ A₂ : BilinForm R M
x y : M
⊢ ↑(↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin (A₁ + A₂) x y,
map_add' :=
(_ : ∀ (y z : M), bilin (A₁ + A₂) x (y + z) = bilin (A₁ + A₂) x y + bilin (A₁ + A₂) x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin (A₁ + A₂) x (c • y) = c * bilin (A₁ + A₂) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (A₁ + A₂),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) =
toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ (A₁ + A₂),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) =
toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }
x) }
x)
y =
↑(↑({
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A₁ x y,
map_add' := (_ : ∀ (y z : M), bilin A₁ x (y + z) = bilin A₁ x y + bilin A₁ x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A₁ x (c • y) = c * bilin A₁ x y) },
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A₁,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A₁,
map_add' :=
(_ :
∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }
x) } +
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A₂ x y,
map_add' := (_ : ∀ (y z : M), bilin A₂ x (y + z) = bilin A₂ x y + bilin A₂ x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A₂ x (c • y) = c * bilin A₂ x y) },
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A₂,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A₂,
map_add' :=
(_ :
∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }
x) })
x)
y
[PROOFSTEP]
simp only [toLinHomAux₂, toLinHomAux₁, LinearMap.coe_mk, LinearMap.add_apply, add_apply, AddHom.coe_mk]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
c : R₂
A : BilinForm R M
⊢ AddHom.toFun
{ toFun := toLinHomAux₂,
map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), toLinHomAux₂ (A₁ + A₂) = toLinHomAux₂ A₁ + toLinHomAux₂ A₂) }
(c • A) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₂,
map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), toLinHomAux₂ (A₁ + A₂) = toLinHomAux₂ A₁ + toLinHomAux₂ A₂) }
A
[PROOFSTEP]
dsimp [toLinHomAux₁, toLinHomAux₂]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
c : R₂
A : BilinForm R M
⊢ {
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => c • bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) },
map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) },
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) },
map_smul' :=
(_ :
∀ (c_1 : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
(c_1 • x) =
↑(RingHom.id R₂) c_1 •
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
x) } =
c •
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) },
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
x) }
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
c : R₂
A : BilinForm R M
⊢ ∀ (x : M),
↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => c • bilin A x y,
map_add' :=
(_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) },
map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) },
map_smul' :=
(_ :
∀ (c_1 : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
(c_1 • x) =
↑(RingHom.id R₂) c_1 •
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
x) }
x =
↑(c •
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) },
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
x) })
x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
c : R₂
A : BilinForm R M
x : M
⊢ ↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => c • bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) },
map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) },
map_smul' :=
(_ :
∀ (c_1 : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
(c_1 • x) =
↑(RingHom.id R₂) c_1 •
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
x) }
x =
↑(c •
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) },
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
x) })
x
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
c : R₂
A : BilinForm R M
x : M
⊢ ∀ (x_1 : M),
↑(↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => c • bilin A x y,
map_add' :=
(_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) },
map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) },
map_smul' :=
(_ :
∀ (c_1 : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
(c_1 • x) =
↑(RingHom.id R₂) c_1 •
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) =
toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
x) }
x)
x_1 =
↑(↑(c •
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) },
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ :
∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
x) })
x)
x_1
[PROOFSTEP]
intro y
[GOAL]
case h.h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
D : BilinForm R M
D₁ : BilinForm R₁ M₁
inst✝² : Algebra R₂ R
inst✝¹ : Module R₂ M
inst✝ : IsScalarTower R₂ R M
c : R₂
A : BilinForm R M
x y : M
⊢ ↑(↑{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => c • bilin A x y,
map_add' :=
(_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) },
map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) },
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) },
map_smul' :=
(_ :
∀ (c_1 : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
(c_1 • x) =
↑(RingHom.id R₂) c_1 •
AddHom.toFun
{ toFun := toLinHomAux₁ (c • A),
map_add' :=
(_ :
∀ (x₁ x₂ : M),
toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }
x) }
x)
y =
↑(↑(c •
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun y => bilin A x y,
map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) },
map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) },
map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) },
map_smul' :=
(_ :
∀ (c : R₂) (x : M),
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
(c • x) =
↑(RingHom.id R₂) c •
AddHom.toFun
{ toFun := toLinHomAux₁ A,
map_add' :=
(_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }
x) })
x)
y
[PROOFSTEP]
simp only [toLinHomAux₂, toLinHomAux₁, LinearMap.coe_mk, LinearMap.smul_apply, smul_apply, AddHom.coe_mk]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
f : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂
x y z : M₂
⊢ (fun x y => ↑(↑f x) y) (x + y) z = (fun x y => ↑(↑f x) y) x z + (fun x y => ↑(↑f x) y) y z
[PROOFSTEP]
simp only
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
f : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂
x y z : M₂
⊢ ↑(↑f (x + y)) z = ↑(↑f x) z + ↑(↑f y) z
[PROOFSTEP]
exact (LinearMap.map_add f x y).symm ▸ LinearMap.add_apply (f x) (f y) z
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
f : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂
a : R₂
x y : M₂
⊢ (fun x y => ↑(↑f x) y) (a • x) y = a * (fun x y => ↑(↑f x) y) x y
[PROOFSTEP]
simp only [LinearMap.map_smul, LinearMap.smul_apply, smul_eq_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂
B : BilinForm R₂ M₂
⊢ LinearMap.toBilinAux
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₂) (x : BilinForm R₂ M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
B) =
B
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂
B : BilinForm R₂ M₂
x✝ y✝ : M₂
⊢ bilin
(LinearMap.toBilinAux
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₂) (x : BilinForm R₂ M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
B))
x✝ y✝ =
bilin B x✝ y✝
[PROOFSTEP]
simp [LinearMap.toBilinAux]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂
B : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₂) (x : BilinForm R₂ M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(LinearMap.toBilinAux B) =
B
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂
B : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂
x✝¹ x✝ : M₂
⊢ ↑(↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R₂) (x : BilinForm R₂ M₂),
AddHom.toFun src✝.toAddHom (r • x) =
↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(LinearMap.toBilinAux B))
x✝¹)
x✝ =
↑(↑B x✝¹) x✝
[PROOFSTEP]
simp [LinearMap.toBilinAux]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
R' : Type u_11
inst✝³ : CommSemiring R'
inst✝² : Algebra R' R
inst✝¹ : Module R' M
inst✝ : IsScalarTower R' R M
f : R →ₗ[R'] R'
B : BilinForm R M
x y z : M
⊢ (fun x y => ↑f (BilinForm.bilin B x y)) (x + y) z =
(fun x y => ↑f (BilinForm.bilin B x y)) x z + (fun x y => ↑f (BilinForm.bilin B x y)) y z
[PROOFSTEP]
simp only [BilinForm.add_left, map_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
R' : Type u_11
inst✝³ : CommSemiring R'
inst✝² : Algebra R' R
inst✝¹ : Module R' M
inst✝ : IsScalarTower R' R M
f : R →ₗ[R'] R'
B : BilinForm R M
r : R'
x y : M
⊢ (fun x y => ↑f (BilinForm.bilin B x y)) (r • x) y = r * (fun x y => ↑f (BilinForm.bilin B x y)) x y
[PROOFSTEP]
simp only
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
R' : Type u_11
inst✝³ : CommSemiring R'
inst✝² : Algebra R' R
inst✝¹ : Module R' M
inst✝ : IsScalarTower R' R M
f : R →ₗ[R'] R'
B : BilinForm R M
r : R'
x y : M
⊢ ↑f (BilinForm.bilin B (r • x) y) = r * ↑f (BilinForm.bilin B x y)
[PROOFSTEP]
rw [← smul_one_smul R r (_ : M), BilinForm.smul_left, smul_one_mul r (_ : R), map_smul, smul_eq_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
R' : Type u_11
inst✝³ : CommSemiring R'
inst✝² : Algebra R' R
inst✝¹ : Module R' M
inst✝ : IsScalarTower R' R M
f : R →ₗ[R'] R'
B : BilinForm R M
x y z : M
⊢ (fun x y => ↑f (BilinForm.bilin B x y)) x (y + z) =
(fun x y => ↑f (BilinForm.bilin B x y)) x y + (fun x y => ↑f (BilinForm.bilin B x y)) x z
[PROOFSTEP]
simp only [BilinForm.add_right, map_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
R' : Type u_11
inst✝³ : CommSemiring R'
inst✝² : Algebra R' R
inst✝¹ : Module R' M
inst✝ : IsScalarTower R' R M
f : R →ₗ[R'] R'
B : BilinForm R M
r : R'
x y : M
⊢ (fun x y => ↑f (BilinForm.bilin B x y)) x (r • y) = r * (fun x y => ↑f (BilinForm.bilin B x y)) x y
[PROOFSTEP]
simp only
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
R' : Type u_11
inst✝³ : CommSemiring R'
inst✝² : Algebra R' R
inst✝¹ : Module R' M
inst✝ : IsScalarTower R' R M
f : R →ₗ[R'] R'
B : BilinForm R M
r : R'
x y : M
⊢ ↑f (BilinForm.bilin B x (r • y)) = r * ↑f (BilinForm.bilin B x y)
[PROOFSTEP]
rw [← smul_one_smul R r (_ : M), BilinForm.smul_right, smul_one_mul r (_ : R), map_smul, smul_eq_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M'
l r : M →ₗ[R] M'
x y z : M
⊢ (fun x y => bilin B (↑l x) (↑r y)) (x + y) z =
(fun x y => bilin B (↑l x) (↑r y)) x z + (fun x y => bilin B (↑l x) (↑r y)) y z
[PROOFSTEP]
simp only [LinearMap.map_add, add_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M'
l r : M →ₗ[R] M'
x : R
y z : M
⊢ (fun x y => bilin B (↑l x) (↑r y)) (x • y) z = x * (fun x y => bilin B (↑l x) (↑r y)) y z
[PROOFSTEP]
simp only [LinearMap.map_smul, smul_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M'
l r : M →ₗ[R] M'
x y z : M
⊢ (fun x y => bilin B (↑l x) (↑r y)) x (y + z) =
(fun x y => bilin B (↑l x) (↑r y)) x y + (fun x y => bilin B (↑l x) (↑r y)) x z
[PROOFSTEP]
simp only [LinearMap.map_add, add_right]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M'
l r : M →ₗ[R] M'
x : R
y z : M
⊢ (fun x y => bilin B (↑l x) (↑r y)) y (x • z) = x * (fun x y => bilin B (↑l x) (↑r y)) y z
[PROOFSTEP]
simp only [LinearMap.map_smul, smul_right]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
r : M →ₗ[R] M
⊢ comp B LinearMap.id r = compRight B r
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
r : M →ₗ[R] M
x✝ y✝ : M
⊢ bilin (comp B LinearMap.id r) x✝ y✝ = bilin (compRight B r) x✝ y✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
l : M →ₗ[R] M
⊢ comp B l LinearMap.id = compLeft B l
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
l : M →ₗ[R] M
x✝ y✝ : M
⊢ bilin (comp B l LinearMap.id) x✝ y✝ = bilin (compLeft B l) x✝ y✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
⊢ compLeft B LinearMap.id = B
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
x✝ y✝ : M
⊢ bilin (compLeft B LinearMap.id) x✝ y✝ = bilin B x✝ y✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
⊢ compRight B LinearMap.id = B
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
x✝ y✝ : M
⊢ bilin (compRight B LinearMap.id) x✝ y✝ = bilin B x✝ y✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
⊢ comp B LinearMap.id LinearMap.id = B
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B : BilinForm R M
x✝ y✝ : M
⊢ bilin (comp B LinearMap.id LinearMap.id) x✝ y✝ = bilin B x✝ y✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
⊢ comp B₁ l r = comp B₂ l r ↔ B₁ = B₂
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
⊢ comp B₁ l r = comp B₂ l r → B₁ = B₂
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
⊢ B₁ = B₂ → comp B₁ l r = comp B₂ l r
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : comp B₁ l r = comp B₂ l r
⊢ B₁ = B₂
[PROOFSTEP]
ext x y
[GOAL]
case mp.H
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : comp B₁ l r = comp B₂ l r
x y : M'
⊢ bilin B₁ x y = bilin B₂ x y
[PROOFSTEP]
cases' hₗ x with x' hx
[GOAL]
case mp.H.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : comp B₁ l r = comp B₂ l r
x y : M'
x' : M
hx : ↑l x' = x
⊢ bilin B₁ x y = bilin B₂ x y
[PROOFSTEP]
subst hx
[GOAL]
case mp.H.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : comp B₁ l r = comp B₂ l r
y : M'
x' : M
⊢ bilin B₁ (↑l x') y = bilin B₂ (↑l x') y
[PROOFSTEP]
cases' hᵣ y with y' hy
[GOAL]
case mp.H.intro.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : comp B₁ l r = comp B₂ l r
y : M'
x' y' : M
hy : ↑r y' = y
⊢ bilin B₁ (↑l x') y = bilin B₂ (↑l x') y
[PROOFSTEP]
subst hy
[GOAL]
case mp.H.intro.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : comp B₁ l r = comp B₂ l r
x' y' : M
⊢ bilin B₁ (↑l x') (↑r y') = bilin B₂ (↑l x') (↑r y')
[PROOFSTEP]
rw [← comp_apply, ← comp_apply, h]
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B₁ B₂ : BilinForm R M'
l r : M →ₗ[R] M'
hₗ : Function.Surjective ↑l
hᵣ : Function.Surjective ↑r
h : B₁ = B₂
⊢ comp B₁ l r = comp B₂ l r
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
B B' : BilinForm R₂ M₂
x y : M₂'
⊢ bilin ((fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B')) x y =
bilin
((fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B')
x y
[PROOFSTEP]
simp only [comp_apply, add_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
B : R₂
B' : BilinForm R₂ M₂
x y : M₂'
⊢ bilin
(AddHom.toFun
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }
(B • B'))
x y =
bilin
(↑(RingHom.id R₂) B •
AddHom.toFun
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }
B')
x y
[PROOFSTEP]
simp [comp_apply, smul_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
B : BilinForm R₂ M₂
x y : M₂
⊢ bilin
((fun B => comp B ↑e ↑e)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') },
map_smul' :=
(_ :
∀ (B : R₂) (B' : BilinForm R₂ M₂),
AddHom.toFun
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }
(B • B') =
↑(RingHom.id R₂) B •
AddHom.toFun
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }
B') }.toAddHom
B))
x y =
bilin B x y
[PROOFSTEP]
simp only [comp_apply, LinearEquiv.coe_coe, e.symm_apply_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
B : BilinForm R₂ M₂'
x y : M₂'
⊢ bilin
(AddHom.toFun
{
toAddHom :=
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') },
map_smul' :=
(_ :
∀ (B : R₂) (B' : BilinForm R₂ M₂),
AddHom.toFun
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }
(B • B') =
↑(RingHom.id R₂) B •
AddHom.toFun
{ toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e),
map_add' :=
(_ :
∀ (B B' : BilinForm R₂ M₂),
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') =
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B +
(fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }
B') }.toAddHom
((fun B => comp B ↑e ↑e) B))
x y =
bilin B x y
[PROOFSTEP]
simp only [comp_apply, LinearEquiv.coe_coe, e.apply_symm_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
⊢ LinearEquiv.symm (congr e) = congr (LinearEquiv.symm e)
[PROOFSTEP]
ext
[GOAL]
case h.H
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
x✝¹ : BilinForm R₂ M₂'
x✝ y✝ : M₂
⊢ bilin (↑(LinearEquiv.symm (congr e)) x✝¹) x✝ y✝ = bilin (↑(congr (LinearEquiv.symm e)) x✝¹) x✝ y✝
[PROOFSTEP]
simp only [congr_apply, LinearEquiv.symm_symm]
[GOAL]
case h.H
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
e : M₂ ≃ₗ[R₂] M₂'
x✝¹ : BilinForm R₂ M₂'
x✝ y✝ : M₂
⊢ bilin (↑(LinearEquiv.symm (congr e)) x✝¹) x✝ y✝ = bilin x✝¹ (↑e x✝) (↑e y✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
f g : M₂ →ₗ[R₂] R₂
x y z : M₂
⊢ (fun x y => ↑f x * ↑g y) (x + y) z = (fun x y => ↑f x * ↑g y) x z + (fun x y => ↑f x * ↑g y) y z
[PROOFSTEP]
simp only [LinearMap.map_add, add_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
f g : M₂ →ₗ[R₂] R₂
x : R₂
y z : M₂
⊢ (fun x y => ↑f x * ↑g y) (x • y) z = x * (fun x y => ↑f x * ↑g y) y z
[PROOFSTEP]
simp only [LinearMap.map_smul, smul_eq_mul, mul_assoc]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
f g : M₂ →ₗ[R₂] R₂
x y z : M₂
⊢ (fun x y => ↑f x * ↑g y) x (y + z) = (fun x y => ↑f x * ↑g y) x y + (fun x y => ↑f x * ↑g y) x z
[PROOFSTEP]
simp only [LinearMap.map_add, mul_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
f g : M₂ →ₗ[R₂] R₂
x : R₂
y z : M₂
⊢ (fun x y => ↑f x * ↑g y) y (x • z) = x * (fun x y => ↑f x * ↑g y) y z
[PROOFSTEP]
simp only [LinearMap.map_smul, smul_eq_mul, mul_left_comm]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
x y : M₄
a : R₄
ha : a ≠ 0
⊢ IsOrtho G (a • x) y ↔ IsOrtho G x y
[PROOFSTEP]
dsimp only [IsOrtho]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
x y : M₄
a : R₄
ha : a ≠ 0
⊢ bilin G (a • x) y = 0 ↔ bilin G x y = 0
[PROOFSTEP]
rw [smul_left, mul_eq_zero, or_iff_right ha]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
x y : M₄
a : R₄
ha : a ≠ 0
⊢ IsOrtho G x (a • y) ↔ IsOrtho G x y
[PROOFSTEP]
dsimp only [IsOrtho]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
x y : M₄
a : R₄
ha : a ≠ 0
⊢ bilin G x (a • y) = 0 ↔ bilin G x y = 0
[PROOFSTEP]
rw [smul_right, mul_eq_zero, or_iff_right ha]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
⊢ LinearIndependent K v
[PROOFSTEP]
classical
rw [linearIndependent_iff']
intro s w hs i hi
have : B (s.sum fun i : n => w i • v i) (v i) = 0 := by rw [hs, zero_left]
have hsum : (s.sum fun j : n => w j * B (v j) (v i)) = w i * B (v i) (v i) :=
by
apply Finset.sum_eq_single_of_mem i hi
intro j _ hij
rw [iIsOrtho_def.1 hv₁ _ _ hij, mul_zero]
simp_rw [sum_left, smul_left, hsum] at this
exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
⊢ LinearIndependent K v
[PROOFSTEP]
rw [linearIndependent_iff']
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
⊢ ∀ (s : Finset n) (g : n → K), ∑ i in s, g i • v i = 0 → ∀ (i : n), i ∈ s → g i = 0
[PROOFSTEP]
intro s w hs i hi
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
⊢ w i = 0
[PROOFSTEP]
have : B (s.sum fun i : n => w i • v i) (v i) = 0 := by rw [hs, zero_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
⊢ bilin B (∑ i in s, w i • v i) (v i) = 0
[PROOFSTEP]
rw [hs, zero_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : bilin B (∑ i in s, w i • v i) (v i) = 0
⊢ w i = 0
[PROOFSTEP]
have hsum : (s.sum fun j : n => w j * B (v j) (v i)) = w i * B (v i) (v i) :=
by
apply Finset.sum_eq_single_of_mem i hi
intro j _ hij
rw [iIsOrtho_def.1 hv₁ _ _ hij, mul_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : bilin B (∑ i in s, w i • v i) (v i) = 0
⊢ ∑ j in s, w j * bilin B (v j) (v i) = w i * bilin B (v i) (v i)
[PROOFSTEP]
apply Finset.sum_eq_single_of_mem i hi
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : bilin B (∑ i in s, w i • v i) (v i) = 0
⊢ ∀ (b : n), b ∈ s → b ≠ i → w b * bilin B (v b) (v i) = 0
[PROOFSTEP]
intro j _ hij
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : bilin B (∑ i in s, w i • v i) (v i) = 0
j : n
a✝ : j ∈ s
hij : j ≠ i
⊢ w j * bilin B (v j) (v i) = 0
[PROOFSTEP]
rw [iIsOrtho_def.1 hv₁ _ _ hij, mul_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
this : bilin B (∑ i in s, w i • v i) (v i) = 0
hsum : ∑ j in s, w j * bilin B (v j) (v i) = w i * bilin B (v i) (v i)
⊢ w i = 0
[PROOFSTEP]
simp_rw [sum_left, smul_left, hsum] at this
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
R₄ : Type u_13
M₄ : Type u_14
inst✝³ : Ring R₄
inst✝² : IsDomain R₄
inst✝¹ : AddCommGroup M₄
inst✝ : Module R₄ M₄
G : BilinForm R₄ M₄
n : Type w
B : BilinForm K V
v : n → V
hv₁ : iIsOrtho B v
hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i)
s : Finset n
w : n → K
hs : ∑ i in s, w i • v i = 0
i : n
hi : i ∈ s
hsum : ∑ j in s, w j * bilin B (v j) (v i) = w i * bilin B (v i) (v i)
this : w i * bilin B (v i) (v i) = 0
⊢ w i = 0
[PROOFSTEP]
exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
F₂ : BilinForm R₂ M₂
ι : Type u_13
b : Basis ι R₂ M₂
x y : M₂
⊢ (Finsupp.sum (↑b.repr x) fun i xi => Finsupp.sum (↑b.repr y) fun j yj => xi • yj • bilin B₂ (↑b i) (↑b j)) =
bilin B₂ x y
[PROOFSTEP]
conv_rhs => rw [← b.total_repr x, ← b.total_repr y]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
F₂ : BilinForm R₂ M₂
ι : Type u_13
b : Basis ι R₂ M₂
x y : M₂
| bilin B₂ x y
[PROOFSTEP]
rw [← b.total_repr x, ← b.total_repr y]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
F₂ : BilinForm R₂ M₂
ι : Type u_13
b : Basis ι R₂ M₂
x y : M₂
| bilin B₂ x y
[PROOFSTEP]
rw [← b.total_repr x, ← b.total_repr y]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
F₂ : BilinForm R₂ M₂
ι : Type u_13
b : Basis ι R₂ M₂
x y : M₂
| bilin B₂ x y
[PROOFSTEP]
rw [← b.total_repr x, ← b.total_repr y]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
F₂ : BilinForm R₂ M₂
ι : Type u_13
b : Basis ι R₂ M₂
x y : M₂
⊢ (Finsupp.sum (↑b.repr x) fun i xi => Finsupp.sum (↑b.repr y) fun j yj => xi • yj • bilin B₂ (↑b i) (↑b j)) =
bilin B₂ (↑(Finsupp.total ι M₂ R₂ ↑b) (↑b.repr x)) (↑(Finsupp.total ι M₂ R₂ ↑b) (↑b.repr y))
[PROOFSTEP]
simp_rw [Finsupp.total_apply, Finsupp.sum, sum_left, sum_right, smul_left, smul_right, smul_eq_mul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁹ : Semiring R
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁶ : Ring R₁
inst✝¹⁵ : AddCommGroup M₁
inst✝¹⁴ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹³ : CommSemiring R₂
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁰ : CommRing R₃
inst✝⁹ : AddCommGroup M₃
inst✝⁸ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁴ : AddCommMonoid M₂'
inst✝³ : AddCommMonoid M₂''
inst✝² : Module R₂ M₂'
inst✝¹ : Module R₂ M₂''
inst✝ : Algebra R₂ R
x✝¹ x✝ : M
⊢ bilin B x✝¹ x✝ = bilin B x✝ x✝¹ ↔ bilin (↑(flipHom R₂) B) x✝¹ x✝ = bilin B x✝¹ x✝
[PROOFSTEP]
exact eq_comm
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
H : IsAlt B₁
x y : M₁
⊢ -bilin B₁ x y = bilin B₁ y x
[PROOFSTEP]
have H1 : B₁ (x + y) (x + y) = 0 := self_eq_zero H (x + y)
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
H : IsAlt B₁
x y : M₁
H1 : bilin B₁ (x + y) (x + y) = 0
⊢ -bilin B₁ x y = bilin B₁ y x
[PROOFSTEP]
rw [add_left, add_right, add_right, self_eq_zero H, self_eq_zero H, zero_add, add_zero, add_eq_zero_iff_neg_eq] at H1
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
H : IsAlt B₁
x y : M₁
H1 : -bilin B₁ x y = bilin B₁ y x
⊢ -bilin B₁ x y = bilin B₁ y x
[PROOFSTEP]
exact H1
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
H : IsAlt B₁
⊢ IsRefl B₁
[PROOFSTEP]
intro x y h
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝³ : AddCommMonoid M₂'
inst✝² : AddCommMonoid M₂''
inst✝¹ : Module R₂ M₂'
inst✝ : Module R₂ M₂''
H : IsAlt B₁
x y : M₁
h : bilin B₁ x y = 0
⊢ bilin B₁ y x = 0
[PROOFSTEP]
rw [← neg_eq H, h, neg_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
⊢ IsAdjointPair B F f g ↔ compLeft F f = compRight B g
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
⊢ IsAdjointPair B F f g → compLeft F f = compRight B g
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
⊢ compLeft F f = compRight B g → IsAdjointPair B F f g
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
h : IsAdjointPair B F f g
⊢ compLeft F f = compRight B g
[PROOFSTEP]
ext x
[GOAL]
case mp.H
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
h : IsAdjointPair B F f g
x y✝ : M
⊢ bilin (compLeft F f) x y✝ = bilin (compRight B g) x y✝
[PROOFSTEP]
simp only [compLeft_apply, compRight_apply]
[GOAL]
case mp.H
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
h : IsAdjointPair B F f g
x y✝ : M
⊢ bilin F (↑f x) y✝ = bilin B x (↑g y✝)
[PROOFSTEP]
apply h
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
h : compLeft F f = compRight B g
⊢ IsAdjointPair B F f g
[PROOFSTEP]
intro x y
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
h : compLeft F f = compRight B g
x y : M
⊢ bilin F (↑f x) y = bilin B x (↑g y)
[PROOFSTEP]
rw [← compLeft_apply, ← compRight_apply]
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g✝ g' : M' →ₗ[R] M
f g : Module.End R M
h : compLeft F f = compRight B g
x y : M
⊢ bilin (compLeft F f) x y = bilin (compRight B g) x y
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
x : M
y : M'
⊢ bilin B' (↑0 x) y = bilin B x (↑0 y)
[PROOFSTEP]
simp only [BilinForm.zero_left, BilinForm.zero_right, LinearMap.zero_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁰ : Semiring R
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁷ : Ring R₁
inst✝¹⁶ : AddCommGroup M₁
inst✝¹⁵ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁴ : CommSemiring R₂
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹¹ : CommRing R₃
inst✝¹⁰ : AddCommGroup M₃
inst✝⁹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁸ : Field K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁵ : AddCommMonoid M₂'
inst✝⁴ : AddCommMonoid M₂''
inst✝³ : Module R₂ M₂'
inst✝² : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
B' : BilinForm R M'
f f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
h : IsAdjointPair B B' f g
h' : IsAdjointPair B B' f' g'
x : M
y : M'
⊢ bilin B' (↑(f + f') x) y = bilin B x (↑(g + g') y)
[PROOFSTEP]
rw [LinearMap.add_apply, LinearMap.add_apply, add_left, add_right, h, h']
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
B' : BilinForm R M'
f f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝¹ : AddCommGroup M₁'
inst✝ : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
h : IsAdjointPair B₁ B₁' f₁ g₁
h' : IsAdjointPair B₁ B₁' f₁' g₁'
x : M₁
y : M₁'
⊢ bilin B₁' (↑(f₁ - f₁') x) y = bilin B₁ x (↑(g₁ - g₁') y)
[PROOFSTEP]
rw [LinearMap.sub_apply, LinearMap.sub_apply, sub_left, sub_right, h, h']
[GOAL]
R : Type u_1
M : Type u_2
inst✝²² : Semiring R
inst✝²¹ : AddCommMonoid M
inst✝²⁰ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁹ : Ring R₁
inst✝¹⁸ : AddCommGroup M₁
inst✝¹⁷ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁶ : CommSemiring R₂
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹³ : CommRing R₃
inst✝¹² : AddCommGroup M₃
inst✝¹¹ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹⁰ : Field K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁷ : AddCommMonoid M₂'
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : Module R₂ M₂'
inst✝⁴ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝³ : AddCommMonoid M'
inst✝² : Module R M'
B' : BilinForm R M'
f f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝¹ : AddCommGroup M₁'
inst✝ : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
c : R₂
h : IsAdjointPair B₂ B₂' f₂ g₂
x : M₂
y : M₂'
⊢ bilin B₂' (↑(c • f₂) x) y = bilin B₂ x (↑(c • g₂) y)
[PROOFSTEP]
rw [LinearMap.smul_apply, LinearMap.smul_apply, smul_left, smul_right, h]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f f'✝ : M →ₗ[R] M'
g g'✝ : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
f' : M' →ₗ[R] M''
g' : M'' →ₗ[R] M'
h : IsAdjointPair B B' f g
h' : IsAdjointPair B' B'' f' g'
x : M
y : M''
⊢ bilin B'' (↑(LinearMap.comp f' f) x) y = bilin B x (↑(LinearMap.comp g g') y)
[PROOFSTEP]
rw [LinearMap.comp_apply, LinearMap.comp_apply, h', h]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f'✝ : M →ₗ[R] M'
g✝ g'✝ : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
f g f' g' : Module.End R M
h : IsAdjointPair B B f g
h' : IsAdjointPair B B f' g'
x y : M
⊢ bilin B (↑(f * f') x) y = bilin B x (↑(g' * g) y)
[PROOFSTEP]
rw [LinearMap.mul_apply, LinearMap.mul_apply, h, h']
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
f : Module.End R₂ M₂
⊢ f ∈ isPairSelfAdjointSubmodule B₂ F₂ ↔ IsPairSelfAdjoint B₂ F₂ f
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
⊢ IsPairSelfAdjoint B₂ F₂ f ↔
IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
have hₗ : (F₂.comp ↑e ↑e).compLeft (e.symm.conj f) = (F₂.compLeft f).comp ↑e ↑e :=
by
ext
simp [LinearEquiv.symm_conj_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
⊢ compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
x✝ y✝ : M₂'
⊢ bilin (compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝ y✝ =
bilin (comp (compLeft F₂ f) ↑e ↑e) x✝ y✝
[PROOFSTEP]
simp [LinearEquiv.symm_conj_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
⊢ IsPairSelfAdjoint B₂ F₂ f ↔
IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
have hᵣ : (B₂.comp ↑e ↑e).compRight (e.symm.conj f) = (B₂.compRight f).comp ↑e ↑e :=
by
ext
simp [LinearEquiv.conj_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
⊢ compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
x✝ y✝ : M₂'
⊢ bilin (compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝ y✝ =
bilin (comp (compRight B₂ f) ↑e ↑e) x✝ y✝
[PROOFSTEP]
simp [LinearEquiv.conj_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
hᵣ : compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e
⊢ IsPairSelfAdjoint B₂ F₂ f ↔
IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
have he : Function.Surjective (⇑(↑e : M₂' →ₗ[R₂] M₂) : M₂' → M₂) := e.surjective
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
hᵣ : compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e
he : Function.Surjective ↑↑e
⊢ IsPairSelfAdjoint B₂ F₂ f ↔
IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
show BilinForm.IsAdjointPair _ _ _ _ ↔ BilinForm.IsAdjointPair _ _ _ _
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
e : M₂' ≃ₗ[R₂] M₂
f : Module.End R₂ M₂
hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e
hᵣ : compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e
he : Function.Surjective ↑↑e
⊢ IsAdjointPair B₂ F₂ f f ↔
IsAdjointPair (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
(↑(LinearEquiv.conj (LinearEquiv.symm e)) f)
[PROOFSTEP]
rw [isAdjointPair_iff_compLeft_eq_compRight, isAdjointPair_iff_compLeft_eq_compRight, hᵣ, hₗ, comp_inj _ _ he he]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
f : Module.End R₁ M₁
⊢ (∀ (x y : M₁), bilin B₁ (↑f x) y = bilin B₁ x (↑(-f) y)) ↔ ∀ (x y : M₁), bilin B₁ (↑f x) y = bilin (-B₁) x (↑f y)
[PROOFSTEP]
simp only [LinearMap.neg_apply, BilinForm.neg_apply, BilinForm.neg_right]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
B₃ : BilinForm R₃ M₃
f : Module.End R₃ M₃
⊢ f ∈ skewAdjointSubmodule B₃ ↔ IsSkewAdjoint B₃ f
[PROOFSTEP]
rw [isSkewAdjoint_iff_neg_self_adjoint]
[GOAL]
R : Type u_1
M : Type u_2
inst✝²⁴ : Semiring R
inst✝²³ : AddCommMonoid M
inst✝²² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝²¹ : Ring R₁
inst✝²⁰ : AddCommGroup M₁
inst✝¹⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁸ : CommSemiring R₂
inst✝¹⁷ : AddCommMonoid M₂
inst✝¹⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁵ : CommRing R₃
inst✝¹⁴ : AddCommGroup M₃
inst✝¹³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝¹² : Field K
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module K V
B : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
M₂'' : Type u_12
inst✝⁹ : AddCommMonoid M₂'
inst✝⁸ : AddCommMonoid M₂''
inst✝⁷ : Module R₂ M₂'
inst✝⁶ : Module R₂ M₂''
F : BilinForm R M
M' : Type u_13
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : Module R M'
B' : BilinForm R M'
f✝ f' : M →ₗ[R] M'
g g' : M' →ₗ[R] M
M₁' : Type u_14
inst✝³ : AddCommGroup M₁'
inst✝² : Module R₁ M₁'
B₁' : BilinForm R₁ M₁'
f₁ f₁' : M₁ →ₗ[R₁] M₁'
g₁ g₁' : M₁' →ₗ[R₁] M₁
B₂' : BilinForm R₂ M₂'
f₂ f₂' : M₂ →ₗ[R₂] M₂'
g₂ g₂' : M₂' →ₗ[R₂] M₂
M'' : Type u_15
inst✝¹ : AddCommMonoid M''
inst✝ : Module R M''
B'' : BilinForm R M''
F₂ : BilinForm R₂ M₂
B₃ : BilinForm R₃ M₃
f : Module.End R₃ M₃
⊢ f ∈ skewAdjointSubmodule B₃ ↔ IsAdjointPair (-B₃) B₃ f f
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
B : BilinForm R M
N : Submodule R M
x y : M
hx : x ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m}
hy : y ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m}
n : M
hn : n ∈ N
⊢ IsOrtho B n (x + y)
[PROOFSTEP]
rw [IsOrtho, add_right, show B n x = 0 from hx n hn, show B n y = 0 from hy n hn, zero_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
B : BilinForm R M
N : Submodule R M
c : R
x : M
hx :
x ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (n : M), n ∈ N → IsOrtho B n m},
add_mem' :=
(_ :
∀ {x y : M},
x ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m} →
y ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m} → ∀ (n : M), n ∈ N → IsOrtho B n (x + y)) },
zero_mem' := (_ : ∀ (x : M), x ∈ N → IsOrtho B x 0) }.toAddSubsemigroup.carrier
n : M
hn : n ∈ N
⊢ IsOrtho B n (c • x)
[PROOFSTEP]
rw [IsOrtho, smul_right, show B n x = 0 from hx n hn, mul_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
⊢ Submodule.span K {x} ⊓ orthogonal B (Submodule.span K {x}) = ⊥
[PROOFSTEP]
rw [← Finset.coe_singleton]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
⊢ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) = ⊥
[PROOFSTEP]
refine' eq_bot_iff.2 fun y h => _
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
y : V
h : y ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
⊢ y ∈ ⊥
[PROOFSTEP]
rcases mem_span_finset.1 h.1 with ⟨μ, rfl⟩
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
⊢ ∑ i in {x}, μ i • i ∈ ⊥
[PROOFSTEP]
have := h.2 x ?_
[GOAL]
case intro.refine_2
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
this : IsOrtho B x (∑ i in {x}, μ i • i)
⊢ ∑ i in {x}, μ i • i ∈ ⊥
[PROOFSTEP]
rw [Finset.sum_singleton] at this ⊢
[GOAL]
case intro.refine_2
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
this : IsOrtho B x (μ x • x)
⊢ μ x • x ∈ ⊥
[PROOFSTEP]
suffices hμzero : μ x = 0
[GOAL]
case intro.refine_2
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
this : IsOrtho B x (μ x • x)
hμzero : μ x = 0
⊢ μ x • x ∈ ⊥
[PROOFSTEP]
rw [hμzero, zero_smul, Submodule.mem_bot]
[GOAL]
case hμzero
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
this : IsOrtho B x (μ x • x)
⊢ μ x = 0
[PROOFSTEP]
change B x (μ x • x) = 0 at this
[GOAL]
case hμzero
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
this : bilin B x (μ x • x) = 0
⊢ μ x = 0
[PROOFSTEP]
rw [smul_right] at this
[GOAL]
case hμzero
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
this : μ x * bilin B x x = 0
⊢ μ x = 0
[PROOFSTEP]
exact eq_zero_of_ne_zero_of_mul_right_eq_zero hx this
[GOAL]
case intro.refine_1
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
⊢ x ∈ Submodule.span K ↑{x}
[PROOFSTEP]
rw [Submodule.mem_span]
[GOAL]
case intro.refine_1
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
μ : V → K
h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x})
⊢ ∀ (p : Submodule K V), ↑{x} ⊆ ↑p → x ∈ p
[PROOFSTEP]
exact fun _ hp => hp <| Finset.mem_singleton_self _
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
⊢ orthogonal B (Submodule.span K {x}) = LinearMap.ker (↑(↑toLin B) x)
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x y : V
⊢ y ∈ orthogonal B (Submodule.span K {x}) ↔ y ∈ LinearMap.ker (↑(↑toLin B) x)
[PROOFSTEP]
simp_rw [mem_orthogonal_iff, LinearMap.mem_ker, Submodule.mem_span_singleton]
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x y : V
⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) ↔ ↑(↑(↑toLin B) x) y = 0
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x y : V
⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) → ↑(↑(↑toLin B) x) y = 0
[PROOFSTEP]
exact fun h => h x ⟨1, one_smul _ _⟩
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x y : V
⊢ ↑(↑(↑toLin B) x) y = 0 → ∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y
[PROOFSTEP]
rintro h _ ⟨z, rfl⟩
[GOAL]
case h.mpr.intro
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x y : V
h : ↑(↑(↑toLin B) x) y = 0
z : K
⊢ IsOrtho B (z • x) y
[PROOFSTEP]
rw [IsOrtho, smul_left, mul_eq_zero]
[GOAL]
case h.mpr.intro
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x y : V
h : ↑(↑(↑toLin B) x) y = 0
z : K
⊢ z = 0 ∨ bilin B x y = 0
[PROOFSTEP]
exact Or.intro_right _ h
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
⊢ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) = ⊤
[PROOFSTEP]
rw [orthogonal_span_singleton_eq_toLin_ker]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁴ : Semiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹¹ : Ring R₁
inst✝¹⁰ : AddCommGroup M₁
inst✝⁹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝⁸ : CommSemiring R₂
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁵ : CommRing R₃
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
N L : Submodule R M
B : BilinForm K V
x : V
hx : ¬IsOrtho B x x
⊢ Submodule.span K {x} ⊔ LinearMap.ker (↑(↑toLin B) x) = ⊤
[PROOFSTEP]
exact LinearMap.span_singleton_sup_ker_eq_top _ hx
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
e : M₂ ≃ₗ[R₂] M₂'
h : Nondegenerate (↑(congr e) B)
⊢ Nondegenerate B
[PROOFSTEP]
convert h.congr e.symm
[GOAL]
case h.e'_6
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
e : M₂ ≃ₗ[R₂] M₂'
h : Nondegenerate (↑(congr e) B)
⊢ B = ↑(congr (LinearEquiv.symm e)) (↑(congr e) B)
[PROOFSTEP]
rw [congr_congr, e.self_trans_symm, congr_refl, LinearEquiv.refl_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
⊢ Nondegenerate B ↔ LinearMap.ker (↑toLin B) = ⊥
[PROOFSTEP]
rw [LinearMap.ker_eq_bot']
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
⊢ Nondegenerate B ↔ ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
⊢ Nondegenerate B → ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
⊢ (∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0) → Nondegenerate B
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : Nondegenerate B
⊢ ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
[PROOFSTEP]
refine' fun m hm => h _ fun x => _
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : Nondegenerate B
m : M₂
hm : ↑(↑toLin B) m = 0
x : M₂
⊢ bilin B m x = 0
[PROOFSTEP]
rw [← toLin_apply, hm]
[GOAL]
case mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : Nondegenerate B
m : M₂
hm : ↑(↑toLin B) m = 0
x : M₂
⊢ ↑0 x = 0
[PROOFSTEP]
rfl
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
⊢ Nondegenerate B
[PROOFSTEP]
intro m hm
[GOAL]
case mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
m : M₂
hm : ∀ (n : M₂), bilin B m n = 0
⊢ m = 0
[PROOFSTEP]
apply h
[GOAL]
case mpr.a
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
m : M₂
hm : ∀ (n : M₂), bilin B m n = 0
⊢ ↑(↑toLin B) m = 0
[PROOFSTEP]
ext x
[GOAL]
case mpr.a.h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₂ M₂
h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0
m : M₂
hm : ∀ (n : M₂), bilin B m n = 0
x : M₂
⊢ ↑(↑(↑toLin B) m) x = ↑0 x
[PROOFSTEP]
exact hm x
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : IsRefl B
W : Submodule R₁ M₁
hW : Disjoint W (orthogonal B W)
⊢ Nondegenerate (restrict B W)
[PROOFSTEP]
rintro ⟨x, hx⟩ b₁
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : IsRefl B
W : Submodule R₁ M₁
hW : Disjoint W (orthogonal B W)
x : M₁
hx : x ∈ W
b₁ : ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx } n = 0
⊢ { val := x, property := hx } = 0
[PROOFSTEP]
rw [Submodule.mk_eq_zero, ← Submodule.mem_bot R₁]
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : IsRefl B
W : Submodule R₁ M₁
hW : Disjoint W (orthogonal B W)
x : M₁
hx : x ∈ W
b₁ : ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx } n = 0
⊢ x ∈ ⊥
[PROOFSTEP]
refine' hW.le_bot ⟨hx, fun y hy => _⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : IsRefl B
W : Submodule R₁ M₁
hW : Disjoint W (orthogonal B W)
x : M₁
hx : x ∈ W
b₁ : ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx } n = 0
y : M₁
hy : y ∈ W
⊢ IsOrtho B y x
[PROOFSTEP]
specialize b₁ ⟨y, hy⟩
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : IsRefl B
W : Submodule R₁ M₁
hW : Disjoint W (orthogonal B W)
x : M₁
hx : x ∈ W
y : M₁
hy : y ∈ W
b₁ : bilin (restrict B W) { val := x, property := hx } { val := y, property := hy } = 0
⊢ IsOrtho B y x
[PROOFSTEP]
rw [restrict_apply, Submodule.coe_mk, Submodule.coe_mk] at b₁
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : IsRefl B
W : Submodule R₁ M₁
hW : Disjoint W (orthogonal B W)
x : M₁
hx : x ∈ W
y : M₁
hy : y ∈ W
b₁ : bilin B x y = 0
⊢ IsOrtho B y x
[PROOFSTEP]
exact isOrtho_def.mpr (b x y b₁)
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
⊢ ¬IsOrtho B (↑v i) (↑v i)
[PROOFSTEP]
intro ho
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
⊢ False
[PROOFSTEP]
refine' v.ne_zero i (hB (v i) fun m => _)
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
m : M
⊢ bilin B (↑v i) m = 0
[PROOFSTEP]
obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ bilin B (↑v i) (↑(LinearEquiv.symm v.repr) vi) = 0
[PROOFSTEP]
rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, sum_right]
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ ∑ i_1 in vi.support, bilin B (↑v i) (↑vi i_1 • ↑v i_1) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ ∀ (x : n), x ∈ vi.support → bilin B (↑v i) (↑vi x • ↑v x) = 0
[PROOFSTEP]
rintro j -
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
⊢ bilin B (↑v i) (↑vi j • ↑v j) = 0
[PROOFSTEP]
rw [smul_right]
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
⊢ ↑vi j * bilin B (↑v i) (↑v j) = 0
[PROOFSTEP]
convert mul_zero (vi j) using 2
[GOAL]
case h.e'_2.h.e'_6
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
⊢ bilin B (↑v i) (↑v j) = 0
[PROOFSTEP]
obtain rfl | hij := eq_or_ne i j
[GOAL]
case h.e'_2.h.e'_6.inl
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
⊢ bilin B (↑v i) (↑v i) = 0
[PROOFSTEP]
exact ho
[GOAL]
case h.e'_2.h.e'_6.inr
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
n : Type w
inst✝ : Nontrivial R
B : BilinForm R M
v : Basis n R M
h : iIsOrtho B ↑v
hB : Nondegenerate B
i : n
ho : IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
j : n
hij : i ≠ j
⊢ bilin B (↑v i) (↑v j) = 0
[PROOFSTEP]
exact h hij
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
⊢ Nondegenerate B ↔ ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
[PROOFSTEP]
refine' ⟨hO.not_isOrtho_basis_self_of_nondegenerate, fun ho m hB => _⟩
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
m : M
hB : ∀ (n : M), bilin B m n = 0
⊢ m = 0
[PROOFSTEP]
obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0
⊢ ↑(LinearEquiv.symm v.repr) vi = 0
[PROOFSTEP]
rw [LinearEquiv.map_eq_zero_iff]
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0
⊢ vi = 0
[PROOFSTEP]
ext i
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0
i : n
⊢ ↑vi i = ↑0 i
[PROOFSTEP]
rw [Finsupp.zero_apply]
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0
i : n
⊢ ↑vi i = 0
[PROOFSTEP]
specialize hB (v i)
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : bilin B (↑(LinearEquiv.symm v.repr) vi) (↑v i) = 0
⊢ ↑vi i = 0
[PROOFSTEP]
simp_rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, sum_left, smul_left] at hB
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
⊢ ↑vi i = 0
[PROOFSTEP]
rw [Finset.sum_eq_single i] at hB
[GOAL]
case intro.h
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ↑vi i * bilin B (↑v i) (↑v i) = 0
⊢ ↑vi i = 0
[PROOFSTEP]
exact eq_zero_of_ne_zero_of_mul_right_eq_zero (ho i) hB
[GOAL]
case intro.h.h₀
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
⊢ ∀ (b : n), b ∈ vi.support → b ≠ i → ↑vi b * bilin B (↑v b) (↑v i) = 0
[PROOFSTEP]
intro j _ hij
[GOAL]
case intro.h.h₀
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
j : n
a✝ : j ∈ vi.support
hij : j ≠ i
⊢ ↑vi j * bilin B (↑v j) (↑v i) = 0
[PROOFSTEP]
convert mul_zero (vi j) using 2
[GOAL]
case h.e'_2.h.e'_6
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
j : n
a✝ : j ∈ vi.support
hij : j ≠ i
⊢ bilin B (↑v j) (↑v i) = 0
[PROOFSTEP]
exact hO hij
[GOAL]
case intro.h.h₁
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
⊢ ¬i ∈ vi.support → ↑vi i * bilin B (↑v i) (↑v i) = 0
[PROOFSTEP]
intro hi
[GOAL]
case intro.h.h₁
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
hi : ¬i ∈ vi.support
⊢ ↑vi i * bilin B (↑v i) (↑v i) = 0
[PROOFSTEP]
convert zero_mul (M₀ := R) _ using 2
[GOAL]
case h.e'_2.h.e'_5
R : Type u_1
M : Type u_2
inst✝¹⁸ : Semiring R
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁵ : Ring R₁
inst✝¹⁴ : AddCommGroup M₁
inst✝¹³ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹² : CommSemiring R₂
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁹ : CommRing R₃
inst✝⁸ : AddCommGroup M₃
inst✝⁷ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝³ : AddCommMonoid M₂'
inst✝² : Module R₂ M₂'
n : Type w
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors R
B : BilinForm R M
v : Basis n R M
hO : iIsOrtho B ↑v
ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i)
vi : n →₀ R
i : n
hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0
hi : ¬i ∈ vi.support
⊢ ↑vi i = 0
[PROOFSTEP]
exact Finsupp.not_mem_support_iff.mp hi
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
⊢ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) = W ⊓ orthogonal B ⊤
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
⊢ x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) ↔ x ∈ W ⊓ orthogonal B ⊤
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
⊢ x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) → x ∈ W ⊓ orthogonal B ⊤
[PROOFSTEP]
intro hx
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
⊢ x ∈ W ⊓ orthogonal B ⊤ → x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W))
[PROOFSTEP]
intro hx
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W))
⊢ x ∈ W ⊓ orthogonal B ⊤
[PROOFSTEP]
rcases hx with ⟨⟨x, hx⟩, hker, rfl⟩
[GOAL]
case h.mp.intro.mk.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : { val := x, property := hx } ∈ ↑(LinearMap.ker (LinearMap.domRestrict (↑toLin B) W))
⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ W ⊓ orthogonal B ⊤
[PROOFSTEP]
erw [LinearMap.mem_ker] at hker
[GOAL]
case h.mp.intro.mk.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ W ⊓ orthogonal B ⊤
[PROOFSTEP]
constructor
[GOAL]
case h.mp.intro.mk.intro.left
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ ↑W
[PROOFSTEP]
simp [hx]
[GOAL]
case h.mp.intro.mk.intro.right
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ ↑(orthogonal B ⊤)
[PROOFSTEP]
intro y _
[GOAL]
case h.mp.intro.mk.intro.right
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
y : V
a✝ : y ∈ ⊤
⊢ IsOrtho B y (↑(Submodule.subtype W) { val := x, property := hx })
[PROOFSTEP]
rw [IsOrtho, b]
[GOAL]
case h.mp.intro.mk.intro.right.a
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
y : V
a✝ : y ∈ ⊤
⊢ bilin B (↑(Submodule.subtype W) { val := x, property := hx }) y = 0
[PROOFSTEP]
change (B.toLin.domRestrict W) ⟨x, hx⟩ y = 0
[GOAL]
case h.mp.intro.mk.intro.right.a
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
y : V
a✝ : y ∈ ⊤
⊢ ↑(↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx }) y = 0
[PROOFSTEP]
rw [hker]
[GOAL]
case h.mp.intro.mk.intro.right.a
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W
hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0
y : V
a✝ : y ∈ ⊤
⊢ ↑0 y = 0
[PROOFSTEP]
rfl
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W ⊓ orthogonal B ⊤
⊢ x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W))
[PROOFSTEP]
simp_rw [Submodule.mem_map, LinearMap.mem_ker]
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W ⊓ orthogonal B ⊤
⊢ ∃ y, ↑(LinearMap.domRestrict (↑toLin B) W) y = 0 ∧ ↑(Submodule.subtype W) y = x
[PROOFSTEP]
refine' ⟨⟨x, hx.1⟩, _, rfl⟩
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W ⊓ orthogonal B ⊤
⊢ ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := (_ : x ∈ ↑W) } = 0
[PROOFSTEP]
ext y
[GOAL]
case h.mpr.h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W ⊓ orthogonal B ⊤
y : V
⊢ ↑(↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := (_ : x ∈ ↑W) }) y = ↑0 y
[PROOFSTEP]
change B x y = 0
[GOAL]
case h.mpr.h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W ⊓ orthogonal B ⊤
y : V
⊢ bilin B x y = 0
[PROOFSTEP]
rw [b]
[GOAL]
case h.mpr.h.a
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
b : IsRefl B
x : V
hx : x ∈ W ⊓ orthogonal B ⊤
y : V
⊢ bilin B y x = 0
[PROOFSTEP]
exact hx.2 _ Submodule.mem_top
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
⊢ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) = orthogonal B W
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) ↔ x ∈ orthogonal B W
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) → x ∈ orthogonal B W
[PROOFSTEP]
rw [mem_orthogonal_iff]
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
⊢ x ∈ orthogonal B W → x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W))
[PROOFSTEP]
rw [mem_orthogonal_iff]
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) →
∀ (n : V), n ∈ W → IsOrtho B n x
[PROOFSTEP]
intro hx
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
⊢ (∀ (n : V), n ∈ W → IsOrtho B n x) →
x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W))
[PROOFSTEP]
intro hx
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
hx : x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W))
⊢ ∀ (n : V), n ∈ W → IsOrtho B n x
[PROOFSTEP]
intro y hy
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
hx : x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W))
y : V
hy : y ∈ W
⊢ IsOrtho B y x
[PROOFSTEP]
rw [Submodule.mem_dualCoannihilator] at hx
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
hx : ∀ (φ : Module.Dual K V), φ ∈ LinearMap.range (LinearMap.domRestrict (↑toLin B) W) → ↑φ x = 0
y : V
hy : y ∈ W
⊢ IsOrtho B y x
[PROOFSTEP]
refine' hx (B.toLin.domRestrict W ⟨y, hy⟩) ⟨⟨y, hy⟩, rfl⟩
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
hx : ∀ (n : V), n ∈ W → IsOrtho B n x
⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W))
[PROOFSTEP]
rw [Submodule.mem_dualCoannihilator]
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
hx : ∀ (n : V), n ∈ W → IsOrtho B n x
⊢ ∀ (φ : Module.Dual K V), φ ∈ LinearMap.range (LinearMap.domRestrict (↑toLin B) W) → ↑φ x = 0
[PROOFSTEP]
rintro _ ⟨⟨w, hw⟩, rfl⟩
[GOAL]
case h.mpr.intro.mk
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
W : Subspace K V
x : V
hx : ∀ (n : V), n ∈ W → IsOrtho B n x
w : V
hw : w ∈ W
⊢ ↑(↑(LinearMap.domRestrict (↑toLin B) W) { val := w, property := hw }) x = 0
[PROOFSTEP]
exact hx w hw
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ orthogonal B W } =
finrank K V + finrank K { x // x ∈ W ⊓ orthogonal B ⊤ }
[PROOFSTEP]
rw [← toLin_restrict_ker_eq_inf_orthogonal _ _ b₁, ← toLin_restrict_range_dualCoannihilator_eq_orthogonal _ _,
finrank_map_subtype_eq]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
⊢ finrank K { x // x ∈ W } +
finrank K { x // x ∈ dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) } =
finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) }
[PROOFSTEP]
conv_rhs =>
rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)),
add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))),
LinearMap.finrank_range_add_finrank_ker]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
| finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) }
[PROOFSTEP]
rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)),
add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))),
LinearMap.finrank_range_add_finrank_ker]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
| finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) }
[PROOFSTEP]
rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)),
add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))),
LinearMap.finrank_range_add_finrank_ker]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
| finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) }
[PROOFSTEP]
rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)),
add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))),
LinearMap.finrank_range_add_finrank_ker]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
⊢ IsCompl W (orthogonal B W)
[PROOFSTEP]
have : W ⊓ B.orthogonal W = ⊥ := by
rw [eq_bot_iff]
intro x hx
obtain ⟨hx₁, hx₂⟩ := mem_inf.1 hx
refine' Subtype.mk_eq_mk.1 (b₂ ⟨x, hx₁⟩ _)
rintro ⟨n, hn⟩
rw [restrict_apply, coe_mk, coe_mk, b₁]
exact hx₂ n hn
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
⊢ W ⊓ orthogonal B W = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
⊢ W ⊓ orthogonal B W ≤ ⊥
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
x : V
hx : x ∈ W ⊓ orthogonal B W
⊢ x ∈ ⊥
[PROOFSTEP]
obtain ⟨hx₁, hx₂⟩ := mem_inf.1 hx
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
x : V
hx : x ∈ W ⊓ orthogonal B W
hx₁ : x ∈ W
hx₂ : x ∈ orthogonal B W
⊢ x ∈ ⊥
[PROOFSTEP]
refine' Subtype.mk_eq_mk.1 (b₂ ⟨x, hx₁⟩ _)
[GOAL]
case intro
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
x : V
hx : x ∈ W ⊓ orthogonal B W
hx₁ : x ∈ W
hx₂ : x ∈ orthogonal B W
⊢ ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx₁ } n = 0
[PROOFSTEP]
rintro ⟨n, hn⟩
[GOAL]
case intro.mk
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
x : V
hx : x ∈ W ⊓ orthogonal B W
hx₁ : x ∈ W
hx₂ : x ∈ orthogonal B W
n : V
hn : n ∈ W
⊢ bilin (restrict B W) { val := x, property := hx₁ } { val := n, property := hn } = 0
[PROOFSTEP]
rw [restrict_apply, coe_mk, coe_mk, b₁]
[GOAL]
case intro.mk.a
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
x : V
hx : x ∈ W ⊓ orthogonal B W
hx₁ : x ∈ W
hx₂ : x ∈ orthogonal B W
n : V
hn : n ∈ W
⊢ bilin B n x = 0
[PROOFSTEP]
exact hx₂ n hn
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
⊢ IsCompl W (orthogonal B W)
[PROOFSTEP]
refine' IsCompl.of_eq this (eq_top_of_finrank_eq <| (finrank_le _).antisymm _)
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
⊢ finrank K V ≤ finrank K { x // x ∈ W ⊔ orthogonal B W }
[PROOFSTEP]
conv_rhs => rw [← add_zero (finrank K _)]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
| finrank K { x // x ∈ W ⊔ orthogonal B W }
[PROOFSTEP]
rw [← add_zero (finrank K _)]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
| finrank K { x // x ∈ W ⊔ orthogonal B W }
[PROOFSTEP]
rw [← add_zero (finrank K _)]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
| finrank K { x // x ∈ W ⊔ orthogonal B W }
[PROOFSTEP]
rw [← add_zero (finrank K _)]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
⊢ finrank K V ≤ finrank K { x // x ∈ W ⊔ orthogonal B W } + 0
[PROOFSTEP]
rw [← finrank_bot K V, ← this, finrank_sup_add_finrank_inf_eq, finrank_add_finrank_orthogonal b₁]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B : BilinForm K V
W : Subspace K V
b₁ : IsRefl B
b₂ : Nondegenerate (restrict B W)
this : W ⊓ orthogonal B W = ⊥
⊢ finrank K V ≤ finrank K V + finrank K { x // x ∈ W ⊓ orthogonal B ⊤ }
[PROOFSTEP]
exact le_self_add
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁹ : Semiring R
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁶ : Ring R₁
inst✝¹⁵ : AddCommGroup M₁
inst✝¹⁴ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹³ : CommSemiring R₂
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁰ : CommRing R₃
inst✝⁹ : AddCommGroup M₃
inst✝⁸ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝⁴ : AddCommMonoid M₂'
inst✝³ : Module R₂ M₂'
inst✝² : FiniteDimensional K V
ι : Type u_12
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
B : BilinForm K V
hB : Nondegenerate B
b : Basis ι K V
x : V
i : ι
⊢ ↑(↑(dualBasis B hB b).repr x) i = bilin B x (↑b i)
[PROOFSTEP]
rw [dualBasis, Basis.map_repr, LinearEquiv.symm_symm, LinearEquiv.trans_apply, Basis.dualBasis_repr, toDual_def]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁹ : Semiring R
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁶ : Ring R₁
inst✝¹⁵ : AddCommGroup M₁
inst✝¹⁴ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹³ : CommSemiring R₂
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁰ : CommRing R₃
inst✝⁹ : AddCommGroup M₃
inst✝⁸ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝⁴ : AddCommMonoid M₂'
inst✝³ : Module R₂ M₂'
inst✝² : FiniteDimensional K V
ι : Type u_12
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
B : BilinForm K V
hB : Nondegenerate B
b : Basis ι K V
i j : ι
⊢ bilin B (↑(dualBasis B hB b) i) (↑b j) = if j = i then 1 else 0
[PROOFSTEP]
rw [dualBasis, Basis.map_apply, Basis.coe_dualBasis, ← toDual_def hB, LinearEquiv.apply_symm_apply, Basis.coord_apply,
Basis.repr_self, Finsupp.single_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁹ : Semiring R
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁶ : Ring R₁
inst✝¹⁵ : AddCommGroup M₁
inst✝¹⁴ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹³ : CommSemiring R₂
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝¹⁰ : CommRing R₃
inst✝⁹ : AddCommGroup M₃
inst✝⁸ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝⁴ : AddCommMonoid M₂'
inst✝³ : Module R₂ M₂'
inst✝² : FiniteDimensional K V
ι : Type u_12
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
B : BilinForm K V
hB : Nondegenerate B
sym : IsSymm B
b : Basis ι K V
i j : ι
⊢ bilin B (↑b i) (↑(dualBasis B hB b) j) = if i = j then 1 else 0
[PROOFSTEP]
rw [sym, apply_dualBasis_left]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
⊢ Nondegenerate (restrict B (orthogonal B (Submodule.span K {x})))
[PROOFSTEP]
refine' fun m hm => Submodule.coe_eq_zero.1 (b₁ m.1 fun n => _)
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hm :
∀ (n : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }),
bilin (restrict B (orthogonal B (Submodule.span K {x}))) m n = 0
n : V
⊢ bilin B (↑m) n = 0
[PROOFSTEP]
have : n ∈ (K ∙ x) ⊔ B.orthogonal (K ∙ x) := (span_singleton_sup_orthogonal_eq_top hx).symm ▸ Submodule.mem_top
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hm :
∀ (n : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }),
bilin (restrict B (orthogonal B (Submodule.span K {x}))) m n = 0
n : V
this : n ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x})
⊢ bilin B (↑m) n = 0
[PROOFSTEP]
rcases Submodule.mem_sup.1 this with ⟨y, hy, z, hz, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hm :
∀ (n : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }),
bilin (restrict B (orthogonal B (Submodule.span K {x}))) m n = 0
y : V
hy : y ∈ Submodule.span K {x}
z : V
hz : z ∈ orthogonal B (Submodule.span K {x})
this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x})
⊢ bilin B (↑m) (y + z) = 0
[PROOFSTEP]
specialize hm ⟨z, hz⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
y : V
hy : y ∈ Submodule.span K {x}
z : V
hz : z ∈ orthogonal B (Submodule.span K {x})
this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x})
hm : bilin (restrict B (orthogonal B (Submodule.span K {x}))) m { val := z, property := hz } = 0
⊢ bilin B (↑m) (y + z) = 0
[PROOFSTEP]
rw [restrict] at hm
[GOAL]
case intro.intro.intro.intro
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
y : V
hy : y ∈ Submodule.span K {x}
z : V
hz : z ∈ orthogonal B (Submodule.span K {x})
this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x})
hm :
bilin
{ bilin := fun a b => bilin B ↑a ↑b,
bilin_add_left :=
(_ :
∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_1 + ↑x_2) ↑x_3 = bilin B ↑x_1 ↑x_3 + bilin B ↑x_2 ↑x_3),
bilin_smul_left :=
(_ :
∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (x_1 • ↑x_2) ↑x_3 = x_1 * bilin B ↑x_2 ↑x_3),
bilin_add_right :=
(_ :
∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_1) (↑x_2 + ↑x_3) = bilin B ↑x_1 ↑x_2 + bilin B ↑x_1 ↑x_3),
bilin_smul_right :=
(_ :
∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_2) (x_1 • ↑x_3) = x_1 * bilin B ↑x_2 ↑x_3) }
m { val := z, property := hz } =
0
⊢ bilin B (↑m) (y + z) = 0
[PROOFSTEP]
erw [add_right, show B m.1 y = 0 by rw [b₂]; exact m.2 y hy, hm, add_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
y : V
hy : y ∈ Submodule.span K {x}
z : V
hz : z ∈ orthogonal B (Submodule.span K {x})
this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x})
hm :
bilin
{ bilin := fun a b => bilin B ↑a ↑b,
bilin_add_left :=
(_ :
∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_1 + ↑x_2) ↑x_3 = bilin B ↑x_1 ↑x_3 + bilin B ↑x_2 ↑x_3),
bilin_smul_left :=
(_ :
∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (x_1 • ↑x_2) ↑x_3 = x_1 * bilin B ↑x_2 ↑x_3),
bilin_add_right :=
(_ :
∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_1) (↑x_2 + ↑x_3) = bilin B ↑x_1 ↑x_2 + bilin B ↑x_1 ↑x_3),
bilin_smul_right :=
(_ :
∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_2) (x_1 • ↑x_3) = x_1 * bilin B ↑x_2 ↑x_3) }
m { val := z, property := hz } =
0
⊢ bilin B (↑m) y = 0
[PROOFSTEP]
rw [b₂]
[GOAL]
case a
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm K V
b₁ : Nondegenerate B
b₂ : IsRefl B
x : V
hx : ¬IsOrtho B x x
m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
y : V
hy : y ∈ Submodule.span K {x}
z : V
hz : z ∈ orthogonal B (Submodule.span K {x})
this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x})
hm :
bilin
{ bilin := fun a b => bilin B ↑a ↑b,
bilin_add_left :=
(_ :
∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_1 + ↑x_2) ↑x_3 = bilin B ↑x_1 ↑x_3 + bilin B ↑x_2 ↑x_3),
bilin_smul_left :=
(_ :
∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (x_1 • ↑x_2) ↑x_3 = x_1 * bilin B ↑x_2 ↑x_3),
bilin_add_right :=
(_ :
∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_1) (↑x_2 + ↑x_3) = bilin B ↑x_1 ↑x_2 + bilin B ↑x_1 ↑x_3),
bilin_smul_right :=
(_ :
∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }),
bilin B (↑x_2) (x_1 • ↑x_3) = x_1 * bilin B ↑x_2 ↑x_3) }
m { val := z, property := hz } =
0
⊢ bilin B y ↑m = 0
[PROOFSTEP]
exact m.2 y hy
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : Nondegenerate B
φ ψ : M₁ →ₗ[R₁] M₁
h : compLeft B φ = compLeft B ψ
⊢ φ = ψ
[PROOFSTEP]
ext w
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : Nondegenerate B
φ ψ : M₁ →ₗ[R₁] M₁
h : compLeft B φ = compLeft B ψ
w : M₁
⊢ ↑φ w = ↑ψ w
[PROOFSTEP]
refine' eq_of_sub_eq_zero (b _ _)
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : Nondegenerate B
φ ψ : M₁ →ₗ[R₁] M₁
h : compLeft B φ = compLeft B ψ
w : M₁
⊢ ∀ (n : M₁), bilin B (↑φ w - ↑ψ w) n = 0
[PROOFSTEP]
intro v
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : Nondegenerate B
φ ψ : M₁ →ₗ[R₁] M₁
h : compLeft B φ = compLeft B ψ
w v : M₁
⊢ bilin B (↑φ w - ↑ψ w) v = 0
[PROOFSTEP]
rw [sub_left, ← compLeft_apply, ← compLeft_apply, ← h, sub_self]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁶ : Semiring R
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹³ : Ring R₁
inst✝¹² : AddCommGroup M₁
inst✝¹¹ : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁷ : CommRing R₃
inst✝⁶ : AddCommGroup M₃
inst✝⁵ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
B✝ : BilinForm R M
B₁ : BilinForm R₁ M₁
B₂ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝¹ : AddCommMonoid M₂'
inst✝ : Module R₂ M₂'
B : BilinForm R₁ M₁
b : Nondegenerate B
φ ψ₁ ψ₂ : M₁ →ₗ[R₁] M₁
hψ₁ : IsAdjointPair B B ψ₁ φ
hψ₂ : IsAdjointPair B B ψ₂ φ
v w : M₁
⊢ bilin (compLeft B ψ₁) v w = bilin (compLeft B ψ₂) v w
[PROOFSTEP]
rw [compLeft_apply, compLeft_apply, hψ₁, hψ₂]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B₁ B₂ : BilinForm K V
b₂ : Nondegenerate B₂
v : V
⊢ ↑(↑toLin B₂) (↑(symmCompOfNondegenerate B₁ B₂ b₂) v) = ↑(↑toLin B₁) v
[PROOFSTEP]
erw [symmCompOfNondegenerate, LinearEquiv.apply_symm_apply (B₂.toDual b₂) _]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B₁ B₂ : BilinForm K V
b₂ : Nondegenerate B₂
v w : V
⊢ bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v = bilin B₁ w v
[PROOFSTEP]
conv_lhs => rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B₁ B₂ : BilinForm K V
b₂ : Nondegenerate B₂
v w : V
| bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v
[PROOFSTEP]
rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B₁ B₂ : BilinForm K V
b₂ : Nondegenerate B₂
v w : V
| bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v
[PROOFSTEP]
rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply]
[GOAL]
R : Type u_1
M : Type u_2
inst✝¹⁷ : Semiring R
inst✝¹⁶ : AddCommMonoid M
inst✝¹⁵ : Module R M
R₁ : Type u_3
M₁ : Type u_4
inst✝¹⁴ : Ring R₁
inst✝¹³ : AddCommGroup M₁
inst✝¹² : Module R₁ M₁
R₂ : Type u_5
M₂ : Type u_6
inst✝¹¹ : CommSemiring R₂
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : Module R₂ M₂
R₃ : Type u_7
M₃ : Type u_8
inst✝⁸ : CommRing R₃
inst✝⁷ : AddCommGroup M₃
inst✝⁶ : Module R₃ M₃
V : Type u_9
K : Type u_10
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
B : BilinForm R M
B₁✝ : BilinForm R₁ M₁
B₂✝ : BilinForm R₂ M₂
M₂' : Type u_11
inst✝² : AddCommMonoid M₂'
inst✝¹ : Module R₂ M₂'
inst✝ : FiniteDimensional K V
B₁ B₂ : BilinForm K V
b₂ : Nondegenerate B₂
v w : V
| bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v
[PROOFSTEP]
rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply]
| {"mathlib_filename": "Mathlib.LinearAlgebra.BilinearForm", "llama_tokens": 153991} |
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
ι : Type w
⊢ Module.rank R (ι →₀ M) = Cardinal.lift #ι * Cardinal.lift (Module.rank R M)
[PROOFSTEP]
obtain ⟨⟨_, bs⟩⟩ := Module.Free.exists_basis (R := R) (M := M)
[GOAL]
case intro.mk
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
ι : Type w
fst✝ : Type v
bs : Basis fst✝ R M
⊢ Module.rank R (ι →₀ M) = Cardinal.lift #ι * Cardinal.lift (Module.rank R M)
[PROOFSTEP]
rw [← bs.mk_eq_rank'', ← (Finsupp.basis fun _ : ι => bs).mk_eq_rank'', Cardinal.mk_sigma, Cardinal.sum_const]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
ι : Type v
⊢ Module.rank R (ι →₀ M) = #ι * Module.rank R M
[PROOFSTEP]
simp [rank_finsupp]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
ι : Type w
⊢ Module.rank R (ι →₀ R) = Cardinal.lift #ι
[PROOFSTEP]
simp [rank_finsupp]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
ι : Type u
⊢ Module.rank R (ι →₀ R) = #ι
[PROOFSTEP]
simp
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁰ : Ring R
inst✝⁹ : StrongRankCondition R
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : Module R M✝
inst✝⁶ : Module.Free R M✝
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : Module.Free R N
ι : Type v
M : ι → Type w
inst✝² : (i : ι) → AddCommGroup (M i)
inst✝¹ : (i : ι) → Module R (M i)
inst✝ : ∀ (i : ι), Module.Free R (M i)
⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)
[PROOFSTEP]
let B i := chooseBasis R (M i)
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁰ : Ring R
inst✝⁹ : StrongRankCondition R
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : Module R M✝
inst✝⁶ : Module.Free R M✝
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : Module.Free R N
ι : Type v
M : ι → Type w
inst✝² : (i : ι) → AddCommGroup (M i)
inst✝¹ : (i : ι) → Module R (M i)
inst✝ : ∀ (i : ι), Module.Free R (M i)
B : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i)
⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)
[PROOFSTEP]
let b : Basis _ R (⨁ i, M i) := DFinsupp.basis fun i => B i
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁰ : Ring R
inst✝⁹ : StrongRankCondition R
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : Module R M✝
inst✝⁶ : Module.Free R M✝
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : Module.Free R N
ι : Type v
M : ι → Type w
inst✝² : (i : ι) → AddCommGroup (M i)
inst✝¹ : (i : ι) → Module R (M i)
inst✝ : ∀ (i : ι), Module.Free R (M i)
B : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i)
b : Basis ((i : ι) × ChooseBasisIndex R (M i)) R (⨁ (i : ι), M i) := DFinsupp.basis fun i => B i
⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)
[PROOFSTEP]
simp [← b.mk_eq_rank'', fun i => (B i).mk_eq_rank'']
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m : Type v
n : Type w
inst✝¹ : Finite m
inst✝ : Finite n
⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n
[PROOFSTEP]
cases nonempty_fintype m
[GOAL]
case intro
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m : Type v
n : Type w
inst✝¹ : Finite m
inst✝ : Finite n
val✝ : Fintype m
⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n
[PROOFSTEP]
cases nonempty_fintype n
[GOAL]
case intro.intro
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m : Type v
n : Type w
inst✝¹ : Finite m
inst✝ : Finite n
val✝¹ : Fintype m
val✝ : Fintype n
⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n
[PROOFSTEP]
have h := (Matrix.stdBasis R m n).mk_eq_rank
[GOAL]
case intro.intro
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m : Type v
n : Type w
inst✝¹ : Finite m
inst✝ : Finite n
val✝¹ : Fintype m
val✝ : Fintype n
h : Cardinal.lift #(m × n) = Cardinal.lift (Module.rank R (Matrix m n R))
⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n
[PROOFSTEP]
rw [← lift_lift.{max v w u, max v w}, lift_inj] at h
[GOAL]
case intro.intro
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m : Type v
n : Type w
inst✝¹ : Finite m
inst✝ : Finite n
val✝¹ : Fintype m
val✝ : Fintype n
h : Cardinal.lift #(m × n) = Module.rank R (Matrix m n R)
⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n
[PROOFSTEP]
simpa using h.symm
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m n : Type v
inst✝¹ : Finite m
inst✝ : Finite n
⊢ Module.rank R (Matrix m n R) = Cardinal.lift (#m * #n)
[PROOFSTEP]
rw [rank_matrix, lift_mul, lift_umax.{v, u}]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
m n : Type u
inst✝¹ : Finite m
inst✝ : Finite n
⊢ Module.rank R (Matrix m n R) = #m * #n
[PROOFSTEP]
simp
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : CommRing R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
⊢ Module.rank R (M ⊗[R] N) = Cardinal.lift (Module.rank R M) * Cardinal.lift (Module.rank R N)
[PROOFSTEP]
obtain ⟨⟨_, bM⟩⟩ := Module.Free.exists_basis (R := R) (M := M)
[GOAL]
case intro.mk
R : Type u
M : Type v
N : Type w
inst✝⁷ : CommRing R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
fst✝ : Type v
bM : Basis fst✝ R M
⊢ Module.rank R (M ⊗[R] N) = Cardinal.lift (Module.rank R M) * Cardinal.lift (Module.rank R N)
[PROOFSTEP]
obtain ⟨⟨_, bN⟩⟩ := Module.Free.exists_basis (R := R) (M := N)
[GOAL]
case intro.mk.intro.mk
R : Type u
M : Type v
N : Type w
inst✝⁷ : CommRing R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
fst✝¹ : Type v
bM : Basis fst✝¹ R M
fst✝ : Type w
bN : Basis fst✝ R N
⊢ Module.rank R (M ⊗[R] N) = Cardinal.lift (Module.rank R M) * Cardinal.lift (Module.rank R N)
[PROOFSTEP]
rw [← bM.mk_eq_rank'', ← bN.mk_eq_rank'', ← (bM.tensorProduct bN).mk_eq_rank'', Cardinal.mk_prod]
[GOAL]
R : Type u
M : Type v
N✝ : Type w
inst✝¹⁰ : CommRing R
inst✝⁹ : StrongRankCondition R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
inst✝⁶ : Module.Free R M
inst✝⁵ : AddCommGroup N✝
inst✝⁴ : Module R N✝
inst✝³ : Module.Free R N✝
N : Type v
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
⊢ Module.rank R (M ⊗[R] N) = Module.rank R M * Module.rank R N
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Rank", "llama_tokens": 4033} |
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
⊢ LinearIndependent R v ↔ ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
[PROOFSTEP]
simp [LinearIndependent, LinearMap.ker_eq_bot']
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
his : i ∈ s
⊢ ↑(Finsupp.total ι M R v) (∑ i in s, Finsupp.single i (g i)) = 0
[PROOFSTEP]
simpa only [LinearMap.map_sum, Finsupp.total_single] using hg
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
his : i ∈ s
h : ∑ i in s, Finsupp.single i (g i) = 0
⊢ g i = ↑(Finsupp.lapply i) (Finsupp.single i (g i))
[PROOFSTEP]
{rw [Finsupp.lapply_apply, Finsupp.single_eq_same]
}
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
his : i ∈ s
h : ∑ i in s, Finsupp.single i (g i) = 0
⊢ g i = ↑(Finsupp.lapply i) (Finsupp.single i (g i))
[PROOFSTEP]
rw [Finsupp.lapply_apply, Finsupp.single_eq_same]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
his : i ∈ s
h : ∑ i in s, Finsupp.single i (g i) = 0
j : ι
_hjs : j ∈ s
hji : j ≠ i
⊢ ↑(Finsupp.lapply i) (Finsupp.single j (g j)) = 0
[PROOFSTEP]
rw [Finsupp.lapply_apply, Finsupp.single_eq_of_ne hji]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
⊢ LinearIndependent R v ↔
∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
[PROOFSTEP]
classical exact
linearIndependent_iff'.trans
⟨fun H s g hg hv i => if his : i ∈ s then H s g hv i his else hg i his, fun H s g hg i hi =>
by
convert
H s (fun j => if j ∈ s then g j else 0) (fun j hj => if_neg hj)
(by simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]) i
exact (if_pos hi).symm⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
⊢ LinearIndependent R v ↔
∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
[PROOFSTEP]
exact
linearIndependent_iff'.trans
⟨fun H s g hg hv i => if his : i ∈ s then H s g hv i his else hg i his, fun H s g hg i hi =>
by
convert
H s (fun j => if j ∈ s then g j else 0) (fun j hj => if_neg hj)
(by simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]) i
exact (if_pos hi).symm⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
H : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i = 0
[PROOFSTEP]
convert
H s (fun j => if j ∈ s then g j else 0) (fun j hj => if_neg hj)
(by simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]) i
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
H : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ ∑ i in s, (fun j => if j ∈ s then g j else 0) i • v i = 0
[PROOFSTEP]
simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]
[GOAL]
case h.e'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
H : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i = if i ∈ s then g i else 0
[PROOFSTEP]
exact (if_pos hi).symm
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
⊢ ¬LinearIndependent R v ↔ ∃ s g, ∑ i in s, g i • v i = 0 ∧ ∃ i, i ∈ s ∧ g i ≠ 0
[PROOFSTEP]
rw [linearIndependent_iff']
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
⊢ (¬∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • v i = 0 → ∀ (i : ι), i ∈ s → g i = 0) ↔
∃ s g, ∑ i in s, g i • v i = 0 ∧ ∃ i, i ∈ s ∧ g i ≠ 0
[PROOFSTEP]
simp only [exists_prop, not_forall]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Fintype ι
⊢ LinearIndependent R v ↔ ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0
[PROOFSTEP]
refine'
⟨fun H g => by simpa using linearIndependent_iff'.1 H Finset.univ g, fun H =>
linearIndependent_iff''.2 fun s g hg hs i => H _ _ _⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Fintype ι
H : LinearIndependent R v
g : ι → R
⊢ ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0
[PROOFSTEP]
simpa using linearIndependent_iff'.1 H Finset.univ g
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Fintype ι
H : ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0
s : Finset ι
g : ι → R
hg : ∀ (i : ι), ¬i ∈ s → g i = 0
hs : ∑ i in s, g i • v i = 0
i : ι
⊢ ∑ i : ι, g i • v i = 0
[PROOFSTEP]
rw [← hs]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Fintype ι
H : ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0
s : Finset ι
g : ι → R
hg : ∀ (i : ι), ¬i ∈ s → g i = 0
hs : ∑ i in s, g i • v i = 0
i : ι
⊢ ∑ i : ι, g i • v i = ∑ i in s, g i • v i
[PROOFSTEP]
refine' (Finset.sum_subset (Finset.subset_univ _) fun i _ hi => _).symm
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Fintype ι
H : ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0
s : Finset ι
g : ι → R
hg : ∀ (i : ι), ¬i ∈ s → g i = 0
hs : ∑ i in s, g i • v i = 0
i✝ i : ι
x✝ : i ∈ Finset.univ
hi : ¬i ∈ s
⊢ g i • v i = 0
[PROOFSTEP]
rw [hg i hi, zero_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : AddCommMonoid M''
inst✝⁴ : Module R M
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
⊢ LinearIndependent R v ↔
LinearMap.ker (↑(LinearMap.lsum R (fun x => R) ℕ) fun i => LinearMap.smulRight LinearMap.id (v i)) = ⊥
[PROOFSTEP]
simp [Fintype.linearIndependent_iff, LinearMap.ker_eq_bot', funext_iff]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Fintype ι
⊢ ¬LinearIndependent R v ↔ ∃ g, ∑ i : ι, g i • v i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
simpa using not_iff_not.2 Fintype.linearIndependent_iff
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
i : ι
hv : LinearIndependent R v
h : v i = 0
⊢ 1 = 0
[PROOFSTEP]
suffices (Finsupp.single i 1 : ι →₀ R) i = 0 by simpa
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
i : ι
hv : LinearIndependent R v
h : v i = 0
this : ↑(Finsupp.single i 1) i = 0
⊢ 1 = 0
[PROOFSTEP]
simpa
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
i : ι
hv : LinearIndependent R v
h : v i = 0
⊢ ↑(Finsupp.single i 1) i = 0
[PROOFSTEP]
rw [linearIndependent_iff.1 hv (Finsupp.single i 1)]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
i : ι
hv : LinearIndependent R v
h : v i = 0
⊢ ↑0 i = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
i : ι
hv : LinearIndependent R v
h : v i = 0
⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i 1) = 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t : R
h' : s • x + t • y = 0
⊢ s = 0 ∧ t = 0
[PROOFSTEP]
have := linearIndependent_iff'.1 h Finset.univ ![s, t]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t : R
h' : s • x + t • y = 0
this :
∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons s ![t] i • Matrix.vecCons x ![y] i = 0 →
∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ Finset.univ → Matrix.vecCons s ![t] i = 0
⊢ s = 0 ∧ t = 0
[PROOFSTEP]
simp only [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons, h', Finset.mem_univ,
forall_true_left] at this
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t : R
h' : s • x + t • y = 0
this : ∀ (i : Fin (Nat.succ (Nat.succ 0))), Matrix.vecCons s ![t] i = 0
⊢ s = 0 ∧ t = 0
[PROOFSTEP]
exact ⟨this 0, this 1⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
⊢ LinearIndependent R (v ∘ f)
[PROOFSTEP]
rw [linearIndependent_iff, Finsupp.total_comp]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
⊢ ∀ (l : ι' →₀ R), ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 → l = 0
[PROOFSTEP]
intro l hl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
l : ι' →₀ R
hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0
⊢ l = 0
[PROOFSTEP]
have h_map_domain : ∀ x, (Finsupp.mapDomain f l) (f x) = 0 := by
rw [linearIndependent_iff.1 h (Finsupp.mapDomain f l) hl]; simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
l : ι' →₀ R
hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0
⊢ ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0
[PROOFSTEP]
rw [linearIndependent_iff.1 h (Finsupp.mapDomain f l) hl]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
l : ι' →₀ R
hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0
⊢ ∀ (x : ι'), ↑0 (f x) = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
l : ι' →₀ R
hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0
h_map_domain : ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0
⊢ l = 0
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
l : ι' →₀ R
hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0
h_map_domain : ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0
x : ι'
⊢ ↑l x = ↑0 x
[PROOFSTEP]
convert h_map_domain x
[GOAL]
case h.e'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
h : LinearIndependent R v
f : ι' → ι
hf : Injective f
l : ι' →₀ R
hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0
h_map_domain : ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0
x : ι'
⊢ ↑l x = ↑(Finsupp.mapDomain f l) (f x)
[PROOFSTEP]
rw [Finsupp.mapDomain_apply hf]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
i : LinearIndependent R v
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
simpa using i.comp _ (rangeSplitting_injective v)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
f : M →ₗ[R] M'
hf_inj : Disjoint (span R (range v)) (LinearMap.ker f)
⊢ LinearIndependent R (↑f ∘ v)
[PROOFSTEP]
rw [disjoint_iff_inf_le, ← Set.image_univ, Finsupp.span_image_eq_map_total, map_inf_eq_map_inf_comap,
map_le_iff_le_comap, comap_bot, Finsupp.supported_univ, top_inf_eq] at hf_inj
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
f : M →ₗ[R] M'
hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) ≤ LinearMap.ker (Finsupp.total ι M R v)
⊢ LinearIndependent R (↑f ∘ v)
[PROOFSTEP]
unfold LinearIndependent at hv ⊢
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥
f : M →ₗ[R] M'
hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) ≤ LinearMap.ker (Finsupp.total ι M R v)
⊢ LinearMap.ker (Finsupp.total ι M' R (↑f ∘ v)) = ⊥
[PROOFSTEP]
rw [hv, le_bot_iff] at hf_inj
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥
f : M →ₗ[R] M'
hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) = ⊥
⊢ LinearMap.ker (Finsupp.total ι M' R (↑f ∘ v)) = ⊥
[PROOFSTEP]
haveI : Inhabited M := ⟨0⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥
f : M →ₗ[R] M'
hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) = ⊥
this : Inhabited M
⊢ LinearMap.ker (Finsupp.total ι M' R (↑f ∘ v)) = ⊥
[PROOFSTEP]
rw [Finsupp.total_comp, @Finsupp.lmapDomain_total _ _ R _ _ _ _ _ _ _ _ _ _ f, LinearMap.ker_comp, hf_inj]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥
f : M →ₗ[R] M'
hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) = ⊥
this : Inhabited M
⊢ ∀ (i : ι), ↑f (v i) = ↑f (v i)
[PROOFSTEP]
exact fun _ => rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
f : M →ₗ[R] M'
hv : LinearIndependent R (↑f ∘ v)
⊢ Disjoint (span R (range v)) (LinearMap.ker f)
[PROOFSTEP]
rw [LinearIndependent, Finsupp.total_comp, Finsupp.lmapDomain_total R _ f (fun _ ↦ rfl), LinearMap.ker_comp] at hv
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
f : M →ₗ[R] M'
hv : comap (Finsupp.total ι M R fun x => v x) (LinearMap.ker f) = ⊥
⊢ Disjoint (span R (range v)) (LinearMap.ker f)
[PROOFSTEP]
rw [disjoint_iff_inf_le, ← Set.image_univ, Finsupp.span_image_eq_map_total, map_inf_eq_map_inf_comap, hv, inf_bot_eq,
map_bot]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
f : M →ₗ[R] M'
hf_inj : LinearMap.ker f = ⊥
⊢ Disjoint (span R (range v)) (LinearMap.ker f)
[PROOFSTEP]
simp [hf_inj]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
f : M →ₗ[R] M'
hfv : LinearIndependent R (↑f ∘ v)
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
his : i ∈ s
⊢ ∑ i in s, g i • ↑f (v i) = 0
[PROOFSTEP]
simp_rw [← f.map_smul, ← f.map_sum, hg, f.map_zero]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
f : M →ₗ[R] M'
hf_inj : ker f = ⊥
h : LinearIndependent R v
⊢ Disjoint (span R (Set.range v)) (ker f)
[PROOFSTEP]
simp only [hf_inj, disjoint_bot_right]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli : LinearIndependent R v
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
⊢ LinearIndependent R (Fin.cons x v)
[PROOFSTEP]
rw [Fintype.linearIndependent_iff] at hli ⊢
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
⊢ ∀ (g : Fin (m + 1) → R), ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0 → ∀ (i : Fin (m + 1)), g i = 0
[PROOFSTEP]
rintro g total_eq j
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
g : Fin (m + 1) → R
total_eq : ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0
j : Fin (m + 1)
⊢ g j = 0
[PROOFSTEP]
simp_rw [Fin.sum_univ_succ, Fin.cons_zero, Fin.cons_succ] at total_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
g : Fin (m + 1) → R
j : Fin (m + 1)
total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0
⊢ g j = 0
[PROOFSTEP]
have : g 0 = 0 := by
refine' x_ortho (g 0) ⟨∑ i : Fin m, g i.succ • v i, _⟩ total_eq
exact sum_mem fun i _ => smul_mem _ _ (subset_span ⟨i, rfl⟩)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
g : Fin (m + 1) → R
j : Fin (m + 1)
total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0
⊢ g 0 = 0
[PROOFSTEP]
refine' x_ortho (g 0) ⟨∑ i : Fin m, g i.succ • v i, _⟩ total_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
g : Fin (m + 1) → R
j : Fin (m + 1)
total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0
⊢ ∑ i : Fin m, g (Fin.succ i) • v i ∈ span R (range v)
[PROOFSTEP]
exact sum_mem fun i _ => smul_mem _ _ (subset_span ⟨i, rfl⟩)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
g : Fin (m + 1) → R
j : Fin (m + 1)
total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0
this : g 0 = 0
⊢ g j = 0
[PROOFSTEP]
rw [this, zero_smul, zero_add] at total_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
m : ℕ
x : M
v : Fin m → M
hli✝ : LinearIndependent R v
hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0
x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0
g : Fin (m + 1) → R
j : Fin (m + 1)
total_eq : ∑ x : Fin m, g (Fin.succ x) • v x = 0
this : g 0 = 0
⊢ g j = 0
[PROOFSTEP]
exact Fin.cases this (hli _ total_eq) j
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
inst✝³ : Semiring K
inst✝² : SMulWithZero R K
inst✝¹ : Module K M
inst✝ : IsScalarTower R K M
hinj : Injective fun r => r • 1
li : LinearIndependent K v
⊢ LinearIndependent R v
[PROOFSTEP]
refine' linearIndependent_iff'.mpr fun s g hg i hi => hinj _
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
inst✝³ : Semiring K
inst✝² : SMulWithZero R K
inst✝¹ : Module K M
inst✝ : IsScalarTower R K M
hinj : Injective fun r => r • 1
li : LinearIndependent K v
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ (fun r => r • 1) (g i) = (fun r => r • 1) 0
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
inst✝³ : Semiring K
inst✝² : SMulWithZero R K
inst✝¹ : Module K M
inst✝ : IsScalarTower R K M
hinj : Injective fun r => r • 1
li : LinearIndependent K v
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i • 1 = 0 • 1
[PROOFSTEP]
rw [zero_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
inst✝³ : Semiring K
inst✝² : SMulWithZero R K
inst✝¹ : Module K M
inst✝ : IsScalarTower R K M
hinj : Injective fun r => r • 1
li : LinearIndependent K v
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i • 1 = 0
[PROOFSTEP]
refine' (linearIndependent_iff'.mp li : _) _ (g · • (1 : K)) _ i hi
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
inst✝³ : Semiring K
inst✝² : SMulWithZero R K
inst✝¹ : Module K M
inst✝ : IsScalarTower R K M
hinj : Injective fun r => r • 1
li : LinearIndependent K v
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ ∑ i in s, (fun x => g x • 1) i • v i = 0
[PROOFSTEP]
simp_rw [smul_assoc, one_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝¹⁰ : Semiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
inst✝³ : Semiring K
inst✝² : SMulWithZero R K
inst✝¹ : Module K M
inst✝ : IsScalarTower R K M
hinj : Injective fun r => r • 1
li : LinearIndependent K v
s : Finset ι
g : ι → R
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ ∑ x in s, g x • v x = 0
[PROOFSTEP]
exact hg
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
let f : t.map (Embedding.subtype s) → s := fun x =>
⟨x.1, by
obtain ⟨x, h⟩ := x
rw [Finset.mem_map] at h
obtain ⟨a, _ha, rfl⟩ := h
simp only [Subtype.coe_prop, Embedding.coe_subtype]⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
x : { x // x ∈ Finset.map (Embedding.subtype s) t }
⊢ ↑x ∈ s
[PROOFSTEP]
obtain ⟨x, h⟩ := x
[GOAL]
case mk
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
x : M
h : x ∈ Finset.map (Embedding.subtype s) t
⊢ ↑{ val := x, property := h } ∈ s
[PROOFSTEP]
rw [Finset.mem_map] at h
[GOAL]
case mk
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
x : M
h✝ : x ∈ Finset.map (Embedding.subtype s) t
h : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = x
⊢ ↑{ val := x, property := h✝ } ∈ s
[PROOFSTEP]
obtain ⟨a, _ha, rfl⟩ := h
[GOAL]
case mk.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
a : Subtype s
_ha : a ∈ t
h : ↑(Embedding.subtype s) a ∈ Finset.map (Embedding.subtype s) t
⊢ ↑{ val := ↑(Embedding.subtype s) a, property := h } ∈ s
[PROOFSTEP]
simp only [Subtype.coe_prop, Embedding.coe_subtype]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
convert LinearIndependent.comp li f ?_
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }
⊢ Injective f
[PROOFSTEP]
rintro ⟨x, hx⟩ ⟨y, hy⟩
[GOAL]
case mk.mk
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }
x : M
hx : x ∈ Finset.map (Embedding.subtype s) t
y : M
hy : y ∈ Finset.map (Embedding.subtype s) t
⊢ f { val := x, property := hx } = f { val := y, property := hy } →
{ val := x, property := hx } = { val := y, property := hy }
[PROOFSTEP]
rw [Finset.mem_map] at hx hy
[GOAL]
case mk.mk
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }
x : M
hx✝ : x ∈ Finset.map (Embedding.subtype s) t
hx : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = x
y : M
hy✝ : y ∈ Finset.map (Embedding.subtype s) t
hy : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = y
⊢ f { val := x, property := hx✝ } = f { val := y, property := hy✝ } →
{ val := x, property := hx✝ } = { val := y, property := hy✝ }
[PROOFSTEP]
obtain ⟨a, _ha, rfl⟩ := hx
[GOAL]
case mk.mk.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y✝ : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }
y : M
hy✝ : y ∈ Finset.map (Embedding.subtype s) t
hy : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = y
a : Subtype s
_ha : a ∈ t
hx : ↑(Embedding.subtype s) a ∈ Finset.map (Embedding.subtype s) t
⊢ f { val := ↑(Embedding.subtype s) a, property := hx } = f { val := y, property := hy✝ } →
{ val := ↑(Embedding.subtype s) a, property := hx } = { val := y, property := hy✝ }
[PROOFSTEP]
obtain ⟨b, _hb, rfl⟩ := hy
[GOAL]
case mk.mk.intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b✝ : R
x y : M
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }
a : Subtype s
_ha : a ∈ t
hx : ↑(Embedding.subtype s) a ∈ Finset.map (Embedding.subtype s) t
b : Subtype s
_hb : b ∈ t
hy : ↑(Embedding.subtype s) b ∈ Finset.map (Embedding.subtype s) t
⊢ f { val := ↑(Embedding.subtype s) a, property := hx } = f { val := ↑(Embedding.subtype s) b, property := hy } →
{ val := ↑(Embedding.subtype s) a, property := hx } = { val := ↑(Embedding.subtype s) b, property := hy }
[PROOFSTEP]
simp only [imp_self, Subtype.mk_eq_mk]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
⊢ ∀ (s : Set M), LinearIndependent R Subtype.val → #↑s ≤ ↑n
[PROOFSTEP]
intro s li
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
s : Set M
li : LinearIndependent R Subtype.val
⊢ #↑s ≤ ↑n
[PROOFSTEP]
apply Cardinal.card_le_of
[GOAL]
case H
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
s : Set M
li : LinearIndependent R Subtype.val
⊢ ∀ (s_1 : Finset ↑s), Finset.card s_1 ≤ n
[PROOFSTEP]
intro t
[GOAL]
case H
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
⊢ Finset.card t ≤ n
[PROOFSTEP]
rw [← Finset.card_map (Embedding.subtype s)]
[GOAL]
case H
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
⊢ Finset.card (Finset.map (Embedding.subtype s) t) ≤ n
[PROOFSTEP]
apply H
[GOAL]
case H.a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
s : Set M
li : LinearIndependent R Subtype.val
t : Finset ↑s
⊢ LinearIndependent R fun i => ↑i
[PROOFSTEP]
apply linearIndependent_finset_map_embedding_subtype _ li
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
⊢ LinearIndependent R (v ∘ Subtype.val) ↔
∀ (l : ι →₀ R), l ∈ Finsupp.supported R R s → ↑(Finsupp.total ι M R v) l = 0 → l = 0
[PROOFSTEP]
simp only [linearIndependent_iff, (· ∘ ·), Finsupp.mem_supported, Finsupp.total_apply, Set.subset_def, Finset.mem_coe]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
⊢ (∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0) ↔
∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
⊢ (∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0) →
∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
[PROOFSTEP]
intro h l hl₁ hl₂
[GOAL]
case mp
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0
l : ι →₀ R
hl₁ : ∀ (x : ι), x ∈ l.support → x ∈ s
hl₂ : (Finsupp.sum l fun i a => a • v i) = 0
⊢ l = 0
[PROOFSTEP]
have := h (l.subtypeDomain s) ((Finsupp.sum_subtypeDomain_index hl₁).trans hl₂)
[GOAL]
case mp
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0
l : ι →₀ R
hl₁ : ∀ (x : ι), x ∈ l.support → x ∈ s
hl₂ : (Finsupp.sum l fun i a => a • v i) = 0
this : Finsupp.subtypeDomain s l = 0
⊢ l = 0
[PROOFSTEP]
exact (Finsupp.subtypeDomain_eq_zero_iff hl₁).1 this
[GOAL]
case mpr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
⊢ (∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0) →
∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0
[PROOFSTEP]
intro h l hl
[GOAL]
case mpr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
⊢ l = 0
[PROOFSTEP]
refine' Finsupp.embDomain_eq_zero.1 (h (l.embDomain <| Function.Embedding.subtype s) _ _)
[GOAL]
case mpr.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
⊢ ∀ (x : ι), x ∈ (Finsupp.embDomain (Embedding.subtype s) l).support → x ∈ s
[PROOFSTEP]
suffices ∀ i hi, ¬l ⟨i, hi⟩ = 0 → i ∈ s by simpa
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
this : ∀ (i : ι) (hi : i ∈ s), ¬↑l { val := i, property := hi } = 0 → i ∈ s
⊢ ∀ (x : ι), x ∈ (Finsupp.embDomain (Embedding.subtype s) l).support → x ∈ s
[PROOFSTEP]
simpa
[GOAL]
case mpr.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
⊢ ∀ (i : ι) (hi : i ∈ s), ¬↑l { val := i, property := hi } = 0 → i ∈ s
[PROOFSTEP]
intros
[GOAL]
case mpr.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
i✝ : ι
hi✝ : i✝ ∈ s
a✝ : ¬↑l { val := i✝, property := hi✝ } = 0
⊢ i✝ ∈ s
[PROOFSTEP]
assumption
[GOAL]
case mpr.refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
⊢ (Finsupp.sum (Finsupp.embDomain (Embedding.subtype s) l) fun i a => a • v i) = 0
[PROOFSTEP]
rwa [Finsupp.embDomain_eq_mapDomain, Finsupp.sum_mapDomain_index]
[GOAL]
case mpr.refine'_2.h_zero
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
⊢ ∀ (b : ι), 0 • v b = 0
case mpr.refine'_2.h_add
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0
l : ↑s →₀ R
hl : (Finsupp.sum l fun i a => a • v ↑i) = 0
⊢ ∀ (b : ι) (m₁ m₂ : R), (m₁ + m₂) • v b = m₁ • v b + m₂ • v b
[PROOFSTEP]
exacts [fun _ => zero_smul _ _, fun _ _ _ => add_smul _ _ _]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
⊢ ¬LinearIndependent R (v ∘ Subtype.val) ↔ ∃ f, f ∈ Finsupp.supported R R s ∧ ↑(Finsupp.total ι M R v) f = 0 ∧ f ≠ 0
[PROOFSTEP]
simp [linearIndependent_comp_subtype, and_left_comm]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
⊢ (LinearIndependent R fun x => ↑x) ↔
∀ (l : M →₀ R), l ∈ Finsupp.supported R R s → ↑(Finsupp.total M M R id) l = 0 → l = 0
[PROOFSTEP]
apply @linearIndependent_comp_subtype _ _ _ id
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set ι
⊢ LinearIndependent R (v ∘ Subtype.val) ↔ Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.total ι M R v))
[PROOFSTEP]
rw [linearIndependent_comp_subtype, LinearMap.disjoint_ker]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
⊢ (LinearIndependent R fun x => ↑x) ↔ Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.total M M R id))
[PROOFSTEP]
apply @linearIndependent_comp_subtype_disjoint _ _ _ id
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
⊢ (LinearIndependent R fun x => ↑x) ↔ LinearMap.ker (Finsupp.totalOn M M R id s) = ⊥
[PROOFSTEP]
rw [Finsupp.totalOn, LinearMap.ker, LinearMap.comap_codRestrict, Submodule.map_bot, comap_bot, LinearMap.ker_comp,
linearIndependent_subtype_disjoint, disjoint_iff_inf_le, ← map_comap_subtype, map_le_iff_le_comap, comap_bot,
ker_subtype, le_bot_iff]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
simp [linearIndependent_subtype_disjoint]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
t s : Set M
h : t ⊆ s
⊢ (LinearIndependent R fun x => ↑x) → LinearIndependent R fun x => ↑x
[PROOFSTEP]
simp only [linearIndependent_subtype_disjoint]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
t s : Set M
h : t ⊆ s
⊢ Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.total M M R id)) →
Disjoint (Finsupp.supported R R t) (LinearMap.ker (Finsupp.total M M R id))
[PROOFSTEP]
exact Disjoint.mono_left (Finsupp.supported_mono h)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
by_cases hη : Nonempty η
[GOAL]
case pos
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : Nonempty η
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
skip
[GOAL]
case pos
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : Nonempty η
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine' linearIndependent_of_finite (⋃ i, s i) fun t ht ft => _
[GOAL]
case pos
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : Nonempty η
t : Set M
ht : t ⊆ ⋃ (i : η), s i
ft : Set.Finite t
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rcases finite_subset_iUnion ft ht with ⟨I, fi, hI⟩
[GOAL]
case pos.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : Nonempty η
t : Set M
ht : t ⊆ ⋃ (i : η), s i
ft : Set.Finite t
I : Set η
fi : Set.Finite I
hI : t ⊆ ⋃ (i : η) (_ : i ∈ I), s i
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rcases hs.finset_le fi.toFinset with ⟨i, hi⟩
[GOAL]
case pos.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : Nonempty η
t : Set M
ht : t ⊆ ⋃ (i : η), s i
ft : Set.Finite t
I : Set η
fi : Set.Finite I
hI : t ⊆ ⋃ (i : η) (_ : i ∈ I), s i
i : η
hi : ∀ (i_1 : η), i_1 ∈ Finite.toFinset fi → s i_1 ⊆ s i
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
exact (h i).mono (Subset.trans hI <| iUnion₂_subset fun j hj => hi j (fi.mem_toFinset.2 hj))
[GOAL]
case neg
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : ¬Nonempty η
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine (linearIndependent_empty R M).mono (t := iUnion (s ·)) ?_
[GOAL]
case neg
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : ¬Nonempty η
⊢ ⋃ (x : η), s x ⊆ ∅
[PROOFSTEP]
rintro _ ⟨_, ⟨i, _⟩, _⟩
[GOAL]
case neg.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : η → Set M
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), LinearIndependent R fun x => ↑x
hη : ¬Nonempty η
a✝ : M
w✝ : Set M
right✝ : a✝ ∈ w✝
i : η
h✝ : (fun x => s x) i = w✝
⊢ a✝ ∈ ∅
[PROOFSTEP]
exact hη ⟨i⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set (Set M)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set M), a ∈ s → LinearIndependent R Subtype.val
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rw [sUnion_eq_iUnion]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set (Set M)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set M), a ∈ s → LinearIndependent R Subtype.val
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
exact linearIndependent_iUnion_of_directed hs.directed_val (by simpa using h)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set (Set M)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set M), a ∈ s → LinearIndependent R Subtype.val
⊢ ∀ (i : ↑s), LinearIndependent R fun x => ↑x
[PROOFSTEP]
simpa using h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : Set η
t : η → Set M
hs : DirectedOn (t ⁻¹'o fun x x_1 => x ⊆ x_1) s
h : ∀ (a : η), a ∈ s → LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rw [biUnion_eq_iUnion]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : Set η
t : η → Set M
hs : DirectedOn (t ⁻¹'o fun x x_1 => x ⊆ x_1) s
h : ∀ (a : η), a ∈ s → LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
exact linearIndependent_iUnion_of_directed (directed_comp.2 <| hs.directed_val) (by simpa using h)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
s : Set η
t : η → Set M
hs : DirectedOn (t ⁻¹'o fun x x_1 => x ⊆ x_1) s
h : ∀ (a : η), a ∈ s → LinearIndependent R fun x => ↑x
⊢ ∀ (i : ↑s), LinearIndependent R fun x => ↑x
[PROOFSTEP]
simpa using h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
⊢ Injective v
[PROOFSTEP]
intro i j hij
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
⊢ i = j
[PROOFSTEP]
let l : ι →₀ R := Finsupp.single i (1 : R) - Finsupp.single j 1
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
⊢ i = j
[PROOFSTEP]
have h_total : Finsupp.total ι M R v l = 0 :=
by
simp_rw [LinearMap.map_sub, Finsupp.total_apply]
simp [hij]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
⊢ ↑(Finsupp.total ι M R v) l = 0
[PROOFSTEP]
simp_rw [LinearMap.map_sub, Finsupp.total_apply]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
⊢ ((Finsupp.sum (Finsupp.single i 1) fun i a => a • v i) - Finsupp.sum (Finsupp.single j 1) fun i a => a • v i) = 0
[PROOFSTEP]
simp [hij]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
h_total : ↑(Finsupp.total ι M R v) l = 0
⊢ i = j
[PROOFSTEP]
have h_single_eq : Finsupp.single i (1 : R) = Finsupp.single j 1 :=
by
rw [linearIndependent_iff] at hv
simp [eq_add_of_sub_eq' (hv l h_total)]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
h_total : ↑(Finsupp.total ι M R v) l = 0
⊢ Finsupp.single i 1 = Finsupp.single j 1
[PROOFSTEP]
rw [linearIndependent_iff] at hv
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
h_total : ↑(Finsupp.total ι M R v) l = 0
⊢ Finsupp.single i 1 = Finsupp.single j 1
[PROOFSTEP]
simp [eq_add_of_sub_eq' (hv l h_total)]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
i j : ι
hij : v i = v j
l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1
h_total : ↑(Finsupp.total ι M R v) l = 0
h_single_eq : Finsupp.single i 1 = Finsupp.single j 1
⊢ i = j
[PROOFSTEP]
simpa [Finsupp.single_eq_single_iff] using h_single_eq
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → M
hf : LinearIndependent R f
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
nontriviality R
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → M
hf : LinearIndependent R f
✝ : Nontrivial R
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
exact (linearIndependent_subtype_range hf.injective).2 hf
[GOAL]
ι✝ : Type u'
ι'✝ : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
ι' : Type u_9
s : Set ι
f : ι → ι'
g : ι' → M
hs : LinearIndependent R fun x => g (f ↑x)
⊢ LinearIndependent R fun x => g ↑x
[PROOFSTEP]
nontriviality R
[GOAL]
ι✝ : Type u'
ι'✝ : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
ι' : Type u_9
s : Set ι
f : ι → ι'
g : ι' → M
hs : LinearIndependent R fun x => g (f ↑x)
✝ : Nontrivial R
⊢ LinearIndependent R fun x => g ↑x
[PROOFSTEP]
have : InjOn f s := injOn_iff_injective.2 hs.injective.of_comp
[GOAL]
ι✝ : Type u'
ι'✝ : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
ι' : Type u_9
s : Set ι
f : ι → ι'
g : ι' → M
hs : LinearIndependent R fun x => g (f ↑x)
✝ : Nontrivial R
this : InjOn f s
⊢ LinearIndependent R fun x => g ↑x
[PROOFSTEP]
exact (linearIndependent_equiv' (Equiv.Set.imageOfInjOn f s this) rfl).1 hs
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
s : Set ι
f : ι → M
hs : LinearIndependent R fun x => f ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
convert LinearIndependent.image_of_comp s f id hs
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : LinearIndependent R v
w : ι → G
⊢ LinearIndependent R (w • v)
[PROOFSTEP]
rw [linearIndependent_iff''] at hv ⊢
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
⊢ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • (w • v) i = 0 → ∀ (i : ι), g i = 0
[PROOFSTEP]
intro s g hgs hsum i
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ g i = 0
[PROOFSTEP]
refine' (smul_eq_zero_iff_eq (w i)).1 _
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ w i • g i = 0
[PROOFSTEP]
refine' hv s (fun i => w i • g i) (fun i hi => _) _ i
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i✝ i : ι
hi : ¬i ∈ s
⊢ (fun i => w i • g i) i = 0
[PROOFSTEP]
dsimp only
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i✝ i : ι
hi : ¬i ∈ s
⊢ w i • g i = 0
[PROOFSTEP]
exact (hgs i hi).symm ▸ smul_zero _
[GOAL]
case refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ ∑ i in s, (fun i => w i • g i) i • v i = 0
[PROOFSTEP]
rw [← hsum, Finset.sum_congr rfl _]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ ∀ (x : ι), x ∈ s → (fun i => w i • g i) x • v x = g x • (w • v) x
[PROOFSTEP]
intros
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝¹⁰ : Ring R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R M''
a b : R
x y : M
G : Type u_8
hG : Group G
inst✝³ : DistribMulAction G R
inst✝² : DistribMulAction G M
inst✝¹ : IsScalarTower G R M
inst✝ : SMulCommClass G R M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → G
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i x✝ : ι
a✝ : x✝ ∈ s
⊢ (fun i => w i • g i) x✝ • v x✝ = g x✝ • (w • v) x✝
[PROOFSTEP]
erw [Pi.smul_apply, smul_assoc, smul_comm]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : LinearIndependent R v
w : ι → Rˣ
⊢ LinearIndependent R (w • v)
[PROOFSTEP]
rw [linearIndependent_iff''] at hv ⊢
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
⊢ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • (w • v) i = 0 → ∀ (i : ι), g i = 0
[PROOFSTEP]
intro s g hgs hsum i
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ g i = 0
[PROOFSTEP]
rw [← (w i).mul_left_eq_zero]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ g i * ↑(w i) = 0
[PROOFSTEP]
refine' hv s (fun i => g i • (w i : R)) (fun i hi => _) _ i
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i✝ i : ι
hi : ¬i ∈ s
⊢ (fun i => g i • ↑(w i)) i = 0
[PROOFSTEP]
dsimp only
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i✝ i : ι
hi : ¬i ∈ s
⊢ g i • ↑(w i) = 0
[PROOFSTEP]
exact (hgs i hi).symm ▸ zero_smul _ _
[GOAL]
case refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ ∑ i in s, (fun i => g i • ↑(w i)) i • v i = 0
[PROOFSTEP]
rw [← hsum, Finset.sum_congr rfl _]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i : ι
⊢ ∀ (x : ι), x ∈ s → (fun i => g i • ↑(w i)) x • v x = g x • (w • v) x
[PROOFSTEP]
intros
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i x✝ : ι
a✝ : x✝ ∈ s
⊢ (fun i => g i • ↑(w i)) x✝ • v x✝ = g x✝ • (w • v) x✝
[PROOFSTEP]
erw [Pi.smul_apply, smul_assoc]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0
w : ι → Rˣ
s : Finset ι
g : ι → R
hgs : ∀ (i : ι), ¬i ∈ s → g i = 0
hsum : ∑ i in s, g i • (w • v) i = 0
i x✝ : ι
a✝ : x✝ ∈ s
⊢ g x✝ • ↑(w x✝) • v x✝ = g x✝ • w x✝ • v x✝
[PROOFSTEP]
rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t s' t' : R
h' : s • x + t • y = s' • x + t' • y
⊢ s = s' ∧ t = t'
[PROOFSTEP]
have : (s - s') • x + (t - t') • y = 0 :=
by
rw [← sub_eq_zero_of_eq h', ← sub_eq_zero]
simp only [sub_smul]
abel
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t s' t' : R
h' : s • x + t • y = s' • x + t' • y
⊢ (s - s') • x + (t - t') • y = 0
[PROOFSTEP]
rw [← sub_eq_zero_of_eq h', ← sub_eq_zero]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t s' t' : R
h' : s • x + t • y = s' • x + t' • y
⊢ (s - s') • x + (t - t') • y - (s • x + t • y - (s' • x + t' • y)) = 0
[PROOFSTEP]
simp only [sub_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t s' t' : R
h' : s • x + t • y = s' • x + t' • y
⊢ s • x - s' • x + (t • y - t' • y) - (s • x + t • y - (s' • x + t' • y)) = 0
[PROOFSTEP]
abel
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t s' t' : R
h' : s • x + t • y = s' • x + t' • y
⊢ s • x - s' • x + (t • y - t' • y) - (s • x + t • y - (s' • x + t' • y)) = 0
[PROOFSTEP]
abel
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y✝ x y : M
h : LinearIndependent R ![x, y]
s t s' t' : R
h' : s • x + t • y = s' • x + t' • y
this : (s - s') • x + (t - t') • y = 0
⊢ s = s' ∧ t = t'
[PROOFSTEP]
simpa [sub_eq_zero] using h.eq_zero_of_pair this
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
⊢ Maximal i ↔ ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j
[PROOFSTEP]
constructor
[GOAL]
case mp
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
⊢ Maximal i → ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j
[PROOFSTEP]
rintro p κ w i' j rfl
[GOAL]
case mp
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
κ : Type v
w : κ → M
i' : LinearIndependent R w
j : ι → κ
i : LinearIndependent R (w ∘ j)
p : Maximal i
⊢ Surjective j
[PROOFSTEP]
specialize p (range w) i'.coe_range (range_comp_subset_range _ _)
[GOAL]
case mp
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
κ : Type v
w : κ → M
i' : LinearIndependent R w
j : ι → κ
i : LinearIndependent R (w ∘ j)
p : range (w ∘ j) = range w
⊢ Surjective j
[PROOFSTEP]
rw [range_comp, ← @image_univ _ _ w] at p
[GOAL]
case mp
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
κ : Type v
w : κ → M
i' : LinearIndependent R w
j : ι → κ
i : LinearIndependent R (w ∘ j)
p : w '' range j = w '' univ
⊢ Surjective j
[PROOFSTEP]
exact range_iff_surjective.mp (image_injective.mpr i'.injective p)
[GOAL]
case mpr
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
⊢ (∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j) → Maximal i
[PROOFSTEP]
intro p w i' h
[GOAL]
case mpr
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
p : ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
⊢ range v = w
[PROOFSTEP]
specialize
p w ((↑) : w → M) i' (fun i => ⟨v i, range_subset_iff.mp h i⟩)
(by
ext
simp)
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
p : ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
⊢ (Subtype.val ∘ fun i => { val := v i, property := (_ : v i ∈ w) }) = v
[PROOFSTEP]
ext
[GOAL]
case h
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
p : ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
x✝ : ι
⊢ (Subtype.val ∘ fun i => { val := v i, property := (_ : v i ∈ w) }) x✝ = v x✝
[PROOFSTEP]
simp
[GOAL]
case mpr
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) }
⊢ range v = w
[PROOFSTEP]
have q := congr_arg (fun s => ((↑) : w → M) '' s) p.range_eq
[GOAL]
case mpr
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) }
q :
(fun s => Subtype.val '' s) (range fun i => { val := v i, property := (_ : v i ∈ w) }) =
(fun s => Subtype.val '' s) univ
⊢ range v = w
[PROOFSTEP]
dsimp at q
[GOAL]
case mpr
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) }
q : (Subtype.val '' range fun i => { val := v i, property := (_ : v i ∈ w) }) = Subtype.val '' univ
⊢ range v = w
[PROOFSTEP]
rw [← image_univ, image_image] at q
[GOAL]
case mpr
ι✝ : Type u'
ι' : Type u_1
R✝ : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι✝ → M✝
inst✝¹⁰ : Ring R✝
inst✝⁹ : AddCommGroup M✝
inst✝⁸ : AddCommGroup M'
inst✝⁷ : AddCommGroup M''
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ M'
inst✝⁴ : Module R✝ M''
a b : R✝
x y : M✝
ι : Type w
R : Type u
inst✝³ : Ring R
inst✝² : Nontrivial R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
i : LinearIndependent R v
w : Set M
i' : LinearIndependent R Subtype.val
h : range v ≤ w
p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) }
q : (fun x => ↑{ val := v x, property := (_ : v x ∈ w) }) '' univ = Subtype.val '' univ
⊢ range v = w
[PROOFSTEP]
simpa using q
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
⊢ i = j
[PROOFSTEP]
let l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
⊢ i = j
[PROOFSTEP]
have h_total : Finsupp.total ι M R v l = 0 :=
by
simp_rw [LinearMap.map_sub, Finsupp.total_apply]
simp [h]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
⊢ ↑(Finsupp.total ι M R v) l = 0
[PROOFSTEP]
simp_rw [LinearMap.map_sub, Finsupp.total_apply]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
⊢ ((Finsupp.sum (Finsupp.single i c) fun i a => a • v i) - Finsupp.sum (Finsupp.single j d) fun i a => a • v i) = 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
h_total : ↑(Finsupp.total ι M R v) l = 0
⊢ i = j
[PROOFSTEP]
have h_single_eq : Finsupp.single i c = Finsupp.single j d :=
by
rw [linearIndependent_iff] at li
simp [eq_add_of_sub_eq' (li l h_total)]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
h_total : ↑(Finsupp.total ι M R v) l = 0
⊢ Finsupp.single i c = Finsupp.single j d
[PROOFSTEP]
rw [linearIndependent_iff] at li
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
h_total : ↑(Finsupp.total ι M R v) l = 0
⊢ Finsupp.single i c = Finsupp.single j d
[PROOFSTEP]
simp [eq_add_of_sub_eq' (li l h_total)]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
h_total : ↑(Finsupp.total ι M R v) l = 0
h_single_eq : Finsupp.single i c = Finsupp.single j d
⊢ i = j
[PROOFSTEP]
rcases(Finsupp.single_eq_single_iff _ _ _ _).mp h_single_eq with (⟨H, _⟩ | ⟨hc, _⟩)
[GOAL]
case inl.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
h_total : ↑(Finsupp.total ι M R v) l = 0
h_single_eq : Finsupp.single i c = Finsupp.single j d
H : i = j
right✝ : c = d
⊢ i = j
[PROOFSTEP]
exact H
[GOAL]
case inr.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M✝ : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M✝
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M✝
inst✝⁶ : AddCommGroup M'
inst✝⁵ : AddCommGroup M''
inst✝⁴ : Module R M✝
inst✝³ : Module R M'
inst✝² : Module R M''
a b : R
x y : M✝
M : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
li : LinearIndependent R v
c d : R
i j : ι
hc✝ : c ≠ 0
h : c • v i = d • v j
l : ι →₀ R := Finsupp.single i c - Finsupp.single j d
h_total : ↑(Finsupp.total ι M R v) l = 0
h_single_eq : Finsupp.single i c = Finsupp.single j d
hc : c = 0
right✝ : d = 0
⊢ i = j
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s t : Set ι
hs : Disjoint s t
⊢ Disjoint (span R (v '' s)) (span R (v '' t))
[PROOFSTEP]
simp only [disjoint_def, Finsupp.mem_span_image_iff_total]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s t : Set ι
hs : Disjoint s t
⊢ ∀ (x : M),
(∃ l, l ∈ Finsupp.supported R R s ∧ ↑(Finsupp.total ι M R v) l = x) →
(∃ l, l ∈ Finsupp.supported R R t ∧ ↑(Finsupp.total ι M R v) l = x) → x = 0
[PROOFSTEP]
rintro _ ⟨l₁, hl₁, rfl⟩ ⟨l₂, hl₂, H⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s t : Set ι
hs : Disjoint s t
l₁ : ι →₀ R
hl₁ : l₁ ∈ Finsupp.supported R R s
l₂ : ι →₀ R
hl₂ : l₂ ∈ Finsupp.supported R R t
H : ↑(Finsupp.total ι M R v) l₂ = ↑(Finsupp.total ι M R v) l₁
⊢ ↑(Finsupp.total ι M R v) l₁ = 0
[PROOFSTEP]
rw [hv.injective_total.eq_iff] at H
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s t : Set ι
hs : Disjoint s t
l₁ : ι →₀ R
hl₁ : l₁ ∈ Finsupp.supported R R s
l₂ : ι →₀ R
hl₂ : l₂ ∈ Finsupp.supported R R t
H : l₂ = l₁
⊢ ↑(Finsupp.total ι M R v) l₁ = 0
[PROOFSTEP]
subst l₂
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s t : Set ι
hs : Disjoint s t
l₁ : ι →₀ R
hl₁ : l₁ ∈ Finsupp.supported R R s
hl₂ : l₁ ∈ Finsupp.supported R R t
⊢ ↑(Finsupp.total ι M R v) l₁ = 0
[PROOFSTEP]
have : l₁ = 0 := Submodule.disjoint_def.mp (Finsupp.disjoint_supported_supported hs) _ hl₁ hl₂
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s t : Set ι
hs : Disjoint s t
l₁ : ι →₀ R
hl₁ : l₁ ∈ Finsupp.supported R R s
hl₂ : l₁ ∈ Finsupp.supported R R t
this : l₁ = 0
⊢ ↑(Finsupp.total ι M R v) l₁ = 0
[PROOFSTEP]
simp [this]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
⊢ ¬v x ∈ span R (v '' s)
[PROOFSTEP]
have h' : v x ∈ Submodule.span R (v '' { x }) :=
by
rw [Set.image_singleton]
exact mem_span_singleton_self (v x)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
⊢ v x ∈ span R (v '' {x})
[PROOFSTEP]
rw [Set.image_singleton]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
⊢ v x ∈ span R {v x}
[PROOFSTEP]
exact mem_span_singleton_self (v x)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
h' : v x ∈ span R (v '' {x})
⊢ ¬v x ∈ span R (v '' s)
[PROOFSTEP]
intro w
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
h' : v x ∈ span R (v '' {x})
w : v x ∈ span R (v '' s)
⊢ False
[PROOFSTEP]
apply LinearIndependent.ne_zero x hv
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
h' : v x ∈ span R (v '' {x})
w : v x ∈ span R (v '' s)
⊢ v x = 0
[PROOFSTEP]
refine' disjoint_def.1 (hv.disjoint_span_image _) (v x) h' w
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
s : Set ι
x : ι
h : ¬x ∈ s
h' : v x ∈ span R (v '' {x})
w : v x ∈ span R (v '' s)
⊢ Disjoint {x} s
[PROOFSTEP]
simpa using h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ f.support
⊢ ↑(Finsupp.total ι M R v) f ≠ v x
[PROOFSTEP]
replace h : x ∉ (f.support : Set ι) := h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ ↑f.support
⊢ ↑(Finsupp.total ι M R v) f ≠ v x
[PROOFSTEP]
have p := hv.not_mem_span_image h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ ↑f.support
p : ¬v x ∈ span R (v '' ↑f.support)
⊢ ↑(Finsupp.total ι M R v) f ≠ v x
[PROOFSTEP]
intro w
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ ↑f.support
p : ¬v x ∈ span R (v '' ↑f.support)
w : ↑(Finsupp.total ι M R v) f = v x
⊢ False
[PROOFSTEP]
rw [← w] at p
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ ↑f.support
p : ¬↑(Finsupp.total ι M R v) f ∈ span R (v '' ↑f.support)
w : ↑(Finsupp.total ι M R v) f = v x
⊢ False
[PROOFSTEP]
rw [Finsupp.span_image_eq_map_total] at p
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ ↑f.support
p : ¬↑(Finsupp.total ι M R v) f ∈ Submodule.map (Finsupp.total ι M R v) (Finsupp.supported R R ↑f.support)
w : ↑(Finsupp.total ι M R v) f = v x
⊢ False
[PROOFSTEP]
simp only [not_exists, not_and, mem_map] at p
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
x : ι
f : ι →₀ R
h : ¬x ∈ ↑f.support
w : ↑(Finsupp.total ι M R v) f = v x
p : ∀ (x : ι →₀ R), x ∈ Finsupp.supported R R ↑f.support → ¬↑(Finsupp.total ι M R v) x = ↑(Finsupp.total ι M R v) f
⊢ False
[PROOFSTEP]
exact p f (f.mem_supported_support R) rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
⊢ LinearIndependent R v ↔
LinearIndependent R (v ∘ Sum.inl) ∧
LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (range (v ∘ Sum.inl))) (span R (range (v ∘ Sum.inr)))
[PROOFSTEP]
classical
rw [range_comp v, range_comp v]
refine' ⟨_, _⟩
· intro h
refine' ⟨h.comp _ Sum.inl_injective, h.comp _ Sum.inr_injective, _⟩
refine'
h.disjoint_span_image
_
-- Porting note: `isCompl_range_inl_range_inr.1` timeouts.
exact IsCompl.disjoint isCompl_range_inl_range_inr
rintro ⟨hl, hr, hlr⟩
rw [linearIndependent_iff'] at *
intro s g hg i hi
have :
((∑ i in s.preimage Sum.inl (Sum.inl_injective.injOn _), (fun x => g x • v x) (Sum.inl i)) +
∑ i in s.preimage Sum.inr (Sum.inr_injective.injOn _), (fun x => g x • v x) (Sum.inr i)) =
0 :=
by
-- Porting note: `g` must be specified.
rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ←
Finset.sum_union, ← Finset.filter_or]
· simpa only [← mem_union, range_inl_union_range_inr, mem_univ, Finset.filter_True]
·
-- Porting note: Here was one `exact`, but timeouted.
refine Finset.disjoint_filter.2 fun x _ hx => disjoint_left.1 ?_ hx
exact IsCompl.disjoint isCompl_range_inl_range_inr
· rw [← eq_neg_iff_add_eq_zero] at this
rw [disjoint_def'] at hlr
have A := by
refine hlr _ (sum_mem fun i _ => ?_) _ (neg_mem <| sum_mem fun i _ => ?_) this
· exact smul_mem _ _ (subset_span ⟨Sum.inl i, mem_range_self _, rfl⟩)
· exact smul_mem _ _ (subset_span ⟨Sum.inr i, mem_range_self _, rfl⟩)
cases' i with i i
· exact hl _ _ A i (Finset.mem_preimage.2 hi)
· rw [this, neg_eq_zero] at A
exact hr _ _ A i (Finset.mem_preimage.2 hi)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
⊢ LinearIndependent R v ↔
LinearIndependent R (v ∘ Sum.inl) ∧
LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (range (v ∘ Sum.inl))) (span R (range (v ∘ Sum.inr)))
[PROOFSTEP]
rw [range_comp v, range_comp v]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
⊢ LinearIndependent R v ↔
LinearIndependent R (v ∘ Sum.inl) ∧
LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
[PROOFSTEP]
refine' ⟨_, _⟩
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
⊢ LinearIndependent R v →
LinearIndependent R (v ∘ Sum.inl) ∧
LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
[PROOFSTEP]
intro h
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
h : LinearIndependent R v
⊢ LinearIndependent R (v ∘ Sum.inl) ∧
LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
[PROOFSTEP]
refine' ⟨h.comp _ Sum.inl_injective, h.comp _ Sum.inr_injective, _⟩
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
h : LinearIndependent R v
⊢ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
[PROOFSTEP]
refine'
h.disjoint_span_image
_
-- Porting note: `isCompl_range_inl_range_inr.1` timeouts.
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
h : LinearIndependent R v
⊢ Disjoint (range Sum.inl) (range Sum.inr)
[PROOFSTEP]
exact IsCompl.disjoint isCompl_range_inl_range_inr
[GOAL]
case refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
⊢ LinearIndependent R (v ∘ Sum.inl) ∧
LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) →
LinearIndependent R v
[PROOFSTEP]
rintro ⟨hl, hr, hlr⟩
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : LinearIndependent R (v ∘ Sum.inl)
hr : LinearIndependent R (v ∘ Sum.inr)
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
⊢ LinearIndependent R v
[PROOFSTEP]
rw [linearIndependent_iff'] at *
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
⊢ ∀ (s : Finset (ι ⊕ ι')) (g : ι ⊕ ι' → R), ∑ i in s, g i • v i = 0 → ∀ (i : ι ⊕ ι'), i ∈ s → g i = 0
[PROOFSTEP]
intro s g hg i hi
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
⊢ g i = 0
[PROOFSTEP]
have :
((∑ i in s.preimage Sum.inl (Sum.inl_injective.injOn _), (fun x => g x • v x) (Sum.inl i)) +
∑ i in s.preimage Sum.inr (Sum.inr_injective.injOn _), (fun x => g x • v x) (Sum.inr i)) =
0 :=
by
-- Porting note: `g` must be specified.
rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ←
Finset.sum_union, ← Finset.filter_or]
· simpa only [← mem_union, range_inl_union_range_inr, mem_univ, Finset.filter_True]
·
-- Porting note: Here was one `exact`, but timeouted.
refine Finset.disjoint_filter.2 fun x _ hx => disjoint_left.1 ?_ hx
exact IsCompl.disjoint isCompl_range_inl_range_inr
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
⊢ ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) +
∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) =
0
[PROOFSTEP]
rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ← Finset.sum_union,
← Finset.filter_or]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
⊢ ∑ x in Finset.filter (fun a => a ∈ range Sum.inl ∨ a ∈ range Sum.inr) s, g x • v x = 0
[PROOFSTEP]
simpa only [← mem_union, range_inl_union_range_inr, mem_univ, Finset.filter_True]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
⊢ Disjoint (Finset.filter (fun x => x ∈ range Sum.inl) s) (Finset.filter (fun x => x ∈ range Sum.inr) s)
[PROOFSTEP]
refine Finset.disjoint_filter.2 fun x _ hx => disjoint_left.1 ?_ hx
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝¹ y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
x : ι ⊕ ι'
x✝ : x ∈ s
hx : x ∈ range Sum.inl
⊢ Disjoint (range Sum.inl) (range Sum.inr)
[PROOFSTEP]
exact IsCompl.disjoint isCompl_range_inl_range_inr
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) +
∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) =
0
⊢ g i = 0
[PROOFSTEP]
rw [← eq_neg_iff_add_eq_zero] at this
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr))
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
⊢ g i = 0
[PROOFSTEP]
rw [disjoint_def'] at hlr
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
⊢ g i = 0
[PROOFSTEP]
have A := by
refine hlr _ (sum_mem fun i _ => ?_) _ (neg_mem <| sum_mem fun i _ => ?_) this
· exact smul_mem _ _ (subset_span ⟨Sum.inl i, mem_range_self _, rfl⟩)
· exact smul_mem _ _ (subset_span ⟨Sum.inr i, mem_range_self _, rfl⟩)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
⊢ ?m.395655
[PROOFSTEP]
refine hlr _ (sum_mem fun i _ => ?_) _ (neg_mem <| sum_mem fun i _ => ?_) this
[GOAL]
case refine_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i✝ : ι ⊕ ι'
hi : i✝ ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
i : ι
x✝ : i ∈ Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s))
⊢ (fun x => g x • v x) (Sum.inl i) ∈ span R (v '' range Sum.inl)
[PROOFSTEP]
exact smul_mem _ _ (subset_span ⟨Sum.inl i, mem_range_self _, rfl⟩)
[GOAL]
case refine_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i✝ : ι ⊕ ι'
hi : i✝ ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
i : ι'
x✝ : i ∈ Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s))
⊢ (fun x => g x • v x) (Sum.inr i) ∈ span R (v '' range Sum.inr)
[PROOFSTEP]
exact smul_mem _ _ (subset_span ⟨Sum.inr i, mem_range_self _, rfl⟩)
[GOAL]
case refine'_2.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
i : ι ⊕ ι'
hi : i ∈ s
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
A : ∑ c in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl c) = 0
⊢ g i = 0
[PROOFSTEP]
cases' i with i i
[GOAL]
case refine'_2.intro.intro.inl
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
A : ∑ c in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl c) = 0
i : ι
hi : Sum.inl i ∈ s
⊢ g (Sum.inl i) = 0
[PROOFSTEP]
exact hl _ _ A i (Finset.mem_preimage.2 hi)
[GOAL]
case refine'_2.intro.intro.inr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
A : ∑ c in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl c) = 0
i : ι'
hi : Sum.inr i ∈ s
⊢ g (Sum.inr i) = 0
[PROOFSTEP]
rw [this, neg_eq_zero] at A
[GOAL]
case refine'_2.intro.intro.inr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι ⊕ ι' → M
hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0
hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0
hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0
s : Finset (ι ⊕ ι')
g : ι ⊕ ι' → R
hg : ∑ i in s, g i • v i = 0
this :
∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) =
-∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i)
A : ∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) = 0
i : ι'
hi : Sum.inr i ∈ s
⊢ g (Sum.inr i) = 0
[PROOFSTEP]
exact hr _ _ A i (Finset.mem_preimage.2 hi)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s t : Set M
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
hst : Disjoint (span R s) (span R t)
⊢ Disjoint (span R (range fun x => ↑x)) (span R (range fun x => ↑x))
[PROOFSTEP]
simpa
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s t : Set M
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
hst : Disjoint (span R s) (span R t)
⊢ range (Sum.elim (fun x => ↑x) fun x => ↑x) = s ∪ t
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
classical
rw [iUnion_eq_iUnion_finset f]
apply linearIndependent_iUnion_of_directed
· apply directed_of_sup
exact fun t₁ t₂ ht => iUnion_mono fun i => iUnion_subset_iUnion_const fun h => ht h
intro t
induction' t using Finset.induction_on with i s his ih
· refine' (linearIndependent_empty R M).mono _
simp
· rw [Finset.set_biUnion_insert]
refine' (hl _).union ih _
rw [span_iUnion₂]
exact hd i s s.finite_toSet his
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rw [iUnion_eq_iUnion_finset f]
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
apply linearIndependent_iUnion_of_directed
[GOAL]
case hs
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ Directed (fun x x_1 => x ⊆ x_1) fun i => ⋃ (i_1 : ι) (_ : i_1 ∈ i), f i_1
[PROOFSTEP]
apply directed_of_sup
[GOAL]
case hs.H
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ ∀ ⦃i j : Finset ι⦄, i ≤ j → ⋃ (i_1 : ι) (_ : i_1 ∈ i), f i_1 ⊆ ⋃ (i : ι) (_ : i ∈ j), f i
[PROOFSTEP]
exact fun t₁ t₂ ht => iUnion_mono fun i => iUnion_subset_iUnion_const fun h => ht h
[GOAL]
case h
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ ∀ (i : Finset ι), LinearIndependent R fun x => ↑x
[PROOFSTEP]
intro t
[GOAL]
case h
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
t : Finset ι
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
induction' t using Finset.induction_on with i s his ih
[GOAL]
case h.empty
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine' (linearIndependent_empty R M).mono _
[GOAL]
case h.empty
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
⊢ ⋃ (i : ι) (_ : i ∈ ∅), f i ⊆ ∅
[PROOFSTEP]
simp
[GOAL]
case h.insert
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
i : ι
s : Finset ι
his : ¬i ∈ s
ih : LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rw [Finset.set_biUnion_insert]
[GOAL]
case h.insert
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
i : ι
s : Finset ι
his : ¬i ∈ s
ih : LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine' (hl _).union ih _
[GOAL]
case h.insert
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
i : ι
s : Finset ι
his : ¬i ∈ s
ih : LinearIndependent R fun x => ↑x
⊢ Disjoint (span R (f i)) (span R (⋃ (x : ι) (_ : x ∈ s), f x))
[PROOFSTEP]
rw [span_iUnion₂]
[GOAL]
case h.insert
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι✝ → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
ι : Type u_8
f : ι → Set M
hl : ∀ (i : ι), LinearIndependent R fun x => ↑x
hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i))
i : ι
s : Finset ι
his : ¬i ∈ s
ih : LinearIndependent R fun x => ↑x
⊢ Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ s), span R (f i))
[PROOFSTEP]
exact hd i s s.finite_toSet his
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
⊢ LinearIndependent R fun ji => f ji.fst ji.snd
[PROOFSTEP]
nontriviality R
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
⊢ LinearIndependent R fun ji => f ji.fst ji.snd
[PROOFSTEP]
apply LinearIndependent.of_subtype_range
[GOAL]
case hf
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
⊢ Injective fun ji => f ji.fst ji.snd
[PROOFSTEP]
rintro ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ hxy
[GOAL]
case hf.mk.mk
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }
[PROOFSTEP]
by_cases h_cases : x₁ = y₁
[GOAL]
case pos
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : x₁ = y₁
⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }
case neg
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : ¬x₁ = y₁
⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }
[PROOFSTEP]
subst h_cases
[GOAL]
case pos
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ y₂ : ιs x₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }
⊢ { fst := x₁, snd := x₂ } = { fst := x₁, snd := y₂ }
[PROOFSTEP]
apply Sigma.eq
[GOAL]
case pos.a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ y₂ : ιs x₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }
⊢ Eq.recOn ?pos.h₁✝ { fst := x₁, snd := x₂ }.snd = { fst := x₁, snd := y₂ }.snd
case pos.h₁
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ y₂ : ιs x₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }
⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst
[PROOFSTEP]
rw [LinearIndependent.injective (hindep _) hxy]
[GOAL]
case pos.h₁
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ y₂ : ιs x₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }
⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst
case pos.h₁
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ y₂ : ιs x₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }
⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : ¬x₁ = y₁
⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }
[PROOFSTEP]
have h0 : f x₁ x₂ = 0 :=
by
apply
disjoint_def.1 (hd x₁ { y₁ } (finite_singleton y₁) fun h => h_cases (eq_of_mem_singleton h)) (f x₁ x₂)
(subset_span (mem_range_self _))
rw [iSup_singleton]
simp only at hxy
rw [hxy]
exact subset_span (mem_range_self y₂)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : ¬x₁ = y₁
⊢ f x₁ x₂ = 0
[PROOFSTEP]
apply
disjoint_def.1 (hd x₁ { y₁ } (finite_singleton y₁) fun h => h_cases (eq_of_mem_singleton h)) (f x₁ x₂)
(subset_span (mem_range_self _))
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : ¬x₁ = y₁
⊢ f x₁ x₂ ∈ ⨆ (i : η) (_ : i ∈ {y₁}), span R (range (f i))
[PROOFSTEP]
rw [iSup_singleton]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : ¬x₁ = y₁
⊢ f x₁ x₂ ∈ span R (range (f y₁))
[PROOFSTEP]
simp only at hxy
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : f x₁ x₂ = f y₁ y₂
h_cases : ¬x₁ = y₁
⊢ f x₁ x₂ ∈ span R (range (f y₁))
[PROOFSTEP]
rw [hxy]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : f x₁ x₂ = f y₁ y₂
h_cases : ¬x₁ = y₁
⊢ f y₁ y₂ ∈ span R (range (f y₁))
[PROOFSTEP]
exact subset_span (mem_range_self y₂)
[GOAL]
case neg
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
x₁ : η
x₂ : ιs x₁
y₁ : η
y₂ : ιs y₁
hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }
h_cases : ¬x₁ = y₁
h0 : f x₁ x₂ = 0
⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }
[PROOFSTEP]
exact False.elim ((hindep x₁).ne_zero _ h0)
[GOAL]
case a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
rw [range_sigma_eq_iUnion_range]
[GOAL]
case a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
η : Type u_8
ιs : η → Type u_9
f : (j : η) → ιs j → M
hindep : ∀ (j : η), LinearIndependent R (f j)
hd :
∀ (i : η) (t : Set η),
Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))
✝ : Nontrivial R
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
apply linearIndependent_iUnion_finite_subtype (fun j => (hindep j).to_subtype_range) hd
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ (ι →₀ R) ≃ₗ[R] { x // x ∈ span R (range v) }
[PROOFSTEP]
apply LinearEquiv.ofBijective (LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) _)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ Bijective ↑(LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) ?m.425197)
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ ∀ (c : ι →₀ R), ↑(Finsupp.total ι M R v) c ∈ span R (range v)
[PROOFSTEP]
constructor
[GOAL]
case left
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ Injective ↑(LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) ?m.425197)
[PROOFSTEP]
rw [← LinearMap.ker_eq_bot, LinearMap.ker_codRestrict]
[GOAL]
case left
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ LinearMap.ker (Finsupp.total ι M R v) = ⊥
case left.hf
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ ∀ (c : ι →₀ R), ↑(Finsupp.total ι M R v) c ∈ span R (range v)
[PROOFSTEP]
apply hv
[GOAL]
case left.hf
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ ∀ (c : ι →₀ R), ↑(Finsupp.total ι M R v) c ∈ span R (range v)
[PROOFSTEP]
intro l
[GOAL]
case left.hf
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
l : ι →₀ R
⊢ ↑(Finsupp.total ι M R v) l ∈ span R (range v)
[PROOFSTEP]
rw [← Finsupp.range_total]
[GOAL]
case left.hf
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
l : ι →₀ R
⊢ ↑(Finsupp.total ι M R v) l ∈ LinearMap.range (Finsupp.total ι M R v)
[PROOFSTEP]
rw [LinearMap.mem_range]
[GOAL]
case left.hf
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
l : ι →₀ R
⊢ ∃ y, ↑(Finsupp.total ι M R v) y = ↑(Finsupp.total ι M R v) l
[PROOFSTEP]
apply mem_range_self l
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ Surjective
↑(LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v)
(_ : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l ∈ span R (range v)))
[PROOFSTEP]
rw [← LinearMap.range_eq_top, LinearMap.range_eq_map, LinearMap.map_codRestrict, ← LinearMap.range_le_iff_comap,
range_subtype, Submodule.map_top]
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ span R (range v) ≤ LinearMap.range (Finsupp.total ι M R v)
[PROOFSTEP]
rw [Finsupp.range_total]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
⊢ LinearMap.ker (repr hv) = ⊥
[PROOFSTEP]
rw [LinearIndependent.repr, LinearEquiv.ker]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
⊢ LinearMap.range (repr hv) = ⊤
[PROOFSTEP]
rw [LinearIndependent.repr, LinearEquiv.range]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
⊢ ↑(repr hv) x = l
[PROOFSTEP]
have : ↑((LinearIndependent.totalEquiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l) = Finsupp.total ι M R v l := rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
this : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l
⊢ ↑(repr hv) x = l
[PROOFSTEP]
have : (LinearIndependent.totalEquiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l = x :=
by
rw [eq] at this
exact Subtype.ext_iff.2 this
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
this : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l
⊢ ↑↑(totalEquiv hv) l = x
[PROOFSTEP]
rw [eq] at this
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
this : ↑(↑↑(totalEquiv hv) l) = ↑x
⊢ ↑↑(totalEquiv hv) l = x
[PROOFSTEP]
exact Subtype.ext_iff.2 this
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
this✝ : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l
this : ↑↑(totalEquiv hv) l = x
⊢ ↑(repr hv) x = l
[PROOFSTEP]
rw [← LinearEquiv.symm_apply_apply hv.totalEquiv l]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
this✝ : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l
this : ↑↑(totalEquiv hv) l = x
⊢ ↑(repr hv) x = ↑(LinearEquiv.symm (totalEquiv hv)) (↑(totalEquiv hv) l)
[PROOFSTEP]
rw [← this]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
l : ι →₀ R
x : { x // x ∈ span R (range v) }
eq : ↑(Finsupp.total ι M R v) l = ↑x
this✝ : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l
this : ↑↑(totalEquiv hv) l = x
⊢ ↑(repr hv) (↑↑(totalEquiv hv) l) = ↑(LinearEquiv.symm (totalEquiv hv)) (↑(totalEquiv hv) l)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
i : ι
x : { x // x ∈ span R (range v) }
hx : ↑x = v i
⊢ ↑(repr hv) x = Finsupp.single i 1
[PROOFSTEP]
apply hv.repr_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
i : ι
x : { x // x ∈ span R (range v) }
hx : ↑x = v i
⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i 1) = ↑x
[PROOFSTEP]
simp [Finsupp.total_single, hx]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
inst✝ : Nontrivial R
x : { x // x ∈ span R (range v) }
⊢ Span.repr R (range v) x = Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)) (↑(repr hv) x)
[PROOFSTEP]
have p : (Span.repr R (Set.range v) x).equivMapDomain (Equiv.ofInjective _ hv.injective).symm = hv.repr x :=
by
apply (LinearIndependent.totalEquiv hv).injective
ext
simp only [LinearIndependent.totalEquiv_apply_coe, Equiv.self_comp_ofInjective_symm, LinearIndependent.total_repr,
Finsupp.total_equivMapDomain, Span.finsupp_total_repr]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
inst✝ : Nontrivial R
x : { x // x ∈ span R (range v) }
⊢ Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x) = ↑(repr hv) x
[PROOFSTEP]
apply (LinearIndependent.totalEquiv hv).injective
[GOAL]
case a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
inst✝ : Nontrivial R
x : { x // x ∈ span R (range v) }
⊢ ↑(totalEquiv hv) (Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x)) =
↑(totalEquiv hv) (↑(repr hv) x)
[PROOFSTEP]
ext
[GOAL]
case a.a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
inst✝ : Nontrivial R
x : { x // x ∈ span R (range v) }
⊢ ↑(↑(totalEquiv hv) (Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x))) =
↑(↑(totalEquiv hv) (↑(repr hv) x))
[PROOFSTEP]
simp only [LinearIndependent.totalEquiv_apply_coe, Equiv.self_comp_ofInjective_symm, LinearIndependent.total_repr,
Finsupp.total_equivMapDomain, Span.finsupp_total_repr]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
inst✝ : Nontrivial R
x : { x // x ∈ span R (range v) }
p : Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x) = ↑(repr hv) x
⊢ Span.repr R (range v) x = Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)) (↑(repr hv) x)
[PROOFSTEP]
ext ⟨_, ⟨i, rfl⟩⟩
[GOAL]
case h.mk.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
inst✝ : Nontrivial R
x : { x // x ∈ span R (range v) }
p : Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x) = ↑(repr hv) x
i : ι
⊢ ↑(Span.repr R (range v) x) { val := v i, property := (_ : ∃ y, v y = v i) } =
↑(Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)) (↑(repr hv) x))
{ val := v i, property := (_ : ∃ y, v y = v i) }
[PROOFSTEP]
simp [← p]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
ha : a • v i ∈ span R (v '' (univ \ {i}))
⊢ a = 0
[PROOFSTEP]
rw [Finsupp.span_image_eq_map_total, mem_map] at ha
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
ha : ∃ y, y ∈ Finsupp.supported R R (univ \ {i}) ∧ ↑(Finsupp.total ι M R v) y = a • v i
⊢ a = 0
[PROOFSTEP]
rcases ha with ⟨l, hl, e⟩
[GOAL]
case intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
l : ι →₀ R
hl : l ∈ Finsupp.supported R R (univ \ {i})
e : ↑(Finsupp.total ι M R v) l = a • v i
⊢ a = 0
[PROOFSTEP]
rw [sub_eq_zero.1 (linearIndependent_iff.1 hv (l - Finsupp.single i a) (by simp [e]))] at hl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
l : ι →₀ R
hl : l ∈ Finsupp.supported R R (univ \ {i})
e : ↑(Finsupp.total ι M R v) l = a • v i
⊢ ↑(Finsupp.total ι M R v) (l - Finsupp.single i a) = 0
[PROOFSTEP]
simp [e]
[GOAL]
case intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
l : ι →₀ R
hl : Finsupp.single i a ∈ Finsupp.supported R R (univ \ {i})
e : ↑(Finsupp.total ι M R v) l = a • v i
⊢ a = 0
[PROOFSTEP]
by_contra hn
[GOAL]
case intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
l : ι →₀ R
hl : Finsupp.single i a ∈ Finsupp.supported R R (univ \ {i})
e : ↑(Finsupp.total ι M R v) l = a • v i
hn : ¬a = 0
⊢ False
[PROOFSTEP]
exact (not_mem_of_mem_diff (hl <| by simp [hn])) (mem_singleton _)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a✝ b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
a : R
l : ι →₀ R
hl : Finsupp.single i a ∈ Finsupp.supported R R (univ \ {i})
e : ↑(Finsupp.total ι M R v) l = a • v i
hn : ¬a = 0
⊢ i ∈ ↑(Finsupp.single i a).support
[PROOFSTEP]
simp [hn]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
⊢ l = 0
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
⊢ ↑l i = ↑0 i
[PROOFSTEP]
simp only [Finsupp.zero_apply]
[GOAL]
case h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
⊢ ↑l i = 0
[PROOFSTEP]
by_contra hn
[GOAL]
case h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
⊢ False
[PROOFSTEP]
refine' hn (H i _ _)
[GOAL]
case h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
⊢ ↑l i • v i ∈ span R (v '' (univ \ {i}))
[PROOFSTEP]
refine' (Finsupp.mem_span_image_iff_total R).2 ⟨Finsupp.single i (l i) - l, _, _⟩
[GOAL]
case h.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
⊢ Finsupp.single i (↑l i) - l ∈ Finsupp.supported R R (univ \ {i})
[PROOFSTEP]
rw [Finsupp.mem_supported']
[GOAL]
case h.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
⊢ ∀ (x : ι), ¬x ∈ univ \ {i} → ↑(Finsupp.single i (↑l i) - l) x = 0
[PROOFSTEP]
intro j hj
[GOAL]
case h.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
j : ι
hj : ¬j ∈ univ \ {i}
⊢ ↑(Finsupp.single i (↑l i) - l) j = 0
[PROOFSTEP]
have hij : j = i :=
Classical.not_not.1 fun hij : j ≠ i => hj ((mem_diff _).2 ⟨mem_univ _, fun h => hij (eq_of_mem_singleton h)⟩)
[GOAL]
case h.refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
j : ι
hj : ¬j ∈ univ \ {i}
hij : j = i
⊢ ↑(Finsupp.single i (↑l i) - l) j = 0
[PROOFSTEP]
simp [hij]
[GOAL]
case h.refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0
l : ι →₀ R
hl : ↑(Finsupp.total ι M R v) l = 0
i : ι
hn : ¬↑l i = 0
⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i (↑l i) - l) = ↑l i • v i
[PROOFSTEP]
simp [hl]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
⊢ CompleteLattice.Independent fun i => span R {v i}
[PROOFSTEP]
refine' CompleteLattice.independent_def.mp fun i => _
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
⊢ Disjoint ((fun i => span R {v i}) i) (⨆ (j : ι) (_ : j ≠ i), (fun i => span R {v i}) j)
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
⊢ (fun i => span R {v i}) i ⊓ ⨆ (j : ι) (_ : j ≠ i), (fun i => span R {v i}) j ≤ ⊥
[PROOFSTEP]
intro m hm
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
m : M
hm : m ∈ (fun i => span R {v i}) i ⊓ ⨆ (j : ι) (_ : j ≠ i), (fun i => span R {v i}) j
⊢ m ∈ ⊥
[PROOFSTEP]
simp only [mem_inf, mem_span_singleton, iSup_subtype', ← span_range_eq_iSup] at hm
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
m : M
hm : (∃ a, a • v i = m) ∧ m ∈ span R (range fun i_1 => v ↑i_1)
⊢ m ∈ ⊥
[PROOFSTEP]
obtain ⟨⟨r, rfl⟩, hm⟩ := hm
[GOAL]
case intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
⊢ r • v i ∈ ⊥
[PROOFSTEP]
suffices r = 0 by simp [this]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
this : r = 0
⊢ r • v i ∈ ⊥
[PROOFSTEP]
simp [this]
[GOAL]
case intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
⊢ r = 0
[PROOFSTEP]
apply linearIndependent_iff_not_smul_mem_span.mp hv i
[GOAL]
case intro.intro.a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
⊢ r • v i ∈ span R (v '' (univ \ {i}))
[PROOFSTEP]
suffices v '' (univ \ { i }) = range fun j : { j // j ≠ i } => v j by rwa [this]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
this : v '' (univ \ {i}) = range fun j => v ↑j
⊢ r • v i ∈ span R (v '' (univ \ {i}))
[PROOFSTEP]
rwa [this]
[GOAL]
case intro.intro.a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
⊢ v '' (univ \ {i}) = range fun j => v ↑j
[PROOFSTEP]
ext
[GOAL]
case intro.intro.a.h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv✝ hv : LinearIndependent R v
i : ι
r : R
hm : r • v i ∈ span R (range fun i_1 => v ↑i_1)
x✝ : M
⊢ x✝ ∈ v '' (univ \ {i}) ↔ x✝ ∈ range fun j => v ↑j
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
let indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ (↑) : I → M)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
let X := { I : Set ι // indep I }
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
let r : X → X → Prop := fun I J => I.1 ⊆ J.1
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
have key : ∀ c : Set X, IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), I) :=
by
intro c hc
dsimp
rw [linearIndependent_comp_subtype]
intro f hsupport hsum
rcases eq_empty_or_nonempty c with (rfl | hn)
· simpa using hsupport
haveI : IsRefl X r := ⟨fun _ => Set.Subset.refl _⟩
obtain ⟨I, _I_mem, hI⟩ : ∃ I ∈ c, (f.support : Set ι) ⊆ I :=
hc.directedOn.exists_mem_subset_of_finset_subset_biUnion hn hsupport
exact linearIndependent_comp_subtype.mp I.2 f hI hsum
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
⊢ ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)
[PROOFSTEP]
intro c hc
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
⊢ indep (⋃ (I : X) (_ : I ∈ c), ↑I)
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
⊢ LinearIndependent R (s ∘ Subtype.val)
[PROOFSTEP]
rw [linearIndependent_comp_subtype]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
⊢ ∀ (l : ι →₀ R),
l ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) →
↑(Finsupp.total ι M R s) l = 0 → l = 0
[PROOFSTEP]
intro f hsupport hsum
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
f : ι →₀ R
hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)
hsum : ↑(Finsupp.total ι M R s) f = 0
⊢ f = 0
[PROOFSTEP]
rcases eq_empty_or_nonempty c with (rfl | hn)
[GOAL]
case inl
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
f : ι →₀ R
hsum : ↑(Finsupp.total ι M R s) f = 0
hc : IsChain r ∅
hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ ∅), ↑I)
⊢ f = 0
[PROOFSTEP]
simpa using hsupport
[GOAL]
case inr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
f : ι →₀ R
hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)
hsum : ↑(Finsupp.total ι M R s) f = 0
hn : Set.Nonempty c
⊢ f = 0
[PROOFSTEP]
haveI : IsRefl X r := ⟨fun _ => Set.Subset.refl _⟩
[GOAL]
case inr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
f : ι →₀ R
hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)
hsum : ↑(Finsupp.total ι M R s) f = 0
hn : Set.Nonempty c
this : IsRefl X r
⊢ f = 0
[PROOFSTEP]
obtain ⟨I, _I_mem, hI⟩ : ∃ I ∈ c, (f.support : Set ι) ⊆ I :=
hc.directedOn.exists_mem_subset_of_finset_subset_biUnion hn hsupport
[GOAL]
case inr.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
c : Set X
hc : IsChain r c
f : ι →₀ R
hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)
hsum : ↑(Finsupp.total ι M R s) f = 0
hn : Set.Nonempty c
this : IsRefl X r
I : X
_I_mem : I ∈ c
hI : ↑f.support ⊆ ↑I
⊢ f = 0
[PROOFSTEP]
exact linearIndependent_comp_subtype.mp I.2 f hI hsum
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
key : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
have trans : Transitive r := fun I J K => Set.Subset.trans
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
key : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)
trans : Transitive r
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
obtain ⟨⟨I, hli : indep I⟩, hmax : ∀ a, r ⟨I, hli⟩ a → r a ⟨I, hli⟩⟩ :=
@exists_maximal_of_chains_bounded _ r
(fun c hc => ⟨⟨⋃ I ∈ c, (I : Set ι), key c hc⟩, fun I => Set.subset_biUnion_of_mem⟩) @trans
[GOAL]
case intro.mk
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)
X : Type u' := { I // indep I }
r : X → X → Prop := fun I J => ↑I ⊆ ↑J
key : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)
trans : Transitive r
I : Set ι
hli : indep I
hmax : ∀ (a : X), r { val := I, property := hli } a → r a { val := I, property := hli }
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
[PROOFSTEP]
exact ⟨I, hli, fun J hsub hli => Set.Subset.antisymm hsub (hmax ⟨J, hli⟩ hsub)⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
classical
rcases exists_maximal_independent' R s with ⟨I, hIlinind, hImaximal⟩
use I, hIlinind
intro i hi
specialize hImaximal (I ∪ { i }) (by simp)
set J := I ∪ { i } with hJ
have memJ : ∀ {x}, x ∈ J ↔ x = i ∨ x ∈ I := by simp [hJ]
have hiJ : i ∈ J := by simp
have h := by
refine mt hImaximal ?_
· intro h2
rw [h2] at hi
exact absurd hiJ hi
obtain ⟨f, supp_f, sum_f, f_ne⟩ := linearDependent_comp_subtype.mp h
have hfi : f i ≠ 0 := by
contrapose hIlinind
refine' linearDependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩
simp only [Finsupp.mem_supported, hJ] at supp_f ⊢
rintro x hx
refine' (memJ.mp (supp_f hx)).resolve_left _
rintro rfl
exact hIlinind (Finsupp.mem_support_iff.mp hx)
use f i, hfi
have hfi' : i ∈ f.support := Finsupp.mem_support_iff.mpr hfi
rw [← Finset.insert_erase hfi', Finset.sum_insert (Finset.not_mem_erase _ _), add_eq_zero_iff_eq_neg] at sum_f
rw [sum_f]
refine' neg_mem (sum_mem fun c hc => smul_mem _ _ (subset_span ⟨c, _, rfl⟩))
exact (memJ.mp (supp_f (Finset.erase_subset _ _ hc))).resolve_left (Finset.ne_of_mem_erase hc)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
rcases exists_maximal_independent' R s with ⟨I, hIlinind, hImaximal⟩
[GOAL]
case intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
use I, hIlinind
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
⊢ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
intro i hi
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
i : ι
hi : ¬i ∈ I
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
specialize hImaximal (I ∪ { i }) (by simp)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J
i : ι
hi : ¬i ∈ I
⊢ I ⊆ I ∪ {i}
[PROOFSTEP]
simp
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
hImaximal : (LinearIndependent R fun x => s ↑x) → I = I ∪ {i}
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
set J := I ∪ { i } with hJ
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
have memJ : ∀ {x}, x ∈ J ↔ x = i ∨ x ∈ I := by simp [hJ]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
⊢ ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
[PROOFSTEP]
simp [hJ]
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
have hiJ : i ∈ J := by simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
⊢ i ∈ J
[PROOFSTEP]
simp
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
have h := by
refine mt hImaximal ?_
· intro h2
rw [h2] at hi
exact absurd hiJ hi
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
⊢ ?m.535465
[PROOFSTEP]
refine mt hImaximal ?_
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
⊢ ¬I = J
[PROOFSTEP]
intro h2
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h2 : I = J
⊢ False
[PROOFSTEP]
rw [h2] at hi
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
J : Set ι := I ∪ {i}
hi : ¬i ∈ J
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h2 : I = J
⊢ False
[PROOFSTEP]
exact absurd hiJ hi
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
obtain ⟨f, supp_f, sum_f, f_ne⟩ := linearDependent_comp_subtype.mp h
[GOAL]
case right.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
have hfi : f i ≠ 0 := by
contrapose hIlinind
refine' linearDependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩
simp only [Finsupp.mem_supported, hJ] at supp_f ⊢
rintro x hx
refine' (memJ.mp (supp_f hx)).resolve_left _
rintro rfl
exact hIlinind (Finsupp.mem_support_iff.mp hx)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
⊢ ↑f i ≠ 0
[PROOFSTEP]
contrapose hIlinind
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hIlinind : ¬↑f i ≠ 0
⊢ ¬LinearIndependent R fun x => s ↑x
[PROOFSTEP]
refine' linearDependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hIlinind : ¬↑f i ≠ 0
⊢ f ∈ Finsupp.supported R R I
[PROOFSTEP]
simp only [Finsupp.mem_supported, hJ] at supp_f ⊢
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hIlinind : ¬↑f i ≠ 0
supp_f : ↑f.support ⊆ I ∪ {i}
⊢ ↑f.support ⊆ I
[PROOFSTEP]
rintro x hx
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hIlinind : ¬↑f i ≠ 0
supp_f : ↑f.support ⊆ I ∪ {i}
x : ι
hx : x ∈ ↑f.support
⊢ x ∈ I
[PROOFSTEP]
refine' (memJ.mp (supp_f hx)).resolve_left _
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hIlinind : ¬↑f i ≠ 0
supp_f : ↑f.support ⊆ I ∪ {i}
x : ι
hx : x ∈ ↑f.support
⊢ ¬x = i
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x✝ y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
f : ι →₀ R
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
x : ι
hx : x ∈ ↑f.support
hi : ¬x ∈ I
J : Set ι := I ∪ {x}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {x}
memJ : ∀ {x_1 : ι}, x_1 ∈ J ↔ x_1 = x ∨ x_1 ∈ I
hiJ : x ∈ J
h : ¬LinearIndependent R fun x => s ↑x
hIlinind : ¬↑f x ≠ 0
supp_f : ↑f.support ⊆ I ∪ {x}
⊢ False
[PROOFSTEP]
exact hIlinind (Finsupp.mem_support_iff.mp hx)
[GOAL]
case right.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hfi : ↑f i ≠ 0
⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I)
[PROOFSTEP]
use f i, hfi
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hfi : ↑f i ≠ 0
⊢ ↑f i • s i ∈ span R (s '' I)
[PROOFSTEP]
have hfi' : i ∈ f.support := Finsupp.mem_support_iff.mpr hfi
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ∑ i in f.support, ↑f i • s i = 0
f_ne : f ≠ 0
hfi : ↑f i ≠ 0
hfi' : i ∈ f.support
⊢ ↑f i • s i ∈ span R (s '' I)
[PROOFSTEP]
rw [← Finset.insert_erase hfi', Finset.sum_insert (Finset.not_mem_erase _ _), add_eq_zero_iff_eq_neg] at sum_f
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ↑f i • s i = -∑ x in Finset.erase f.support i, ↑f x • s x
f_ne : f ≠ 0
hfi : ↑f i ≠ 0
hfi' : i ∈ f.support
⊢ ↑f i • s i ∈ span R (s '' I)
[PROOFSTEP]
rw [sum_f]
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ↑f i • s i = -∑ x in Finset.erase f.support i, ↑f x • s x
f_ne : f ≠ 0
hfi : ↑f i ≠ 0
hfi' : i ∈ f.support
⊢ -∑ x in Finset.erase f.support i, ↑f x • s x ∈ span R (s '' I)
[PROOFSTEP]
refine' neg_mem (sum_mem fun c hc => smul_mem _ _ (subset_span ⟨c, _, rfl⟩))
[GOAL]
case right
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
hv : LinearIndependent R v
s : ι → M
I : Set ι
hIlinind : LinearIndependent R fun x => s ↑x
i : ι
hi : ¬i ∈ I
J : Set ι := I ∪ {i}
hImaximal : (LinearIndependent R fun x => s ↑x) → I = J
hJ : J = I ∪ {i}
memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I
hiJ : i ∈ J
h : ¬LinearIndependent R fun x => s ↑x
f : ι →₀ R
supp_f : f ∈ Finsupp.supported R R J
sum_f : ↑f i • s i = -∑ x in Finset.erase f.support i, ↑f x • s x
f_ne : f ≠ 0
hfi : ↑f i ≠ 0
hfi' : i ∈ f.support
c : ι
hc : c ∈ Finset.erase f.support i
⊢ c ∈ I
[PROOFSTEP]
exact (memJ.mp (supp_f (Finset.erase_subset _ _ hc))).resolve_left (Finset.ne_of_mem_erase hc)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
⊢ Surjective ↑f
[PROOFSTEP]
intro i
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
let repr : (span R (range (v ∘ f)) : Type _) → ι' →₀ R := (hv.comp f f.injective).repr
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
let l := (repr ⟨v i, hss (mem_range_self i)⟩).mapDomain f
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
have h_total_l : Finsupp.total ι M R v l = v i := by
dsimp only []
rw [Finsupp.total_mapDomain]
rw [(hv.comp f f.injective).total_repr]
-- Porting note: `rfl` isn't necessary.
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
⊢ ↑(Finsupp.total ι M R v) l = v i
[PROOFSTEP]
dsimp only []
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
⊢ ↑(Finsupp.total ι M R v)
(Finsupp.mapDomain (↑f)
(↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
{ val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })) =
v i
[PROOFSTEP]
rw [Finsupp.total_mapDomain]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
⊢ ↑(Finsupp.total ι' M R (v ∘ ↑f))
(↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
{ val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) =
v i
[PROOFSTEP]
rw [(hv.comp f f.injective).total_repr]
-- Porting note: `rfl` isn't necessary.
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
have h_total_eq : (Finsupp.total ι M R v) l = (Finsupp.total ι M R v) (Finsupp.single i 1) := by
rw [h_total_l, Finsupp.total_single, one_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
⊢ ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
[PROOFSTEP]
rw [h_total_l, Finsupp.total_single, one_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
have l_eq : l = _ := LinearMap.ker_eq_bot.1 hv h_total_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
l_eq : l = Finsupp.single i 1
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
dsimp only [] at l_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
l_eq :
Finsupp.mapDomain (↑f)
(↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
{ val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) =
Finsupp.single i 1
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
rw [← Finsupp.embDomain_eq_mapDomain] at l_eq
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
l_eq :
Finsupp.embDomain f
(↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
{ val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) =
Finsupp.single i 1
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
rcases Finsupp.single_of_embDomain_single (repr ⟨v i, _⟩) f i (1 : R) zero_ne_one.symm l_eq with ⟨i', hi'⟩
[GOAL]
case intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
l_eq :
Finsupp.embDomain f
(↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
{ val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) =
Finsupp.single i 1
i' : ι'
hi' : repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) } = Finsupp.single i' 1 ∧ ↑f i' = i
⊢ ∃ a, ↑f a = i
[PROOFSTEP]
use i'
[GOAL]
case h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
hv : LinearIndependent R v
f : ι' ↪ ι
hss : range v ⊆ ↑(span R (range (v ∘ ↑f)))
i : ι
repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })
h_total_l : ↑(Finsupp.total ι M R v) l = v i
h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1)
l_eq :
Finsupp.embDomain f
(↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f)))
{ val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) =
Finsupp.single i 1
i' : ι'
hi' : repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) } = Finsupp.single i' 1 ∧ ↑f i' = i
⊢ ↑f i' = i
[PROOFSTEP]
exact hi'.2
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
⊢ s = t
[PROOFSTEP]
let f : t ↪ s := ⟨fun x => ⟨x.1, h x.2⟩, fun a b hab => Subtype.coe_injective (Subtype.mk.inj hab)⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
⊢ s = t
[PROOFSTEP]
have h_surj : Surjective f := by
apply surjective_of_linearIndependent_of_span hs f _
convert hst <;> simp [comp]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
⊢ Surjective ↑f
[PROOFSTEP]
apply surjective_of_linearIndependent_of_span hs f _
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
⊢ (range fun x => ↑x) ⊆ ↑(span R (range ((fun x => ↑x) ∘ ↑f)))
[PROOFSTEP]
convert hst
[GOAL]
case h.e'_3
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
⊢ (range fun x => ↑x) = s
[PROOFSTEP]
simp [comp]
[GOAL]
case h.e'_4.h.e'_4.h.e'_6
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
⊢ range ((fun x => ↑x) ∘ ↑f) = t
[PROOFSTEP]
simp [comp]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
h_surj : Surjective ↑f
⊢ s = t
[PROOFSTEP]
show s = t
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
h_surj : Surjective ↑f
⊢ s = t
[PROOFSTEP]
apply Subset.antisymm _ h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
h_surj : Surjective ↑f
⊢ s ⊆ t
[PROOFSTEP]
intro x hx
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
h_surj : Surjective ↑f
x : M
hx : x ∈ s
⊢ x ∈ t
[PROOFSTEP]
rcases h_surj ⟨x, hx⟩ with ⟨y, hy⟩
[GOAL]
case intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y✝ : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
h_surj : Surjective ↑f
x : M
hx : x ∈ s
y : ↑t
hy : ↑f y = { val := x, property := hx }
⊢ x ∈ t
[PROOFSTEP]
convert y.mem
[GOAL]
case h.e'_4
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x✝ y✝ : M
inst✝ : Nontrivial R
s t : Set M
hs : LinearIndependent R fun x => ↑x
h : t ⊆ s
hst : s ⊆ ↑(span R t)
f : ↑t ↪ ↑s :=
{ toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },
inj' :=
(_ :
∀ (a b : ↑t),
(fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →
a = b) }
h_surj : Surjective ↑f
x : M
hx : x ∈ s
y : ↑t
hy : ↑f y = { val := x, property := hx }
⊢ x = ↑y
[PROOFSTEP]
rw [← Subtype.mk.inj hy]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
f : M →ₗ[R] M'
hs : LinearIndependent R fun x => ↑x
hf_inj : Disjoint (span R s) (ker f)
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
rw [← @Subtype.range_coe _ s] at hf_inj
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
f : M →ₗ[R] M'
hs : LinearIndependent R fun x => ↑x
hf_inj : Disjoint (span R (Set.range Subtype.val)) (ker f)
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine' (hs.map hf_inj).to_subtype_range' _
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
f : M →ₗ[R] M'
hs : LinearIndependent R fun x => ↑x
hf_inj : Disjoint (span R (Set.range Subtype.val)) (ker f)
⊢ Set.range (↑f ∘ fun x => ↑x) = ↑f '' s
[PROOFSTEP]
simp [Set.range_comp f]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine' (hs.image_subtype _).union (ht.image_subtype _) _ <;> [simp; simp; skip]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ LinearIndependent R fun x => ↑x
[PROOFSTEP]
refine' (hs.image_subtype _).union (ht.image_subtype _) _
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ Disjoint (span R s) (ker (inl R M M'))
[PROOFSTEP]
simp
[GOAL]
case refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ Disjoint (span R t) (ker (inr R M M'))
[PROOFSTEP]
simp
[GOAL]
case refine'_3
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ Disjoint (span R (↑(inl R M M') '' s)) (span R (↑(inr R M M') '' t))
[PROOFSTEP]
skip
[GOAL]
case refine'_3
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ Disjoint (span R (↑(inl R M M') '' s)) (span R (↑(inr R M M') '' t))
[PROOFSTEP]
simp only [span_image]
[GOAL]
case refine'_3
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
s : Set M
t : Set M'
hs : LinearIndependent R fun x => ↑x
ht : LinearIndependent R fun x => ↑x
⊢ Disjoint (Submodule.map (inl R M M') (span R s)) (Submodule.map (inr R M M') (span R t))
[PROOFSTEP]
simp [disjoint_iff, prod_inf_prod]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
v' : ι' → M'
hv : LinearIndependent R v
hv' : LinearIndependent R v'
⊢ Disjoint (span R (Set.range (↑(inl R M M') ∘ v))) (span R (Set.range (↑(inr R M M') ∘ v')))
[PROOFSTEP]
refine' isCompl_range_inl_inr.disjoint.mono _ _
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
v' : ι' → M'
hv : LinearIndependent R v
hv' : LinearIndependent R v'
⊢ span R (Set.range (↑(inl R M M') ∘ v)) ≤ LinearMap.range (inl R M M')
[PROOFSTEP]
simp only [span_le, range_coe, range_comp_subset_range]
[GOAL]
case refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v✝ : ι → M
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : AddCommGroup M''
inst✝² : Module R M
inst✝¹ : Module R M'
inst✝ : Module R M''
a b : R
x y : M
v : ι → M
v' : ι' → M'
hv : LinearIndependent R v
hv' : LinearIndependent R v'
⊢ span R (Set.range (↑(inr R M M') ∘ v')) ≤ LinearMap.range (inr R M M')
[PROOFSTEP]
simp only [span_le, range_coe, range_comp_subset_range]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
⊢ LinearIndependent L fun f => ↑f
[PROOFSTEP]
letI := Classical.decEq (G →* L)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this : DecidableEq (G →* L) := Classical.decEq (G →* L)
⊢ LinearIndependent L fun f => ↑f
[PROOFSTEP]
letI : MulAction L L := DistribMulAction.toMulAction
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
⊢ LinearIndependent L fun f => ↑f
[PROOFSTEP]
exact
linearIndependent_iff'.2
-- To do this, we use `Finset` induction,
-- Porting note: `False.elim` → `fun h => False.elim <| Finset.not_mem_empty _ h`
fun s =>
Finset.induction_on s (fun g _hg i h => False.elim <| Finset.not_mem_empty _ h)
fun a s has ih g hg =>
-- Here
-- * `a` is a new character we will insert into the `Finset` of characters `s`,
-- * `ih` is the fact that only the trivial linear combination of characters in `s` is zero
-- * `hg` is the fact that `g` are the coefficients of a linear combination summing to zero
-- and it remains to prove that `g` vanishes on `insert a s`.
-- We now make the key calculation:
-- For any character `i` in the original `Finset`, we have `g i • i = g i • a` as functions
-- on the monoid `G`.
have h1 : ∀ i ∈ s, (g i • (i : G → L)) = g i • (a : G → L) := fun i his =>
funext
fun x : G =>
-- We prove these expressions are equal by showing
-- the differences of their values on each monoid element `x` is zero
eq_of_sub_eq_zero <|
ih (fun j => g j * j x - g j * a x)
(funext fun y : G =>
calc
-- After that, it's just a chase scene.
(∑ i in s, ((g i * i x - g i * a x) • (i : G → L))) y = ∑ i in s, (g i * i x - g i * a x) * i y :=
Finset.sum_apply _ _ _
_ = ∑ i in s, (g i * i x * i y - g i * a x * i y) := (Finset.sum_congr rfl fun _ _ => sub_mul _ _ _)
_ = (∑ i in s, g i * i x * i y) - ∑ i in s, g i * a x * i y := Finset.sum_sub_distrib
_ = (g a * a x * a y + ∑ i in s, g i * i x * i y) - (g a * a x * a y + ∑ i in s, g i * a x * i y) :=
by rw [add_sub_add_left_eq_sub]
_ = (∑ i in insert a s, g i * i x * i y) - ∑ i in insert a s, g i * a x * i y := by
rw [Finset.sum_insert has, Finset.sum_insert has]
_ = (∑ i in insert a s, g i * i (x * y)) - ∑ i in insert a s, a x * (g i * i y) :=
(congr (congr_arg Sub.sub (Finset.sum_congr rfl fun i _ => by rw [i.map_mul, mul_assoc]))
(Finset.sum_congr rfl fun _ _ => by rw [mul_assoc, mul_left_comm]))
_ =
(∑ i in insert a s, (g i • (i : G → L))) (x * y) -
a x * (∑ i in insert a s, (g i • (i : G → L))) y :=
by rw [Finset.sum_apply, Finset.sum_apply, Finset.mul_sum]; rfl
_ = 0 - a x * 0 := by rw [hg]; rfl
_ = 0 := by rw [mul_zero, sub_zero])
i his
have h2 : ∀ i : G →* L, i ∈ s → ∃ y, i y ≠ a y := fun i his =>
Classical.by_contradiction fun h =>
have hia : i = a := MonoidHom.ext fun y => Classical.by_contradiction fun hy => h ⟨y, hy⟩
has <| hia ▸ his
have h3 : ∀ i ∈ s, g i = 0 := fun i his =>
let ⟨y, hy⟩ := h2 i his
have h : g i • i y = g i • a y := congr_fun (h1 i his) y
Or.resolve_right (mul_eq_zero.1 <| by rw [mul_sub, sub_eq_zero]; exact h)
(sub_ne_zero_of_ne hy)
-- And so, using the fact that the linear combination over `s` and over `insert a s` both
-- vanish, we deduce that `g a = 0`.
have h4 : g a = 0 :=
calc
g a = g a * 1 := (mul_one _).symm
_ = (g a • (a : G → L)) 1 := by rw [← a.map_one]; rfl
_ = (∑ i in insert a s, (g i • (i : G → L))) 1 :=
by
rw [Finset.sum_eq_single a]
· intro i his hia
rw [Finset.mem_insert] at his
rw [h3 i (his.resolve_left hia), zero_smul]
· intro haas
exfalso
apply haas
exact Finset.mem_insert_self a s
_ = 0 := by rw [hg];
rfl
-- Now we're done; the last two facts together imply that `g` vanishes on every element
-- of `insert a s`.
(Finset.forall_mem_insert _ _ _).2 ⟨h4, h3⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ ∑ i in s, g i * ↑i x * ↑i y - ∑ i in s, g i * ↑a x * ↑i y =
g a * ↑a x * ↑a y + ∑ i in s, g i * ↑i x * ↑i y - (g a * ↑a x * ↑a y + ∑ i in s, g i * ↑a x * ↑i y)
[PROOFSTEP]
rw [add_sub_add_left_eq_sub]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ g a * ↑a x * ↑a y + ∑ i in s, g i * ↑i x * ↑i y - (g a * ↑a x * ↑a y + ∑ i in s, g i * ↑a x * ↑i y) =
∑ i in insert a s, g i * ↑i x * ↑i y - ∑ i in insert a s, g i * ↑a x * ↑i y
[PROOFSTEP]
rw [Finset.sum_insert has, Finset.sum_insert has]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝¹ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i✝ : G →* L
his : i✝ ∈ s
x y : G
i : G →* L
x✝ : i ∈ insert a s
⊢ g i * ↑i x * ↑i y = g i * ↑i (x * y)
[PROOFSTEP]
rw [i.map_mul, mul_assoc]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝² y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
x✝¹ : G →* L
x✝ : x✝¹ ∈ insert a s
⊢ g x✝¹ * ↑a x * ↑x✝¹ y = ↑a x * (g x✝¹ * ↑x✝¹ y)
[PROOFSTEP]
rw [mul_assoc, mul_left_comm]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ ∑ i in insert a s, g i * ↑i (x * y) - ∑ i in insert a s, ↑a x * (g i * ↑i y) =
Finset.sum (insert a s) (fun i => g i • ↑i) (x * y) - ↑a x * Finset.sum (insert a s) (fun i => g i • ↑i) y
[PROOFSTEP]
rw [Finset.sum_apply, Finset.sum_apply, Finset.mul_sum]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ ∑ i in insert a s, g i * ↑i (x * y) - ∑ i in insert a s, ↑a x * (g i * ↑i y) =
∑ c in insert a s, (g c • ↑c) (x * y) - ∑ x_1 in insert a s, ↑a x * (g x_1 • ↑x_1) y
[PROOFSTEP]
rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ Finset.sum (insert a s) (fun i => g i • ↑i) (x * y) - ↑a x * Finset.sum (insert a s) (fun i => g i • ↑i) y =
0 - ↑a x * 0
[PROOFSTEP]
rw [hg]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ OfNat.ofNat 0 (x * y) - ↑a x * OfNat.ofNat 0 y = 0 - ↑a x * 0
[PROOFSTEP]
rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x✝ y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
i : G →* L
his : i ∈ s
x y : G
⊢ 0 - ↑a x * 0 = 0
[PROOFSTEP]
rw [mul_zero, sub_zero]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
i : G →* L
his : i ∈ s
y : G
hy : ↑i y ≠ ↑a y
h : g i • ↑i y = g i • ↑a y
⊢ g i * (↑i y - ↑a y) = 0
[PROOFSTEP]
rw [mul_sub, sub_eq_zero]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y✝ : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
i : G →* L
his : i ∈ s
y : G
hy : ↑i y ≠ ↑a y
h : g i • ↑i y = g i • ↑a y
⊢ g i * ↑i y = g i * ↑a y
[PROOFSTEP]
exact h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ g a * 1 = (g a • ↑a) 1
[PROOFSTEP]
rw [← a.map_one]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ g a * ↑a 1 = (g a • ↑a) 1
[PROOFSTEP]
rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ (g a • ↑a) 1 = Finset.sum (insert a s) (fun i => g i • ↑i) 1
[PROOFSTEP]
rw [Finset.sum_eq_single a]
[GOAL]
case h₀
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ ∀ (b : G →* L), b ∈ insert a s → b ≠ a → g b • ↑b = 0
[PROOFSTEP]
intro i his hia
[GOAL]
case h₀
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
i : G →* L
his : i ∈ insert a s
hia : i ≠ a
⊢ g i • ↑i = 0
[PROOFSTEP]
rw [Finset.mem_insert] at his
[GOAL]
case h₀
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
i : G →* L
his : i = a ∨ i ∈ s
hia : i ≠ a
⊢ g i • ↑i = 0
[PROOFSTEP]
rw [h3 i (his.resolve_left hia), zero_smul]
[GOAL]
case h₁
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ ¬a ∈ insert a s → g a • ↑a = 0
[PROOFSTEP]
intro haas
[GOAL]
case h₁
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
haas : ¬a ∈ insert a s
⊢ g a • ↑a = 0
[PROOFSTEP]
exfalso
[GOAL]
case h₁.h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
haas : ¬a ∈ insert a s
⊢ False
[PROOFSTEP]
apply haas
[GOAL]
case h₁.h
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
haas : ¬a ∈ insert a s
⊢ a ∈ insert a s
[PROOFSTEP]
exact Finset.mem_insert_self a s
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ Finset.sum (insert a s) (fun i => g i • ↑i) 1 = 0
[PROOFSTEP]
rw [hg]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : AddCommGroup M'
inst✝⁶ : AddCommGroup M''
inst✝⁵ : Module R M
inst✝⁴ : Module R M'
inst✝³ : Module R M''
a✝ b : R
x y : M
G : Type u_8
inst✝² : Monoid G
L : Type u_9
inst✝¹ : CommRing L
inst✝ : NoZeroDivisors L
this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L)
this : MulAction L L := DistribMulAction.toMulAction
s✝ : Finset (G →* L)
a : G →* L
s : Finset (G →* L)
has : ¬a ∈ s
ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0
g : (G →* L) → L
hg : ∑ i in insert a s, g i • ↑i = 0
h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a
h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y
h3 : ∀ (i : G →* L), i ∈ s → g i = 0
⊢ OfNat.ofNat 0 1 = 0
[PROOFSTEP]
rfl
-- Now we're done; the last two facts together imply that `g` vanishes on every element
-- of `insert a s`.
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t u : Set M
hl : LinearIndependent R Subtype.val
hsu : s ⊆ u
htu : t ⊆ u
hst : span R s ≤ span R t
⊢ s ⊆ t
[PROOFSTEP]
have :=
eq_of_linearIndependent_of_span_subtype (hl.mono (Set.union_subset hsu htu)) (Set.subset_union_right _ _)
(Set.union_subset (Set.Subset.trans subset_span hst) subset_span)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t u : Set M
hl : LinearIndependent R Subtype.val
hsu : s ⊆ u
htu : t ⊆ u
hst : span R s ≤ span R t
this : s ∪ t = t
⊢ s ⊆ t
[PROOFSTEP]
rw [← this]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
v : ι → M
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M'
inst✝⁴ : AddCommGroup M''
inst✝³ : Module R M
inst✝² : Module R M'
inst✝¹ : Module R M''
a b : R
x y : M
inst✝ : Nontrivial R
s t u : Set M
hl : LinearIndependent R Subtype.val
hsu : s ⊆ u
htu : t ⊆ u
hst : span R s ≤ span R t
this : s ∪ t = t
⊢ s ⊆ s ∪ t
[PROOFSTEP]
apply Set.subset_union_left
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁷ : Ring R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M
inst✝² : NoZeroSMulDivisors R M
inst✝¹ : Module R M'
v✝ : ι → M
s t : Set M
x y z : M
v : ι → M
inst✝ : Unique ι
⊢ LinearIndependent R v ↔ v default ≠ 0
[PROOFSTEP]
simp only [linearIndependent_iff, Finsupp.total_unique, smul_eq_zero]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁷ : Ring R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M
inst✝² : NoZeroSMulDivisors R M
inst✝¹ : Module R M'
v✝ : ι → M
s t : Set M
x y z : M
v : ι → M
inst✝ : Unique ι
⊢ (∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0) ↔ v default ≠ 0
[PROOFSTEP]
refine' ⟨fun h hv => _, fun hv l hl => Finsupp.unique_ext <| hl.resolve_right hv⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁷ : Ring R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M
inst✝² : NoZeroSMulDivisors R M
inst✝¹ : Module R M'
v✝ : ι → M
s t : Set M
x y z : M
v : ι → M
inst✝ : Unique ι
h : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0
hv : v default = 0
⊢ False
[PROOFSTEP]
have := h (Finsupp.single default 1) (Or.inr hv)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁷ : Ring R
inst✝⁶ : Nontrivial R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M
inst✝² : NoZeroSMulDivisors R M
inst✝¹ : Module R M'
v✝ : ι → M
s t : Set M
x y z : M
v : ι → M
inst✝ : Unique ι
h : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0
hv : v default = 0
this : Finsupp.single default 1 = 0
⊢ False
[PROOFSTEP]
exact one_ne_zero (Finsupp.single_eq_zero.1 this)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ x ∈ span K (insert y s) → ¬x ∈ span K s → y ∈ span K (insert x s)
[PROOFSTEP]
simp [mem_span_insert]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ ∀ (x_1 : K) (x_2 : V), x_2 ∈ span K s → x = x_1 • y + x_2 → ¬x ∈ span K s → ∃ a z, z ∈ span K s ∧ y = a • x + z
[PROOFSTEP]
rintro a z hz rfl h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z✝ : V
a : K
z : V
hz : z ∈ span K s
h : ¬a • y + z ∈ span K s
⊢ ∃ a_1 z_1, z_1 ∈ span K s ∧ y = a_1 • (a • y + z) + z_1
[PROOFSTEP]
refine' ⟨a⁻¹, -a⁻¹ • z, smul_mem _ _ hz, _⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z✝ : V
a : K
z : V
hz : z ∈ span K s
h : ¬a • y + z ∈ span K s
⊢ y = a⁻¹ • (a • y + z) + -a⁻¹ • z
[PROOFSTEP]
have a0 : a ≠ 0 := by
rintro rfl
simp_all
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z✝ : V
a : K
z : V
hz : z ∈ span K s
h : ¬a • y + z ∈ span K s
⊢ a ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z✝ z : V
hz : z ∈ span K s
h : ¬0 • y + z ∈ span K s
⊢ False
[PROOFSTEP]
simp_all
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z✝ : V
a : K
z : V
hz : z ∈ span K s
h : ¬a • y + z ∈ span K s
a0 : a ≠ 0
⊢ y = a⁻¹ • (a • y + z) + -a⁻¹ • z
[PROOFSTEP]
simp [a0, smul_add, smul_smul]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ LinearIndependent K v ↔ ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))
[PROOFSTEP]
apply linearIndependent_iff_not_smul_mem_span.trans
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ (∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0) ↔ ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ (∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0) → ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))
[PROOFSTEP]
intro h i h_in_span
[GOAL]
case mp
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
h : ∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0
i : ι
h_in_span : v i ∈ span K (v '' (univ \ {i}))
⊢ False
[PROOFSTEP]
apply one_ne_zero (h i 1 (by simp [h_in_span]))
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
h : ∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0
i : ι
h_in_span : v i ∈ span K (v '' (univ \ {i}))
⊢ 1 • v i ∈ span K (v '' (univ \ {i}))
[PROOFSTEP]
simp [h_in_span]
[GOAL]
case mpr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ (∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))) → ∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0
[PROOFSTEP]
intro h i a ha
[GOAL]
case mpr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
h : ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))
i : ι
a : K
ha : a • v i ∈ span K (v '' (univ \ {i}))
⊢ a = 0
[PROOFSTEP]
by_contra ha'
[GOAL]
case mpr
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
h : ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))
i : ι
a : K
ha : a • v i ∈ span K (v '' (univ \ {i}))
ha' : ¬a = 0
⊢ False
[PROOFSTEP]
exact False.elim (h _ ((smul_mem_iff _ ha').1 ha))
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K fun b => ↑b
hx : ¬x ∈ span K s
⊢ LinearIndependent K fun b => ↑b
[PROOFSTEP]
rw [← union_singleton]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K fun b => ↑b
hx : ¬x ∈ span K s
⊢ LinearIndependent K fun b => ↑b
[PROOFSTEP]
have x0 : x ≠ 0 := mt (by rintro rfl; apply zero_mem (span K s)) hx
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K fun b => ↑b
hx : ¬x ∈ span K s
⊢ x = 0 → x ∈ span K s
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z : V
hs : LinearIndependent K fun b => ↑b
hx : ¬0 ∈ span K s
⊢ 0 ∈ span K s
[PROOFSTEP]
apply zero_mem (span K s)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K fun b => ↑b
hx : ¬x ∈ span K s
x0 : x ≠ 0
⊢ LinearIndependent K fun b => ↑b
[PROOFSTEP]
apply hs.union (linearIndependent_singleton x0)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K fun b => ↑b
hx : ¬x ∈ span K s
x0 : x ≠ 0
⊢ Disjoint (span K s) (span K {x})
[PROOFSTEP]
rwa [disjoint_span_singleton' x0]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ (LinearIndependent K fun o => Option.casesOn' o x v) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v)
[PROOFSTEP]
rw [← linearIndependent_equiv (Equiv.optionEquivSumPUnit.{_, u'} ι).symm, linearIndependent_sum, @range_unique _ PUnit,
@linearIndependent_unique_iff PUnit, disjoint_span_singleton]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ LinearIndependent K (((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inl) ∧
(((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inr) default ≠ 0 ∧
((((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inr) default ∈
span K (range (((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inl)) →
(((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inr) default = 0) ↔
LinearIndependent K v ∧ ¬x ∈ span K (range v)
[PROOFSTEP]
dsimp [(· ∘ ·)]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ (LinearIndependent K fun x => v x) ∧ ¬x = 0 ∧ (x ∈ span K (range fun x => v x) → x = 0) ↔
LinearIndependent K v ∧ ¬x ∈ span K (range v)
[PROOFSTEP]
refine' ⟨fun h => ⟨h.1, fun hx => h.2.1 <| h.2.2 hx⟩, fun h => ⟨h.1, _, fun hx => (h.2 hx).elim⟩⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
h : LinearIndependent K v ∧ ¬x ∈ span K (range v)
⊢ ¬x = 0
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
y z : V
h : LinearIndependent K v ∧ ¬0 ∈ span K (range v)
⊢ False
[PROOFSTEP]
exact h.2 (zero_mem _)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v✝ : ι → V
s t : Set V
x y z : V
v : Option ι → V
⊢ LinearIndependent K v ↔ LinearIndependent K (v ∘ some) ∧ ¬v none ∈ span K (range (v ∘ some))
[PROOFSTEP]
simp only [← linearIndependent_option', Option.casesOn'_none_coe]
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι✝ → V
s✝ t : Set V
x y z : V
ι : Type u_8
s : Set ι
a : ι
f : ι → V
has : ¬a ∈ s
⊢ (LinearIndependent K fun x => f ↑x) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)
[PROOFSTEP]
classical
rw [← linearIndependent_equiv ((Equiv.optionEquivSumPUnit _).trans (Equiv.Set.insert has).symm),
linearIndependent_option]
-- Porting note: `simp [(· ∘ ·), range_comp f]` → `simp [(· ∘ ·)]; erw [range_comp f ..]; simp`
-- https://github.com/leanprover-community/mathlib4/issues/5164
simp only [(· ∘ ·)]
erw [range_comp f ((↑) : s → ι)]
simp
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι✝ → V
s✝ t : Set V
x y z : V
ι : Type u_8
s : Set ι
a : ι
f : ι → V
has : ¬a ∈ s
⊢ (LinearIndependent K fun x => f ↑x) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)
[PROOFSTEP]
rw [← linearIndependent_equiv ((Equiv.optionEquivSumPUnit _).trans (Equiv.Set.insert has).symm),
linearIndependent_option]
-- Porting note: `simp [(· ∘ ·), range_comp f]` → `simp [(· ∘ ·)]; erw [range_comp f ..]; simp`
-- https://github.com/leanprover-community/mathlib4/issues/5164
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι✝ → V
s✝ t : Set V
x y z : V
ι : Type u_8
s : Set ι
a : ι
f : ι → V
has : ¬a ∈ s
⊢ LinearIndependent K (((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) ∘ some) ∧
¬((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) none ∈
span K
(range (((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) ∘ some)) ↔
(LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)
[PROOFSTEP]
simp only [(· ∘ ·)]
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι✝ → V
s✝ t : Set V
x y z : V
ι : Type u_8
s : Set ι
a : ι
f : ι → V
has : ¬a ∈ s
⊢ (LinearIndependent K fun x => f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) (some x))) ∧
¬f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) none) ∈
span K (range fun x => f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) (some x))) ↔
(LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)
[PROOFSTEP]
erw [range_comp f ((↑) : s → ι)]
[GOAL]
ι✝ : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι✝ → V
s✝ t : Set V
x y z : V
ι : Type u_8
s : Set ι
a : ι
f : ι → V
has : ¬a ∈ s
⊢ (LinearIndependent K fun x => f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) (some x))) ∧
¬f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) none) ∈ span K (f '' range Subtype.val) ↔
(LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hxs : ¬x ∈ s
⊢ (LinearIndependent K fun x => id ↑x) ∧ ¬id x ∈ span K (id '' s) ↔ (LinearIndependent K fun b => ↑b) ∧ ¬x ∈ span K s
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v✝ : ι → V
s t : Set V
x y z : V
n : ℕ
v : Fin n → V
⊢ LinearIndependent K (Fin.cons x v) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v)
[PROOFSTEP]
rw [← linearIndependent_equiv (finSuccEquiv n).symm, linearIndependent_option]
-- Porting note: `convert Iff.rfl; ...` → `exact Iff.rfl`
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v✝ : ι → V
s t : Set V
x y z : V
n : ℕ
v : Fin n → V
⊢ LinearIndependent K ((Fin.cons x v ∘ ↑(finSuccEquiv n).symm) ∘ some) ∧
¬(Fin.cons x v ∘ ↑(finSuccEquiv n).symm) none ∈ span K (range ((Fin.cons x v ∘ ↑(finSuccEquiv n).symm) ∘ some)) ↔
LinearIndependent K v ∧ ¬x ∈ span K (range v)
[PROOFSTEP]
exact Iff.rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v✝ : ι → V
s t : Set V
x y z : V
n : ℕ
v : Fin n → V
⊢ LinearIndependent K (Fin.snoc v x) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v)
[PROOFSTEP]
erw [Fin.snoc_eq_cons_rotate, linearIndependent_equiv, linearIndependent_fin_cons]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v✝ : ι → V
s t : Set V
x y z : V
n : ℕ
v : Fin (n + 1) → V
⊢ LinearIndependent K v ↔ LinearIndependent K (Fin.tail v) ∧ ¬v 0 ∈ span K (range (Fin.tail v))
[PROOFSTEP]
rw [← linearIndependent_fin_cons, Fin.cons_self_tail]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v✝ : ι → V
s t : Set V
x y z : V
n : ℕ
v : Fin (n + 1) → V
⊢ LinearIndependent K v ↔ LinearIndependent K (Fin.init v) ∧ ¬v (Fin.last n) ∈ span K (range (Fin.init v))
[PROOFSTEP]
rw [← linearIndependent_fin_snoc, Fin.snoc_init_self]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
f : Fin 2 → V
⊢ LinearIndependent K f ↔ f 1 ≠ 0 ∧ ∀ (a : K), a • f 1 ≠ f 0
[PROOFSTEP]
rw [linearIndependent_fin_succ, linearIndependent_unique_iff, range_unique, mem_span_singleton, not_exists,
show Fin.tail f default = f 1 by rw [← Fin.succ_zero_eq_one]; rfl]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
f : Fin 2 → V
⊢ Fin.tail f default = f 1
[PROOFSTEP]
rw [← Fin.succ_zero_eq_one]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
f : Fin 2 → V
⊢ Fin.tail f default = f (Fin.succ 0)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
⊢ ∃ b x, s ⊆ b ∧ t ⊆ ↑(span K b) ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
have := by
refine zorn_subset_nonempty {b | b ⊆ t ∧ LinearIndependent K ((↑) : b → V)} ?_ _ ⟨hst, hs⟩
· refine' fun c hc cc _c0 => ⟨⋃₀ c, ⟨_, _⟩, fun x => _⟩
· exact sUnion_subset fun x xc => (hc xc).1
· exact linearIndependent_sUnion_of_directed cc.directedOn fun x xc => (hc xc).2
· exact subset_sUnion_of_mem
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
⊢ ?m.1310755
[PROOFSTEP]
refine zorn_subset_nonempty {b | b ⊆ t ∧ LinearIndependent K ((↑) : b → V)} ?_ _ ⟨hst, hs⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
⊢ ∀ (c : Set (Set V)),
c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} →
IsChain (fun x x_1 => x ⊆ x_1) c →
Set.Nonempty c → ∃ ub, ub ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} ∧ ∀ (s : Set V), s ∈ c → s ⊆ ub
[PROOFSTEP]
refine' fun c hc cc _c0 => ⟨⋃₀ c, ⟨_, _⟩, fun x => _⟩
[GOAL]
case refine'_1
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
c : Set (Set V)
hc : c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val}
cc : IsChain (fun x x_1 => x ⊆ x_1) c
_c0 : Set.Nonempty c
⊢ ⋃₀ c ⊆ t
[PROOFSTEP]
exact sUnion_subset fun x xc => (hc xc).1
[GOAL]
case refine'_2
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
c : Set (Set V)
hc : c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val}
cc : IsChain (fun x x_1 => x ⊆ x_1) c
_c0 : Set.Nonempty c
⊢ LinearIndependent K Subtype.val
[PROOFSTEP]
exact linearIndependent_sUnion_of_directed cc.directedOn fun x xc => (hc xc).2
[GOAL]
case refine'_3
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x✝ y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
c : Set (Set V)
hc : c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val}
cc : IsChain (fun x x_1 => x ⊆ x_1) c
_c0 : Set.Nonempty c
x : Set V
⊢ x ∈ c → x ⊆ ⋃₀ c
[PROOFSTEP]
exact subset_sUnion_of_mem
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
this :
∃ m,
m ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} ∧
s ⊆ m ∧ ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → m ⊆ a → a = m
⊢ ∃ b x, s ⊆ b ∧ t ⊆ ↑(span K b) ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
rcases this with ⟨b, ⟨bt, bi⟩, sb, h⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
b : Set V
bt : b ⊆ t
bi : LinearIndependent K Subtype.val
sb : s ⊆ b
h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b
⊢ ∃ b x, s ⊆ b ∧ t ⊆ ↑(span K b) ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
refine' ⟨b, bt, sb, fun x xt => _, bi⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x✝ y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
b : Set V
bt : b ⊆ t
bi : LinearIndependent K Subtype.val
sb : s ⊆ b
h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b
x : V
xt : x ∈ t
⊢ x ∈ ↑(span K b)
[PROOFSTEP]
by_contra hn
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x✝ y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
b : Set V
bt : b ⊆ t
bi : LinearIndependent K Subtype.val
sb : s ⊆ b
h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b
x : V
xt : x ∈ t
hn : ¬x ∈ ↑(span K b)
⊢ False
[PROOFSTEP]
apply hn
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x✝ y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
b : Set V
bt : b ⊆ t
bi : LinearIndependent K Subtype.val
sb : s ⊆ b
h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b
x : V
xt : x ∈ t
hn : ¬x ∈ ↑(span K b)
⊢ x ∈ ↑(span K b)
[PROOFSTEP]
rw [← h _ ⟨insert_subset_iff.2 ⟨xt, bt⟩, bi.insert hn⟩ (subset_insert _ _)]
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x✝ y z : V
hs : LinearIndependent K Subtype.val
hst : s ⊆ t
b : Set V
bt : b ⊆ t
bi : LinearIndependent K Subtype.val
sb : s ⊆ b
h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b
x : V
xt : x ∈ t
hn : ¬x ∈ ↑(span K b)
⊢ x ∈ ↑(span K (insert x b))
[PROOFSTEP]
exact subset_span (mem_insert _ _)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
⊢ ∃ b x, span K b = span K t ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
obtain ⟨b, hb₁, -, hb₂, hb₃⟩ := exists_linearIndependent_extension (linearIndependent_empty K V) (Set.empty_subset t)
[GOAL]
case intro.intro.intro.intro
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
b : Set V
hb₁ : b ⊆ t
hb₂ : t ⊆ ↑(span K b)
hb₃ : LinearIndependent K Subtype.val
⊢ ∃ b x, span K b = span K t ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
exact ⟨b, hb₁, (span_eq_of_le _ hb₂ (Submodule.span_mono hb₁)).symm, hb₃⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t
[PROOFSTEP]
classical
have :
∀ t : Finset V,
∀ s' : Finset V,
↑s' ⊆ s →
s ∩ ↑t = ∅ →
s ⊆ (span K ↑(s' ∪ t) : Submodule K V) → ∃ t' : Finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card :=
fun t =>
Finset.induction_on t
(fun s' hs' _ hss' =>
have : s = ↑s' := eq_of_linearIndependent_of_span_subtype hs hs' <| by simpa using hss'
⟨s', by simp [this]⟩)
fun b₁ t hb₁t ih s' hs' hst hss' =>
have hb₁s : b₁ ∉ s := fun h =>
by
have : b₁ ∈ s ∩ ↑(insert b₁ t) := ⟨h, Finset.mem_insert_self _ _⟩
rwa [hst] at this
have hb₁s' : b₁ ∉ s' := fun h => hb₁s <| hs' h
have hst : s ∩ ↑t = ∅ :=
eq_empty_of_subset_empty <|
-- Porting note: `-inter_subset_left, -subset_inter_iff` required.Subset.trans
(by simp [inter_subset_inter, Subset.refl, -inter_subset_left, -subset_inter_iff]) (le_of_eq hst)
Classical.by_cases (p := s ⊆ (span K ↑(s' ∪ t) : Submodule K V))
(fun this =>
let ⟨u, hust, hsu, Eq⟩ := ih _ hs' hst this
have hb₁u : b₁ ∉ u := fun h => (hust h).elim hb₁s hb₁t
⟨insert b₁ u, by simp [insert_subset_insert hust], Subset.trans hsu (by simp), by simp [Eq, hb₁t, hb₁s', hb₁u]⟩)
fun this =>
let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this
have hb₂t' : b₂ ∉ s' ∪ t := fun h => hb₂t <| subset_span h
have : s ⊆ (span K ↑(insert b₂ s' ∪ t) : Submodule K V) := fun b₃ hb₃ =>
by
have : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : Set V) := by
-- Porting note: Too many theorems to be excluded, so
-- `simp only` is shorter.simp only [insert_eq, union_subset_union, Subset.refl,
subset_union_right, Finset.union_insert, Finset.coe_insert]
have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : Set V)) := span_mono this (hss' hb₃)
have : s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : Submodule K V) := by
simpa [insert_eq, -singleton_union, -union_singleton] using hss'
have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) := by exact mem_span_insert_exchange (this hb₂s) hb₂t
rw [span_insert_eq_span hb₁] at hb₃ ; simpa using hb₃
let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset_iff, hb₂s, hs']) hst this
⟨u, Subset.trans hust <| union_subset_union (Subset.refl _) (by simp [subset_insert]), hsu, by
simp [eq, Finset.card_insert_of_not_mem hb₂t', hb₁t, hb₁s']⟩
have eq : ((t.filter fun x => x ∈ s) ∪ t.filter fun x => x ∉ s) = t :=
by
ext1 x
by_cases x ∈ s <;> simp [*]
apply
Exists.elim
(this (t.filter fun x => x ∉ s) (t.filter fun x => x ∈ s) (by simp [Set.subset_def])
(by simp (config := { contextual := true }) [Set.ext_iff]) (by rwa [eq]))
intro u h
exact
⟨u, Subset.trans h.1 (by simp (config := { contextual := true }) [subset_def, and_imp, or_imp]), h.2.1, by
simp only [h.2.2, eq]⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t
[PROOFSTEP]
have :
∀ t : Finset V,
∀ s' : Finset V,
↑s' ⊆ s →
s ∩ ↑t = ∅ →
s ⊆ (span K ↑(s' ∪ t) : Submodule K V) → ∃ t' : Finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card :=
fun t =>
Finset.induction_on t
(fun s' hs' _ hss' =>
have : s = ↑s' := eq_of_linearIndependent_of_span_subtype hs hs' <| by simpa using hss'
⟨s', by simp [this]⟩)
fun b₁ t hb₁t ih s' hs' hst hss' =>
have hb₁s : b₁ ∉ s := fun h =>
by
have : b₁ ∈ s ∩ ↑(insert b₁ t) := ⟨h, Finset.mem_insert_self _ _⟩
rwa [hst] at this
have hb₁s' : b₁ ∉ s' := fun h => hb₁s <| hs' h
have hst : s ∩ ↑t = ∅ :=
eq_empty_of_subset_empty <|
-- Porting note: `-inter_subset_left, -subset_inter_iff` required.Subset.trans
(by simp [inter_subset_inter, Subset.refl, -inter_subset_left, -subset_inter_iff]) (le_of_eq hst)
Classical.by_cases (p := s ⊆ (span K ↑(s' ∪ t) : Submodule K V))
(fun this =>
let ⟨u, hust, hsu, Eq⟩ := ih _ hs' hst this
have hb₁u : b₁ ∉ u := fun h => (hust h).elim hb₁s hb₁t
⟨insert b₁ u, by simp [insert_subset_insert hust], Subset.trans hsu (by simp), by simp [Eq, hb₁t, hb₁s', hb₁u]⟩)
fun this =>
let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this
have hb₂t' : b₂ ∉ s' ∪ t := fun h => hb₂t <| subset_span h
have : s ⊆ (span K ↑(insert b₂ s' ∪ t) : Submodule K V) := fun b₃ hb₃ =>
by
have : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : Set V) := by
-- Porting note: Too many theorems to be excluded, so
-- `simp only` is shorter.simp only [insert_eq, union_subset_union, Subset.refl,
subset_union_right, Finset.union_insert, Finset.coe_insert]
have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : Set V)) := span_mono this (hss' hb₃)
have : s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : Submodule K V) := by
simpa [insert_eq, -singleton_union, -union_singleton] using hss'
have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) := by exact mem_span_insert_exchange (this hb₂s) hb₂t
rw [span_insert_eq_span hb₁] at hb₃ ; simpa using hb₃
let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset_iff, hb₂s, hs']) hst this
⟨u, Subset.trans hust <| union_subset_union (Subset.refl _) (by simp [subset_insert]), hsu, by
simp [eq, Finset.card_insert_of_not_mem hb₂t', hb₁t, hb₁s']⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝¹ : Set V
x y z : V
t✝ : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t✝)
t s' : Finset V
hs' : ↑s' ⊆ s
x✝ : s ∩ ↑∅ = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ ∅))
⊢ s ⊆ ↑(span K ↑s')
[PROOFSTEP]
simpa using hss'
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝¹ : Set V
x y z : V
t✝ : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t✝)
t s' : Finset V
hs' : ↑s' ⊆ s
x✝ : s ∩ ↑∅ = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ ∅))
this : s = ↑s'
⊢ ↑s' ⊆ s ∪ ↑∅ ∧ s ⊆ ↑s' ∧ Finset.card s' = Finset.card (s' ∪ ∅)
[PROOFSTEP]
simp [this]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
h : b₁ ∈ s
⊢ False
[PROOFSTEP]
have : b₁ ∈ s ∩ ↑(insert b₁ t) := ⟨h, Finset.mem_insert_self _ _⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
h : b₁ ∈ s
this : b₁ ∈ s ∩ ↑(insert b₁ t)
⊢ False
[PROOFSTEP]
rwa [hst] at this
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
⊢ s ∩ ↑t ⊆ s ∩ ↑(insert b₁ t)
[PROOFSTEP]
simp [inter_subset_inter, Subset.refl, -inter_subset_left, -subset_inter_iff]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this : s ⊆ ↑(span K ↑(s' ∪ t))
u : Finset V
hust : ↑u ⊆ s ∪ ↑t
hsu : s ⊆ ↑u
Eq : Finset.card u = Finset.card (s' ∪ t)
hb₁u : ¬b₁ ∈ u
⊢ ↑(insert b₁ u) ⊆ s ∪ ↑(insert b₁ t)
[PROOFSTEP]
simp [insert_subset_insert hust]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this : s ⊆ ↑(span K ↑(s' ∪ t))
u : Finset V
hust : ↑u ⊆ s ∪ ↑t
hsu : s ⊆ ↑u
Eq : Finset.card u = Finset.card (s' ∪ t)
hb₁u : ¬b₁ ∈ u
⊢ ↑u ⊆ ↑(insert b₁ u)
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this : s ⊆ ↑(span K ↑(s' ∪ t))
u : Finset V
hust : ↑u ⊆ s ∪ ↑t
hsu : s ⊆ ↑u
Eq : Finset.card u = Finset.card (s' ∪ t)
hb₁u : ¬b₁ ∈ u
⊢ Finset.card (insert b₁ u) = Finset.card (s' ∪ insert b₁ t)
[PROOFSTEP]
simp [Eq, hb₁t, hb₁s', hb₁u]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃ : b₃ ∈ s
⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t))
[PROOFSTEP]
have : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : Set V) := by
-- Porting note: Too many theorems to be excluded, so
-- `simp only` is shorter.simp only [insert_eq, union_subset_union, Subset.refl,
subset_union_right, Finset.union_insert, Finset.coe_insert]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃ : b₃ ∈ s
⊢ ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
[PROOFSTEP]
simp only [insert_eq, union_subset_union, Subset.refl, subset_union_right, Finset.union_insert, Finset.coe_insert]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃ : b₃ ∈ s
this : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t))
[PROOFSTEP]
have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : Set V)) := span_mono this (hss' hb₃)
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃✝ : b₃ ∈ s
this : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t)))
⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t))
[PROOFSTEP]
have : s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : Submodule K V) := by
simpa [insert_eq, -singleton_union, -union_singleton] using hss'
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃✝ : b₃ ∈ s
this : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t)))
⊢ s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t)))
[PROOFSTEP]
simpa [insert_eq, -singleton_union, -union_singleton] using hss'
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃✝ : b₃ ∈ s
this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t)))
this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t)))
⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t))
[PROOFSTEP]
have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) := by exact mem_span_insert_exchange (this hb₂s) hb₂t
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃✝ : b₃ ∈ s
this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t)))
this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t)))
⊢ b₁ ∈ span K (insert b₂ ↑(s' ∪ t))
[PROOFSTEP]
exact mem_span_insert_exchange (this hb₂s) hb₂t
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃✝ : b₃ ∈ s
this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t)))
this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t)))
hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t))
⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t))
[PROOFSTEP]
rw [span_insert_eq_span hb₁] at hb₃
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
b₃ : V
hb₃✝ : b₃ ∈ s
this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t))
hb₃ : b₃ ∈ span K (insert b₂ ↑(s' ∪ t))
this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t)))
hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t))
⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t))
[PROOFSTEP]
simpa using hb₃
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
this : s ⊆ ↑(span K ↑(insert b₂ s' ∪ t))
⊢ ↑(insert b₂ s') ⊆ s
[PROOFSTEP]
simp [insert_subset_iff, hb₂s, hs']
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
this : s ⊆ ↑(span K ↑(insert b₂ s' ∪ t))
u : Finset V
hust : ↑u ⊆ s ∪ ↑t
hsu : s ⊆ ↑u
eq : Finset.card u = Finset.card (insert b₂ s' ∪ t)
⊢ ↑t ⊆ ↑(insert b₁ t)
[PROOFSTEP]
simp [subset_insert]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝² : Set V
x y z : V
t✝¹ : Finset V
hs : LinearIndependent K fun x => ↑x
hst✝¹ : s ⊆ ↑(span K ↑t✝¹)
t✝ : Finset V
b₁ : V
t : Finset V
hb₁t : ¬b₁ ∈ t
ih :
∀ (s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
s' : Finset V
hs' : ↑s' ⊆ s
hst✝ : s ∩ ↑(insert b₁ t) = ∅
hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t))
hb₁s : ¬b₁ ∈ s
hb₁s' : ¬b₁ ∈ s'
hst : s ∩ ↑t = ∅
this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t))
b₂ : V
hb₂s : b₂ ∈ s
hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t))
hb₂t' : ¬b₂ ∈ s' ∪ t
this : s ⊆ ↑(span K ↑(insert b₂ s' ∪ t))
u : Finset V
hust : ↑u ⊆ s ∪ ↑t
hsu : s ⊆ ↑u
eq : Finset.card u = Finset.card (insert b₂ s' ∪ t)
⊢ Finset.card u = Finset.card (s' ∪ insert b₁ t)
[PROOFSTEP]
simp [eq, Finset.card_insert_of_not_mem hb₂t', hb₁t, hb₁s']
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t
[PROOFSTEP]
have eq : ((t.filter fun x => x ∈ s) ∪ t.filter fun x => x ∉ s) = t :=
by
ext1 x
by_cases x ∈ s <;> simp [*]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
⊢ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
[PROOFSTEP]
ext1 x
[GOAL]
case a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x✝ y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
x : V
⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t
[PROOFSTEP]
by_cases x ∈ s
[GOAL]
case a
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x✝ y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
x : V
⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t
[PROOFSTEP]
by_cases x ∈ s
[GOAL]
case pos
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x✝ y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
x : V
h : x ∈ s
⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t
[PROOFSTEP]
simp [*]
[GOAL]
case neg
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x✝ y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
x : V
h : ¬x ∈ s
⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t
[PROOFSTEP]
simp [*]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t
[PROOFSTEP]
apply
Exists.elim
(this (t.filter fun x => x ∉ s) (t.filter fun x => x ∈ s) (by simp [Set.subset_def])
(by simp (config := { contextual := true }) [Set.ext_iff]) (by rwa [eq]))
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
⊢ ↑(Finset.filter (fun x => x ∈ s) t) ⊆ s
[PROOFSTEP]
simp [Set.subset_def]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
⊢ s ∩ ↑(Finset.filter (fun x => ¬x ∈ s) t) = ∅
[PROOFSTEP]
simp (config := { contextual := true }) [Set.ext_iff]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
⊢ s ⊆ ↑(span K ↑(Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t))
[PROOFSTEP]
rwa [eq]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
⊢ ∀ (a : Finset V),
↑a ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧
s ⊆ ↑a ∧ Finset.card a = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t) →
∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t
[PROOFSTEP]
intro u h
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
u : Finset V
h :
↑u ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧
s ⊆ ↑u ∧ Finset.card u = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t)
⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t
[PROOFSTEP]
exact
⟨u, Subset.trans h.1 (by simp (config := { contextual := true }) [subset_def, and_imp, or_imp]), h.2.1, by
simp only [h.2.2, eq]⟩
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
u : Finset V
h :
↑u ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧
s ⊆ ↑u ∧ Finset.card u = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t)
⊢ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ⊆ s ∪ ↑t
[PROOFSTEP]
simp (config := { contextual := true }) [subset_def, and_imp, or_imp]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t✝ : Set V
x y z : V
t : Finset V
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K ↑t)
this :
∀ (t s' : Finset V),
↑s' ⊆ s →
s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t)
eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t
u : Finset V
h :
↑u ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧
s ⊆ ↑u ∧ Finset.card u = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t)
⊢ Finset.card u = Finset.card t
[PROOFSTEP]
simp only [h.2.2, eq]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
ht : Set.Finite t
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K t)
⊢ s ⊆ ↑(span K ↑(Finite.toFinset ht))
[PROOFSTEP]
simp
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
ht : Set.Finite t
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K t)
⊢ s ⊆ ↑(span K t)
[PROOFSTEP]
assumption
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
ht : Set.Finite t
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K t)
this✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))
u : Finset V
_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)
hsu : s ⊆ ↑u
Eq : Finset.card u = Finset.card (Finite.toFinset ht)
this : Set.Finite s
⊢ Finset.card (Finite.toFinset this) ≤ Finset.card (Finite.toFinset ht)
[PROOFSTEP]
rw [← Eq]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
ht : Set.Finite t
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K t)
this✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))
u : Finset V
_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)
hsu : s ⊆ ↑u
Eq : Finset.card u = Finset.card (Finite.toFinset ht)
this : Set.Finite s
⊢ Finset.card (Finite.toFinset this) ≤ Finset.card u
[PROOFSTEP]
exact Finset.card_le_of_subset <| Finset.coe_subset.mp <| by simp [hsu]
[GOAL]
ι : Type u'
ι' : Type u_1
R : Type u_2
K : Type u_3
M : Type u_4
M' : Type u_5
M'' : Type u_6
V : Type u
V' : Type u_7
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup V'
inst✝¹ : Module K V
inst✝ : Module K V'
v : ι → V
s t : Set V
x y z : V
ht : Set.Finite t
hs : LinearIndependent K fun x => ↑x
hst : s ⊆ ↑(span K t)
this✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))
u : Finset V
_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)
hsu : s ⊆ ↑u
Eq : Finset.card u = Finset.card (Finite.toFinset ht)
this : Set.Finite s
⊢ ↑(Finite.toFinset this) ⊆ ↑u
[PROOFSTEP]
simp [hsu]
| {"mathlib_filename": "Mathlib.LinearAlgebra.LinearIndependent", "llama_tokens": 186254} |
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
ι : Type u_5
⊢ Module R (AlternatingMap R M N ι)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] N
[PROOFSTEP]
suffices (∀ i, AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] ∀ i, AlternatingMap R M N (Fin i)
by
refine' LinearMap.compr₂ this _
refine' (LinearEquiv.toLinearMap _).comp (LinearMap.proj 0)
exact AlternatingMap.constLinearEquivOfIsEmpty.symm
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
this : ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] N
[PROOFSTEP]
refine' LinearMap.compr₂ this _
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
this : ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] N
[PROOFSTEP]
refine' (LinearEquiv.toLinearMap _).comp (LinearMap.proj 0)
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
this : ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ AlternatingMap R M N (Fin 0) ≃ₗ[R] N
[PROOFSTEP]
exact AlternatingMap.constLinearEquivOfIsEmpty.symm
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i)
[PROOFSTEP]
refine' CliffordAlgebra.foldl _ _ _
[GOAL]
case refine'_1
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
⊢ M →ₗ[R] ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i)
[PROOFSTEP]
refine'
LinearMap.mk₂ R (fun m f i => (f i.succ).curryLeft m) (fun m₁ m₂ f => _) (fun c m f => _) (fun m f₁ f₂ => _)
fun c m f => _
[GOAL]
case refine'_1.refine'_1
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m₁ m₂ : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f
case refine'_1.refine'_2
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
c : R
m : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f
case refine'_1.refine'_3
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂
case refine'_1.refine'_4
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
c : R
m : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f
[PROOFSTEP]
all_goals
ext i : 1
simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add,
AlternatingMap.curryLeft_smul, map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply]
[GOAL]
case refine'_1.refine'_1
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m₁ m₂ : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f
[PROOFSTEP]
ext i : 1
[GOAL]
case refine'_1.refine'_1.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m₁ m₂ : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
i : ℕ
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f i =
((fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
i
[PROOFSTEP]
simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul,
map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply]
[GOAL]
case refine'_1.refine'_2
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
c : R
m : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f
[PROOFSTEP]
ext i : 1
[GOAL]
case refine'_1.refine'_2.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
c : R
m : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
i : ℕ
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f i =
(c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) i
[PROOFSTEP]
simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul,
map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply]
[GOAL]
case refine'_1.refine'_3
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂
[PROOFSTEP]
ext i : 1
[GOAL]
case refine'_1.refine'_3.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)
i : ℕ
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) i =
((fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
i
[PROOFSTEP]
simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul,
map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply]
[GOAL]
case refine'_1.refine'_4
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
c : R
m : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f
[PROOFSTEP]
ext i : 1
[GOAL]
case refine'_1.refine'_4.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
c : R
m : M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
i : ℕ
⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) i =
(c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) i
[PROOFSTEP]
simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul,
map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply]
[GOAL]
case refine'_2
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
⊢ ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x
[PROOFSTEP]
intro m x
[GOAL]
case refine'_2
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
x : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x
[PROOFSTEP]
dsimp only [LinearMap.mk₂_apply, QuadraticForm.coeFn_zero, Pi.zero_apply]
[GOAL]
case refine'_2
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
x : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun i => ↑(AlternatingMap.curryLeft (↑(AlternatingMap.curryLeft (x (Nat.succ (Nat.succ i)))) m)) m) = 0 • x
[PROOFSTEP]
simp_rw [zero_smul]
[GOAL]
case refine'_2
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
x : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (fun i => ↑(AlternatingMap.curryLeft (↑(AlternatingMap.curryLeft (x (Nat.succ (Nat.succ i)))) m)) m) = 0
[PROOFSTEP]
ext i : 1
[GOAL]
case refine'_2.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
m : M
x : (i : ℕ) → AlternatingMap R M N (Fin i)
i : ℕ
⊢ ↑(AlternatingMap.curryLeft (↑(AlternatingMap.curryLeft (x (Nat.succ (Nat.succ i)))) m)) m = OfNat.ofNat 0 i
[PROOFSTEP]
exact AlternatingMap.curryLeft_same _ _
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
⊢ ↑(↑liftAlternating f) (↑(ι R) m) = ↑(f 1) ![m]
[PROOFSTEP]
dsimp [liftAlternating]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
⊢ ↑(↑(↑(foldl 0
(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
(_ :
∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x))
f)
(↑(ι R) m) 0)
0 =
↑(f 1) ![m]
[PROOFSTEP]
rw [foldl_ι, LinearMap.mk₂_apply, AlternatingMap.curryLeft_apply_apply]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
⊢ ↑(f (Nat.succ 0)) (Matrix.vecCons m 0) = ↑(f 1) ![m]
[PROOFSTEP]
congr
-- porting note: In Lean 3, `congr` could use the `[Subsingleton (Fin 0 → M)]` instance to finish
-- the proof. Here, the instance can be synthesized but `congr` does not use it so the following
-- line is provided.
[GOAL]
case h.e_6.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
⊢ Matrix.vecCons m 0 = ![m]
[PROOFSTEP]
rw [Matrix.zero_empty]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
x : ExteriorAlgebra R M
⊢ ↑(↑liftAlternating f) (↑(ι R) m * x) = ↑(↑liftAlternating fun i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) x
[PROOFSTEP]
dsimp [liftAlternating]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
x : ExteriorAlgebra R M
⊢ ↑(↑(↑(foldl 0
(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
(_ :
∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x))
f)
(↑(ι R) m * x) 0)
0 =
↑(↑(↑(foldl 0
(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
(_ :
∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x))
fun i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
x 0)
0
[PROOFSTEP]
rw [foldl_mul, foldl_ι]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
m : M
x : ExteriorAlgebra R M
⊢ ↑(↑(↑(foldl 0
(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
(_ :
∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x))
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
f))
x 0)
0 =
↑(↑(↑(foldl 0
(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
(_ :
∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x))
fun i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
x 0)
0
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑liftAlternating f) 1 = ↑(f 0) 0
[PROOFSTEP]
dsimp [liftAlternating]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑(↑(foldl 0
(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
(_ :
∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
(↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)
(_ :
∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)
(_ :
∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) =
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ +
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂)
(_ :
∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
(fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) =
c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f))
m)
x) =
↑0 m • x))
f)
1 0)
0 =
↑(f 0) 0
[PROOFSTEP]
rw [foldl_one]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
r : R
⊢ ↑(↑liftAlternating f) (↑(algebraMap R (ExteriorAlgebra R M)) r) = r • ↑(f 0) 0
[PROOFSTEP]
rw [Algebra.algebraMap_eq_smul_one, map_smul, liftAlternating_one]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n : ℕ
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin n → M
⊢ ↑(↑liftAlternating f) (↑(ιMulti R n) v) = ↑(f n) v
[PROOFSTEP]
rw [ιMulti_apply]
-- porting note: `v` is generalized automatically so it was removed from the next line
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n : ℕ
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin n → M
⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v
[PROOFSTEP]
induction' n with n ih generalizing f
[GOAL]
case zero
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n : ℕ
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
v✝ : Fin n → M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin Nat.zero → M
⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f Nat.zero) v
[PROOFSTEP]
letI : Subsingleton (Fin 0 → M) := by infer_instance
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n : ℕ
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
v✝ : Fin n → M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin Nat.zero → M
⊢ Subsingleton (Fin 0 → M)
[PROOFSTEP]
infer_instance
[GOAL]
case zero
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n : ℕ
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
v✝ : Fin n → M
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin Nat.zero → M
this : Subsingleton (Fin 0 → M) := inferInstance
⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f Nat.zero) v
[PROOFSTEP]
rw [List.ofFn_zero, List.prod_nil, liftAlternating_one, Subsingleton.elim 0 v]
[GOAL]
case succ
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n✝ : ℕ
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
v✝ : Fin n✝ → M
n : ℕ
ih :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)) (v : Fin n → M),
↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin (Nat.succ n) → M
⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f (Nat.succ n)) v
[PROOFSTEP]
rw [List.ofFn_succ, List.prod_cons, liftAlternating_ι_mul, ih, AlternatingMap.curryLeft_apply_apply]
[GOAL]
case succ
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n✝ : ℕ
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
v✝ : Fin n✝ → M
n : ℕ
ih :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)) (v : Fin n → M),
↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin (Nat.succ n) → M
⊢ ↑(f (Nat.succ n)) (Matrix.vecCons (v 0) fun i => v (Fin.succ i)) = ↑(f (Nat.succ n)) v
[PROOFSTEP]
congr
[GOAL]
case succ.h.e_6.h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
n✝ : ℕ
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
v✝ : Fin n✝ → M
n : ℕ
ih :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)) (v : Fin n → M),
↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : Fin (Nat.succ n) → M
⊢ (Matrix.vecCons (v 0) fun i => v (Fin.succ i)) = v
[PROOFSTEP]
exact Matrix.cons_head_tail _
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ (↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) = LinearMap.comp g (↑liftAlternating f)
[PROOFSTEP]
ext v
[GOAL]
case h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : ExteriorAlgebra R M
⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) v = ↑(LinearMap.comp g (↑liftAlternating f)) v
[PROOFSTEP]
rw [LinearMap.comp_apply]
[GOAL]
case h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f : (i : ℕ) → AlternatingMap R M N (Fin i)
v : ExteriorAlgebra R M
⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) v = ↑g (↑(↑liftAlternating f) v)
[PROOFSTEP]
induction' v using CliffordAlgebra.left_induction with r x y hx hy x m hx generalizing f
[GOAL]
case h.hr
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
r : R
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) (↑(algebraMap R (CliffordAlgebra 0)) r) =
↑g (↑(↑liftAlternating f) (↑(algebraMap R (CliffordAlgebra 0)) r))
[PROOFSTEP]
rw [liftAlternating_algebraMap, liftAlternating_algebraMap, map_smul, LinearMap.compAlternatingMap_apply]
[GOAL]
case h.h_add
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
x y : CliffordAlgebra 0
hx :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) x = ↑g (↑(↑liftAlternating f) x)
hy :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) y = ↑g (↑(↑liftAlternating f) y)
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) (x + y) = ↑g (↑(↑liftAlternating f) (x + y))
[PROOFSTEP]
rw [map_add, map_add, map_add, hx, hy]
[GOAL]
case h.h_mul_ι
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
x : CliffordAlgebra 0
m : M
hx :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) x = ↑g (↑(↑liftAlternating f) x)
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) (↑(CliffordAlgebra.ι 0) m * x) =
↑g (↑(↑liftAlternating f) (↑(CliffordAlgebra.ι 0) m * x))
[PROOFSTEP]
rw [liftAlternating_ι_mul, liftAlternating_ι_mul, ← hx]
[GOAL]
case h.h_mul_ι
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
g : N →ₗ[R] N'
f✝ : (i : ℕ) → AlternatingMap R M N (Fin i)
x : CliffordAlgebra 0
m : M
hx :
∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)),
↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) x = ↑g (↑(↑liftAlternating f) x)
f : (i : ℕ) → AlternatingMap R M N (Fin i)
⊢ ↑(↑liftAlternating fun i => ↑(AlternatingMap.curryLeft (↑(LinearMap.compAlternatingMap g) (f (Nat.succ i)))) m) x =
↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)) x
[PROOFSTEP]
simp_rw [AlternatingMap.curryLeft_compAlternatingMap]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
⊢ ↑liftAlternating (ιMulti R) = LinearMap.id
[PROOFSTEP]
ext v
[GOAL]
case h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
v : ExteriorAlgebra R M
⊢ ↑(↑liftAlternating (ιMulti R)) v = ↑LinearMap.id v
[PROOFSTEP]
dsimp
[GOAL]
case h
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
v : ExteriorAlgebra R M
⊢ ↑(↑liftAlternating (ιMulti R)) v = v
[PROOFSTEP]
induction' v using CliffordAlgebra.left_induction with r x y hx hy x m hx
[GOAL]
case h.hr
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
r : R
⊢ ↑(↑liftAlternating (ιMulti R)) (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑(algebraMap R (CliffordAlgebra 0)) r
[PROOFSTEP]
rw [liftAlternating_algebraMap, ιMulti_zero_apply, Algebra.algebraMap_eq_smul_one]
[GOAL]
case h.h_add
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
x y : CliffordAlgebra 0
hx : ↑(↑liftAlternating (ιMulti R)) x = x
hy : ↑(↑liftAlternating (ιMulti R)) y = y
⊢ ↑(↑liftAlternating (ιMulti R)) (x + y) = x + y
[PROOFSTEP]
rw [map_add, hx, hy]
[GOAL]
case h.h_mul_ι
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
x : CliffordAlgebra 0
m : M
hx : ↑(↑liftAlternating (ιMulti R)) x = x
⊢ ↑(↑liftAlternating (ιMulti R)) (↑(CliffordAlgebra.ι 0) m * x) = ↑(CliffordAlgebra.ι 0) m * x
[PROOFSTEP]
simp_rw [liftAlternating_ι_mul, ιMulti_succ_curryLeft, liftAlternating_comp, LinearMap.comp_apply,
LinearMap.mulLeft_apply, hx]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
N' : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup N'
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R N'
F : ExteriorAlgebra R M →ₗ[R] N
⊢ LinearMap.comp F (↑liftAlternating fun i => ιMulti R i) = F
[PROOFSTEP]
rw [liftAlternating_ιMulti, LinearMap.comp_id]
| {"mathlib_filename": "Mathlib.LinearAlgebra.ExteriorAlgebra.OfAlternating", "llama_tokens": 27203} |
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
⊢ Linear k (Rep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ AddCommGroup (CoeSort.coe V)
[PROOFSTEP]
change AddCommGroup ((forget₂ (Rep k G) (ModuleCat k)).obj V)
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ AddCommGroup ↑((forget₂ (Rep k G) (ModuleCat k)).obj V)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ Module k (CoeSort.coe V)
[PROOFSTEP]
change Module k ((forget₂ (Rep k G) (ModuleCat k)).obj V)
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ Module k ↑((forget₂ (Rep k G) (ModuleCat k)).obj V)
[PROOFSTEP]
infer_instance
[GOAL]
k G✝ : Type u
inst✝² : CommRing k
inst✝¹ : Monoid G✝
G : Type u
inst✝ : Group G
A : Rep k G
g : G
x : CoeSort.coe A
⊢ ↑(↑(ρ A) g⁻¹ * ↑(ρ A) g) x = x
[PROOFSTEP]
rw [← map_mul, inv_mul_self, map_one, LinearMap.one_apply]
[GOAL]
k G✝ : Type u
inst✝² : CommRing k
inst✝¹ : Monoid G✝
G : Type u
inst✝ : Group G
A : Rep k G
g : G
x : CoeSort.coe A
⊢ ↑(↑(ρ A) g * ↑(ρ A) g⁻¹) x = x
[PROOFSTEP]
rw [← map_mul, mul_inv_self, map_one, LinearMap.one_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X : Action (Type u) (MonCat.of G)
g : G
x : X.V
⊢ ↑(↑(ρ ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj X)) g) (Finsupp.single x 1) =
Finsupp.single (↑X.ρ g x) 1
[PROOFSTEP]
rw [linearization_obj_ρ, Finsupp.lmapDomain_apply, Finsupp.mapDomain_single]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X : Action (Type u) (MonCat.of G)
g : G
x : X.V
r : k
⊢ ↑(↑(ρ ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj X)) g) (Finsupp.single x r) =
Finsupp.single (↑X.ρ g x) r
[PROOFSTEP]
rw [linearization_obj_ρ, Finsupp.lmapDomain_apply, Finsupp.mapDomain_single]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X✝ Y✝ : Action (Type u) (MonCat.of G)
f : X✝ ⟶ Y✝
X Y : Action (Type u) (MonCat.of G)
⊢ (inv (LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor X Y)).hom =
↑(LinearEquiv.symm (finsuppTensorFinsupp' k X.V Y.V))
[PROOFSTEP]
rw [← Action.forget_map, Functor.map_inv]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X✝ Y✝ : Action (Type u) (MonCat.of G)
f : X✝ ⟶ Y✝
X Y : Action (Type u) (MonCat.of G)
⊢ inv
((Action.forget (ModuleCat k) (MonCat.of G)).map
(LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor X Y)) =
↑(LinearEquiv.symm (finsuppTensorFinsupp' k X.V Y.V))
[PROOFSTEP]
apply IsIso.inv_eq_of_hom_inv_id
[GOAL]
case hom_inv_id
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X✝ Y✝ : Action (Type u) (MonCat.of G)
f : X✝ ⟶ Y✝
X Y : Action (Type u) (MonCat.of G)
⊢ (Action.forget (ModuleCat k) (MonCat.of G)).map (LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor X Y) ≫
↑(LinearEquiv.symm (finsuppTensorFinsupp' k X.V Y.V)) =
𝟙
((Action.forget (ModuleCat k) (MonCat.of G)).obj
(MonoidalCategory.tensorObj ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj X)
((linearization k G).toLaxMonoidalFunctor.toFunctor.obj Y)))
[PROOFSTEP]
exact LinearMap.ext fun x => LinearEquiv.symm_apply_apply (finsuppTensorFinsupp' k X.V Y.V) x
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : ↑(MonCat.of G)
⊢ (↑(ofMulAction k G G).ρ g ≫ ↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) =
(↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) ≫ ↑A.ρ g
[PROOFSTEP]
refine'
Finsupp.lhom_ext' fun y =>
LinearMap.ext_ring
_
/- Porting note: rest of broken proof was
simpa only [LinearMap.comp_apply, ModuleCat.comp_def, Finsupp.lsingle_apply, Finsupp.lift_apply,
Action_ρ_eq_ρ, of_ρ_apply, Representation.ofMulAction_single, Finsupp.sum_single_index,
zero_smul, one_smul, smul_eq_mul, A.ρ.map_mul] -/
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : ↑(MonCat.of G)
y : G
⊢ ↑(LinearMap.comp (↑(ofMulAction k G G).ρ g ≫ ↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x)
(Finsupp.lsingle y))
1 =
↑(LinearMap.comp ((↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) ≫ ↑A.ρ g)
(Finsupp.lsingle y))
1
[PROOFSTEP]
simp only [LinearMap.comp_apply, ModuleCat.comp_def, Finsupp.lsingle_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : ↑(MonCat.of G)
y : G
⊢ ↑(↑(Finsupp.lift (CoeSort.coe A) k G) fun g => ↑(↑(ρ A) g) x) (↑(↑(ofMulAction k G G).ρ g) (Finsupp.single y 1)) =
↑(↑A.ρ g) (↑(↑(Finsupp.lift (CoeSort.coe A) k G) fun g => ↑(↑(ρ A) g) x) (Finsupp.single y 1))
[PROOFSTEP]
erw [Finsupp.lift_apply, Finsupp.lift_apply, Representation.ofMulAction_single (G := G)]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : ↑(MonCat.of G)
y : G
⊢ (Finsupp.sum (Finsupp.single (g • y) 1) fun x_1 r => r • ↑(↑(ρ A) x_1) x) =
↑(↑A.ρ g) (Finsupp.sum (Finsupp.single y 1) fun x_1 r => r • ↑(↑(ρ A) x_1) x)
[PROOFSTEP]
simp only [Finsupp.sum_single_index, zero_smul, one_smul, smul_eq_mul, A.ρ.map_mul, of_ρ]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : ↑(MonCat.of G)
y : G
⊢ ↑(↑(ρ A) g * ↑(ρ A) y) x = ↑(↑A.ρ g) (↑(↑(ρ A) y) x)
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
⊢ ↑(leftRegularHom A x).hom (Finsupp.single 1 1) = x
[PROOFSTEP]
rw [leftRegularHom_hom, Finsupp.lift_apply, Finsupp.sum_single_index, one_smul, A.ρ.map_one, LinearMap.one_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
⊢ 0 • ↑(↑(ρ A) 1) x = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
⊢ (fun x => leftRegularHom A x)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) },
map_smul' :=
(_ :
∀ (r : k) (x : ofMulAction k G G ⟶ A),
AddHom.toFun
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }
(r • x) =
AddHom.toFun
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }
(r • x)) }.toAddHom
f) =
f
[PROOFSTEP]
refine' Action.Hom.ext _ _ (Finsupp.lhom_ext' fun x : G => LinearMap.ext_ring _)
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
⊢ ↑(LinearMap.comp
((fun x => leftRegularHom A x)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) },
map_smul' :=
(_ :
∀ (r : k) (x : ofMulAction k G G ⟶ A),
AddHom.toFun
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }
(r • x) =
AddHom.toFun
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }
(r • x)) }.toAddHom
f)).hom
(Finsupp.lsingle x))
1 =
↑(LinearMap.comp f.hom (Finsupp.lsingle x)) 1
[PROOFSTEP]
have :
f.hom ((ofMulAction k G G).ρ x (Finsupp.single (1 : G) (1 : k))) = A.ρ x (f.hom (Finsupp.single (1 : G) (1 : k))) :=
LinearMap.ext_iff.1 (f.comm x)
(Finsupp.single 1 1)
/- Porting note: rest of broken proof was
simp only [LinearMap.comp_apply, Finsupp.lsingle_apply, left_regular_hom_hom,
Finsupp.lift_apply, Finsupp.sum_single_index, one_smul, ← this, zero_smul, of_ρ_apply,
Representation.ofMulAction_single x (1 : G) (1 : k), smul_eq_mul, mul_one] -/
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ ↑(LinearMap.comp
((fun x => leftRegularHom A x)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) },
map_smul' :=
(_ :
∀ (r : k) (x : ofMulAction k G G ⟶ A),
AddHom.toFun
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }
(r • x) =
AddHom.toFun
{ toFun := fun f => ↑f.hom (Finsupp.single 1 1),
map_add' :=
(_ :
∀ (x y : ofMulAction k G G ⟶ A),
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) =
(fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }
(r • x)) }.toAddHom
f)).hom
(Finsupp.lsingle x))
1 =
↑(LinearMap.comp f.hom (Finsupp.lsingle x)) 1
[PROOFSTEP]
simp only [LinearMap.comp_apply, Finsupp.lsingle_apply, leftRegularHom_hom]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ ↑(↑(Finsupp.lift (CoeSort.coe A) k G) fun g => ↑(↑(ρ A) g) (↑f.hom (Finsupp.single 1 1))) (Finsupp.single x 1) =
↑f.hom (Finsupp.single x 1)
[PROOFSTEP]
erw [Finsupp.lift_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ (Finsupp.sum (Finsupp.single x 1) fun x r => r • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))) =
↑f.hom (Finsupp.single x 1)
[PROOFSTEP]
rw [Finsupp.sum_single_index, ← this, of_ρ_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ 1 • ↑f.hom (↑(↑(Representation.ofMulAction k G G) x) (Finsupp.single 1 1)) = ↑f.hom (Finsupp.single x 1)
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ 0 • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) = 0
[PROOFSTEP]
erw [Representation.ofMulAction_single x (1 : G) (1 : k)]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ 1 • ↑f.hom (Finsupp.single (x • 1) 1) = ↑f.hom (Finsupp.single x 1)
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ 0 • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) = 0
[PROOFSTEP]
simp only [one_smul, smul_eq_mul, mul_one]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f✝ : X ⟶ Y
A : Rep k G
f : ofMulAction k G G ⟶ A
x : G
this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))
⊢ 0 • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : G
⊢ ↑(↑(LinearEquiv.symm (leftRegularHomEquiv A)) x).hom (Finsupp.single g 1) = ↑(↑(ρ A) g) x
[PROOFSTEP]
rw [leftRegularHomEquiv_symm_apply, leftRegularHom_hom, Finsupp.lift_apply, Finsupp.sum_single_index, one_smul]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X Y : Action (Type u) (MonCat.of G)
f : X ⟶ Y
A : Rep k G
x : CoeSort.coe A
g : G
⊢ 0 • ↑(↑(ρ A) g) x = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A X Y : Rep k G
f : X ⟶ Y
g : ↑(MonCat.of G)
x : ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).V
y : CoeSort.coe A
⊢ ↑(↑(↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).ρ g ≫
ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom))
x)
y =
↑(↑(ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom) ≫
↑((fun B => of (Representation.linHom (ρ A) (ρ B))) Y).ρ g)
x)
y
[PROOFSTEP]
show f.hom (X.ρ g _) = _
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A X Y : Rep k G
f : X ⟶ Y
g : ↑(MonCat.of G)
x : ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).V
y : CoeSort.coe A
⊢ ↑f.hom (↑(↑(ρ X) g) (↑(LinearMap.comp x (↑(ρ A) g⁻¹)) y)) =
↑(↑(ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom) ≫
↑((fun B => of (Representation.linHom (ρ A) (ρ B))) Y).ρ g)
x)
y
[PROOFSTEP]
simp only [hom_comm_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A X Y : Rep k G
f : X ⟶ Y
g : ↑(MonCat.of G)
x : ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).V
y : CoeSort.coe A
⊢ ↑(↑(ρ Y) g) (↑f.hom (↑(LinearMap.comp x (↑(ρ A) g⁻¹)) y)) =
↑(↑(ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom) ≫
↑(of (Representation.linHom (ρ A) (ρ Y))).ρ g)
x)
y
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A x✝ : Rep k G
⊢ { obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
(𝟙 x✝) =
𝟙
({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj
x✝)
[PROOFSTEP]
ext
[GOAL]
case h.h
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A x✝¹ : Rep k G
x✝ :
↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj
x✝¹).V
⊢ ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f =>
Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
(𝟙 x✝¹)).hom
x✝ =
↑(𝟙
({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f =>
Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj
x✝¹)).hom
x✝
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A X✝ Y✝ Z✝ : Rep k G
x✝¹ : X✝ ⟶ Y✝
x✝ : Y✝ ⟶ Z✝
⊢ { obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
(x✝¹ ≫ x✝) =
{ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
x✝¹ ≫
{ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B C A X✝ Y✝ Z✝ : Rep k G
x✝² : X✝ ⟶ Y✝
x✝¹ : Y✝ ⟶ Z✝
x✝ :
↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj
X✝).V
⊢ ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f =>
Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
(x✝² ≫ x✝¹)).hom
x✝ =
↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f =>
Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
x✝² ≫
{ obj := fun B => of (Representation.linHom (ρ A) (ρ B)),
map := fun {X Y} f =>
Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map
x✝¹).hom
x✝
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : A ⊗ B ⟶ C
g : ↑(MonCat.of G)
⊢ ↑B.ρ g ≫ LinearMap.flip (TensorProduct.curry f.hom) =
LinearMap.flip (TensorProduct.curry f.hom) ≫ ↑((Rep.ihom A).obj C).ρ g
[PROOFSTEP]
refine' LinearMap.ext fun x => LinearMap.ext fun y => _
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : A ⊗ B ⟶ C
g : ↑(MonCat.of G)
x : ↑B.V
y : CoeSort.coe A
⊢ ↑(↑(↑B.ρ g ≫ LinearMap.flip (TensorProduct.curry f.hom)) x) y =
↑(↑(LinearMap.flip (TensorProduct.curry f.hom) ≫ ↑((Rep.ihom A).obj C).ρ g) x) y
[PROOFSTEP]
change f.hom (_ ⊗ₜ[k] _) = C.ρ g (f.hom (_ ⊗ₜ[k] _))
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : A ⊗ B ⟶ C
g : ↑(MonCat.of G)
x : ↑B.V
y : CoeSort.coe A
⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) = ↑(↑(ρ C) g) (↑f.hom (↑(↑(ρ A) g⁻¹) y ⊗ₜ[k] x))
[PROOFSTEP]
rw [← hom_comm_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : A ⊗ B ⟶ C
g : ↑(MonCat.of G)
x : ↑B.V
y : CoeSort.coe A
⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) = ↑f.hom (↑(↑(ρ (A ⊗ B)) g) (↑(↑(ρ A) g⁻¹) y ⊗ₜ[k] x))
[PROOFSTEP]
change _ = f.hom ((A.ρ g * A.ρ g⁻¹) y ⊗ₜ[k] _)
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : A ⊗ B ⟶ C
g : ↑(MonCat.of G)
x : ↑B.V
y : CoeSort.coe A
⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) =
↑f.hom
(↑(↑(ρ A) g * ↑(ρ A) g⁻¹) y ⊗ₜ[k]
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).map
g)
(↑(↑(ρ A) g⁻¹) y, x).snd)
[PROOFSTEP]
simp only [← map_mul, mul_inv_self, map_one]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : A ⊗ B ⟶ C
g : ↑(MonCat.of G)
x : ↑B.V
y : CoeSort.coe A
⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) =
↑f.hom
(↑1 y ⊗ₜ[k]
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).map
g)
x)
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : B ⟶ (Rep.ihom A).obj C
g : ↑(MonCat.of G)
x :
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj A).obj
PUnit.unit)
y :
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).obj
PUnit.unit)
⊢ ↑(↑(A ⊗ B).ρ g ≫ ↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom))
(x ⊗ₜ[k] y) =
↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom) ≫ ↑C.ρ g) (x ⊗ₜ[k] y)
[PROOFSTEP]
change
TensorProduct.uncurry k _ _ _ f.hom.flip (A.ρ g x ⊗ₜ[k] B.ρ g y) =
C.ρ g (TensorProduct.uncurry k _ _ _ f.hom.flip (x ⊗ₜ[k] y))
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : B ⟶ (Rep.ihom A).obj C
g : ↑(MonCat.of G)
x :
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj A).obj
PUnit.unit)
y :
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).obj
PUnit.unit)
⊢ ↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom))
(↑(↑(ρ A) g) x ⊗ₜ[k] ↑(↑(ρ B) g) y) =
↑(↑(ρ C) g)
(↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)) (x ⊗ₜ[k] y))
[PROOFSTEP]
rw [TensorProduct.uncurry_apply, LinearMap.flip_apply, hom_comm_apply, Rep.ihom_obj_ρ_apply, LinearMap.comp_apply,
LinearMap.comp_apply, ρ_inv_self_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : B ⟶ (Rep.ihom A).obj C
g : ↑(MonCat.of G)
x :
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj A).obj
PUnit.unit)
y :
↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).obj
PUnit.unit)
⊢ ↑(↑(ρ C) g) (↑(↑f.hom y) x) =
↑(↑(ρ C) g)
(↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)) (x ⊗ₜ[k] y))
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : B ⟶ (Rep.ihom A).obj C
⊢ (fun f => Hom.mk (LinearMap.flip (TensorProduct.curry f.hom)))
((fun f => Hom.mk (↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom))) f) =
f
[PROOFSTEP]
ext
[GOAL]
case h.h
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C✝ A B C : Rep k G
f : B ⟶ (Rep.ihom A).obj C
x✝ : ↑B.V
⊢ ↑((fun f => Hom.mk (LinearMap.flip (TensorProduct.curry f.hom)))
((fun f =>
Hom.mk (↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)))
f)).hom
x✝ =
↑f.hom x✝
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C A B : Rep k G
⊢ (NatTrans.app (ihom.ev A) B).hom =
↑(TensorProduct.uncurry k (CoeSort.coe A) (CoeSort.coe A →ₗ[k] CoeSort.coe B) (CoeSort.coe B))
(LinearMap.flip LinearMap.id)
[PROOFSTEP]
ext
[GOAL]
case h
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A✝ B✝ C A B : Rep k G
x✝ : ↑((ihom A ⋙ tensorLeft A).obj B).V
⊢ ↑(NatTrans.app (ihom.ev A) B).hom x✝ =
↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (CoeSort.coe A →ₗ[k] CoeSort.coe B) (CoeSort.coe B))
(LinearMap.flip LinearMap.id))
x✝
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
⊢ SymmetricCategory (Rep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
⊢ MonoidalPreadditive (Rep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
⊢ MonoidalLinear k (Rep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) r) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) r) (↑f x)
[PROOFSTEP]
apply MonoidAlgebra.induction_on r
[GOAL]
case hM
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
⊢ ∀ (g : G),
↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (↑(MonoidAlgebra.of k G) g)) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (↑(MonoidAlgebra.of k G) g)) (↑f x)
[PROOFSTEP]
intro g
[GOAL]
case hM
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
g : G
⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (↑(MonoidAlgebra.of k G) g)) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (↑(MonoidAlgebra.of k G) g)) (↑f x)
[PROOFSTEP]
simp only [one_smul, MonoidAlgebra.lift_single, MonoidAlgebra.of_apply]
[GOAL]
case hM
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
g : G
⊢ ↑f (↑(↑ρ g) x) = ↑(↑σ g) (↑f x)
[PROOFSTEP]
exact LinearMap.congr_fun (w g) x
[GOAL]
case hadd
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
⊢ ∀ (f_1 g : MonoidAlgebra k G),
↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) f_1) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) f_1) (↑f x) →
↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) g) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) g) (↑f x) →
↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (f_1 + g)) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (f_1 + g)) (↑f x)
[PROOFSTEP]
intro g h gw hw
[GOAL]
case hadd
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
g h : MonoidAlgebra k G
gw : ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) g) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) g) (↑f x)
hw : ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) h) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) h) (↑f x)
⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (g + h)) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (g + h)) (↑f x)
[PROOFSTEP]
simp only [map_add, add_left_inj, LinearMap.add_apply, hw, gw]
[GOAL]
case hsmul
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r : MonoidAlgebra k G
x : V
⊢ ∀ (r : k) (f_1 : MonoidAlgebra k G),
↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) f_1) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) f_1) (↑f x) →
↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (r • f_1)) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (r • f_1)) (↑f x)
[PROOFSTEP]
intro r g w
[GOAL]
case hsmul
k✝ G✝ : Type u
inst✝⁷ : CommRing k✝
inst✝⁶ : Monoid G✝
k : Type u_1
G : Type u_2
inst✝⁵ : CommRing k
inst✝⁴ : Monoid G
V : Type u_3
W : Type u_4
inst✝³ : AddCommGroup V
inst✝² : AddCommGroup W
inst✝¹ : Module k V
inst✝ : Module k W
ρ : G →* V →ₗ[k] V
σ : G →* W →ₗ[k] W
f : V →ₗ[k] W
w✝ : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f
r✝ : MonoidAlgebra k G
x : V
r : k
g : MonoidAlgebra k G
w : ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) g) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) g) (↑f x)
⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (r • g)) x) =
↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (r • g)) (↑f x)
[PROOFSTEP]
simp only [AlgHom.map_smul, w, RingHom.id_apply, LinearMap.smul_apply, LinearMap.map_smulₛₗ]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X✝ Y✝ : ModuleCat (MonoidAlgebra k G)
f : X✝ ⟶ Y✝
g : ↑(MonCat.of G)
⊢ ↑((fun M => of (Representation.ofModule ↑M)) X✝).ρ g ≫
{ toAddHom := f.toAddHom,
map_smul' :=
(_ :
∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V),
↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) } =
{ toAddHom := f.toAddHom,
map_smul' :=
(_ :
∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V),
↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) } ≫
↑((fun M => of (Representation.ofModule ↑M)) Y✝).ρ g
[PROOFSTEP]
ext
[GOAL]
case h
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
X✝ Y✝ : ModuleCat (MonoidAlgebra k G)
f : X✝ ⟶ Y✝
g : ↑(MonCat.of G)
x✝ : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V
⊢ ↑(↑((fun M => of (Representation.ofModule ↑M)) X✝).ρ g ≫
{ toAddHom := f.toAddHom,
map_smul' :=
(_ :
∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V),
↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) })
x✝ =
↑({ toAddHom := f.toAddHom,
map_smul' :=
(_ :
∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V),
↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) } ≫
↑((fun M => of (Representation.ofModule ↑M)) Y✝).ρ g)
x✝
[PROOFSTEP]
apply f.map_smul
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
M : ModuleCat (MonoidAlgebra k G)
⊢ ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M
[PROOFSTEP]
dsimp [ofModuleMonoidAlgebra, toModuleMonoidAlgebra]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
M : ModuleCat (MonoidAlgebra k G)
⊢ ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (Representation.ofModule ↑M))) ≃+ ↑M
[PROOFSTEP]
refine' (Representation.ofModule M).asModuleEquiv.trans (RestrictScalars.addEquiv k (MonoidAlgebra k G) _)
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V)
[PROOFSTEP]
dsimp [ofModuleMonoidAlgebra, toModuleMonoidAlgebra]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ CoeSort.coe V ≃+
RestrictScalars k (MonoidAlgebra k G) ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V)))
[PROOFSTEP]
refine' V.ρ.asModuleEquiv.symm.trans _
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
⊢ Representation.asModule (ρ V) ≃+
RestrictScalars k (MonoidAlgebra k G) ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V)))
[PROOFSTEP]
exact (RestrictScalars.addEquiv _ _ _).symm
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
M : ModuleCat (MonoidAlgebra k G)
src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv
r : MonoidAlgebra k G
x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r • x) =
↑(RingHom.id (MonoidAlgebra k G)) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x
[PROOFSTEP]
dsimp [counitIsoAddEquiv]
/- Porting note: rest of broken proof was `simp`. -/
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
M : ModuleCat (MonoidAlgebra k G)
src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv
r : MonoidAlgebra k G
x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)
⊢ ↑↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M))
(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M))
(r • x) =
r •
↑↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M))
(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M))
x
[PROOFSTEP]
rw [AddEquiv.coe_toEquiv, AddEquiv.trans_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
M : ModuleCat (MonoidAlgebra k G)
src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv
r : MonoidAlgebra k G
x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)
⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M)
(↑(Representation.asModuleEquiv (Representation.ofModule ↑M)) (r • x)) =
r •
↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M))
(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M))
x
[PROOFSTEP]
erw [Representation.ofModule_asAlgebraHom_apply_apply]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
M : ModuleCat (MonoidAlgebra k G)
src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv
r : MonoidAlgebra k G
x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)
⊢ ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => ↑M) x)))
(r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M) x) =
r •
↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M))
(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M))
x
[PROOFSTEP]
exact AddEquiv.symm_apply_apply _ _
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
g : G
x : CoeSort.coe V
⊢ ↑unitIsoAddEquiv (AddHom.toFun (↑(ρ V) g).toAddHom x) =
AddHom.toFun (↑(ρ (ofModuleMonoidAlgebra.obj (toModuleMonoidAlgebra.obj V))) g).toAddHom (↑unitIsoAddEquiv x)
[PROOFSTEP]
dsimp [unitIsoAddEquiv, ofModuleMonoidAlgebra, toModuleMonoidAlgebra]
/- Porting note: rest of broken proof was
simp only [AddEquiv.apply_eq_iff_eq, AddEquiv.apply_symm_apply,
Representation.asModuleEquiv_symm_map_rho, Representation.ofModule_asModule_act] -/
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
g : G
x : CoeSort.coe V
⊢ ↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V)))
(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))))
(↑(↑(ρ V) g) x) =
AddHom.toFun
(↑(Representation.ofModule ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V)))) g).toAddHom
(↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V)))
(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))))
x)
[PROOFSTEP]
erw [Representation.asModuleEquiv_symm_map_rho]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
g : G
x : CoeSort.coe V
⊢ ↑(MonoidAlgebra.of k G) g • ↑(AddEquiv.symm (Representation.asModuleEquiv (ρ V))) x =
AddHom.toFun
(↑(Representation.ofModule ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V)))) g).toAddHom
(↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V)))
(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))))
x)
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
src✝ : CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) := unitIsoAddEquiv
r : k
x : ↑V.V
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(r • x) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
x
[PROOFSTEP]
dsimp [unitIsoAddEquiv]
/- Porting note: rest of broken proof was
simp only [Representation.asModuleEquiv_symm_map_smul,
RestrictScalars.addEquiv_symm_map_algebraMap_smul] -/
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
src✝ : CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) := unitIsoAddEquiv
r : k
x : ↑V.V
⊢ ↑↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V)))
(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))))
(r • x) =
r •
↑↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V)))
(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))))
x
[PROOFSTEP]
rw [AddEquiv.coe_toEquiv, AddEquiv.trans_apply, Representation.asModuleEquiv_symm_map_smul,
RestrictScalars.addEquiv_symm_map_algebraMap_smul]
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
src✝ : CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) := unitIsoAddEquiv
r : k
x : ↑V.V
⊢ r •
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))
(↑(AddEquiv.symm (Representation.asModuleEquiv (ρ V))) x) =
r •
↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V)))
(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))))
x
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
g : ↑(MonCat.of G)
⊢ ↑V.ρ g ≫
(LinearEquiv.toModuleIso'
(let src := unitIsoAddEquiv;
{
toLinearMap :=
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) },
map_smul' :=
(_ :
∀ (r : k) (x : ↑V.V),
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
(r • x) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
x) },
invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom =
(LinearEquiv.toModuleIso'
(let src := unitIsoAddEquiv;
{
toLinearMap :=
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) },
map_smul' :=
(_ :
∀ (r : k) (x : ↑V.V),
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
(r • x) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
x) },
invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom ≫
↑((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V).ρ g
[PROOFSTEP]
ext
[GOAL]
case h
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
V : Rep k G
g : ↑(MonCat.of G)
x✝ : ↑V.V
⊢ ↑(↑V.ρ g ≫
(LinearEquiv.toModuleIso'
(let src := unitIsoAddEquiv;
{
toLinearMap :=
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) },
map_smul' :=
(_ :
∀ (r : k) (x : ↑V.V),
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
(r • x) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
x) },
invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom)
x✝ =
↑((LinearEquiv.toModuleIso'
(let src := unitIsoAddEquiv;
{
toLinearMap :=
{
toAddHom :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) },
map_smul' :=
(_ :
∀ (r : k) (x : ↑V.V),
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
(r • x) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := src.toFun,
map_add' :=
(_ :
∀ (x y : CoeSort.coe V),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }
x) },
invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom ≫
↑((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V).ρ g)
x✝
[PROOFSTEP]
apply unit_iso_comm
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
⊢ ∀ {X Y : Rep k G} (f : X ⟶ Y),
(𝟭 (Rep k G)).map f ≫ ((fun V => unitIso V) Y).hom =
((fun V => unitIso V) X).hom ≫ (toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).map f
[PROOFSTEP]
aesop_cat
[GOAL]
k G : Type u
inst✝¹ : CommRing k
inst✝ : Monoid G
⊢ ∀ {X Y : ModuleCat (MonoidAlgebra k G)} (f : X ⟶ Y),
(ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).map f ≫ ((fun M => counitIso M) Y).hom =
((fun M => counitIso M) X).hom ≫ (𝟭 (ModuleCat (MonoidAlgebra k G))).map f
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.RepresentationTheory.Rep", "llama_tokens": 21932} |
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
haveI := Fintype.ofFinite ι
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
let a := I.smithCoeffs b hI
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
let b' := I.ringBasis b hI
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
let ab := I.selfBasis b hI
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
have ab_eq := I.selfBasis_def b hI
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
have mem_I_iff : ∀ x, x ∈ I ↔ ∀ i, a i ∣ b'.repr x i := by
intro x
rw [ab.mem_ideal_iff']
simp_rw [ab_eq]
have : ∀ (c : ι → R) (i), b'.repr (∑ j : ι, c j • a j • b' j) i = a i * c i :=
by
intro c i
simp only [← MulAction.mul_smul, b'.repr_sum_self, mul_comm]
constructor
· rintro ⟨c, rfl⟩ i
exact ⟨c i, this c i⟩
· rintro ha
choose c hc using ha
exact
⟨c, b'.ext_elem fun i => Eq.trans (hc i) (this c i).symm⟩
-- Now we map everything through the linear equiv `S ≃ₗ (ι → R)`,
-- which maps `I` to `I' := Π i, a i ℤ`.
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
⊢ ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
[PROOFSTEP]
intro x
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
⊢ x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
[PROOFSTEP]
rw [ab.mem_ideal_iff']
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
⊢ (∃ c, x = ∑ i : ι, c i • ↑(↑ab i)) ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
[PROOFSTEP]
simp_rw [ab_eq]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
⊢ (∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x) ↔
∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i
[PROOFSTEP]
have : ∀ (c : ι → R) (i), b'.repr (∑ j : ι, c j • a j • b' j) i = a i * c i :=
by
intro c i
simp only [← MulAction.mul_smul, b'.repr_sum_self, mul_comm]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
⊢ ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
[PROOFSTEP]
intro c i
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
c : ι → R
i : ι
⊢ ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
[PROOFSTEP]
simp only [← MulAction.mul_smul, b'.repr_sum_self, mul_comm]
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
⊢ (∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x) ↔
∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
⊢ (∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x) →
∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i
[PROOFSTEP]
rintro ⟨c, rfl⟩ i
[GOAL]
case mp.intro
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
c : ι → R
i : ι
⊢ smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr (∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x)) i
[PROOFSTEP]
exact ⟨c i, this c i⟩
[GOAL]
case mpr
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
⊢ (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i) →
∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x
[PROOFSTEP]
rintro ha
[GOAL]
case mpr
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
ha : ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i
⊢ ∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x
[PROOFSTEP]
choose c hc using ha
[GOAL]
case mpr
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
x : S
this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i
c : ι → R
hc : ∀ (i : ι), ↑(↑(ringBasis b I hI).repr x) i = smithCoeffs b I hI i * c i
⊢ ∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x
[PROOFSTEP]
exact
⟨c, b'.ext_elem fun i => Eq.trans (hc i) (this c i).symm⟩
-- Now we map everything through the linear equiv `S ≃ₗ (ι → R)`,
-- which maps `I` to `I' := Π i, a i ℤ`.
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
let I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span ({a i} : Set R)
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
have : Submodule.map (b'.equivFun : S →ₗ[R] ι → R) (I.restrictScalars R) = I' :=
by
ext x
simp only [Submodule.mem_map, Submodule.mem_pi, mem_span_singleton, Set.mem_univ, Submodule.restrictScalars_mem,
mem_I_iff, smul_eq_mul, forall_true_left, LinearEquiv.coe_coe, Basis.equivFun_apply]
constructor
· rintro ⟨y, hy, rfl⟩ i
exact hy i
· rintro hdvd
refine' ⟨∑ i, x i • b' i, fun i => _, _⟩ <;> rw [b'.repr_sum_self]
· exact hdvd i
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
⊢ Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
⊢ x ∈ Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) ↔ x ∈ I'
[PROOFSTEP]
simp only [Submodule.mem_map, Submodule.mem_pi, mem_span_singleton, Set.mem_univ, Submodule.restrictScalars_mem,
mem_I_iff, smul_eq_mul, forall_true_left, LinearEquiv.coe_coe, Basis.equivFun_apply]
[GOAL]
case h
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
⊢ (∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x) ↔
∀ (i : ι), smithCoeffs b I hI i ∣ x i
[PROOFSTEP]
constructor
[GOAL]
case h.mp
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
⊢ (∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x) →
∀ (i : ι), smithCoeffs b I hI i ∣ x i
[PROOFSTEP]
rintro ⟨y, hy, rfl⟩ i
[GOAL]
case h.mp.intro.intro
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
y : S
hy : ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i
i : ι
⊢ smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i
[PROOFSTEP]
exact hy i
[GOAL]
case h.mpr
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
⊢ (∀ (i : ι), smithCoeffs b I hI i ∣ x i) →
∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x
[PROOFSTEP]
rintro hdvd
[GOAL]
case h.mpr
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i
⊢ ∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x
[PROOFSTEP]
refine' ⟨∑ i, x i • b' i, fun i => _, _⟩
[GOAL]
case h.mpr.refine'_1
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i
i : ι
⊢ smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr (∑ i : ι, x i • ↑b' i)) i
[PROOFSTEP]
rw [b'.repr_sum_self]
[GOAL]
case h.mpr.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i
⊢ ↑(↑(ringBasis b I hI).repr (∑ i : ι, x i • ↑b' i)) = x
[PROOFSTEP]
rw [b'.repr_sum_self]
[GOAL]
case h.mpr.refine'_1
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
x : ι → R
hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i
i : ι
⊢ smithCoeffs b I hI i ∣ x i
[PROOFSTEP]
exact hdvd i
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
refine'
((Submodule.Quotient.restrictScalarsEquiv R I).restrictScalars R).symm.trans (σ₁₂ := RingHom.id R) (σ₃₂ :=
RingHom.id R) _
[GOAL]
case refine'_1
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ RingHomInvPair (RingHom.id R) (RingHom.id R)
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ RingHomInvPair (RingHom.id R) (RingHom.id R)
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_3
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ (S ⧸ Submodule.restrictScalars R I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
refine'
(Submodule.Quotient.equiv (I.restrictScalars R) I' b'.equivFun this).trans (σ₁₂ := RingHom.id R) (σ₃₂ := RingHom.id R)
_
[GOAL]
case refine'_3.refine'_1
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ RingHomInvPair (RingHom.id R) (RingHom.id R)
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_3.refine'_2
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ RingHomInvPair (RingHom.id R) (RingHom.id R)
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_3.refine'_3
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ ((ι → R) ⧸ I') ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
classical
let this := Submodule.quotientPi (show ∀ _, Submodule R R from fun i => span ({a i} : Set R))
exact this
[GOAL]
case refine'_3.refine'_3
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
⊢ ((ι → R) ⧸ I') ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
let this := Submodule.quotientPi (show ∀ _, Submodule R R from fun i => span ({a i} : Set R))
[GOAL]
case refine'_3.refine'_3
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : IsDomain S
inst✝ : Finite ι
I : Ideal S
b : Basis ι R S
hI : I ≠ ⊥
this✝¹ : Fintype ι
a : ι → R := smithCoeffs b I hI
b' : Basis ι R S := ringBasis b I hI
ab : Basis ι R { x // x ∈ I } := selfBasis b I hI
ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i
mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i
I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i}
this✝ : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I'
this : ((ι → R) ⧸
Submodule.pi Set.univ
(let_fun this := fun i => span {a i};
this)) ≃ₗ[R]
(i : ι) → R ⧸ (fun this => this) (fun i => span {a i}) i :=
Submodule.quotientPi
(let_fun this := fun i => span {a i};
this)
⊢ ((ι → R) ⧸ I') ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
exact this
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
inst✝⁵ : IsDomain R
inst✝⁴ : IsPrincipalIdealRing R
inst✝³ : IsDomain S
inst✝² : Finite ι
inst✝¹ : Module.Free ℤ S
inst✝ : Module.Finite ℤ S
I : Ideal S
hI : I ≠ ⊥
⊢ Fintype (S ⧸ I)
[PROOFSTEP]
let b := Module.Free.chooseBasis ℤ S
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
inst✝⁵ : IsDomain R
inst✝⁴ : IsPrincipalIdealRing R
inst✝³ : IsDomain S
inst✝² : Finite ι
inst✝¹ : Module.Free ℤ S
inst✝ : Module.Finite ℤ S
I : Ideal S
hI : I ≠ ⊥
b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S
⊢ Fintype (S ⧸ I)
[PROOFSTEP]
let a := I.smithCoeffs b hI
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
inst✝⁵ : IsDomain R
inst✝⁴ : IsPrincipalIdealRing R
inst✝³ : IsDomain S
inst✝² : Finite ι
inst✝¹ : Module.Free ℤ S
inst✝ : Module.Finite ℤ S
I : Ideal S
hI : I ≠ ⊥
b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S
a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI
⊢ Fintype (S ⧸ I)
[PROOFSTEP]
let e := I.quotientEquivPiZMod b hI
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
inst✝⁵ : IsDomain R
inst✝⁴ : IsPrincipalIdealRing R
inst✝³ : IsDomain S
inst✝² : Finite ι
inst✝¹ : Module.Free ℤ S
inst✝ : Module.Finite ℤ S
I : Ideal S
hI : I ≠ ⊥
b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S
a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI
e : S ⧸ I ≃+ ((i : Module.Free.ChooseBasisIndex ℤ S) → ZMod (Int.natAbs (smithCoeffs b I hI i))) :=
quotientEquivPiZMod I b hI
⊢ Fintype (S ⧸ I)
[PROOFSTEP]
haveI : ∀ i, NeZero (a i).natAbs := fun i => ⟨Int.natAbs_ne_zero.mpr (smithCoeffs_ne_zero b I hI i)⟩
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
inst✝⁵ : IsDomain R
inst✝⁴ : IsPrincipalIdealRing R
inst✝³ : IsDomain S
inst✝² : Finite ι
inst✝¹ : Module.Free ℤ S
inst✝ : Module.Finite ℤ S
I : Ideal S
hI : I ≠ ⊥
b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S
a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI
e : S ⧸ I ≃+ ((i : Module.Free.ChooseBasisIndex ℤ S) → ZMod (Int.natAbs (smithCoeffs b I hI i))) :=
quotientEquivPiZMod I b hI
this : ∀ (i : Module.Free.ChooseBasisIndex ℤ S), NeZero (Int.natAbs (a i))
⊢ Fintype (S ⧸ I)
[PROOFSTEP]
classical exact Fintype.ofEquiv (∀ i, ZMod (a i).natAbs) e.symm
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
inst✝⁵ : IsDomain R
inst✝⁴ : IsPrincipalIdealRing R
inst✝³ : IsDomain S
inst✝² : Finite ι
inst✝¹ : Module.Free ℤ S
inst✝ : Module.Finite ℤ S
I : Ideal S
hI : I ≠ ⊥
b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S
a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI
e : S ⧸ I ≃+ ((i : Module.Free.ChooseBasisIndex ℤ S) → ZMod (Int.natAbs (smithCoeffs b I hI i))) :=
quotientEquivPiZMod I b hI
this : ∀ (i : Module.Free.ChooseBasisIndex ℤ S), NeZero (Int.natAbs (a i))
⊢ Fintype (S ⧸ I)
[PROOFSTEP]
exact Fintype.ofEquiv (∀ i, ZMod (a i).natAbs) e.symm
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
inst✝⁷ : IsDomain R
inst✝⁶ : IsPrincipalIdealRing R
inst✝⁵ : IsDomain S
inst✝⁴ : Finite ι
F : Type u_4
inst✝³ : CommRing F
inst✝² : Algebra F R
inst✝¹ : Algebra F S
inst✝ : IsScalarTower F R S
b : Basis ι R S
I : Ideal S
hI : I ≠ ⊥
⊢ (S ⧸ I) ≃ₗ[F] ⨁ (i : ι), R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
haveI := Fintype.ofFinite ι
[GOAL]
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
inst✝⁷ : IsDomain R
inst✝⁶ : IsPrincipalIdealRing R
inst✝⁵ : IsDomain S
inst✝⁴ : Finite ι
F : Type u_4
inst✝³ : CommRing F
inst✝² : Algebra F R
inst✝¹ : Algebra F S
inst✝ : IsScalarTower F R S
b : Basis ι R S
I : Ideal S
hI : I ≠ ⊥
this : Fintype ι
⊢ (S ⧸ I) ≃ₗ[F] ⨁ (i : ι), R ⧸ span {smithCoeffs b I hI i}
[PROOFSTEP]
exact ((I.quotientEquivPiSpan b _).restrictScalars F).trans (DirectSum.linearEquivFunOnFintype _ _ _).symm
[GOAL]
ι✝ : Type u_1
R : Type u_2
S : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing S
inst✝¹² : Algebra R S
inst✝¹¹ : IsDomain R
inst✝¹⁰ : IsPrincipalIdealRing R
inst✝⁹ : IsDomain S
inst✝⁸ : Finite ι✝
F : Type u_4
inst✝⁷ : CommRing F
inst✝⁶ : Algebra F R
inst✝⁵ : Algebra F S
inst✝⁴ : IsScalarTower F R S
b✝ : Basis ι✝ R S
I : Ideal S
hI : I ≠ ⊥
ι : Type u_5
inst✝³ : Fintype ι
b : Basis ι R S
inst✝² : Nontrivial F
inst✝¹ : ∀ (i : ι), Module.Free F (R ⧸ span {smithCoeffs b I hI i})
inst✝ : ∀ (i : ι), Module.Finite F (R ⧸ span {smithCoeffs b I hI i})
⊢ FiniteDimensional.finrank F (S ⧸ I) = ∑ i : ι, FiniteDimensional.finrank F (R ⧸ span {smithCoeffs b I hI i})
[PROOFSTEP]
rw [LinearEquiv.finrank_eq <| quotientEquivDirectSum F b hI, FiniteDimensional.finrank_directSum]
| {"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.IdealQuotient", "llama_tokens": 18066} |
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
⊢ Free R (M →ₗ[R] N)
[PROOFSTEP]
cases subsingleton_or_nontrivial R
[GOAL]
case inl
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Subsingleton R
⊢ Free R (M →ₗ[R] N)
[PROOFSTEP]
apply Module.Free.of_subsingleton'
[GOAL]
case inr
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Nontrivial R
⊢ Free R (M →ₗ[R] N)
[PROOFSTEP]
classical exact Module.Free.of_equiv (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm
[GOAL]
case inr
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Nontrivial R
⊢ Free R (M →ₗ[R] N)
[PROOFSTEP]
exact Module.Free.of_equiv (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
⊢ Finite R (M →ₗ[R] N)
[PROOFSTEP]
cases subsingleton_or_nontrivial R
[GOAL]
case inl
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Subsingleton R
⊢ Finite R (M →ₗ[R] N)
[PROOFSTEP]
infer_instance
[GOAL]
case inr
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Nontrivial R
⊢ Finite R (M →ₗ[R] N)
[PROOFSTEP]
classical
have f := (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm
exact Module.Finite.of_surjective f.toLinearMap (LinearEquiv.surjective f)
[GOAL]
case inr
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Nontrivial R
⊢ Finite R (M →ₗ[R] N)
[PROOFSTEP]
have f := (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm
[GOAL]
case inr
R : Type u
M : Type v
N : Type w
inst✝⁸ : CommRing R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Free R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Free R N
inst✝¹ : Finite R M
inst✝ : Finite R N
h✝ : Nontrivial R
f : Matrix (Free.ChooseBasisIndex R N) (Free.ChooseBasisIndex R M) R ≃ₗ[R] M →ₗ[R] N
⊢ Finite R (M →ₗ[R] N)
[PROOFSTEP]
exact Module.Finite.of_surjective f.toLinearMap (LinearEquiv.surjective f)
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : CommRing R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N
[PROOFSTEP]
classical
letI := nontrivial_of_invariantBasisNumber R
have h := LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)
simp_rw [h.finrank_eq, FiniteDimensional.finrank_matrix, FiniteDimensional.finrank_eq_card_chooseBasisIndex, mul_comm]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : CommRing R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N
[PROOFSTEP]
letI := nontrivial_of_invariantBasisNumber R
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : CommRing R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N
[PROOFSTEP]
have h := LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : CommRing R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
h : (M →ₗ[R] N) ≃ₗ[R] Matrix (Module.Free.ChooseBasisIndex R N) (Module.Free.ChooseBasisIndex R M) R
⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N
[PROOFSTEP]
simp_rw [h.finrank_eq, FiniteDimensional.finrank_matrix, FiniteDimensional.finrank_eq_card_chooseBasisIndex, mul_comm]
[GOAL]
R : Type u
M : Type v
N : Type w
K m n : Type u
inst✝³ : CommRing K
inst✝² : StrongRankCondition K
inst✝¹ : Fintype n
inst✝ : DecidableEq n
w : m → K
v : n → K
⊢ LinearMap.rank (↑toLin' (vecMulVec w v)) ≤ 1
[PROOFSTEP]
rw [Matrix.vecMulVec_eq, Matrix.toLin'_mul]
[GOAL]
R : Type u
M : Type v
N : Type w
K m n : Type u
inst✝³ : CommRing K
inst✝² : StrongRankCondition K
inst✝¹ : Fintype n
inst✝ : DecidableEq n
w : m → K
v : n → K
⊢ LinearMap.rank (LinearMap.comp (↑toLin' (col w)) (↑toLin' (row v))) ≤ 1
[PROOFSTEP]
refine' le_trans (LinearMap.rank_comp_le_left _ _) _
[GOAL]
R : Type u
M : Type v
N : Type w
K m n : Type u
inst✝³ : CommRing K
inst✝² : StrongRankCondition K
inst✝¹ : Fintype n
inst✝ : DecidableEq n
w : m → K
v : n → K
⊢ LinearMap.rank (↑toLin' (col w)) ≤ 1
[PROOFSTEP]
refine' (LinearMap.rank_le_domain _).trans_eq _
[GOAL]
R : Type u
M : Type v
N : Type w
K m n : Type u
inst✝³ : CommRing K
inst✝² : StrongRankCondition K
inst✝¹ : Fintype n
inst✝ : DecidableEq n
w : m → K
v : n → K
⊢ Module.rank K (Unit → K) = 1
[PROOFSTEP]
rw [rank_fun', Fintype.card_unit, Nat.cast_one]
| {"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Finite.Matrix", "llama_tokens": 3016} |
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
⊢ StrongRankCondition R
[PROOFSTEP]
suffices ∀ n, ∀ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R, ¬Injective f by rwa [strongRankCondition_iff_succ R]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
this : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f
⊢ StrongRankCondition R
[PROOFSTEP]
rwa [strongRankCondition_iff_succ R]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
⊢ ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f
[PROOFSTEP]
intro n f
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
⊢ ¬Injective ↑f
[PROOFSTEP]
by_contra hf
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
⊢ False
[PROOFSTEP]
let g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := (ExtendByZero.linearMap R castSucc).comp f
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
⊢ False
[PROOFSTEP]
have hg : Injective g := (extend_injective Fin.strictMono_castSucc.injective _).comp hf
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
⊢ False
[PROOFSTEP]
have hnex : ¬∃ i : Fin n, castSucc i = last n := fun ⟨i, hi⟩ => ne_of_lt (castSucc_lt_last i) hi
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
⊢ False
[PROOFSTEP]
let a₀ := (minpoly R g).coeff 0
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
⊢ False
[PROOFSTEP]
have : a₀ ≠ 0 := minpoly_coeff_zero_of_injective hg
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this : a₀ ≠ 0
⊢ False
[PROOFSTEP]
have : a₀ = 0 := by
-- Evaluate `(minpoly R g) g` at the vector `(0,...,0,1)`
have heval := LinearMap.congr_fun (minpoly.aeval R g) (Pi.single (Fin.last n) 1)
obtain ⟨P, hP⟩ := X_dvd_iff.2 (erase_same (minpoly R g) 0)
rw [← monomial_add_erase (minpoly R g) 0, hP] at heval
replace heval :=
congr_fun heval
(Fin.last n)
-- Porting note: ...it's just that this line gives a timeout without slightly raising heartbeats
simpa [hnex] using heval
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this : a₀ ≠ 0
⊢ a₀ = 0
[PROOFSTEP]
have heval := LinearMap.congr_fun (minpoly.aeval R g) (Pi.single (Fin.last n) 1)
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this : a₀ ≠ 0
heval : ↑(↑(aeval g) (minpoly R g)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1)
⊢ a₀ = 0
[PROOFSTEP]
obtain ⟨P, hP⟩ := X_dvd_iff.2 (erase_same (minpoly R g) 0)
[GOAL]
case intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this : a₀ ≠ 0
heval : ↑(↑(aeval g) (minpoly R g)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1)
P : R[X]
hP : erase 0 (minpoly R g) = X * P
⊢ a₀ = 0
[PROOFSTEP]
rw [← monomial_add_erase (minpoly R g) 0, hP] at heval
[GOAL]
case intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this : a₀ ≠ 0
P : R[X]
heval : ↑(↑(aeval g) (↑(monomial 0) (coeff (minpoly R g) 0) + X * P)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1)
hP : erase 0 (minpoly R g) = X * P
⊢ a₀ = 0
[PROOFSTEP]
replace heval :=
congr_fun heval
(Fin.last n)
-- Porting note: ...it's just that this line gives a timeout without slightly raising heartbeats
[GOAL]
case intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this : a₀ ≠ 0
P : R[X]
hP : erase 0 (minpoly R g) = X * P
heval :
↑(↑(aeval g) (↑(monomial 0) (coeff (minpoly R g) 0) + X * P)) (Pi.single (last n) 1) (last n) =
↑0 (Pi.single (last n) 1) (last n)
⊢ a₀ = 0
[PROOFSTEP]
simpa [hnex] using heval
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : Nontrivial R
n : ℕ
f : (Fin (n + 1) → R) →ₗ[R] Fin n → R
hf : Injective ↑f
g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f
hg : Injective ↑g
hnex : ¬∃ i, castSucc i = last n
a₀ : R := coeff (minpoly R g) 0
this✝ : a₀ ≠ 0
this : a₀ = 0
⊢ False
[PROOFSTEP]
contradiction
| {"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.StrongRankCondition", "llama_tokens": 3121} |
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Finite R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R N
⊢ Module.rank R M < ℵ₀
[PROOFSTEP]
simp only [Module.rank_def]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Finite R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R N
⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι < ℵ₀
[PROOFSTEP]
letI := nontrivial_of_invariantBasisNumber R
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Finite R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R N
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι < ℵ₀
[PROOFSTEP]
obtain ⟨S, hS⟩ := Module.finite_def.mp ‹Module.Finite R M›
[GOAL]
case intro
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Finite R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R N
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
S : Finset M
hS : Submodule.span R ↑S = ⊤
⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι < ℵ₀
[PROOFSTEP]
refine' (ciSup_le' fun i => _).trans_lt (nat_lt_aleph0 S.card)
[GOAL]
case intro
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Finite R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R N
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
S : Finset M
hS : Submodule.span R ↑S = ⊤
i : { s // LinearIndependent R Subtype.val }
⊢ #↑↑i ≤ ↑(Finset.card S)
[PROOFSTEP]
exact linearIndependent_le_span_finset _ i.prop S hS
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : StrongRankCondition R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Finite R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R N
⊢ ↑(finrank R M) = Module.rank R M
[PROOFSTEP]
rw [finrank, cast_toNat_of_lt_aleph0 (rank_lt_aleph0 R M)]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
⊢ finrank R M = card (ChooseBasisIndex R M)
[PROOFSTEP]
simp [finrank, rank_eq_card_chooseBasisIndex]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝¹⁰ : Ring R
inst✝⁹ : StrongRankCondition R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
inst✝⁶ : Module.Free R M
inst✝⁵ : Module.Finite R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
inst✝¹ : Module.Finite R N
ι : Type v
inst✝ : Fintype ι
⊢ finrank R (ι →₀ R) = card ι
[PROOFSTEP]
rw [finrank, rank_finsupp_self, ← mk_toNat_eq_card, toNat_lift]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝¹⁰ : Ring R
inst✝⁹ : StrongRankCondition R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
inst✝⁶ : Module.Free R M
inst✝⁵ : Module.Finite R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : Module.Free R N
inst✝¹ : Module.Finite R N
ι : Type v
inst✝ : Fintype ι
⊢ finrank R (ι → R) = card ι
[PROOFSTEP]
simp [finrank]
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁴ : Ring R
inst✝¹³ : StrongRankCondition R
inst✝¹² : AddCommGroup M✝
inst✝¹¹ : Module R M✝
inst✝¹⁰ : Module.Free R M✝
inst✝⁹ : Module.Finite R M✝
inst✝⁸ : AddCommGroup N
inst✝⁷ : Module R N
inst✝⁶ : Module.Free R N
inst✝⁵ : Module.Finite R N
ι : Type v
inst✝⁴ : Fintype ι
M : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : ∀ (i : ι), Module.Free R (M i)
inst✝ : ∀ (i : ι), Module.Finite R (M i)
⊢ finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i)
[PROOFSTEP]
letI := nontrivial_of_invariantBasisNumber R
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁴ : Ring R
inst✝¹³ : StrongRankCondition R
inst✝¹² : AddCommGroup M✝
inst✝¹¹ : Module R M✝
inst✝¹⁰ : Module.Free R M✝
inst✝⁹ : Module.Finite R M✝
inst✝⁸ : AddCommGroup N
inst✝⁷ : Module R N
inst✝⁶ : Module.Free R N
inst✝⁵ : Module.Finite R N
ι : Type v
inst✝⁴ : Fintype ι
M : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : ∀ (i : ι), Module.Free R (M i)
inst✝ : ∀ (i : ι), Module.Finite R (M i)
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
⊢ finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i)
[PROOFSTEP]
simp only [finrank, fun i => rank_eq_card_chooseBasisIndex R (M i), rank_directSum, ← mk_sigma, mk_toNat_eq_card,
card_sigma]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
⊢ finrank R (M × N) = finrank R M + finrank R N
[PROOFSTEP]
simp [finrank, rank_lt_aleph0 R M, rank_lt_aleph0 R N]
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁴ : Ring R
inst✝¹³ : StrongRankCondition R
inst✝¹² : AddCommGroup M✝
inst✝¹¹ : Module R M✝
inst✝¹⁰ : Module.Free R M✝
inst✝⁹ : Module.Finite R M✝
inst✝⁸ : AddCommGroup N
inst✝⁷ : Module R N
inst✝⁶ : Module.Free R N
inst✝⁵ : Module.Finite R N
ι : Type v
inst✝⁴ : Fintype ι
M : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : ∀ (i : ι), Module.Free R (M i)
inst✝ : ∀ (i : ι), Module.Finite R (M i)
⊢ finrank R ((i : ι) → M i) = ∑ i : ι, finrank R (M i)
[PROOFSTEP]
letI := nontrivial_of_invariantBasisNumber R
[GOAL]
R : Type u
M✝ : Type v
N : Type w
inst✝¹⁴ : Ring R
inst✝¹³ : StrongRankCondition R
inst✝¹² : AddCommGroup M✝
inst✝¹¹ : Module R M✝
inst✝¹⁰ : Module.Free R M✝
inst✝⁹ : Module.Finite R M✝
inst✝⁸ : AddCommGroup N
inst✝⁷ : Module R N
inst✝⁶ : Module.Free R N
inst✝⁵ : Module.Finite R N
ι : Type v
inst✝⁴ : Fintype ι
M : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : ∀ (i : ι), Module.Free R (M i)
inst✝ : ∀ (i : ι), Module.Finite R (M i)
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
⊢ finrank R ((i : ι) → M i) = ∑ i : ι, finrank R (M i)
[PROOFSTEP]
simp only [finrank, fun i => rank_eq_card_chooseBasisIndex R (M i), rank_pi, ← mk_sigma, mk_toNat_eq_card, card_sigma]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝¹¹ : Ring R
inst✝¹⁰ : StrongRankCondition R
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : Module.Free R M
inst✝⁶ : Module.Finite R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : Module.Free R N
inst✝² : Module.Finite R N
m : Type u_1
n : Type u_2
inst✝¹ : Fintype m
inst✝ : Fintype n
⊢ finrank R (Matrix m n R) = card m * card n
[PROOFSTEP]
simp [finrank]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁹ : Ring R
inst✝⁸ : StrongRankCondition R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module.Free R M
inst✝⁴ : Module.Finite R M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : Module.Free R N
inst✝ : Module.Finite R N
cond : finrank R M = finrank R N
⊢ Cardinal.lift (Module.rank R M) = Cardinal.lift (Module.rank R N)
[PROOFSTEP]
simp only [← finrank_eq_rank, cond, lift_natCast]
[GOAL]
R : Type u
M✝ : Type v
N✝ : Type w
inst✝¹⁵ : CommRing R
inst✝¹⁴ : StrongRankCondition R
inst✝¹³ : AddCommGroup M✝
inst✝¹² : Module R M✝
inst✝¹¹ : Module.Free R M✝
inst✝¹⁰ : Module.Finite R M✝
inst✝⁹ : AddCommGroup N✝
inst✝⁸ : Module R N✝
inst✝⁷ : Module.Free R N✝
inst✝⁶ : Module.Finite R N✝
M : Type v
N : Type w
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module.Free R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Free R N
⊢ finrank R (M ⊗[R] N) = finrank R M * finrank R N
[PROOFSTEP]
simp [finrank]
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁶ : Ring R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R M
s : Submodule R M
⊢ finrank R { x // x ∈ s } ≤ finrank R M
[PROOFSTEP]
simpa only [Cardinal.toNat_lift] using toNat_le_of_le_of_lt_aleph0 (rank_lt_aleph0 _ _) (rank_submodule_le s)
[GOAL]
R : Type u
M : Type v
N : Type w
inst✝⁶ : Ring R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Module.Finite R M
s : Submodule R M
⊢ finrank R (M ⧸ s) ≤ finrank R M
[PROOFSTEP]
simpa only [Cardinal.toNat_lift] using
toNat_le_of_le_of_lt_aleph0 (rank_lt_aleph0 _ _) ((Submodule.mkQ s).rank_le_of_surjective (surjective_quot_mk _))
| {"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Finite.Rank", "llama_tokens": 4298} |
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
m : M
⊢ ↑Dual.transpose (↑(dualTensorHom R M M) (f ⊗ₜ[R] m)) =
↑(dualTensorHom R (Dual R M) (Dual R M)) (↑(Dual.eval R M) m ⊗ₜ[R] f)
[PROOFSTEP]
ext f' m'
[GOAL]
case h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
m : M
f' : Dual R M
m' : M
⊢ ↑(↑(↑Dual.transpose (↑(dualTensorHom R M M) (f ⊗ₜ[R] m))) f') m' =
↑(↑(↑(dualTensorHom R (Dual R M) (Dual R M)) (↑(Dual.eval R M) m ⊗ₜ[R] f)) f') m'
[PROOFSTEP]
simp only [Dual.transpose_apply, coe_comp, Function.comp_apply, dualTensorHom_apply, LinearMap.map_smulₛₗ,
RingHom.id_apply, Algebra.id.smul_eq_mul, Dual.eval_apply, LinearMap.smul_apply]
[GOAL]
case h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
m : M
f' : Dual R M
m' : M
⊢ ↑f m' * ↑f' m = ↑f' m * ↑f m'
[PROOFSTEP]
exact mul_comm _ _
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
⊢ prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0 =
↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)
[PROOFSTEP]
ext
[GOAL]
case hl.h.h₁
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
x✝ : M
⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inl R M N)) x✝).fst =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inl R M N)) x✝).fst
[PROOFSTEP]
simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
case hl.h.h₂
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
x✝ : M
⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inl R M N)) x✝).snd =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inl R M N)) x✝).snd
[PROOFSTEP]
simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
case hr.h.h₁
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
x✝ : N
⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inr R M N)) x✝).fst =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inr R M N)) x✝).fst
[PROOFSTEP]
simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
case hr.h.h₂
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
x✝ : N
⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inr R M N)) x✝).snd =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inr R M N)) x✝).snd
[PROOFSTEP]
simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
g : Dual R N
q : Q
⊢ prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)) =
↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)
[PROOFSTEP]
ext
[GOAL]
case hl.h.h₁
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
g : Dual R N
q : Q
x✝ : M
⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inl R M N)) x✝).fst =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inl R M N)) x✝).fst
[PROOFSTEP]
simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
case hl.h.h₂
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
g : Dual R N
q : Q
x✝ : M
⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inl R M N)) x✝).snd =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inl R M N)) x✝).snd
[PROOFSTEP]
simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
case hr.h.h₁
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
g : Dual R N
q : Q
x✝ : N
⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inr R M N)) x✝).fst =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inr R M N)) x✝).fst
[PROOFSTEP]
simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
case hr.h.h₂
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
g : Dual R N
q : Q
x✝ : N
⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inr R M N)) x✝).snd =
(↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inr R M N)) x✝).snd
[PROOFSTEP]
simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk,
LinearMap.zero_apply, smul_zero]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
g : Dual R N
q : Q
⊢ TensorProduct.map (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)) =
↑(dualTensorHom R (M ⊗[R] N) (P ⊗[R] Q)) (↑(dualDistrib R M N) (f ⊗ₜ[R] g) ⊗ₜ[R] p ⊗ₜ[R] q)
[PROOFSTEP]
ext m n
[GOAL]
case H.h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
p : P
g : Dual R N
q : Q
m : M
n : N
⊢ ↑(↑(compr₂ (TensorProduct.mk R M N)
(TensorProduct.map (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))))
m)
n =
↑(↑(compr₂ (TensorProduct.mk R M N)
(↑(dualTensorHom R (M ⊗[R] N) (P ⊗[R] Q)) (↑(dualDistrib R M N) (f ⊗ₜ[R] g) ⊗ₜ[R] p ⊗ₜ[R] q)))
m)
n
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, map_tmul, dualTensorHom_apply, dualDistrib_apply, ← smul_tmul_smul]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
n : N
g : Dual R N
p : P
⊢ comp (↑(dualTensorHom R N P) (g ⊗ₜ[R] p)) (↑(dualTensorHom R M N) (f ⊗ₜ[R] n)) =
↑g n • ↑(dualTensorHom R M P) (f ⊗ₜ[R] p)
[PROOFSTEP]
ext m
[GOAL]
case h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
n : N
g : Dual R N
p : P
m : M
⊢ ↑(comp (↑(dualTensorHom R N P) (g ⊗ₜ[R] p)) (↑(dualTensorHom R M N) (f ⊗ₜ[R] n))) m =
↑(↑g n • ↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) m
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, dualTensorHom_apply, LinearMap.map_smul, RingHom.id_apply,
LinearMap.smul_apply]
[GOAL]
case h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommSemiring R
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid N
inst✝⁷ : AddCommMonoid P
inst✝⁶ : AddCommMonoid Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
n : N
g : Dual R N
p : P
m : M
⊢ ↑f m • ↑g n • p = ↑g n • ↑f m • p
[PROOFSTEP]
rw [smul_comm]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i : n
⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) = stdBasisMatrix i j 1
[PROOFSTEP]
ext i' j'
[GOAL]
case a.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j'
[PROOFSTEP]
by_cases hij : i = i' ∧ j = j'
[GOAL]
case pos
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
hij : i = i' ∧ j = j'
⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j'
[PROOFSTEP]
simp [LinearMap.toMatrix_apply, Finsupp.single_eq_pi_single, hij]
[GOAL]
case neg
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
hij : ¬(i = i' ∧ j = j')
⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j'
[PROOFSTEP]
simp [LinearMap.toMatrix_apply, Finsupp.single_eq_pi_single, hij]
[GOAL]
case neg
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
hij : ¬(i = i' ∧ j = j')
⊢ Pi.single i (Pi.single j' 1 j) i' = 0
[PROOFSTEP]
rw [and_iff_not_or_not, Classical.not_not] at hij
[GOAL]
case neg
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
hij : ¬i = i' ∨ ¬j = j'
⊢ Pi.single i (Pi.single j' 1 j) i' = 0
[PROOFSTEP]
cases' hij with hij hij
[GOAL]
case neg.inl
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
hij : ¬i = i'
⊢ Pi.single i (Pi.single j' 1 j) i' = 0
[PROOFSTEP]
simp [hij]
[GOAL]
case neg.inr
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁴ : CommSemiring R
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P
inst✝⁶ : Module R Q
inst✝⁵ : DecidableEq ι
inst✝⁴ : Fintype ι
b : Basis ι R M
m : Type u_1
n : Type u_2
inst✝³ : Fintype m
inst✝² : Fintype n
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
bM : Basis m R M
bN : Basis n R N
j : m
i i' : n
j' : m
hij : ¬j = j'
⊢ Pi.single i (Pi.single j' 1 j) i' = 0
[PROOFSTEP]
simp [hij]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
⊢ comp (dualTensorHom R M N)
(∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) =
LinearMap.id
[PROOFSTEP]
ext f m
[GOAL]
case h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : M →ₗ[R] N
m : M
⊢ ↑(↑(comp (dualTensorHom R M N)
(∑ i : ι,
comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))))
f)
m =
↑(↑LinearMap.id f) m
[PROOFSTEP]
simp only [applyₗ_apply_apply, coeFn_sum, dualTensorHom_apply, mk_apply, id_coe, id.def, Fintype.sum_apply,
Function.comp_apply, Basis.coe_dualBasis, coe_comp, Basis.coord_apply, ← f.map_smul, (dualTensorHom R M N).map_sum, ←
f.map_sum, b.sum_repr]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
⊢ comp (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i)))
(dualTensorHom R M N) =
LinearMap.id
[PROOFSTEP]
ext f m
[GOAL]
case H.h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
m : N
⊢ ↑(↑(compr₂ (TensorProduct.mk R (Dual R M) N)
(comp
(∑ i : ι,
comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i)))
(dualTensorHom R M N)))
f)
m =
↑(↑(compr₂ (TensorProduct.mk R (Dual R M) N) LinearMap.id) f) m
[PROOFSTEP]
simp only [applyₗ_apply_apply, coeFn_sum, dualTensorHom_apply, mk_apply, id_coe, id.def, Fintype.sum_apply,
Function.comp_apply, Basis.coe_dualBasis, coe_comp, compr₂_apply, tmul_smul, smul_tmul', ← sum_tmul,
Basis.sum_dual_apply_smul_coord]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
x : Dual R M ⊗[R] N
⊢ ↑(dualTensorHomEquivOfBasis b) x = ↑(dualTensorHom R M N) x
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
x : Dual R M ⊗[R] N
x✝ : M
⊢ ↑(↑(dualTensorHomEquivOfBasis b) x) x✝ = ↑(↑(dualTensorHom R M N) x) x✝
[PROOFSTEP]
rfl
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
x : Dual R M ⊗[R] N
⊢ ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) (↑(dualTensorHom R M N) x) = x
[PROOFSTEP]
rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.symm_apply_apply <| dualTensorHomEquivOfBasis (N := N) b]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : Module R M
inst✝⁴ : Module R N
inst✝³ : Module R P
inst✝² : Module R Q
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b : Basis ι R M
x : M →ₗ[R] N
⊢ ↑(dualTensorHom R M N) (↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) x) = x
[PROOFSTEP]
rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.apply_symm_apply]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q
[PROOFSTEP]
classical
-- Porting note: missing decidable for choosing basis
let e := congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
have h : Function.Surjective e.toLinearMap := e.surjective
refine' (cancel_right h).1 _
ext f q m
dsimp [lTensorHomEquivHomLTensor]
simp only [lTensorHomEquivHomLTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap,
Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply,
congr_tmul, LinearEquiv.refl_apply, dualTensorHomEquivOfBasis_symm_cancel_left, leftComm_tmul, dualTensorHom_apply,
tmul_smul]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q
[PROOFSTEP]
let e := congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) :=
TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q
[PROOFSTEP]
have h : Function.Surjective e.toLinearMap := e.surjective
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) :=
TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
h : Function.Surjective ↑↑e
⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q
[PROOFSTEP]
refine' (cancel_right h).1 _
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) :=
TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
h : Function.Surjective ↑↑e
⊢ comp ↑(lTensorHomEquivHomLTensor R M P Q) ↑e = comp (lTensorHomToHomLTensor R M P Q) ↑e
[PROOFSTEP]
ext f q m
[GOAL]
case H.h.H.h.h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) :=
TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
h : Function.Surjective ↑↑e
f : P
q : Dual R M
m : Q
x✝ : M
⊢ ↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) Q)
(↑(compr₂ (TensorProduct.mk R P (Dual R M ⊗[R] Q)) (comp ↑(lTensorHomEquivHomLTensor R M P Q) ↑e)) f))
q)
m)
x✝ =
↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) Q)
(↑(compr₂ (TensorProduct.mk R P (Dual R M ⊗[R] Q)) (comp (lTensorHomToHomLTensor R M P Q) ↑e)) f))
q)
m)
x✝
[PROOFSTEP]
dsimp [lTensorHomEquivHomLTensor]
[GOAL]
case H.h.H.h.h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) :=
TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q)
h : Function.Surjective ↑↑e
f : P
q : Dual R M
m : Q
x✝ : M
⊢ ↑(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M))
(↑(leftComm R P (Dual R M) Q)
(f ⊗ₜ[R]
↑(LinearEquiv.symm (dualTensorHomEquivOfBasis (Free.chooseBasis R M)))
(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (q ⊗ₜ[R] m)))))
x✝ =
f ⊗ₜ[R] ↑(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (q ⊗ₜ[R] m)) x✝
[PROOFSTEP]
simp only [lTensorHomEquivHomLTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap,
Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply,
congr_tmul, LinearEquiv.refl_apply, dualTensorHomEquivOfBasis_symm_cancel_left, leftComm_tmul, dualTensorHom_apply,
tmul_smul]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q
[PROOFSTEP]
classical
-- Porting note: missing decidable for choosing basis
let e := congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q)
have h : Function.Surjective e.toLinearMap := e.surjective
refine' (cancel_right h).1 _
ext f p q m
simp only [rTensorHomEquivHomRTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap,
Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply,
congr_tmul, dualTensorHomEquivOfBasis_symm_cancel_left, LinearEquiv.refl_apply, assoc_tmul, dualTensorHom_apply,
rTensorHomToHomRTensor_apply, smul_tmul']
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q
[PROOFSTEP]
let e := congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q)
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q :=
TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q)
⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q
[PROOFSTEP]
have h : Function.Surjective e.toLinearMap := e.surjective
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q :=
TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q)
h : Function.Surjective ↑↑e
⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q
[PROOFSTEP]
refine' (cancel_right h).1 _
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q :=
TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q)
h : Function.Surjective ↑↑e
⊢ comp ↑(rTensorHomEquivHomRTensor R M P Q) ↑e = comp (rTensorHomToHomRTensor R M P Q) ↑e
[PROOFSTEP]
ext f p q m
[GOAL]
case H.H.h.h.h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q :=
TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q)
h : Function.Surjective ↑↑e
f : Dual R M
p : P
q : Q
m : M
⊢ ↑(↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) P)
(compr₂ (TensorProduct.mk R (Dual R M ⊗[R] P) Q) (comp ↑(rTensorHomEquivHomRTensor R M P Q) ↑e)))
f)
p)
q)
m =
↑(↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) P)
(compr₂ (TensorProduct.mk R (Dual R M ⊗[R] P) Q) (comp (rTensorHomToHomRTensor R M P Q) ↑e)))
f)
p)
q)
m
[PROOFSTEP]
simp only [rTensorHomEquivHomRTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap,
Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply,
congr_tmul, dualTensorHomEquivOfBasis_symm_cancel_left, LinearEquiv.refl_apply, assoc_tmul, dualTensorHom_apply,
rTensorHomToHomRTensor_apply, smul_tmul']
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
x : P ⊗[R] (M →ₗ[R] Q)
⊢ ↑(lTensorHomEquivHomLTensor R M P Q) x = ↑(lTensorHomToHomLTensor R M P Q) x
[PROOFSTEP]
rw [← LinearEquiv.coe_toLinearMap, lTensorHomEquivHomLTensor_toLinearMap]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
x : (M →ₗ[R] P) ⊗[R] Q
⊢ ↑(rTensorHomEquivHomRTensor R M P Q) x = ↑(rTensorHomToHomRTensor R M P Q) x
[PROOFSTEP]
rw [← LinearEquiv.coe_toLinearMap, rTensorHomEquivHomRTensor_toLinearMap]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
⊢ ↑(homTensorHomEquiv R M N P Q) = homTensorHomMap R M N P Q
[PROOFSTEP]
ext m n
[GOAL]
case H.h.h.H.h.h
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
m : M →ₗ[R] P
n : N →ₗ[R] Q
x✝¹ : M
x✝ : N
⊢ ↑(↑(compr₂ (TensorProduct.mk R M N)
(↑(↑(compr₂ (TensorProduct.mk R (M →ₗ[R] P) (N →ₗ[R] Q)) ↑(homTensorHomEquiv R M N P Q)) m) n))
x✝¹)
x✝ =
↑(↑(compr₂ (TensorProduct.mk R M N)
(↑(↑(compr₂ (TensorProduct.mk R (M →ₗ[R] P) (N →ₗ[R] Q)) (homTensorHomMap R M N P Q)) m) n))
x✝¹)
x✝
[PROOFSTEP]
simp only [homTensorHomEquiv, compr₂_apply, mk_apply, LinearEquiv.coe_toLinearMap, LinearEquiv.trans_apply,
lift.equiv_apply, LinearEquiv.arrowCongr_apply, LinearEquiv.refl_symm, LinearEquiv.refl_apply,
rTensorHomEquivHomRTensor_apply, lTensorHomEquivHomLTensor_apply, lTensorHomToHomLTensor_apply,
rTensorHomToHomRTensor_apply, homTensorHomMap_apply, map_tmul]
[GOAL]
ι : Type w
R : Type u
M : Type v₁
N : Type v₂
P : Type v₃
Q : Type v₄
inst✝¹³ : CommRing R
inst✝¹² : AddCommGroup M
inst✝¹¹ : AddCommGroup N
inst✝¹⁰ : AddCommGroup P
inst✝⁹ : AddCommGroup Q
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Free R M
inst✝³ : Module.Finite R M
inst✝² : Free R N
inst✝¹ : Module.Finite R N
inst✝ : Nontrivial R
x : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q)
⊢ ↑(homTensorHomEquiv R M N P Q) x = ↑(homTensorHomMap R M N P Q) x
[PROOFSTEP]
rw [← LinearEquiv.coe_toLinearMap, homTensorHomEquiv_toLinearMap]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Contraction", "llama_tokens": 18270} |
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : _root_.Finite K
inst✝ : FiniteDimensional K V
⊢ _root_.Finite V
[PROOFSTEP]
cases nonempty_fintype K
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : _root_.Finite K
inst✝ : FiniteDimensional K V
val✝ : Fintype K
⊢ _root_.Finite V
[PROOFSTEP]
haveI := fintypeOfFintype K V
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : _root_.Finite K
inst✝ : FiniteDimensional K V
val✝ : Fintype K
this : Fintype V
⊢ _root_.Finite V
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : _root_.Finite ι
h : Basis ι K V
⊢ FiniteDimensional K V
[PROOFSTEP]
classical
cases nonempty_fintype ι
exact
⟨⟨Finset.univ.image h, by
convert h.span_eq
simp⟩⟩
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : _root_.Finite ι
h : Basis ι K V
⊢ FiniteDimensional K V
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : _root_.Finite ι
h : Basis ι K V
val✝ : Fintype ι
⊢ FiniteDimensional K V
[PROOFSTEP]
exact
⟨⟨Finset.univ.image h, by
convert h.span_eq
simp⟩⟩
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : _root_.Finite ι
h : Basis ι K V
val✝ : Fintype ι
⊢ span K ↑(Finset.image (↑h) Finset.univ) = ⊤
[PROOFSTEP]
convert h.span_eq
[GOAL]
case h.e'_2.h.e'_6
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : _root_.Finite ι
h : Basis ι K V
val✝ : Fintype ι
⊢ ↑(Finset.image (↑h) Finset.univ) = Set.range ↑h
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ Fintype ↑(Basis.ofVectorSpaceIndex K V)
[PROOFSTEP]
letI : IsNoetherian K V := IsNoetherian.iff_fg.2 inferInstance
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
this : IsNoetherian K V := Iff.mpr iff_fg inferInstance
⊢ Fintype ↑(Basis.ofVectorSpaceIndex K V)
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
⊢ FiniteDimensional K { x // x ∈ S }
[PROOFSTEP]
letI : IsNoetherian K V := iff_fg.2 ?_
[GOAL]
case refine_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
this : IsNoetherian K V := Iff.mpr iff_fg ?refine_1
⊢ FiniteDimensional K { x // x ∈ S }
case refine_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
⊢ Module.Finite K V
[PROOFSTEP]
exact iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 (lt_of_le_of_lt (rank_submodule_le _) (rank_lt_aleph0 K V)))
[GOAL]
case refine_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
⊢ Module.Finite K V
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
h : 0 < finrank K V
⊢ FiniteDimensional K V
[PROOFSTEP]
contrapose h
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
h : ¬FiniteDimensional K V
⊢ ¬0 < finrank K V
[PROOFSTEP]
simp [finrank_of_infinite_dimensional h]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
hn : finrank K V = Nat.succ n
⊢ 0 < finrank K V
[PROOFSTEP]
rw [hn]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
n : ℕ
hn : finrank K V = Nat.succ n
⊢ 0 < Nat.succ n
[PROOFSTEP]
exact n.succ_pos
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
n : ℕ
inst✝ : Fact (finrank K V = n + 1)
⊢ 0 < finrank K V
[PROOFSTEP]
convert Nat.succ_pos n
[GOAL]
case h.e'_4
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
n : ℕ
inst✝ : Fact (finrank K V = n + 1)
⊢ finrank K V = Nat.succ n
[PROOFSTEP]
apply Fact.out
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
W : Type v
inst✝¹ : AddCommGroup W
inst✝ : Module K W
n : ℕ
hn : n ≠ 0
hVW : Module.rank K V = n • Module.rank K W
⊢ FiniteDimensional K V ↔ FiniteDimensional K W
[PROOFSTEP]
simp only [FiniteDimensional, ← IsNoetherian.iff_fg, IsNoetherian.iff_rank_lt_aleph0, hVW,
Cardinal.nsmul_lt_aleph0_iff_of_ne_zero hn]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
h : Basis ι K V
⊢ ↑(finrank K V) = #ι
[PROOFSTEP]
haveI : IsNoetherian K V := iff_fg.2 inferInstance
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
h : Basis ι K V
this : IsNoetherian K V
⊢ ↑(finrank K V) = #ι
[PROOFSTEP]
haveI : Fintype ι := fintypeBasisIndex h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
h : Basis ι K V
this✝ : IsNoetherian K V
this : Fintype ι
⊢ ↑(finrank K V) = #ι
[PROOFSTEP]
rw [Cardinal.mk_fintype, finrank_eq_card_basis h]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
ι : Type u_1
b : Basis ι K K
⊢ Unique ι
[PROOFSTEP]
have A : Cardinal.mk ι = ↑(FiniteDimensional.finrank K K) := (FiniteDimensional.finrank_eq_card_basis' b).symm
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
ι : Type u_1
b : Basis ι K K
A : #ι = ↑(finrank K K)
⊢ Unique ι
[PROOFSTEP]
simp only [Cardinal.eq_one_iff_unique, FiniteDimensional.finrank_self, Nat.cast_one] at A
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
ι : Type u_1
b : Basis ι K K
A : Subsingleton ι ∧ Nonempty ι
⊢ Unique ι
[PROOFSTEP]
exact Nonempty.some ((unique_iff_subsingleton_and_nonempty _).2 A)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h : finrank K V = 1
v : V
i : ι
hv : v = 0
⊢ ↑(↑(basisUnique ι h).repr v) i = 0
[PROOFSTEP]
rw [hv, LinearEquiv.map_zero, Finsupp.zero_apply]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
b : ι → V
h : LinearIndependent K b
⊢ #ι ≤ ↑(finrank K V)
[PROOFSTEP]
rw [← lift_le.{max v w}]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
b : ι → V
h : LinearIndependent K b
⊢ lift #ι ≤ lift ↑(finrank K V)
[PROOFSTEP]
simpa [← finrank_eq_rank', -finrank_eq_rank] using cardinal_lift_le_rank_of_linearIndependent h
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
ι : Type u_1
inst✝ : Fintype ι
b : ι → V
h : LinearIndependent K b
⊢ Fintype.card ι ≤ finrank K V
[PROOFSTEP]
simpa using cardinal_mk_le_finrank_of_linearIndependent h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
b : Finset V
h : LinearIndependent K fun x => ↑x
⊢ Finset.card b ≤ finrank K V
[PROOFSTEP]
rw [← Fintype.card_coe]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
b : Finset V
h : LinearIndependent K fun x => ↑x
⊢ Fintype.card { x // x ∈ b } ≤ finrank K V
[PROOFSTEP]
exact fintype_card_le_finrank_of_linearIndependent h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ #ι < ℵ₀
[PROOFSTEP]
apply Cardinal.lift_lt.1
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ lift #ι < lift ℵ₀
[PROOFSTEP]
apply lt_of_le_of_lt
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ lift #ι ≤ ?b
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ ?b < lift ℵ₀
case b
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ Cardinal.{max w ?u.252424}
[PROOFSTEP]
apply cardinal_lift_le_rank_of_linearIndependent h
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ lift (Module.rank K V) < lift ℵ₀
[PROOFSTEP]
rw [← finrank_eq_rank, Cardinal.lift_aleph0, Cardinal.lift_natCast]
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inst✝ : FiniteDimensional K V
v : ι → V
h : LinearIndependent K v
⊢ ↑(finrank K V) < ℵ₀
[PROOFSTEP]
apply Cardinal.nat_lt_aleph0
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inf : Infinite ι
inst✝ : FiniteDimensional K V
v : ι → V
⊢ ¬LinearIndependent K v
[PROOFSTEP]
intro h_lin_indep
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inf : Infinite ι
inst✝ : FiniteDimensional K V
v : ι → V
h_lin_indep : LinearIndependent K v
⊢ False
[PROOFSTEP]
have : ¬ℵ₀ ≤ #ι := not_le.mpr (lt_aleph0_of_linearIndependent h_lin_indep)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inf : Infinite ι
inst✝ : FiniteDimensional K V
v : ι → V
h_lin_indep : LinearIndependent K v
this : ¬ℵ₀ ≤ #ι
⊢ False
[PROOFSTEP]
have : ℵ₀ ≤ #ι := infinite_iff.mp inf
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type w
inf : Infinite ι
inst✝ : FiniteDimensional K V
v : ι → V
h_lin_indep : LinearIndependent K v
this✝ : ¬ℵ₀ ≤ #ι
this : ℵ₀ ≤ #ι
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ 0 < finrank K V ↔ 0 < Module.rank K V
[PROOFSTEP]
rw [← finrank_eq_rank]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ 0 < finrank K V ↔ 0 < ↑(finrank K V)
[PROOFSTEP]
norm_cast
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ 0 < finrank K V ↔ 0 < Module.rank K V
[PROOFSTEP]
rw [← finrank_eq_rank]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ 0 < finrank K V ↔ 0 < ↑(finrank K V)
[PROOFSTEP]
norm_cast
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ finrank K V = 0 ↔ Module.rank K V = 0
[PROOFSTEP]
rw [← finrank_eq_rank]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
⊢ finrank K V = 0 ↔ ↑(finrank K V) = 0
[PROOFSTEP]
norm_cast
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
⊢ S = ⊤
[PROOFSTEP]
haveI : IsNoetherian K V := iff_fg.2 inferInstance
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this : IsNoetherian K V
⊢ S = ⊤
[PROOFSTEP]
set bS := Basis.ofVectorSpace K S with bS_eq
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
⊢ S = ⊤
[PROOFSTEP]
have : LinearIndependent K ((↑) : ((↑) '' Basis.ofVectorSpaceIndex K S : Set V) → V) :=
@LinearIndependent.image_subtype _ _ _ _ _ _ _ _ _ (Submodule.subtype S) (by simpa using bS.linearIndependent)
(by simp)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
⊢ LinearIndependent K fun x => ↑x
[PROOFSTEP]
simpa using bS.linearIndependent
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
⊢ Disjoint (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S })) (LinearMap.ker (Submodule.subtype S))
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
⊢ S = ⊤
[PROOFSTEP]
set b := Basis.extend this with b_eq
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
⊢ S = ⊤
[PROOFSTEP]
letI i1 : Fintype (this.extend _) := (finite_of_linearIndependent (by simpa using b.linearIndependent)).fintype
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
⊢ LinearIndependent ?m.281540 Subtype.val
[PROOFSTEP]
simpa using b.linearIndependent
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
i1 : Fintype
↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
⊢ S = ⊤
[PROOFSTEP]
letI i2 : Fintype (((↑) : S → V) '' Basis.ofVectorSpaceIndex K S) := (finite_of_linearIndependent this).fintype
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
i1 : Fintype
↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
⊢ S = ⊤
[PROOFSTEP]
letI i3 : Fintype (Basis.ofVectorSpaceIndex K S) :=
(finite_of_linearIndependent (by simpa using bS.linearIndependent)).fintype
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
i1 : Fintype
↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
⊢ LinearIndependent ?m.287044 Subtype.val
[PROOFSTEP]
simpa using bS.linearIndependent
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
i1 : Fintype
↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
⊢ S = ⊤
[PROOFSTEP]
have : (↑) '' Basis.ofVectorSpaceIndex K S = this.extend (Set.subset_univ _) :=
Set.eq_of_subset_of_card_le (this.subset_extend _)
(by
rw [Set.card_image_of_injective _ Subtype.coe_injective, ← finrank_eq_card_basis bS, ← finrank_eq_card_basis b,
h])
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K
V :=
Basis.extend this
b_eq : b = Basis.extend this
i1 : Fintype
↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
⊢ Fintype.card
↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) ≤
Fintype.card ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })
[PROOFSTEP]
rw [Set.card_image_of_injective _ Subtype.coe_injective, ← finrank_eq_card_basis bS, ← finrank_eq_card_basis b, h]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝¹ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this✝ : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
K V :=
Basis.extend this✝
b_eq : b = Basis.extend this✝
i1 : Fintype
↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
this :
Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } =
LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)
⊢ S = ⊤
[PROOFSTEP]
rw [← b.span_eq, b_eq, Basis.coe_extend, Subtype.range_coe, ← this, ← Submodule.coeSubtype, span_image]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝¹ : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this✝ : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
K V :=
Basis.extend this✝
b_eq : b = Basis.extend this✝
i1 : Fintype
↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
this :
Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } =
LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)
⊢ S = Submodule.map (Submodule.subtype S) (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
[PROOFSTEP]
have := bS.span_eq
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝² : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this✝¹ : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
K V :=
Basis.extend this✝¹
b_eq : b = Basis.extend this✝¹
i1 : Fintype
↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
this✝ :
Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } =
LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)
this : span K (Set.range ↑bS) = ⊤
⊢ S = Submodule.map (Submodule.subtype S) (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
[PROOFSTEP]
rw [bS_eq, Basis.coe_ofVectorSpace, Subtype.range_coe] at this
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
S : Submodule K V
h : finrank K { x // x ∈ S } = finrank K V
this✝² : IsNoetherian K V
bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S }
bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S }
this✝¹ : LinearIndependent K Subtype.val
b : Basis (↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
K V :=
Basis.extend this✝¹
b_eq : b = Basis.extend this✝¹
i1 : Fintype
↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) :=
Set.Finite.fintype
(_ :
Set.Finite
(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)))
i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }))
i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) :=
Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
this✝ :
Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } =
LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)
this : span K (Basis.ofVectorSpaceIndex K { x // x ∈ S }) = ⊤
⊢ S = Submodule.map (Submodule.subtype S) (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S }))
[PROOFSTEP]
rw [this, map_top (Submodule.subtype S), range_subtype]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
V₂ : Type v'
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
⊢ FiniteDimensional K K
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ #{ i // p i ≠ ⊥ } ≤ ↑(finrank K V)
[PROOFSTEP]
suffices Cardinal.lift.{v} #{ i // p i ≠ ⊥ } ≤ Cardinal.lift.{v} (finrank K V : Cardinal.{w}) by
rwa [Cardinal.lift_le] at this
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
this : lift #{ i // p i ≠ ⊥ } ≤ lift ↑(finrank K V)
⊢ #{ i // p i ≠ ⊥ } ≤ ↑(finrank K V)
[PROOFSTEP]
rwa [Cardinal.lift_le] at this
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ lift #{ i // p i ≠ ⊥ } ≤ lift ↑(finrank K V)
[PROOFSTEP]
calc
Cardinal.lift.{v} #{ i // p i ≠ ⊥ } ≤ Cardinal.lift.{w} (Module.rank K V) := hp.subtype_ne_bot_le_rank
_ = Cardinal.lift.{w} (finrank K V : Cardinal.{v}) := by rw [finrank_eq_rank]
_ = Cardinal.lift.{v} (finrank K V : Cardinal.{w}) := by simp
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ lift (Module.rank K V) = lift ↑(finrank K V)
[PROOFSTEP]
rw [finrank_eq_rank]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ lift ↑(finrank K V) = lift ↑(finrank K V)
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ Fintype { i // p i ≠ ⊥ }
[PROOFSTEP]
suffices #{ i // p i ≠ ⊥ } < (ℵ₀ : Cardinal.{w})
by
rw [Cardinal.lt_aleph0_iff_fintype] at this
exact this.some
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
this : #{ i // p i ≠ ⊥ } < ℵ₀
⊢ Fintype { i // p i ≠ ⊥ }
[PROOFSTEP]
rw [Cardinal.lt_aleph0_iff_fintype] at this
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
this : Nonempty (Fintype { i // p i ≠ ⊥ })
⊢ Fintype { i // p i ≠ ⊥ }
[PROOFSTEP]
exact this.some
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ #{ i // p i ≠ ⊥ } < ℵ₀
[PROOFSTEP]
refine' lt_of_le_of_lt hp.subtype_ne_bot_le_finrank_aux _
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
⊢ ↑(finrank K V) < ℵ₀
[PROOFSTEP]
simp [Cardinal.nat_lt_aleph0]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
ι : Type w
p : ι → Submodule K V
hp : CompleteLattice.Independent p
inst✝ : Fintype { i // p i ≠ ⊥ }
⊢ Fintype.card { i // p i ≠ ⊥ } ≤ finrank K V
[PROOFSTEP]
simpa using hp.subtype_ne_bot_le_finrank_aux
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
classical
have := mt finset_card_le_finrank_of_linearIndependent (by simpa using h)
rw [not_linearIndependent_iff] at this
obtain ⟨s, g, sum, z, zm, nonzero⟩ := this
let f : V → K := fun x =>
if h : x ∈ t then if (⟨x, h⟩ : t) ∈ s then g ⟨x, h⟩ else 0
else
0
-- and finally clean up the mess caused by the extension.
refine' ⟨f, _, _⟩
· dsimp
rw [← (sum)]
-- porting note: need parens to disambiguate
fapply sum_bij_ne_zero fun v hvt _ => (⟨v, hvt⟩ : { v // v ∈ t })
· intro v hvt H
dsimp
rw [dif_pos hvt] at H
contrapose! H
rw [if_neg H, zero_smul]
· intro _ _ _ _ _ _
exact Subtype.mk.inj
· intro b hbs hb
use b
simpa only [hbs, exists_prop, dif_pos, Finset.mk_coe, and_true_iff, if_true, Finset.coe_mem, eq_self_iff_true,
exists_prop_of_true, Ne.def] using hb
· intro a h₁
dsimp
rw [dif_pos h₁]
intro h₂
rw [if_pos]
contrapose! h₂
rw [if_neg h₂, zero_smul]
· refine' ⟨z, z.2, _⟩
dsimp only
erw [dif_pos z.2, if_pos] <;> rwa [Subtype.coe_eta]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
have := mt finset_card_le_finrank_of_linearIndependent (by simpa using h)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
⊢ ¬card ?m.337366 ≤ finrank ?m.337360 ?m.337361
[PROOFSTEP]
simpa using h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
this : ¬LinearIndependent K fun x => ↑x
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
rw [not_linearIndependent_iff] at this
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
this : ∃ s g, ∑ i in s, g i • ↑i = 0 ∧ ∃ i, i ∈ s ∧ g i ≠ 0
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
obtain ⟨s, g, sum, z, zm, nonzero⟩ := this
[GOAL]
case intro.intro.intro.intro.intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
let f : V → K := fun x =>
if h : x ∈ t then if (⟨x, h⟩ : t) ∈ s then g ⟨x, h⟩ else 0
else
0
-- and finally clean up the mess caused by the extension.
[GOAL]
case intro.intro.intro.intro.intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
refine' ⟨f, _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∑ e in t, f e • e = 0
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∑ e in t,
(if h : e ∈ t then if { val := e, property := h } ∈ s then g { val := e, property := h } else 0 else 0) • e =
0
[PROOFSTEP]
rw [← (sum)]
-- porting note: need parens to disambiguate
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∑ e in t,
(if h : e ∈ t then if { val := e, property := h } ∈ s then g { val := e, property := h } else 0 else 0) • e =
∑ i in s, g i • ↑i
[PROOFSTEP]
fapply sum_bij_ne_zero fun v hvt _ => (⟨v, hvt⟩ : { v // v ∈ t })
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.hi
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∀ (a : V) (h₁ : a ∈ t),
(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a ≠ 0 →
{ val := a, property := h₁ } ∈ s
[PROOFSTEP]
intro v hvt H
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.hi
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
v : V
hvt : v ∈ t
H : (if h : v ∈ t then if { val := v, property := h } ∈ s then g { val := v, property := h } else 0 else 0) • v ≠ 0
⊢ { val := v, property := hvt } ∈ s
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.hi
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
v : V
hvt : v ∈ t
H : (if h : v ∈ t then if { val := v, property := h } ∈ s then g { val := v, property := h } else 0 else 0) • v ≠ 0
⊢ { val := v, property := hvt } ∈ s
[PROOFSTEP]
rw [dif_pos hvt] at H
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.hi
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
v : V
hvt : v ∈ t
H : (if { val := v, property := hvt } ∈ s then g { val := v, property := hvt } else 0) • v ≠ 0
⊢ { val := v, property := hvt } ∈ s
[PROOFSTEP]
contrapose! H
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.hi
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
v : V
hvt : v ∈ t
H : ¬{ val := v, property := hvt } ∈ s
⊢ (if { val := v, property := hvt } ∈ s then g { val := v, property := hvt } else 0) • v = 0
[PROOFSTEP]
rw [if_neg H, zero_smul]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.i_inj
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∀ (a₁ a₂ : V) (h₁₁ : a₁ ∈ t),
(if h : a₁ ∈ t then if { val := a₁, property := h } ∈ s then g { val := a₁, property := h } else 0 else 0) • a₁ ≠
0 →
∀ (h₂₁ : a₂ ∈ t),
(if h : a₂ ∈ t then if { val := a₂, property := h } ∈ s then g { val := a₂, property := h } else 0 else 0) •
a₂ ≠
0 →
{ val := a₁, property := h₁₁ } = { val := a₂, property := h₂₁ } → a₁ = a₂
[PROOFSTEP]
intro _ _ _ _ _ _
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.i_inj
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a₁✝ a₂✝ : V
h₁₁✝ : a₁✝ ∈ t
h₁₂✝ :
(if h : a₁✝ ∈ t then if { val := a₁✝, property := h } ∈ s then g { val := a₁✝, property := h } else 0 else 0) • a₁✝ ≠
0
h₂₁✝ : a₂✝ ∈ t
h₂₂✝ :
(if h : a₂✝ ∈ t then if { val := a₂✝, property := h } ∈ s then g { val := a₂✝, property := h } else 0 else 0) • a₂✝ ≠
0
⊢ { val := a₁✝, property := h₁₁✝ } = { val := a₂✝, property := h₂₁✝ } → a₁✝ = a₂✝
[PROOFSTEP]
exact Subtype.mk.inj
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.i_surj
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∀ (b : { v // v ∈ t }), b ∈ s → g b • ↑b ≠ 0 → ∃ a h₁ h₂, b = { val := a, property := h₁ }
[PROOFSTEP]
intro b hbs hb
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.i_surj
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
b : { v // v ∈ t }
hbs : b ∈ s
hb : g b • ↑b ≠ 0
⊢ ∃ a h₁ h₂, b = { val := a, property := h₁ }
[PROOFSTEP]
use b
[GOAL]
case h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
b : { v // v ∈ t }
hbs : b ∈ s
hb : g b • ↑b ≠ 0
⊢ ∃ h₁ h₂, b = { val := ↑b, property := h₁ }
[PROOFSTEP]
simpa only [hbs, exists_prop, dif_pos, Finset.mk_coe, and_true_iff, if_true, Finset.coe_mem, eq_self_iff_true,
exists_prop_of_true, Ne.def] using hb
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∀ (a : V) (h₁ : a ∈ t),
(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a ≠ 0 →
(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a =
g { val := a, property := h₁ } • ↑{ val := a, property := h₁ }
[PROOFSTEP]
intro a h₁
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a : V
h₁ : a ∈ t
⊢ (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a ≠ 0 →
(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a =
g { val := a, property := h₁ } • ↑{ val := a, property := h₁ }
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a : V
h₁ : a ∈ t
⊢ ¬(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a = 0 →
(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a =
g { val := a, property := h₁ } • a
[PROOFSTEP]
rw [dif_pos h₁]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a : V
h₁ : a ∈ t
⊢ ¬(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0 →
(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a =
g { val := a, property := h₁ } • a
[PROOFSTEP]
intro h₂
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a : V
h₁ : a ∈ t
h₂ : ¬(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0
⊢ (if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a =
g { val := a, property := h₁ } • a
[PROOFSTEP]
rw [if_pos]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h.hc
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a : V
h₁ : a ∈ t
h₂ : ¬(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0
⊢ { val := a, property := h₁ } ∈ s
[PROOFSTEP]
contrapose! h₂
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.h.hc
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
a : V
h₁ : a ∈ t
h₂ : ¬{ val := a, property := h₁ } ∈ s
⊢ (if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0
[PROOFSTEP]
rw [if_neg h₂, zero_smul]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
refine' ⟨z, z.2, _⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ f ↑z ≠ 0
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ (if h : ↑z ∈ t then if { val := ↑z, property := h } ∈ s then g { val := ↑z, property := h } else 0 else 0) ≠ 0
[PROOFSTEP]
erw [dif_pos z.2, if_pos]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ g { val := ↑z, property := (_ : ↑z ∈ t) } ≠ 0
[PROOFSTEP]
rwa [Subtype.coe_eta]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2.hc
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V < card t
s : Finset { x // x ∈ t }
g : { x // x ∈ t } → K
sum : ∑ i in s, g i • ↑i = 0
z : { x // x ∈ t }
zm : z ∈ s
nonzero : g z ≠ 0
f : V → K :=
fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0
⊢ { val := ↑z, property := (_ : ↑z ∈ t) } ∈ s
[PROOFSTEP]
rwa [Subtype.coe_eta]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
classical
-- Pick an element x₀ ∈ t,
have card_pos : 0 < t.card := lt_trans (Nat.succ_pos _) h
obtain ⟨x₀, m⟩ := (Finset.card_pos.1 card_pos).bex
let shift : V ↪ V := ⟨fun x => x - x₀, sub_left_injective⟩
let t' := (t.erase x₀).map shift
have h' : finrank K V < t'.card := by
simp only [card_map, Finset.card_erase_of_mem m]
exact Nat.lt_pred_iff.mpr h
obtain ⟨g, gsum, x₁, x₁_mem, nz⟩ := exists_nontrivial_relation_of_rank_lt_card h'
let f : V → K := fun z => if z = x₀ then -∑ z in t.erase x₀, g (z - x₀) else g (z - x₀)
refine'
⟨f, _, _, _⟩
-- After this, it's a matter of verifying the properties,
-- based on the corresponding properties for `g`.
· show
(∑ e : V in t, f e • e) =
0
-- We prove this by splitting off the `x₀` term of the sum,
-- which is itself a sum over `t.erase x₀`,
-- combining the two sums, and
-- observing that after reindexing we have exactly
-- ∑ (x : V) in t', g x • x = 0.
simp only
conv_lhs =>
apply_congr
rfl
rw [ite_smul]
rw [Finset.sum_ite]
conv =>
congr
congr
apply_congr
-- Porting note: the next two steps used to work by `simp [filter_eq', m]`
erw [filter_eq']
simp [m]
conv =>
congr
congr
rfl
apply_congr
simp [filter_ne']
rw [sum_singleton, neg_smul, add_comm, ← sub_eq_add_neg, sum_smul, ← sum_sub_distrib]
simp only [← smul_sub]
-- At the end we have to reindex the sum, so we use `change` to
-- express the summand using `shift`.
change
(∑ x : V in t.erase x₀, (fun e => g e • e) (shift x)) =
0
-- porting note: last argument can't be inferred
rw [← sum_map _ shift (fun e => g e • e)]
exact gsum
· show
(∑ e : V in t, f e) =
0
-- Again we split off the `x₀` term,
-- observing that it exactly cancels the other terms.
rw [← insert_erase m, sum_insert (not_mem_erase x₀ t)]
dsimp
rw [if_pos rfl]
conv_lhs =>
congr
rfl
apply_congr
rfl
rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)]
exact neg_add_self _
· show
∃ (x : V),
x ∈ t ∧
f x ≠
0
-- We can use x₁ + x₀.
refine' ⟨x₁ + x₀, _, _⟩
· rw [Finset.mem_map] at x₁_mem
rcases x₁_mem with ⟨x₁, x₁_mem, rfl⟩
rw [mem_erase] at x₁_mem
simp only [x₁_mem, sub_add_cancel, Function.Embedding.coeFn_mk]
· dsimp only
rwa [if_neg, add_sub_cancel]
rw [add_left_eq_self]
rintro rfl
simp only [sub_eq_zero, exists_prop, Finset.mem_map, Embedding.coeFn_mk, eq_self_iff_true, mem_erase, not_true,
exists_eq_right, Ne.def, false_and_iff] at x₁_mem
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
have card_pos : 0 < t.card := lt_trans (Nat.succ_pos _) h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
obtain ⟨x₀, m⟩ := (Finset.card_pos.1 card_pos).bex
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
let shift : V ↪ V := ⟨fun x => x - x₀, sub_left_injective⟩
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
let t' := (t.erase x₀).map shift
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
have h' : finrank K V < t'.card := by
simp only [card_map, Finset.card_erase_of_mem m]
exact Nat.lt_pred_iff.mpr h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
⊢ finrank K V < card t'
[PROOFSTEP]
simp only [card_map, Finset.card_erase_of_mem m]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
⊢ finrank K V < card t - 1
[PROOFSTEP]
exact Nat.lt_pred_iff.mpr h
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
obtain ⟨g, gsum, x₁, x₁_mem, nz⟩ := exists_nontrivial_relation_of_rank_lt_card h'
[GOAL]
case intro.intro.intro.intro.intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
let f : V → K := fun z => if z = x₀ then -∑ z in t.erase x₀, g (z - x₀) else g (z - x₀)
[GOAL]
case intro.intro.intro.intro.intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
refine'
⟨f, _, _, _⟩
-- After this, it's a matter of verifying the properties,
-- based on the corresponding properties for `g`.
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ e in t, f e • e = 0
[PROOFSTEP]
show
(∑ e : V in t, f e • e) =
0
-- We prove this by splitting off the `x₀` term of the sum,
-- which is itself a sum over `t.erase x₀`,
-- combining the two sums, and
-- observing that after reindexing we have exactly
-- ∑ (x : V) in t', g x • x = 0.
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ e in t, f e • e = 0
[PROOFSTEP]
simp only
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x = 0
[PROOFSTEP]
conv_lhs =>
apply_congr
rfl
rw [ite_smul]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x
[PROOFSTEP]
apply_congr
rfl
rw [ite_smul]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x
[PROOFSTEP]
apply_congr
rfl
rw [ite_smul]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x
[PROOFSTEP]
apply_congr
[GOAL]
case h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ t = ?s₂
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ ?s₂
⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) • x✝ = ?g x✝
[PROOFSTEP]
rfl
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ t
⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) • x✝ = ?g x✝
[PROOFSTEP]
rw [ite_smul]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ (∑ x in t, if x = x₀ then (-∑ z in erase t x₀, g (z - x₀)) • x else g (x - x₀) • x) = 0
[PROOFSTEP]
rw [Finset.sum_ite]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x +
∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x =
0
[PROOFSTEP]
conv =>
congr
congr
apply_congr
-- Porting note: the next two steps used to work by `simp [filter_eq', m]`
erw [filter_eq']
simp [m]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x +
∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x =
0
[PROOFSTEP]
congr
congr
apply_congr
-- Porting note: the next two steps used to work by `simp [filter_eq', m]`
erw [filter_eq']
simp [m]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x +
∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x =
0
[PROOFSTEP]
congr
congr
apply_congr
-- Porting note: the next two steps used to work by `simp [filter_eq', m]`
erw [filter_eq']
simp [m]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x +
∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x =
0
[PROOFSTEP]
congr
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x +
∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
congr
[GOAL]
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
apply_congr
-- Porting note: the next two steps used to work by `simp [filter_eq', m]`
[GOAL]
case a.a.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ filter (fun x => x = x₀) t = ?a.a.s₂
case a.a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ ?a.a.s₂
⊢ (-∑ z in erase t x₀, g (z - x₀)) • x✝ = ?a.a.g x✝
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
erw [filter_eq']
[GOAL]
case a.a.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| if x₀ ∈ t then {x₀} else ∅
case a.a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ ?a.a.s₂
⊢ (-∑ z in erase t x₀, g (z - x₀)) • x✝ = ?a.a.g x✝
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
simp [m]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0
[PROOFSTEP]
conv =>
congr
congr
rfl
apply_congr
simp [filter_ne']
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0
[PROOFSTEP]
congr
congr
rfl
apply_congr
simp [filter_ne']
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0
[PROOFSTEP]
congr
congr
rfl
apply_congr
simp [filter_ne']
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0
[PROOFSTEP]
congr
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
congr
[GOAL]
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
rfl
[GOAL]
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
apply_congr
[GOAL]
case a.a.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ filter (fun x => ¬x = x₀) t = ?a.a.s₂
case a.a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ ?a.a.s₂
⊢ g (x✝ - x₀) • x✝ = ?a.a.g x✝
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| 0
[PROOFSTEP]
simp [filter_ne']
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in erase t x₀, g (x - x₀) • x = 0
[PROOFSTEP]
rw [sum_singleton, neg_smul, add_comm, ← sub_eq_add_neg, sum_smul, ← sum_sub_distrib]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in erase t x₀, (g (x - x₀) • x - g (x - x₀) • x₀) = 0
[PROOFSTEP]
simp only [← smul_sub]
-- At the end we have to reindex the sum, so we use `change` to
-- express the summand using `shift`.
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in erase t x₀, g (x - x₀) • (x - x₀) = 0
[PROOFSTEP]
change
(∑ x : V in t.erase x₀, (fun e => g e • e) (shift x)) =
0
-- porting note: last argument can't be inferred
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in erase t x₀, (fun e => g e • e) (↑shift x) = 0
[PROOFSTEP]
rw [← sum_map _ shift (fun e => g e • e)]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ x in Finset.map shift (erase t x₀), g x • x = 0
[PROOFSTEP]
exact gsum
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ e in t, f e = 0
[PROOFSTEP]
show
(∑ e : V in t, f e) =
0
-- Again we split off the `x₀` term,
-- observing that it exactly cancels the other terms.
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∑ e in t, f e = 0
[PROOFSTEP]
rw [← insert_erase m, sum_insert (not_mem_erase x₀ t)]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ f x₀ + ∑ x in erase t x₀, f x = 0
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ((if x₀ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x₀ - x₀)) +
∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) =
0
[PROOFSTEP]
rw [if_pos rfl]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ (-∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) =
0
[PROOFSTEP]
conv_lhs =>
congr
rfl
apply_congr
rfl
rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)
[PROOFSTEP]
congr
rfl
apply_congr
rfl
rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)
[PROOFSTEP]
congr
rfl
apply_congr
rfl
rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)
[PROOFSTEP]
congr
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| -∑ z in erase t x₀, g (z - x₀)
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)
[PROOFSTEP]
rfl
[GOAL]
case a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
| ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)
[PROOFSTEP]
apply_congr
[GOAL]
case a.h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ erase t x₀ = ?a.s₂
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ ?a.s₂
⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) = ?a.g x✝
[PROOFSTEP]
rfl
[GOAL]
case a.a
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x✝ : V
a✝ : x✝ ∈ erase t x₀
⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) = ?a.g x✝
[PROOFSTEP]
rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, g (x - x₀) = 0
[PROOFSTEP]
exact neg_add_self _
[GOAL]
case intro.intro.intro.intro.intro.refine'_3
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
show
∃ (x : V),
x ∈ t ∧
f x ≠
0
-- We can use x₁ + x₀.
[GOAL]
case intro.intro.intro.intro.intro.refine'_3
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ∃ x, x ∈ t ∧ f x ≠ 0
[PROOFSTEP]
refine' ⟨x₁ + x₀, _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ x₁ + x₀ ∈ t
[PROOFSTEP]
rw [Finset.mem_map] at x₁_mem
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_1
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : ∃ a, a ∈ erase t x₀ ∧ ↑shift a = x₁
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ x₁ + x₀ ∈ t
[PROOFSTEP]
rcases x₁_mem with ⟨x₁, x₁_mem, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_1.intro.intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x₁ : V
x₁_mem : x₁ ∈ erase t x₀
nz : g (↑shift x₁) ≠ 0
⊢ ↑shift x₁ + x₀ ∈ t
[PROOFSTEP]
rw [mem_erase] at x₁_mem
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_1.intro.intro
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x₁ : V
x₁_mem : x₁ ≠ x₀ ∧ x₁ ∈ t
nz : g (↑shift x₁) ≠ 0
⊢ ↑shift x₁ + x₀ ∈ t
[PROOFSTEP]
simp only [x₁_mem, sub_add_cancel, Function.Embedding.coeFn_mk]
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ f (x₁ + x₀) ≠ 0
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_2
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ (if x₁ + x₀ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x₁ + x₀ - x₀)) ≠ 0
[PROOFSTEP]
rwa [if_neg, add_sub_cancel]
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_2.hnc
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ¬x₁ + x₀ = x₀
[PROOFSTEP]
rw [add_left_eq_self]
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_2.hnc
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
x₁ : V
x₁_mem : x₁ ∈ t'
nz : g x₁ ≠ 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
⊢ ¬x₁ = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.intro.intro.intro.intro.refine'_3.refine'_2.hnc
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
t : Finset V
h : finrank K V + 1 < card t
card_pos : 0 < card t
x₀ : V
m : x₀ ∈ t
shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) }
t' : Finset V := Finset.map shift (erase t x₀)
h' : finrank K V < card t'
g : V → K
gsum : ∑ e in t', g e • e = 0
f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀)
x₁_mem : 0 ∈ t'
nz : g 0 ≠ 0
⊢ False
[PROOFSTEP]
simp only [sub_eq_zero, exists_prop, Finset.mem_map, Embedding.coeFn_mk, eq_self_iff_true, mem_erase, not_true,
exists_eq_right, Ne.def, false_and_iff] at x₁_mem
[GOAL]
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
V₂ : Type v'
inst✝⁵ : AddCommGroup V₂
inst✝⁴ : Module K V₂
L : Type u_1
inst✝³ : LinearOrderedField L
W : Type v
inst✝² : AddCommGroup W
inst✝¹ : Module L W
inst✝ : FiniteDimensional L W
t : Finset W
h : finrank L W + 1 < card t
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ 0 < f x
[PROOFSTEP]
obtain ⟨f, sum, total, nonzero⟩ := exists_nontrivial_relation_sum_zero_of_rank_succ_lt_card h
[GOAL]
case intro.intro.intro
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
V₂ : Type v'
inst✝⁵ : AddCommGroup V₂
inst✝⁴ : Module K V₂
L : Type u_1
inst✝³ : LinearOrderedField L
W : Type v
inst✝² : AddCommGroup W
inst✝¹ : Module L W
inst✝ : FiniteDimensional L W
t : Finset W
h : finrank L W + 1 < card t
f : W → L
sum : ∑ e in t, f e • e = 0
total : ∑ e in t, f e = 0
nonzero : ∃ x, x ∈ t ∧ f x ≠ 0
⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ 0 < f x
[PROOFSTEP]
exact ⟨f, sum, total, exists_pos_of_sum_zero_of_exists_nonzero f total nonzero⟩
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
⊢ ∀ (x y : V),
(fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default)) (x + y) =
(fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default)) x +
(fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default)) y
[PROOFSTEP]
simp [add_div]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
⊢ ∀ (r : K) (x : V),
AddHom.toFun
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }
(r • x) =
↑(RingHom.id K) r •
AddHom.toFun
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }
x
[PROOFSTEP]
simp [mul_div]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
w : V
⊢ (fun f => ↑f default • v)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) },
map_smul' :=
(_ :
∀ (a : K) (a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
a •
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom
w) =
w
[PROOFSTEP]
apply_fun b.repr using b.repr.toEquiv.injective
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
w : V
⊢ ↑b.repr
((fun f => ↑f default • v)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) },
map_smul' :=
(_ :
∀ (a : K) (a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
a •
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom
w)) =
↑b.repr w
[PROOFSTEP]
apply_fun Equiv.finsuppUnique
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
w : V
⊢ ↑Equiv.finsuppUnique
(↑b.repr
((fun f => ↑f default • v)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) },
map_smul' :=
(_ :
∀ (a : K) (a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
a •
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default /
↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom
w))) =
↑Equiv.finsuppUnique (↑b.repr w)
[PROOFSTEP]
simp only [LinearEquiv.map_smulₛₗ, Finsupp.coe_smul, Finsupp.single_eq_same, RingHom.id_apply, smul_eq_mul,
Pi.smul_apply, Equiv.finsuppUnique_apply]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
w : V
⊢ ↑(↑(basisUnique ι h✝).repr w) default / ↑(↑(basisUnique ι h✝).repr v) default *
↑(↑(basisUnique ι h✝).repr v) default =
↑(↑(basisUnique ι h✝).repr w) default
[PROOFSTEP]
exact div_mul_cancel _ h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
f : ι →₀ K
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) },
map_smul' :=
(_ :
∀ (a : K) (a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
a •
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom
((fun f => ↑f default • v) f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
f : ι →₀ K
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default),
map_add' :=
(_ :
∀ (a a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) +
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) },
map_smul' :=
(_ :
∀ (a : K) (a_1 : V),
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) =
a •
Finsupp.single default
(↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom
((fun f => ↑f default • v) f))
default =
↑f default
[PROOFSTEP]
simp only [LinearEquiv.map_smulₛₗ, Finsupp.coe_smul, Finsupp.single_eq_same, RingHom.id_apply, smul_eq_mul,
Pi.smul_apply]
[GOAL]
case h
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h✝ : finrank K V = 1
v : V
hv : v ≠ 0
b : Basis ι K V := basisUnique ι h✝
h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv
f : ι →₀ K
⊢ ↑f default * ↑(↑(basisUnique ι h✝).repr v) default / ↑(↑(basisUnique ι h✝).repr v) default = ↑f default
[PROOFSTEP]
exact mul_div_cancel _ h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h : finrank K V = 1
v : V
hv : v ≠ 0
i : ι
⊢ ↑(basisSingleton ι h v hv) i = v
[PROOFSTEP]
cases Unique.uniq ‹Unique ι› i
[GOAL]
case refl
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h : finrank K V = 1
v : V
hv : v ≠ 0
⊢ ↑(basisSingleton ι h v hv) default = v
[PROOFSTEP]
simp [basisSingleton]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : Unique ι
h : finrank K V = 1
v : V
hv : v ≠ 0
⊢ Set.range ↑(basisSingleton ι h v hv) = {v}
[PROOFSTEP]
rw [Set.range_unique, basisSingleton_apply]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
n : ℕ
h : Module.rank K V = ↑n
⊢ FiniteDimensional K V
[PROOFSTEP]
rw [FiniteDimensional, ← IsNoetherian.iff_fg, IsNoetherian.iff_rank_lt_aleph0, h]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
n : ℕ
h : Module.rank K V = ↑n
⊢ ↑n < ℵ₀
[PROOFSTEP]
exact nat_lt_aleph0 n
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : Module.rank K V = 0
⊢ finrank K V = 0
[PROOFSTEP]
convert finrank_eq_rank K V
[GOAL]
case a
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : Module.rank K V = 0
⊢ finrank K V = 0 ↔ ↑(finrank K V) = Module.rank K V
[PROOFSTEP]
rw [h]
[GOAL]
case a
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : Module.rank K V = 0
⊢ finrank K V = 0 ↔ ↑(finrank K V) = 0
[PROOFSTEP]
norm_cast
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ Module.rank K { x // x ∈ ⊥ } = 0
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : Module.rank K V = 0
⊢ ⊥ = ⊤
[PROOFSTEP]
haveI : FiniteDimensional _ _ := finiteDimensional_of_rank_eq_zero h
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : Module.rank K V = 0
this : FiniteDimensional K V
⊢ ⊥ = ⊤
[PROOFSTEP]
apply eq_top_of_finrank_eq
[GOAL]
case h
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : Module.rank K V = 0
this : FiniteDimensional K V
⊢ finrank K { x // x ∈ ⊥ } = finrank K V
[PROOFSTEP]
rw [finrank_bot, finrank_eq_zero_of_rank_eq_zero h]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Submodule K V
h : S = ⊥
⊢ Module.rank K { x // x ∈ S } = 0
[PROOFSTEP]
rw [h, rank_bot]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
S : Submodule K V
inst✝ : FiniteDimensional K { x // x ∈ S }
⊢ finrank K { x // x ∈ S } = 0 ↔ S = ⊥
[PROOFSTEP]
rw [← rank_eq_zero, ← finrank_eq_rank, ← @Nat.cast_zero Cardinal, Cardinal.natCast_inj]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S₁ S₂ : Submodule K V
h₁ : FiniteDimensional K { x // x ∈ S₁ }
h₂ : FiniteDimensional K { x // x ∈ S₂ }
⊢ FiniteDimensional K { x // x ∈ S₁ ⊔ S₂ }
[PROOFSTEP]
unfold FiniteDimensional at *
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S₁ S₂ : Submodule K V
h₁ : Module.Finite K { x // x ∈ S₁ }
h₂ : Module.Finite K { x // x ∈ S₂ }
⊢ Module.Finite K { x // x ∈ S₁ ⊔ S₂ }
[PROOFSTEP]
rw [finite_def] at *
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S₁ S₂ : Submodule K V
h₁ : FG ⊤
h₂ : FG ⊤
⊢ FG ⊤
[PROOFSTEP]
exact (fg_top _).2 (((fg_top S₁).1 h₁).sup ((fg_top S₂).1 h₂))
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
s : Finset ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
⊢ FiniteDimensional K { x // x ∈ Finset.sup s S }
[PROOFSTEP]
refine'
@Finset.sup_induction _ _ _ _ s S (fun i => FiniteDimensional K ↑i) (finiteDimensional_bot K V) _ fun i _ => by
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
s : Finset ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
i : ι
x✝ : i ∈ s
⊢ (fun i => FiniteDimensional K { x // x ∈ i }) (S i)
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
s : Finset ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
⊢ ∀ (a₁ : Submodule K V),
(fun i => FiniteDimensional K { x // x ∈ i }) a₁ →
∀ (a₂ : Submodule K V),
(fun i => FiniteDimensional K { x // x ∈ i }) a₂ → (fun i => FiniteDimensional K { x // x ∈ i }) (a₁ ⊔ a₂)
[PROOFSTEP]
intro S₁ hS₁ S₂ hS₂
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
s : Finset ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
S₁ : Submodule K V
hS₁ : FiniteDimensional K { x // x ∈ S₁ }
S₂ : Submodule K V
hS₂ : FiniteDimensional K { x // x ∈ S₂ }
⊢ FiniteDimensional K { x // x ∈ S₁ ⊔ S₂ }
[PROOFSTEP]
exact Submodule.finiteDimensional_sup S₁ S₂
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
ι : Sort u_1
inst✝¹ : _root_.Finite ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
⊢ FiniteDimensional K { x // x ∈ ⨆ (i : ι), S i }
[PROOFSTEP]
cases nonempty_fintype (PLift ι)
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
ι : Sort u_1
inst✝¹ : _root_.Finite ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
val✝ : Fintype (PLift ι)
⊢ FiniteDimensional K { x // x ∈ ⨆ (i : ι), S i }
[PROOFSTEP]
rw [← iSup_plift_down, ← Finset.sup_univ_eq_iSup]
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
ι : Sort u_1
inst✝¹ : _root_.Finite ι
S : ι → Submodule K V
inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i }
val✝ : Fintype (PLift ι)
⊢ FiniteDimensional K { x // x ∈ Finset.sup Finset.univ fun i => S i.down }
[PROOFSTEP]
exact Submodule.finiteDimensional_finset_sup _ _
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Submodule K V
⊢ finrank K (V ⧸ s) + finrank K { x // x ∈ s } = finrank K V
[PROOFSTEP]
have := rank_quotient_add_rank s
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Submodule K V
this : Module.rank K (V ⧸ s) + Module.rank K { x // x ∈ s } = Module.rank K V
⊢ finrank K (V ⧸ s) + finrank K { x // x ∈ s } = finrank K V
[PROOFSTEP]
rw [← finrank_eq_rank, ← finrank_eq_rank, ← finrank_eq_rank] at this
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Submodule K V
this : ↑(finrank K (V ⧸ s)) + ↑(finrank K { x // x ∈ s }) = ↑(finrank K V)
⊢ finrank K (V ⧸ s) + finrank K { x // x ∈ s } = finrank K V
[PROOFSTEP]
exact_mod_cast this
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Submodule K V
h : s < ⊤
⊢ finrank K { x // x ∈ s } < finrank K V
[PROOFSTEP]
rw [← s.finrank_quotient_add_finrank, add_comm]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Submodule K V
h : s < ⊤
⊢ finrank K { x // x ∈ s } < finrank K { x // x ∈ s } + finrank K (V ⧸ s)
[PROOFSTEP]
exact Nat.lt_add_of_pos_right (finrank_pos_iff.mpr (Quotient.nontrivial_of_lt_top _ h))
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
have key : Module.rank K ↑(s ⊔ t) + Module.rank K ↑(s ⊓ t) = Module.rank K s + Module.rank K t :=
rank_sup_add_rank_inf_eq s t
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
Module.rank K { x // x ∈ s ⊔ t } + Module.rank K { x // x ∈ s ⊓ t } =
Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
repeat' rw [← finrank_eq_rank] at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
Module.rank K { x // x ∈ s ⊔ t } + Module.rank K { x // x ∈ s ⊓ t } =
Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
rw [← finrank_eq_rank] at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
↑(finrank K { x // x ∈ s ⊔ t }) + Module.rank K { x // x ∈ s ⊓ t } =
Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
rw [← finrank_eq_rank] at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) =
Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
rw [← finrank_eq_rank] at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) =
↑(finrank K { x // x ∈ s }) + Module.rank K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
rw [← finrank_eq_rank] at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) =
↑(finrank K { x // x ∈ s }) + ↑(finrank K { x // x ∈ t })
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
rw [← finrank_eq_rank] at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
key :
↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) =
↑(finrank K { x // x ∈ s }) + ↑(finrank K { x // x ∈ t })
⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
norm_cast at key
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } ≤ finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
rw [← finrank_sup_add_finrank_inf_eq]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s t : Submodule K V
inst✝¹ : FiniteDimensional K { x // x ∈ s }
inst✝ : FiniteDimensional K { x // x ∈ t }
⊢ finrank K { x // x ∈ s ⊔ t } ≤ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t }
[PROOFSTEP]
exact self_le_add_right _ _
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
⊢ s ⊔ t = ⊤
[PROOFSTEP]
have h_finrank_inf : finrank K ↑(s ⊓ t) = 0 :=
by
rw [disjoint_iff_inf_le, le_bot_iff] at hdisjoint
rw [hdisjoint, finrank_bot]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
⊢ finrank K { x // x ∈ s ⊓ t } = 0
[PROOFSTEP]
rw [disjoint_iff_inf_le, le_bot_iff] at hdisjoint
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : s ⊓ t = ⊥
⊢ finrank K { x // x ∈ s ⊓ t } = 0
[PROOFSTEP]
rw [hdisjoint, finrank_bot]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0
⊢ s ⊔ t = ⊤
[PROOFSTEP]
apply eq_top_of_finrank_eq
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0
⊢ finrank K { x // x ∈ s ⊔ t } = finrank K V
[PROOFSTEP]
rw [← hdim]
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0
⊢ finrank K { x // x ∈ s ⊔ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t }
[PROOFSTEP]
convert s.finrank_sup_add_finrank_inf_eq t
[GOAL]
case h.e'_2
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0
⊢ finrank K { x // x ∈ s ⊔ t } = finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t }
[PROOFSTEP]
rw [h_finrank_inf]
[GOAL]
case h.e'_2
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s t : Submodule K V
hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V
hdisjoint : Disjoint s t
h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0
⊢ finrank K { x // x ∈ s ⊔ t } = finrank K { x // x ∈ s ⊔ t } + 0
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
S₁ S₂ : Submodule K V
inst✝ : FiniteDimensional K { x // x ∈ S₂ }
hle : S₁ ≤ S₂
hd : finrank K { x // x ∈ S₂ } ≤ finrank K { x // x ∈ S₁ }
⊢ S₁ = S₂
[PROOFSTEP]
rw [← LinearEquiv.finrank_eq (Submodule.comapSubtypeEquivOfLe hle)] at hd
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
S₁ S₂ : Submodule K V
inst✝ : FiniteDimensional K { x // x ∈ S₂ }
hle : S₁ ≤ S₂
hd : finrank K { x // x ∈ S₂ } ≤ finrank K { x // x ∈ comap (Submodule.subtype S₂) S₁ }
⊢ S₁ = S₂
[PROOFSTEP]
exact
le_antisymm hle
(Submodule.comap_subtype_eq_top.1
(eq_top_of_finrank_eq (le_antisymm (comap (Submodule.subtype S₂) S₁).finrank_le hd)))
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
p : Subspace K V
q : Subspace K V₂
f₁ : { x // x ∈ p } ≃ₗ[K] { x // x ∈ q }
f₂ : V ≃ₗ[K] V₂
⊢ finrank K (V ⧸ p) = finrank K (V₂ ⧸ q)
[PROOFSTEP]
rw [← @add_right_cancel_iff _ _ _ (finrank K p), Submodule.finrank_quotient_add_finrank, LinearEquiv.finrank_eq f₁,
Submodule.finrank_quotient_add_finrank, LinearEquiv.finrank_eq f₂]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
p q : Subspace K V
f : (V ⧸ p) ≃ₗ[K] { x // x ∈ q }
⊢ finrank K (V ⧸ q) + ?m.798563 f = finrank K { x // x ∈ p } + ?m.798563 f
[PROOFSTEP]
rw [Submodule.finrank_quotient_add_finrank, ← LinearEquiv.finrank_eq f, add_comm,
Submodule.finrank_quotient_add_finrank]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
hinj : Injective ↑f
⊢ Surjective ↑f
[PROOFSTEP]
have h := rank_range_of_injective _ hinj
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
hinj : Injective ↑f
h : Module.rank K { x // x ∈ range f } = Module.rank K V
⊢ Surjective ↑f
[PROOFSTEP]
rw [← finrank_eq_rank, ← finrank_eq_rank, natCast_inj] at h
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
hinj : Injective ↑f
h : finrank K { x // x ∈ range f } = finrank K V
⊢ Surjective ↑f
[PROOFSTEP]
exact range_eq_top.1 (eq_top_of_finrank_eq h)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
⊢ ker f = ⊥ ↔ range f = ⊤
[PROOFSTEP]
rw [range_eq_top, ker_eq_bot, injective_iff_surjective]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f g : V →ₗ[K] V
hfg : f * g = 1
⊢ g * f = 1
[PROOFSTEP]
have ginj : Injective g := HasLeftInverse.injective ⟨f, fun x => show (f * g) x = (1 : V →ₗ[K] V) x by rw [hfg]⟩
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f g : V →ₗ[K] V
hfg : f * g = 1
x : V
⊢ ↑(f * g) x = ↑1 x
[PROOFSTEP]
rw [hfg]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f g : V →ₗ[K] V
hfg : f * g = 1
ginj : Injective ↑g
⊢ g * f = 1
[PROOFSTEP]
let ⟨i, hi⟩ := g.exists_rightInverse_of_surjective (range_eq_top.2 (injective_iff_surjective.1 ginj))
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f g : V →ₗ[K] V
hfg : f * g = 1
ginj : Injective ↑g
i : V →ₗ[K] V
hi : comp g i = id
⊢ g * f = 1
[PROOFSTEP]
have : f * (g * i) = f * 1 := congr_arg _ hi
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f g : V →ₗ[K] V
hfg : f * g = 1
ginj : Injective ↑g
i : V →ₗ[K] V
hi : comp g i = id
this : f * (g * i) = f * 1
⊢ g * f = 1
[PROOFSTEP]
rw [← mul_assoc, hfg, one_mul, mul_one] at this
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f g : V →ₗ[K] V
hfg : f * g = 1
ginj : Injective ↑g
i : V →ₗ[K] V
hi : comp g i = id
this : i = f
⊢ g * f = 1
[PROOFSTEP]
rwa [← this]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V₂
⊢ finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V
[PROOFSTEP]
rw [← f.quotKerEquivRange.finrank_eq]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V₂
⊢ finrank K (V ⧸ ker f) + finrank K { x // x ∈ ker f } = finrank K V
[PROOFSTEP]
exact Submodule.finrank_quotient_add_finrank _
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
⊢ IsUnit f ↔ ker f = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
⊢ IsUnit f → ker f = ⊥
[PROOFSTEP]
rintro ⟨u, rfl⟩
[GOAL]
case mp.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
u : (V →ₗ[K] V)ˣ
⊢ ker ↑u = ⊥
[PROOFSTEP]
exact LinearMap.ker_eq_bot_of_inverse u.inv_mul
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
⊢ ker f = ⊥ → IsUnit f
[PROOFSTEP]
intro h_inj
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
h_inj : ker f = ⊥
⊢ IsUnit f
[PROOFSTEP]
rw [ker_eq_bot] at h_inj
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
h_inj : Injective ↑f
⊢ IsUnit f
[PROOFSTEP]
exact
⟨⟨f, (LinearEquiv.ofInjectiveEndo f h_inj).symm.toLinearMap, LinearEquiv.ofInjectiveEndo_right_inv f h_inj,
LinearEquiv.ofInjectiveEndo_left_inv f h_inj⟩,
rfl⟩
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : V →ₗ[K] V
⊢ IsUnit f ↔ range f = ⊤
[PROOFSTEP]
rw [isUnit_iff_ker_eq_bot, ker_eq_bot_iff_range_eq_top]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
⊢ Injective ↑f ↔ Surjective ↑f
[PROOFSTEP]
have := finrank_range_add_finrank_ker f
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V
⊢ Injective ↑f ↔ Surjective ↑f
[PROOFSTEP]
rw [← ker_eq_bot, ← range_eq_top]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V
⊢ ker f = ⊥ ↔ range f = ⊤
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V
h : ker f = ⊥
⊢ range f = ⊤
[PROOFSTEP]
rw [h, finrank_bot, add_zero, H] at this
[GOAL]
case refine'_1
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
this : finrank K { x // x ∈ range f } = finrank K V₂
h : ker f = ⊥
⊢ range f = ⊤
[PROOFSTEP]
exact eq_top_of_finrank_eq this
[GOAL]
case refine'_2
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V
h : range f = ⊤
⊢ ker f = ⊥
[PROOFSTEP]
rw [h, finrank_top, H] at this
[GOAL]
case refine'_2
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
this : finrank K V₂ + finrank K { x // x ∈ ker f } = finrank K V₂
h : range f = ⊤
⊢ ker f = ⊥
[PROOFSTEP]
exact finrank_eq_zero.1 (add_right_injective _ this)
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
V₂ : Type v'
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₂
H : finrank K V = finrank K V₂
f : V →ₗ[K] V₂
⊢ ker f = ⊥ ↔ range f = ⊤
[PROOFSTEP]
rw [range_eq_top, ker_eq_bot, injective_iff_surjective_of_finrank_eq_finrank H]
[GOAL]
K✝ : Type u
V : Type v
F : Type u_1
K : Type u_2
inst✝⁴ : Field F
inst✝³ : Ring K
inst✝² : IsDomain K
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F K
x : K
H : x ≠ 0
⊢ ∃ y, x * y = 1
[PROOFSTEP]
have : Function.Surjective (LinearMap.mulLeft F x) :=
LinearMap.injective_iff_surjective.1 fun y z => ((mul_right_inj' H).1 : x * y = x * z → y = z)
[GOAL]
K✝ : Type u
V : Type v
F : Type u_1
K : Type u_2
inst✝⁴ : Field F
inst✝³ : Ring K
inst✝² : IsDomain K
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F K
x : K
H : x ≠ 0
this : Surjective ↑(LinearMap.mulLeft F x)
⊢ ∃ y, x * y = 1
[PROOFSTEP]
exact this 1
[GOAL]
K✝ : Type u
V : Type v
F : Type u_1
K : Type u_2
inst✝³ : Field F
h : Ring K
inst✝² : IsDomain K
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F K
src✝ : IsDomain K := inst✝²
x : K
hx : x ≠ 0
⊢ (x * if H : x = 0 then 0 else Classical.choose (_ : ∃ y, x * y = 1)) = 1
[PROOFSTEP]
rw [dif_neg hx]
[GOAL]
K✝ : Type u
V : Type v
F : Type u_1
K : Type u_2
inst✝³ : Field F
h : Ring K
inst✝² : IsDomain K
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F K
src✝ : IsDomain K := inst✝²
x : K
hx : x ≠ 0
⊢ x * Classical.choose (_ : ∃ y, x * y = 1) = 1
[PROOFSTEP]
exact (Classical.choose_spec (FiniteDimensional.exists_mul_eq_one F hx) :)
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
U W : Submodule K V
h : IsCompl U W
⊢ finrank K { x // x ∈ U } + finrank K { x // x ∈ W } = finrank K V
[PROOFSTEP]
rw [← finrank_sup_add_finrank_inf_eq, h.codisjoint.eq_top, h.disjoint.eq_bot, finrank_bot, add_zero]
[GOAL]
K : Type u
V : Type v
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
V₂ : Type v'
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V
U W : Submodule K V
h : IsCompl U W
⊢ finrank K { x // x ∈ ⊤ } = finrank K V
[PROOFSTEP]
exact finrank_top _ _
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
hv : v ≠ 0
⊢ finrank K { x // x ∈ span K {v} } = 1
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
hv : v ≠ 0
⊢ finrank K { x // x ∈ span K {v} } ≤ 1
[PROOFSTEP]
exact finrank_span_le_card ({ v } : Set V)
[GOAL]
case a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
hv : v ≠ 0
⊢ 1 ≤ finrank K { x // x ∈ span K {v} }
[PROOFSTEP]
rw [Nat.succ_le_iff, finrank_pos_iff]
[GOAL]
case a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
hv : v ≠ 0
⊢ Nontrivial { x // x ∈ span K {v} }
[PROOFSTEP]
use⟨v, mem_span_singleton_self v⟩, 0
[GOAL]
case h
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
hv : v ≠ 0
⊢ { val := v, property := (_ : v ∈ span K {v}) } ≠ 0
[PROOFSTEP]
simp [hv]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
⊢ ∃ c, c • x = y
[PROOFSTEP]
have : Submodule.span K { x } = ⊤ :=
by
have : FiniteDimensional K V := finiteDimensional_of_finrank (zero_lt_one.trans_le h.symm.le)
apply eq_top_of_finrank_eq
rw [h]
exact finrank_span_singleton hx
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
⊢ span K {x} = ⊤
[PROOFSTEP]
have : FiniteDimensional K V := finiteDimensional_of_finrank (zero_lt_one.trans_le h.symm.le)
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this : FiniteDimensional K V
⊢ span K {x} = ⊤
[PROOFSTEP]
apply eq_top_of_finrank_eq
[GOAL]
case h
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this : FiniteDimensional K V
⊢ finrank K { x_1 // x_1 ∈ span K {x} } = finrank K V
[PROOFSTEP]
rw [h]
[GOAL]
case h
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this : FiniteDimensional K V
⊢ finrank K { x_1 // x_1 ∈ span K {x} } = 1
[PROOFSTEP]
exact finrank_span_singleton hx
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this : span K {x} = ⊤
⊢ ∃ c, c • x = y
[PROOFSTEP]
have : y ∈ Submodule.span K { x } := by rw [this]; trivial
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this : span K {x} = ⊤
⊢ y ∈ span K {x}
[PROOFSTEP]
rw [this]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this : span K {x} = ⊤
⊢ y ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : finrank K V = 1
x : V
hx : x ≠ 0
y : V
this✝ : span K {x} = ⊤
this : y ∈ span K {x}
⊢ ∃ c, c • x = y
[PROOFSTEP]
exact mem_span_singleton.1 this
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
⊢ span K (Set.range b) = ⊤
[PROOFSTEP]
by_cases fin : FiniteDimensional K V
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : FiniteDimensional K V
⊢ span K (Set.range b) = ⊤
[PROOFSTEP]
replace fin : FiniteDimensional _ _ := fin
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : FiniteDimensional K V
⊢ span K (Set.range b) = ⊤
[PROOFSTEP]
by_contra ne_top
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : FiniteDimensional K V
ne_top : ¬span K (Set.range b) = ⊤
⊢ False
[PROOFSTEP]
have lt_top : span K (Set.range b) < ⊤ := lt_of_le_of_ne le_top ne_top
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : FiniteDimensional K V
ne_top : ¬span K (Set.range b) = ⊤
lt_top : span K (Set.range b) < ⊤
⊢ False
[PROOFSTEP]
exact ne_of_lt (Submodule.finrank_lt lt_top) (_root_.trans (finrank_span_eq_card lin_ind) card_eq)
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : ¬FiniteDimensional K V
⊢ span K (Set.range b) = ⊤
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : ¬FiniteDimensional K V
⊢ False
[PROOFSTEP]
apply ne_of_lt (Fintype.card_pos_iff.mpr hι)
[GOAL]
case neg.h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : ¬FiniteDimensional K V
⊢ 0 = Fintype.card ι
[PROOFSTEP]
symm
[GOAL]
case neg.h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : ¬FiniteDimensional K V
⊢ Fintype.card ι = 0
[PROOFSTEP]
replace fin := (not_iff_not.2 IsNoetherian.iff_fg).2 fin
[GOAL]
case neg.h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
hι : Nonempty ι
inst✝ : Fintype ι
b : ι → V
lin_ind : LinearIndependent K b
card_eq : Fintype.card ι = finrank K V
fin : ¬IsNoetherian K V
⊢ Fintype.card ι = 0
[PROOFSTEP]
calc
Fintype.card ι = finrank K V := card_eq
_ = 0 := dif_neg (mt IsNoetherian.iff_rank_lt_aleph0.mpr fin)
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : Finset.Nonempty s
lin_ind : LinearIndependent K Subtype.val
card_eq : Finset.card s = finrank K V
⊢ ↑(finsetBasisOfLinearIndependentOfCardEqFinrank hs lin_ind card_eq) = Subtype.val
[PROOFSTEP]
rw [finsetBasisOfLinearIndependentOfCardEqFinrank]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : Finset.Nonempty s
lin_ind : LinearIndependent K Subtype.val
card_eq : Finset.card s = finrank K V
⊢ ↑(basisOfLinearIndependentOfCardEqFinrank lin_ind (_ : Fintype.card { x // x ∈ s } = finrank K V)) = Subtype.val
[PROOFSTEP]
exact Basis.coe_mk _ _
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s : Set V
inst✝¹ : Nonempty ↑s
inst✝ : Fintype ↑s
lin_ind : LinearIndependent K Subtype.val
card_eq : Finset.card (Set.toFinset s) = finrank K V
⊢ ↑(setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq) = Subtype.val
[PROOFSTEP]
rw [setBasisOfLinearIndependentOfCardEqFinrank]
[GOAL]
K : Type u
V : Type v
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
s : Set V
inst✝¹ : Nonempty ↑s
inst✝ : Fintype ↑s
lin_ind : LinearIndependent K Subtype.val
card_eq : Finset.card (Set.toFinset s) = finrank K V
⊢ ↑(basisOfLinearIndependentOfCardEqFinrank lin_ind (_ : Fintype.card ↑s = finrank K V)) = Subtype.val
[PROOFSTEP]
exact Basis.coe_mk _ _
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
nz : v ≠ 0
h : finrank K V = 1
⊢ span K {v} = ⊤
[PROOFSTEP]
simpa using (basisSingleton PUnit.{u + 1} h v nz).span_eq
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
nz : v ≠ 0
s : span K {v} = ⊤
⊢ ⊤ ≤ span K (Set.range fun x => ↑x)
[PROOFSTEP]
convert s.ge
[GOAL]
case h.e'_4.h.e'_6
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
nz : v ≠ 0
s : span K {v} = ⊤
⊢ (Set.range fun x => ↑x) = {v}
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
nz : v ≠ 0
⊢ finrank K V = 1 ↔ ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
rw [finrank_eq_one_iff_of_nonzero v nz]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : V
nz : v ≠ 0
⊢ span K {v} = ⊤ ↔ ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
apply span_singleton_eq_top_iff
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Unique ι
⊢ finrank K V = 1 ↔ Nonempty (Basis ι K V)
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Unique ι
⊢ finrank K V = 1 → Nonempty (Basis ι K V)
[PROOFSTEP]
intro h
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Unique ι
h : finrank K V = 1
⊢ Nonempty (Basis ι K V)
[PROOFSTEP]
haveI := finiteDimensional_of_finrank (_root_.zero_lt_one.trans_le h.symm.le)
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Unique ι
h : finrank K V = 1
this : FiniteDimensional K V
⊢ Nonempty (Basis ι K V)
[PROOFSTEP]
exact ⟨basisUnique ι h⟩
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Unique ι
⊢ Nonempty (Basis ι K V) → finrank K V = 1
[PROOFSTEP]
rintro ⟨b⟩
[GOAL]
case mpr.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
ι : Type u_1
inst✝ : Unique ι
b : Basis ι K V
⊢ finrank K V = 1
[PROOFSTEP]
simpa using finrank_eq_card_basis b
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ finrank K V = 1 ↔ ∃ v _n, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
rw [finrank_eq_one_iff PUnit.{u + 1}, Basis.basis_singleton_iff PUnit]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ finrank K V ≤ 1 ↔ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ finrank K V ≤ 1 → ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
intro h
[GOAL]
case mp
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
by_cases h' : finrank K V = 0
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : finrank K V = 0
⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : finrank K V = 0
⊢ ∀ (w : V), ∃ c, c • 0 = w
[PROOFSTEP]
intro w
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : finrank K V = 0
w : V
⊢ ∃ c, c • 0 = w
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : finrank K V = 0
w : V
⊢ 0 • 0 = w
[PROOFSTEP]
haveI := finrank_zero_iff.mp h'
[GOAL]
case h
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : finrank K V = 0
w : V
this : Subsingleton V
⊢ 0 • 0 = w
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : ¬finrank K V = 0
⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
replace h' := zero_lt_iff.mpr h'
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : 0 < finrank K V
⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
have : finrank K V = 1 := by linarith
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : 0 < finrank K V
⊢ finrank K V = 1
[PROOFSTEP]
linarith
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : 0 < finrank K V
this : finrank K V = 1
⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
obtain ⟨v, -, p⟩ := finrank_eq_one_iff'.mp this
[GOAL]
case neg.intro.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
h : finrank K V ≤ 1
h' : 0 < finrank K V
this : finrank K V = 1
v : V
p : ∀ (w : V), ∃ c, c • v = w
⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w
[PROOFSTEP]
use v, p
[GOAL]
case mpr
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ (∃ v, ∀ (w : V), ∃ c, c • v = w) → finrank K V ≤ 1
[PROOFSTEP]
rintro ⟨v, p⟩
[GOAL]
case mpr.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
v : V
p : ∀ (w : V), ∃ c, c • v = w
⊢ finrank K V ≤ 1
[PROOFSTEP]
exact finrank_le_one v p
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
W : Submodule K V
inst✝ : FiniteDimensional K { x // x ∈ W }
⊢ finrank K { x // x ∈ W } ≤ 1 ↔ IsPrincipal W
[PROOFSTEP]
rw [← W.rank_le_one_iff_isPrincipal, ← finrank_eq_rank, ← Cardinal.natCast_le, Nat.cast_one]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ finrank K V ≤ 1 ↔ IsPrincipal ⊤
[PROOFSTEP]
rw [← Module.rank_le_one_iff_top_isPrincipal, ← finrank_eq_rank, ← Cardinal.natCast_le, Nat.cast_one]
[GOAL]
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
W : Type u_1
A : Type u_2
inst✝⁵ : Semiring A
inst✝⁴ : Module A V
inst✝³ : AddCommGroup W
inst✝² : Module K W
inst✝¹ : Module A W
inst✝ : LinearMap.CompatibleSMul V W K A
h : finrank K W = 1
f : V →ₗ[A] W
w : f ≠ 0
⊢ Surjective ↑f
[PROOFSTEP]
change Surjective (f.restrictScalars K)
[GOAL]
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
W : Type u_1
A : Type u_2
inst✝⁵ : Semiring A
inst✝⁴ : Module A V
inst✝³ : AddCommGroup W
inst✝² : Module K W
inst✝¹ : Module A W
inst✝ : LinearMap.CompatibleSMul V W K A
h : finrank K W = 1
f : V →ₗ[A] W
w : f ≠ 0
⊢ Surjective ↑(↑K f)
[PROOFSTEP]
obtain ⟨v, n⟩ := FunLike.ne_iff.mp w
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
W : Type u_1
A : Type u_2
inst✝⁵ : Semiring A
inst✝⁴ : Module A V
inst✝³ : AddCommGroup W
inst✝² : Module K W
inst✝¹ : Module A W
inst✝ : LinearMap.CompatibleSMul V W K A
h : finrank K W = 1
f : V →ₗ[A] W
w : f ≠ 0
v : V
n : ↑f v ≠ ↑0 v
⊢ Surjective ↑(↑K f)
[PROOFSTEP]
intro z
[GOAL]
case intro
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
W : Type u_1
A : Type u_2
inst✝⁵ : Semiring A
inst✝⁴ : Module A V
inst✝³ : AddCommGroup W
inst✝² : Module K W
inst✝¹ : Module A W
inst✝ : LinearMap.CompatibleSMul V W K A
h : finrank K W = 1
f : V →ₗ[A] W
w : f ≠ 0
v : V
n : ↑f v ≠ ↑0 v
z : W
⊢ ∃ a, ↑(↑K f) a = z
[PROOFSTEP]
obtain ⟨c, rfl⟩ := (finrank_eq_one_iff_of_nonzero' (f v) n).mp h z
[GOAL]
case intro.intro
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
W : Type u_1
A : Type u_2
inst✝⁵ : Semiring A
inst✝⁴ : Module A V
inst✝³ : AddCommGroup W
inst✝² : Module K W
inst✝¹ : Module A W
inst✝ : LinearMap.CompatibleSMul V W K A
h : finrank K W = 1
f : V →ₗ[A] W
w : f ≠ 0
v : V
n : ↑f v ≠ ↑0 v
c : K
⊢ ∃ a, ↑(↑K f) a = c • ↑f v
[PROOFSTEP]
exact ⟨c • v, by simp⟩
[GOAL]
K : Type u
V : Type v
inst✝⁸ : DivisionRing K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
W : Type u_1
A : Type u_2
inst✝⁵ : Semiring A
inst✝⁴ : Module A V
inst✝³ : AddCommGroup W
inst✝² : Module K W
inst✝¹ : Module A W
inst✝ : LinearMap.CompatibleSMul V W K A
h : finrank K W = 1
f : V →ₗ[A] W
w : f ≠ 0
v : V
n : ↑f v ≠ ↑0 v
c : K
⊢ ↑(↑K f) (c • v) = c • ↑f v
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
A : Type u_1
inst✝³ : Semiring A
inst✝² : Module A V
inst✝¹ : SMul K A
inst✝ : IsScalarTower K A V
h : finrank K V = 1
⊢ IsSimpleOrder (Submodule A V)
[PROOFSTEP]
haveI := nontrivial_of_finrank_eq_succ h
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
A : Type u_1
inst✝³ : Semiring A
inst✝² : Module A V
inst✝¹ : SMul K A
inst✝ : IsScalarTower K A V
h : finrank K V = 1
this : Nontrivial V
⊢ IsSimpleOrder (Submodule A V)
[PROOFSTEP]
refine' ⟨fun S => or_iff_not_imp_left.2 fun hn => _⟩
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
A : Type u_1
inst✝³ : Semiring A
inst✝² : Module A V
inst✝¹ : SMul K A
inst✝ : IsScalarTower K A V
h : finrank K V = 1
this : Nontrivial V
S : Submodule A V
hn : ¬S = ⊥
⊢ S = ⊤
[PROOFSTEP]
rw [← restrictScalars_inj K] at hn ⊢
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
A : Type u_1
inst✝³ : Semiring A
inst✝² : Module A V
inst✝¹ : SMul K A
inst✝ : IsScalarTower K A V
h : finrank K V = 1
this : Nontrivial V
S : Submodule A V
hn : ¬restrictScalars K S = restrictScalars K ⊥
⊢ restrictScalars K S = restrictScalars K ⊤
[PROOFSTEP]
haveI : FiniteDimensional _ _ := finiteDimensional_of_finrank_eq_succ h
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
A : Type u_1
inst✝³ : Semiring A
inst✝² : Module A V
inst✝¹ : SMul K A
inst✝ : IsScalarTower K A V
h : finrank K V = 1
this✝ : Nontrivial V
S : Submodule A V
hn : ¬restrictScalars K S = restrictScalars K ⊥
this : FiniteDimensional K V
⊢ restrictScalars K S = restrictScalars K ⊤
[PROOFSTEP]
refine' eq_top_of_finrank_eq ((Submodule.finrank_le _).antisymm _)
[GOAL]
K : Type u
V : Type v
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
A : Type u_1
inst✝³ : Semiring A
inst✝² : Module A V
inst✝¹ : SMul K A
inst✝ : IsScalarTower K A V
h : finrank K V = 1
this✝ : Nontrivial V
S : Submodule A V
hn : ¬restrictScalars K S = restrictScalars K ⊥
this : FiniteDimensional K V
⊢ finrank K V ≤ finrank K { x // x ∈ restrictScalars K S }
[PROOFSTEP]
simpa only [h, finrank_bot] using Submodule.finrank_strictMono (Ne.bot_lt hn)
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
⊢ FiniteDimensional F { x // x ∈ ⊥ }
[PROOFSTEP]
nontriviality E
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
✝ : Nontrivial E
⊢ FiniteDimensional F { x // x ∈ ⊥ }
[PROOFSTEP]
exact finiteDimensional_of_rank_eq_one Subalgebra.rank_bot
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
⊢ S = ⊥
[PROOFSTEP]
nontriviality E
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
⊢ S = ⊥
[PROOFSTEP]
obtain ⟨m, _, he⟩ :=
Cardinal.exists_nat_eq_of_le_nat
(h.trans_eq Nat.cast_one.symm)
-- porting note: fails without explicit type
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
⊢ S = ⊥
[PROOFSTEP]
haveI : FiniteDimensional F S := finiteDimensional_of_rank_eq_nat he
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this : FiniteDimensional F { x // x ∈ S }
⊢ S = ⊥
[PROOFSTEP]
rw [← not_bot_lt_iff, ← Subalgebra.toSubmodule.lt_iff_lt]
-- porting note: fails without explicit type
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this : FiniteDimensional F { x // x ∈ S }
⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S
[PROOFSTEP]
haveI : FiniteDimensional F (Subalgebra.toSubmodule S) := S.toSubmoduleEquiv.symm.finiteDimensional
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this✝ : FiniteDimensional F { x // x ∈ S }
this : FiniteDimensional F { x // x ∈ ↑toSubmodule S }
⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S
[PROOFSTEP]
refine fun hl => (Submodule.finrank_lt_finrank_of_lt hl).not_le (natCast_le.1 ?_)
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this✝ : FiniteDimensional F { x // x ∈ S }
this : FiniteDimensional F { x // x ∈ ↑toSubmodule S }
hl : ↑toSubmodule ⊥ < ↑toSubmodule S
⊢ ↑(finrank F { x // x ∈ ↑toSubmodule S }) ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ })
[PROOFSTEP]
iterate 2 rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank]
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this✝ : FiniteDimensional F { x // x ∈ S }
this : FiniteDimensional F { x // x ∈ ↑toSubmodule S }
hl : ↑toSubmodule ⊥ < ↑toSubmodule S
⊢ ↑(finrank F { x // x ∈ ↑toSubmodule S }) ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ })
[PROOFSTEP]
rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank]
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this✝ : FiniteDimensional F { x // x ∈ S }
this : FiniteDimensional F { x // x ∈ ↑toSubmodule S }
hl : ↑toSubmodule ⊥ < ↑toSubmodule S
⊢ Module.rank F { x // x ∈ S } ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ })
[PROOFSTEP]
rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank]
[GOAL]
case intro.intro
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : Module.rank F { x // x ∈ S } ≤ 1
✝ : Nontrivial E
m : ℕ
left✝ : m ≤ 1
he : Module.rank F { x // x ∈ S } = ↑m
this✝ : FiniteDimensional F { x // x ∈ S }
this : FiniteDimensional F { x // x ∈ ↑toSubmodule S }
hl : ↑toSubmodule ⊥ < ↑toSubmodule S
⊢ Module.rank F { x // x ∈ S } ≤ Module.rank F { x // x ∈ ⊥ }
[PROOFSTEP]
exact h.trans_eq Subalgebra.rank_bot.symm
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : finrank F { x // x ∈ S } = 1
⊢ Module.rank F { x // x ∈ S } ≤ 1
[PROOFSTEP]
haveI : FiniteDimensional F S := finiteDimensional_of_finrank_eq_succ h
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
S : Subalgebra F E
h : finrank F { x // x ∈ S } = 1
this : FiniteDimensional F { x // x ∈ S }
⊢ Module.rank F { x // x ∈ S } ≤ 1
[PROOFSTEP]
rw [← finrank_eq_rank, h, Nat.cast_one]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝³ : Field F
inst✝² : Ring E
inst✝¹ : Algebra F E
inst✝ : Nontrivial E
⊢ ⊥ = ⊤ ↔ Module.rank F E = 1
[PROOFSTEP]
rw [← rank_top, Subalgebra.rank_eq_one_iff, eq_comm]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝³ : Field F
inst✝² : Ring E
inst✝¹ : Algebra F E
inst✝ : Nontrivial E
⊢ ⊥ = ⊤ ↔ finrank F E = 1
[PROOFSTEP]
rw [← finrank_top, ← subalgebra_top_finrank_eq_submodule_top_finrank, Subalgebra.finrank_eq_one_iff, eq_comm]
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
h : ⊥ = ⊤
⊢ False
[PROOFSTEP]
cases hr.symm.trans (Subalgebra.bot_eq_top_iff_finrank_eq_one.1 h)
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
⊢ ∀ (a : Subalgebra F E), a = ⊥ ∨ a = ⊤
[PROOFSTEP]
intro S
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
haveI : FiniteDimensional F E := finiteDimensional_of_finrank_eq_succ hr
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this : FiniteDimensional F E
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
haveI : FiniteDimensional F S := FiniteDimensional.finiteDimensional_submodule (Subalgebra.toSubmodule S)
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝ : FiniteDimensional F E
this : FiniteDimensional F { x // x ∈ S }
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
have : finrank F S ≤ 2 := hr ▸ S.toSubmodule.finrank_le
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝¹ : FiniteDimensional F E
this✝ : FiniteDimensional F { x // x ∈ S }
this : finrank F { x // x ∈ S } ≤ 2
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
have : 0 < finrank F S := finrank_pos_iff.mpr inferInstance
[GOAL]
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
this✝ : finrank F { x // x ∈ S } ≤ 2
this : 0 < finrank F { x // x ∈ S }
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
interval_cases h : finrank F { x // x ∈ S }
[GOAL]
case «1»
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
h : finrank F { x // x ∈ S } = 1
this✝ : 1 ≤ 2
this : 0 < 1
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
left
[GOAL]
case «1».h
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
h : finrank F { x // x ∈ S } = 1
this✝ : 1 ≤ 2
this : 0 < 1
⊢ S = ⊥
[PROOFSTEP]
exact Subalgebra.eq_bot_of_finrank_one h
[GOAL]
case «2»
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
h : finrank F { x // x ∈ S } = 2
this✝ : 2 ≤ 2
this : 0 < 2
⊢ S = ⊥ ∨ S = ⊤
[PROOFSTEP]
right
[GOAL]
case «2».h
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
h : finrank F { x // x ∈ S } = 2
this✝ : 2 ≤ 2
this : 0 < 2
⊢ S = ⊤
[PROOFSTEP]
rw [← hr] at h
[GOAL]
case «2».h
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
h : finrank F { x // x ∈ S } = finrank F E
this✝ : 2 ≤ 2
this : 0 < 2
⊢ S = ⊤
[PROOFSTEP]
rw [← Algebra.toSubmodule_eq_top]
[GOAL]
case «2».h
K : Type u
V : Type v
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Ring E
inst✝ : Algebra F E
hr : finrank F E = 2
i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr))
S : Subalgebra F E
this✝² : FiniteDimensional F E
this✝¹ : FiniteDimensional F { x // x ∈ S }
h : finrank F { x // x ∈ S } = finrank F E
this✝ : 2 ≤ 2
this : 0 < 2
⊢ ↑toSubmodule S = ⊤
[PROOFSTEP]
exact eq_top_of_finrank_eq h
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
⊢ ∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
[PROOFSTEP]
classical
by_contra h_contra
simp_rw [not_exists, not_and] at h_contra
have h_le_ker_pow : ∀ n : ℕ, n ≤ (finrank K V).succ → n ≤ finrank K (LinearMap.ker (f ^ n)) :=
by
intro n hn
induction' n with n ih
· exact zero_le (finrank _ _)
· have h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ n.succ) :=
by
refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn))
rw [pow_succ]
apply LinearMap.ker_le_ker_comp
have h_finrank_lt_finrank : finrank K (LinearMap.ker (f ^ n)) < finrank K (LinearMap.ker (f ^ n.succ)) := by
apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker
calc
n.succ ≤ (finrank K ↑(LinearMap.ker (f ^ n))).succ := Nat.succ_le_succ (ih (Nat.le_of_succ_le hn))
_ ≤ finrank K ↑(LinearMap.ker (f ^ n.succ)) := Nat.succ_le_of_lt h_finrank_lt_finrank
have h_any_n_lt : ∀ n, n ≤ (finrank K V).succ → n ≤ finrank K V := fun n hn =>
(h_le_ker_pow n hn).trans (Submodule.finrank_le _)
show False
exact Nat.not_succ_le_self _ (h_any_n_lt (finrank K V).succ (finrank K V).succ.le_refl)
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
⊢ ∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
[PROOFSTEP]
by_contra h_contra
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ¬∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
⊢ False
[PROOFSTEP]
simp_rw [not_exists, not_and] at h_contra
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
⊢ False
[PROOFSTEP]
have h_le_ker_pow : ∀ n : ℕ, n ≤ (finrank K V).succ → n ≤ finrank K (LinearMap.ker (f ^ n)) :=
by
intro n hn
induction' n with n ih
· exact zero_le (finrank _ _)
· have h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ n.succ) :=
by
refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn))
rw [pow_succ]
apply LinearMap.ker_le_ker_comp
have h_finrank_lt_finrank : finrank K (LinearMap.ker (f ^ n)) < finrank K (LinearMap.ker (f ^ n.succ)) := by
apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker
calc
n.succ ≤ (finrank K ↑(LinearMap.ker (f ^ n))).succ := Nat.succ_le_succ (ih (Nat.le_of_succ_le hn))
_ ≤ finrank K ↑(LinearMap.ker (f ^ n.succ)) := Nat.succ_le_of_lt h_finrank_lt_finrank
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
⊢ ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
[PROOFSTEP]
intro n hn
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n : ℕ
hn : n ≤ Nat.succ (finrank K V)
⊢ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n : ℕ
hn✝ : n ≤ Nat.succ (finrank K V)
hn : Nat.zero ≤ Nat.succ (finrank K V)
⊢ Nat.zero ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.zero) }
[PROOFSTEP]
exact zero_le (finrank _ _)
[GOAL]
case succ
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
⊢ Nat.succ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) }
[PROOFSTEP]
have h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ n.succ) :=
by
refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn))
rw [pow_succ]
apply LinearMap.ker_le_ker_comp
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
⊢ LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n)
[PROOFSTEP]
refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn))
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
⊢ LinearMap.ker (f ^ n) ≤ LinearMap.ker (f ^ Nat.succ n)
[PROOFSTEP]
rw [pow_succ]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
⊢ LinearMap.ker (f ^ n) ≤ LinearMap.ker (f * f ^ n)
[PROOFSTEP]
apply LinearMap.ker_le_ker_comp
[GOAL]
case succ
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n)
⊢ Nat.succ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) }
[PROOFSTEP]
have h_finrank_lt_finrank : finrank K (LinearMap.ker (f ^ n)) < finrank K (LinearMap.ker (f ^ n.succ)) := by
apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n)
⊢ finrank K { x // x ∈ LinearMap.ker (f ^ n) } < finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) }
[PROOFSTEP]
apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker
[GOAL]
case succ
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
n✝ : ℕ
hn✝ : n✝ ≤ Nat.succ (finrank K V)
n : ℕ
ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
hn : Nat.succ n ≤ Nat.succ (finrank K V)
h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n)
h_finrank_lt_finrank :
finrank K { x // x ∈ LinearMap.ker (f ^ n) } < finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) }
⊢ Nat.succ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) }
[PROOFSTEP]
calc
n.succ ≤ (finrank K ↑(LinearMap.ker (f ^ n))).succ := Nat.succ_le_succ (ih (Nat.le_of_succ_le hn))
_ ≤ finrank K ↑(LinearMap.ker (f ^ n.succ)) := Nat.succ_le_of_lt h_finrank_lt_finrank
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
h_le_ker_pow : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
⊢ False
[PROOFSTEP]
have h_any_n_lt : ∀ n, n ≤ (finrank K V).succ → n ≤ finrank K V := fun n hn =>
(h_le_ker_pow n hn).trans (Submodule.finrank_le _)
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
h_le_ker_pow : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
h_any_n_lt : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K V
⊢ False
[PROOFSTEP]
show False
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x)
h_le_ker_pow : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) }
h_any_n_lt : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K V
⊢ False
[PROOFSTEP]
exact Nat.not_succ_le_self _ (h_any_n_lt (finrank K V).succ (finrank K V).succ.le_refl)
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
k : ℕ
h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
⊢ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ (k + 0))
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
k : ℕ
h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
m : ℕ
⊢ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ (k + (m + 1)))
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
k : ℕ
h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
m : ℕ
⊢ LinearMap.ker (f ^ k) ≤ LinearMap.ker (f ^ (k + (m + 1)))
[PROOFSTEP]
rw [add_comm, pow_add]
[GOAL]
case a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
k : ℕ
h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
m : ℕ
⊢ LinearMap.ker (f ^ k) ≤ LinearMap.ker (f ^ (m + 1) * f ^ k)
[PROOFSTEP]
apply LinearMap.ker_le_ker_comp
[GOAL]
case a
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
k : ℕ
h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
m : ℕ
⊢ LinearMap.ker (f ^ (k + (m + 1))) ≤ LinearMap.ker (f ^ k)
[PROOFSTEP]
rw [ker_pow_constant h m, add_comm m 1, ← add_assoc, pow_add, pow_add f k m, LinearMap.mul_eq_comp,
LinearMap.mul_eq_comp, LinearMap.ker_comp, LinearMap.ker_comp, h, Nat.add_one]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
hm : finrank K V ≤ m
⊢ LinearMap.ker (f ^ m) = LinearMap.ker (f ^ finrank K V)
[PROOFSTEP]
obtain ⟨k, h_k_le, hk⟩ : ∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ k.succ) :=
exists_ker_pow_eq_ker_pow_succ f
[GOAL]
case intro.intro
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
hm : finrank K V ≤ m
k : ℕ
h_k_le : k ≤ finrank K V
hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
⊢ LinearMap.ker (f ^ m) = LinearMap.ker (f ^ finrank K V)
[PROOFSTEP]
calc
LinearMap.ker (f ^ m) = LinearMap.ker (f ^ (k + (m - k))) := by rw [add_tsub_cancel_of_le (h_k_le.trans hm)]
_ = LinearMap.ker (f ^ k) := by rw [ker_pow_constant hk _]
_ = LinearMap.ker (f ^ (k + (finrank K V - k))) := (ker_pow_constant hk (finrank K V - k))
_ = LinearMap.ker (f ^ finrank K V) := by rw [add_tsub_cancel_of_le h_k_le]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
hm : finrank K V ≤ m
k : ℕ
h_k_le : k ≤ finrank K V
hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
⊢ LinearMap.ker (f ^ m) = LinearMap.ker (f ^ (k + (m - k)))
[PROOFSTEP]
rw [add_tsub_cancel_of_le (h_k_le.trans hm)]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
hm : finrank K V ≤ m
k : ℕ
h_k_le : k ≤ finrank K V
hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
⊢ LinearMap.ker (f ^ (k + (m - k))) = LinearMap.ker (f ^ k)
[PROOFSTEP]
rw [ker_pow_constant hk _]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
hm : finrank K V ≤ m
k : ℕ
h_k_le : k ≤ finrank K V
hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k)
⊢ LinearMap.ker (f ^ (k + (finrank K V - k))) = LinearMap.ker (f ^ finrank K V)
[PROOFSTEP]
rw [add_tsub_cancel_of_le h_k_le]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ finrank K V)
[PROOFSTEP]
by_cases h_cases : m < finrank K V
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
h_cases : m < finrank K V
⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ finrank K V)
[PROOFSTEP]
rw [← add_tsub_cancel_of_le (Nat.le_of_lt h_cases), add_comm, pow_add]
[GOAL]
case pos
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
h_cases : m < finrank K V
⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ (finrank K V - m) * f ^ m)
[PROOFSTEP]
apply LinearMap.ker_le_ker_comp
[GOAL]
case neg
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
m : ℕ
h_cases : ¬m < finrank K V
⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ finrank K V)
[PROOFSTEP]
rw [ker_pow_eq_ker_pow_finrank_of_le (le_of_not_lt h_cases)]
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
⊢ #V = #K ^ Module.rank K V
[PROOFSTEP]
let s := Basis.ofVectorSpaceIndex K V
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Set V := Basis.ofVectorSpaceIndex K V
⊢ #V = #K ^ Module.rank K V
[PROOFSTEP]
let hs := Basis.ofVectorSpace K V
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Set V := Basis.ofVectorSpaceIndex K V
hs : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
⊢ #V = #K ^ Module.rank K V
[PROOFSTEP]
calc
#V = #(s →₀ K) := Quotient.sound ⟨hs.repr.toEquiv⟩
_ = #(s → K) := (Quotient.sound ⟨Finsupp.equivFunOnFinite⟩)
_ = _ := by rw [← Cardinal.lift_inj.1 hs.mk_eq_rank, Cardinal.power_def]
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
s : Set V := Basis.ofVectorSpaceIndex K V
hs : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
⊢ #(↑s → K) = #K ^ Module.rank K V
[PROOFSTEP]
rw [← Cardinal.lift_inj.1 hs.mk_eq_rank, Cardinal.power_def]
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : _root_.Finite K
inst✝ : FiniteDimensional K V
⊢ #V < ℵ₀
[PROOFSTEP]
letI : IsNoetherian K V := IsNoetherian.iff_fg.2 inferInstance
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : _root_.Finite K
inst✝ : FiniteDimensional K V
this : IsNoetherian K V := Iff.mpr IsNoetherian.iff_fg inferInstance
⊢ #V < ℵ₀
[PROOFSTEP]
rw [cardinal_mk_eq_cardinal_mk_field_pow_rank K V]
[GOAL]
K✝ : Type u
V✝ : Type v
K V : Type u
inst✝⁴ : DivisionRing K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : _root_.Finite K
inst✝ : FiniteDimensional K V
this : IsNoetherian K V := Iff.mpr IsNoetherian.iff_fg inferInstance
⊢ #K ^ Module.rank K V < ℵ₀
[PROOFSTEP]
exact Cardinal.power_lt_aleph0 (Cardinal.lt_aleph0_of_finite K) (IsNoetherian.rank_lt_aleph0 K V)
| {"mathlib_filename": "Mathlib.LinearAlgebra.FiniteDimensional", "llama_tokens": 99386} |
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
g : ExteriorAlgebra R M →ₐ[R] A
m : M
⊢ ↑g (↑(ι R) m) * ↑g (↑(ι R) m) = 0
[PROOFSTEP]
rw [← AlgHom.map_mul, ι_sq_zero, AlgHom.map_zero]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ ∀ (a : M →ₗ[R] A),
(∀ (m : M), ↑a m * ↑a m = 0) ↔
∀ (m : M), ↑(↑(Equiv.refl (M →ₗ[R] A)) a) m * ↑(↑(Equiv.refl (M →ₗ[R] A)) a) m = ↑(algebraMap R A) (↑0 m)
[PROOFSTEP]
simp
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
m : M
⊢ ↑0 m * ↑0 m = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : R
⊢ ↑algebraMapInv (↑(algebraMap R (ExteriorAlgebra R M)) x) = x
[PROOFSTEP]
simp [algebraMapInv]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ ExteriorAlgebra R M →ₗ[R] M
[PROOFSTEP]
letI : Module Rᵐᵒᵖ M := Module.compHom _ ((RingHom.id R).fromOpposite mul_comm)
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
this : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
⊢ ExteriorAlgebra R M →ₗ[R] M
[PROOFSTEP]
haveI : IsCentralScalar R M := ⟨fun r m => rfl⟩
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
this : IsCentralScalar R M
⊢ ExteriorAlgebra R M →ₗ[R] M
[PROOFSTEP]
exact (TrivSqZeroExt.sndHom R M).comp toTrivSqZeroExt.toLinearMap
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
⊢ ↑ιInv.toAddHom (↑(ι R) x) = x
[PROOFSTEP]
letI : Module Rᵐᵒᵖ M := Module.compHom _ ((RingHom.id R).fromOpposite mul_comm)
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
this : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
⊢ ↑ιInv.toAddHom (↑(ι R) x) = x
[PROOFSTEP]
haveI : IsCentralScalar R M := ⟨fun r m => rfl⟩
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
this : IsCentralScalar R M
⊢ ↑ιInv.toAddHom (↑(ι R) x) = x
[PROOFSTEP]
simp [ιInv]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
⊢ ↑(ι R) x = 0 ↔ x = 0
[PROOFSTEP]
rw [← ι_inj R x 0, LinearMap.map_zero]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
⊢ ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r ↔ x = 0 ∧ r = 0
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case refine'_1
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
⊢ x = 0 ∧ r = 0
[PROOFSTEP]
letI : Module Rᵐᵒᵖ M := Module.compHom _ ((RingHom.id R).fromOpposite mul_comm)
[GOAL]
case refine'_1
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
this : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
⊢ x = 0 ∧ r = 0
[PROOFSTEP]
haveI : IsCentralScalar R M := ⟨fun r m => rfl⟩
[GOAL]
case refine'_1
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
this : IsCentralScalar R M
⊢ x = 0 ∧ r = 0
[PROOFSTEP]
have hf0 : toTrivSqZeroExt (ι R x) = (0, x) := toTrivSqZeroExt_ι _
[GOAL]
case refine'_1
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
this : IsCentralScalar R M
hf0 : ↑toTrivSqZeroExt (↑(ι R) x) = (0, x)
⊢ x = 0 ∧ r = 0
[PROOFSTEP]
rw [h, AlgHom.commutes] at hf0
[GOAL]
case refine'_1
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
this : IsCentralScalar R M
hf0 : ↑(algebraMap R (TrivSqZeroExt R M)) r = (0, x)
⊢ x = 0 ∧ r = 0
[PROOFSTEP]
have : r = 0 ∧ 0 = x := Prod.ext_iff.1 hf0
[GOAL]
case refine'_1
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
this✝¹ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a))
this✝ : IsCentralScalar R M
hf0 : ↑(algebraMap R (TrivSqZeroExt R M)) r = (0, x)
this : r = 0 ∧ 0 = x
⊢ x = 0 ∧ r = 0
[PROOFSTEP]
exact this.symm.imp_left Eq.symm
[GOAL]
case refine'_2
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
⊢ x = 0 ∧ r = 0 → ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
[PROOFSTEP]
rintro ⟨rfl, rfl⟩
[GOAL]
case refine'_2.intro
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ ↑(ι R) 0 = ↑(algebraMap R (ExteriorAlgebra R M)) 0
[PROOFSTEP]
rw [LinearMap.map_zero, RingHom.map_zero]
[GOAL]
R : Type u1
inst✝⁵ : CommRing R
M : Type u2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
A : Type u_1
inst✝² : Semiring A
inst✝¹ : Algebra R A
inst✝ : Nontrivial R
x : M
⊢ ↑(ι R) x ≠ 1
[PROOFSTEP]
rw [← (algebraMap R (ExteriorAlgebra R M)).map_one, Ne.def, ι_eq_algebraMap_iff]
[GOAL]
R : Type u1
inst✝⁵ : CommRing R
M : Type u2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
A : Type u_1
inst✝² : Semiring A
inst✝¹ : Algebra R A
inst✝ : Nontrivial R
x : M
⊢ ¬(x = 0 ∧ 1 = 0)
[PROOFSTEP]
exact one_ne_zero ∘ And.right
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ Disjoint (LinearMap.range (ι R)) 1
[PROOFSTEP]
rw [Submodule.disjoint_def]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ ∀ (x : ExteriorAlgebra R M), x ∈ LinearMap.range (ι R) → x ∈ 1 → x = 0
[PROOFSTEP]
rintro _ ⟨x, hx⟩ ⟨r, rfl : algebraMap R (ExteriorAlgebra R M) r = _⟩
[GOAL]
case intro.intro
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
hx : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r
⊢ ↑(algebraMap R (ExteriorAlgebra R M)) r = 0
[PROOFSTEP]
rw [ι_eq_algebraMap_iff x] at hx
[GOAL]
case intro.intro
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x : M
r : R
hx : x = 0 ∧ r = 0
⊢ ↑(algebraMap R (ExteriorAlgebra R M)) r = 0
[PROOFSTEP]
rw [hx.2, RingHom.map_zero]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
x y : M
⊢ ↑(ι R) x * ↑(ι R) y + ↑(ι R) y * ↑(ι R) x = ↑(ι R) (y + x) * ↑(ι R) (y + x)
[PROOFSTEP]
simp [mul_add, add_mul]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f : Fin n → M
i : Fin n
⊢ ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f✝ : Fin n → M
i✝ : Fin n
f : Fin Nat.zero → M
i : Fin Nat.zero
⊢ ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
exact i.elim0
[GOAL]
case succ
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
⊢ ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
rw [List.ofFn_succ, List.prod_cons, ← mul_assoc]
[GOAL]
case succ
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
by_cases h : i = 0
[GOAL]
case pos
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
h : i = 0
⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
rw [h, ι_sq_zero, zero_mul]
[GOAL]
case neg
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
h : ¬i = 0
⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
replace hn := congr_arg ((· * ·) <| ι R <| f 0) (hn (fun i => f <| Fin.succ i) (i.pred h))
[GOAL]
case neg
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
h : ¬i = 0
hn :
(fun x x_1 => x * x_1) (↑(ι R) (f 0))
(↑(ι R) (f (Fin.succ (Fin.pred i h))) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i)))) =
(fun x x_1 => x * x_1) (↑(ι R) (f 0)) 0
⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
simp only at hn
[GOAL]
case neg
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
h : ¬i = 0
hn :
↑(ι R) (f 0) * (↑(ι R) (f (Fin.succ (Fin.pred i h))) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i)))) =
↑(ι R) (f 0) * 0
⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
rw [Fin.succ_pred, ← mul_assoc, mul_zero] at hn
[GOAL]
case neg
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
h : ¬i = 0
hn : ↑(ι R) (f 0) * ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
refine' (eq_zero_iff_eq_zero_of_add_eq_zero _).mp hn
[GOAL]
case neg
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
i✝ : Fin n✝
n : ℕ
f : Fin (Nat.succ n) → M
i : Fin (Nat.succ n)
h : ¬i = 0
hn : ↑(ι R) (f 0) * ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
⊢ ↑(ι R) (f 0) * ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) +
↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) =
0
[PROOFSTEP]
rw [← add_mul, ι_add_mul_swap, zero_mul]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
F : MultilinearMap R (fun x => M) (ExteriorAlgebra R M) :=
MultilinearMap.compLinearMap (MultilinearMap.mkPiAlgebraFin R n (ExteriorAlgebra R M)) fun x => ι R
f : Fin n → M
x y : Fin n
hfxy : f x = f y
hxy : x ≠ y
⊢ MultilinearMap.toFun
{ toFun := ↑F,
map_add' :=
(_ :
∀ [inst : DecidableEq (Fin n)] (m : Fin n → M) (i : Fin n) (x y : M),
MultilinearMap.toFun F (Function.update m i (x + y)) =
MultilinearMap.toFun F (Function.update m i x) + MultilinearMap.toFun F (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq (Fin n)] (m : Fin n → M) (i : Fin n) (c : R) (x : M),
MultilinearMap.toFun F (Function.update m i (c • x)) =
c • MultilinearMap.toFun F (Function.update m i x)) }
f =
0
[PROOFSTEP]
dsimp
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
F : MultilinearMap R (fun x => M) (ExteriorAlgebra R M) :=
MultilinearMap.compLinearMap (MultilinearMap.mkPiAlgebraFin R n (ExteriorAlgebra R M)) fun x => ι R
f : Fin n → M
x y : Fin n
hfxy : f x = f y
hxy : x ≠ y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
clear F
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f : Fin n → M
x y : Fin n
hfxy : f x = f y
hxy : x ≠ y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
wlog h : x < y
[GOAL]
case inr
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f : Fin n → M
x y : Fin n
hfxy : f x = f y
hxy : x ≠ y
this :
∀ (R : Type u1) [inst : CommRing R] {M : Type u2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {A : Type u_1}
[inst_3 : Semiring A] [inst_4 : Algebra R A] (n : ℕ) (f : Fin n → M) (x y : Fin n),
f x = f y → x ≠ y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
h : ¬x < y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
exact this R (A := A) n f y x hfxy.symm hxy.symm (hxy.lt_or_lt.resolve_left h)
[GOAL]
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f : Fin n → M
x y : Fin n
hfxy : f x = f y
hxy : x ≠ y
h : x < y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
clear hxy
[GOAL]
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f : Fin n → M
x y : Fin n
hfxy : f x = f y
h : x < y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
f✝ : Fin n → M
x✝ y✝ : Fin n
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
f : Fin Nat.zero → M
x y : Fin Nat.zero
hfxy : f x = f y
h : x < y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
exact x.elim0
[GOAL]
case succ
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
[PROOFSTEP]
rw [List.ofFn_succ, List.prod_cons]
[GOAL]
case succ
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
by_cases hx :
x =
0
-- one of the repeated terms is on the left
[GOAL]
case pos
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
hx : x = 0
⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
rw [hx] at hfxy h
[GOAL]
case pos
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f 0 = f y
h : 0 < y
hx : x = 0
⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
rw [hfxy, ← Fin.succ_pred y (ne_of_lt h).symm]
[GOAL]
case pos
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f 0 = f y
h : 0 < y
hx : x = 0
⊢ ↑(ι R) (f (Fin.succ (Fin.pred y (_ : y ≠ 0)))) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
exact
ι_mul_prod_list (f ∘ Fin.succ)
_
-- ignore the left-most term and induct on the remaining ones, decrementing indices
[GOAL]
case neg
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
hx : ¬x = 0
⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
convert mul_zero (ι R (f 0))
[GOAL]
case h.e'_2.h.e'_6
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
hx : ¬x = 0
⊢ List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0
[PROOFSTEP]
refine'
hn (fun i => f <| Fin.succ i) (x.pred hx) (y.pred (ne_of_lt <| lt_of_le_of_lt x.zero_le h).symm) _
(Fin.pred_lt_pred_iff.mpr h)
[GOAL]
case h.e'_2.h.e'_6
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
hx : ¬x = 0
⊢ (fun i => f (Fin.succ i)) (Fin.pred x hx) = (fun i => f (Fin.succ i)) (Fin.pred y (_ : y ≠ 0))
[PROOFSTEP]
simp only [Fin.succ_pred]
[GOAL]
case h.e'_2.h.e'_6
R✝ : Type u1
inst✝⁷ : CommRing R✝
M✝ : Type u2
inst✝⁶ : AddCommGroup M✝
inst✝⁵ : Module R✝ M✝
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n✝ : ℕ
f✝ : Fin n✝ → M
x✝ y✝ : Fin n✝
hfxy✝ : f✝ x✝ = f✝ y✝
h✝ : x✝ < y✝
n : ℕ
hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0
f : Fin (Nat.succ n) → M
x y : Fin (Nat.succ n)
hfxy : f x = f y
h : x < y
hx : ¬x = 0
⊢ f x = f y
[PROOFSTEP]
exact hfxy
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
m : M
v : Fin n → M
⊢ ↑(ι R) (Matrix.vecCons m v 0) * ↑(ιMulti R n) (Matrix.vecTail (Matrix.vecCons m v)) =
↑(↑(LinearMap.compAlternatingMap (LinearMap.mulLeft R (↑(ι R) m))) (ιMulti R n)) v
[PROOFSTEP]
simp_rw [Matrix.tail_cons]
[GOAL]
R : Type u1
inst✝⁴ : CommRing R
M : Type u2
inst✝³ : AddCommGroup M
inst✝² : Module R M
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
n : ℕ
m : M
v : Fin n → M
⊢ ↑(ι R) (Matrix.vecCons m v 0) * ↑(ιMulti R n) v =
↑(↑(LinearMap.compAlternatingMap (LinearMap.mulLeft R (↑(ι R) m))) (ιMulti R n)) v
[PROOFSTEP]
rfl
[GOAL]
R : Type u1
inst✝² : CommRing R
M : Type u2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑toExterior (↑(ι R) m) = ↑(ExteriorAlgebra.ι R) m
[PROOFSTEP]
simp [toExterior]
| {"mathlib_filename": "Mathlib.LinearAlgebra.ExteriorAlgebra.Basic", "llama_tokens": 13124} |
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
⊢ star (star x) = x
[PROOFSTEP]
simp only [reverse_involute_commute.eq, reverse_reverse, involute_involute]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y : CliffordAlgebra Q
⊢ star (x * y) = star y * star x
[PROOFSTEP]
simp only [map_mul, reverse.map_mul]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y : CliffordAlgebra Q
⊢ star (x + y) = star x + star y
[PROOFSTEP]
simp only [map_add]
-- porting note: cannot infer `Q`
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
m : M
⊢ star (↑(ι Q) m) = -↑(ι Q) m
[PROOFSTEP]
rw [star_def, involute_ι, map_neg, reverse_ι]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r : R
x : CliffordAlgebra Q
⊢ star (r • x) = r • star x
[PROOFSTEP]
rw [star_def, star_def, map_smul, map_smul]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r : R
⊢ star (↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(algebraMap R (CliffordAlgebra Q)) r
[PROOFSTEP]
rw [star_def, involute.commutes, reverse.commutes]
| {"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Star", "llama_tokens": 669} |
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Independent f ↔ LinearIndependent K (Projectivization.rep ∘ f)
[PROOFSTEP]
refine' ⟨_, fun h => _⟩
[GOAL]
case refine'_1
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Independent f → LinearIndependent K (Projectivization.rep ∘ f)
[PROOFSTEP]
rintro ⟨ff, hff, hh⟩
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh : LinearIndependent K ff
⊢ LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
[PROOFSTEP]
choose a ha using fun i : ι => exists_smul_eq_mk_rep K (ff i) (hff i)
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh : LinearIndependent K ff
a : ι → Kˣ
ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0))
⊢ LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
[PROOFSTEP]
convert hh.units_smul a
[GOAL]
case h.e'_4
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh : LinearIndependent K ff
a : ι → Kˣ
ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0))
⊢ (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) = a • ff
[PROOFSTEP]
ext i
[GOAL]
case h.e'_4.h
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh : LinearIndependent K ff
a : ι → Kˣ
ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0))
i : ι
⊢ (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) i = (a • ff) i
[PROOFSTEP]
exact (ha i).symm
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : LinearIndependent K (Projectivization.rep ∘ f)
⊢ Independent f
[PROOFSTEP]
convert Independent.mk _ _ h
[GOAL]
case h.e'_7.h
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : LinearIndependent K (Projectivization.rep ∘ f)
x✝ : ι
⊢ f x✝ = mk K ((Projectivization.rep ∘ f) x✝) (_ : ?m.12147 x✝ ≠ 0)
[PROOFSTEP]
simp only [mk_rep, Function.comp_apply]
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : LinearIndependent K (Projectivization.rep ∘ f)
⊢ ∀ (i : ι), (Projectivization.rep ∘ f) i ≠ 0
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : LinearIndependent K (Projectivization.rep ∘ f)
i : ι
⊢ (Projectivization.rep ∘ f) i ≠ 0
[PROOFSTEP]
apply rep_nonzero
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Independent f ↔ CompleteLattice.Independent fun i => Projectivization.submodule (f i)
[PROOFSTEP]
refine' ⟨_, fun h => _⟩
[GOAL]
case refine'_1
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Independent f → CompleteLattice.Independent fun i => Projectivization.submodule (f i)
[PROOFSTEP]
rintro ⟨f, hf, hi⟩
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → V
hf : ∀ (i : ι), f i ≠ 0
hi : LinearIndependent K f
⊢ CompleteLattice.Independent fun i => Projectivization.submodule ((fun i => mk K (f i) (_ : f i ≠ 0)) i)
[PROOFSTEP]
simp only [submodule_mk]
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → V
hf : ∀ (i : ι), f i ≠ 0
hi : LinearIndependent K f
⊢ CompleteLattice.Independent fun i => Submodule.span K {f i}
[PROOFSTEP]
exact (CompleteLattice.independent_iff_linearIndependent_of_ne_zero (R := K) hf).mpr hi
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : CompleteLattice.Independent fun i => Projectivization.submodule (f i)
⊢ Independent f
[PROOFSTEP]
rw [independent_iff]
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : CompleteLattice.Independent fun i => Projectivization.submodule (f i)
⊢ LinearIndependent K (Projectivization.rep ∘ f)
[PROOFSTEP]
refine' h.linearIndependent (Projectivization.submodule ∘ f) (fun i => _) fun i => _
[GOAL]
case refine'_2.refine'_1
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : CompleteLattice.Independent fun i => Projectivization.submodule (f i)
i : ι
⊢ (Projectivization.rep ∘ f) i ∈ (Projectivization.submodule ∘ f) i
[PROOFSTEP]
simpa only [Function.comp_apply, submodule_eq] using Submodule.mem_span_singleton_self _
[GOAL]
case refine'_2.refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : CompleteLattice.Independent fun i => Projectivization.submodule (f i)
i : ι
⊢ (Projectivization.rep ∘ f) i ≠ 0
[PROOFSTEP]
exact rep_nonzero (f i)
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Dependent f ↔ ¬LinearIndependent K (Projectivization.rep ∘ f)
[PROOFSTEP]
refine' ⟨_, fun h => _⟩
[GOAL]
case refine'_1
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Dependent f → ¬LinearIndependent K (Projectivization.rep ∘ f)
[PROOFSTEP]
rintro ⟨ff, hff, hh1⟩
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh1 : ¬LinearIndependent K ff
⊢ ¬LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
[PROOFSTEP]
contrapose! hh1
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
⊢ LinearIndependent K ff
[PROOFSTEP]
choose a ha using fun i : ι => exists_smul_eq_mk_rep K (ff i) (hff i)
[GOAL]
case refine'_1.mk
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
a : ι → Kˣ
ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0))
⊢ LinearIndependent K ff
[PROOFSTEP]
convert hh1.units_smul a⁻¹
[GOAL]
case h.e'_4
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
a : ι → Kˣ
ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0))
⊢ ff = a⁻¹ • Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)
[PROOFSTEP]
ext i
[GOAL]
case h.e'_4.h
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
ff : ι → V
hff : ∀ (i : ι), ff i ≠ 0
hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0))
a : ι → Kˣ
ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0))
i : ι
⊢ ff i = (a⁻¹ • Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) i
[PROOFSTEP]
simp only [← ha, inv_smul_smul, Pi.smul_apply', Pi.inv_apply, Function.comp_apply]
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : ¬LinearIndependent K (Projectivization.rep ∘ f)
⊢ Dependent f
[PROOFSTEP]
convert Dependent.mk _ _ h
[GOAL]
case h.e'_7.h
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : ¬LinearIndependent K (Projectivization.rep ∘ f)
x✝ : ι
⊢ f x✝ = mk K ((Projectivization.rep ∘ f) x✝) (_ : ?m.30442 x✝ ≠ 0)
[PROOFSTEP]
simp only [mk_rep, Function.comp_apply]
[GOAL]
case refine'_2
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
h : ¬LinearIndependent K (Projectivization.rep ∘ f)
⊢ ∀ (i : ι), (Projectivization.rep ∘ f) i ≠ 0
[PROOFSTEP]
exact fun i => rep_nonzero (f i)
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Dependent f ↔ ¬Independent f
[PROOFSTEP]
rw [dependent_iff, independent_iff]
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
⊢ Independent f ↔ ¬Dependent f
[PROOFSTEP]
rw [dependent_iff_not_independent, Classical.not_not]
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
u v : ℙ K V
⊢ Dependent ![u, v] ↔ u = v
[PROOFSTEP]
rw [dependent_iff_not_independent, independent_iff, linearIndependent_fin2, Function.comp_apply, Matrix.cons_val_one,
Matrix.head_cons, Ne.def]
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
u v : ℙ K V
⊢ ¬(¬Projectivization.rep v = 0 ∧ ∀ (a : K), a • Projectivization.rep v ≠ (Projectivization.rep ∘ ![u, v]) 0) ↔ u = v
[PROOFSTEP]
simp only [Matrix.cons_val_zero, not_and, not_forall, Classical.not_not, Function.comp_apply, ←
mk_eq_mk_iff' K _ _ (rep_nonzero u) (rep_nonzero v), mk_rep, imp_iff_right_iff]
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
u v : ℙ K V
⊢ ¬Projectivization.rep v = 0 ∨ u = v
[PROOFSTEP]
exact Or.inl (rep_nonzero v)
[GOAL]
ι : Type u_1
K : Type u_2
V : Type u_3
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : ι → ℙ K V
u v : ℙ K V
⊢ Independent ![u, v] ↔ u ≠ v
[PROOFSTEP]
rw [independent_iff_not_dependent, dependent_pair_iff_eq u v]
| {"mathlib_filename": "Mathlib.LinearAlgebra.ProjectiveSpace.Independence", "llama_tokens": 5048} |
[GOAL]
R : Type u_1
V : Type u_2
P : Type u_3
inst✝⁴ : DivisionRing R
inst✝³ : CharZero R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
a b : P
⊢ ↑(lineMap a b) (1 / 2) = midpoint R a b
[PROOFSTEP]
rw [one_div, lineMap_inv_two]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝⁴ : Field k
inst✝³ : CharZero k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AddTorsor V P
a b : P
⊢ ↑(homothety a (1 / 2)) b = midpoint k a b
[PROOFSTEP]
rw [one_div, homothety_inv_two]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.MidpointZero", "llama_tokens": 255} |
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A B : Subspace K V
⊢ A.carrier = B.carrier → A = B
[PROOFSTEP]
cases A
[GOAL]
case mk
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : Subspace K V
carrier✝ : Set (ℙ K V)
mem_add'✝ :
∀ (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) (hvw : v + w ≠ 0),
Projectivization.mk K v hv ∈ carrier✝ →
Projectivization.mk K w hw ∈ carrier✝ → Projectivization.mk K (v + w) hvw ∈ carrier✝
⊢ { carrier := carrier✝, mem_add' := mem_add'✝ }.carrier = B.carrier →
{ carrier := carrier✝, mem_add' := mem_add'✝ } = B
[PROOFSTEP]
cases B
[GOAL]
case mk.mk
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
carrier✝¹ : Set (ℙ K V)
mem_add'✝¹ :
∀ (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) (hvw : v + w ≠ 0),
Projectivization.mk K v hv ∈ carrier✝¹ →
Projectivization.mk K w hw ∈ carrier✝¹ → Projectivization.mk K (v + w) hvw ∈ carrier✝¹
carrier✝ : Set (ℙ K V)
mem_add'✝ :
∀ (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) (hvw : v + w ≠ 0),
Projectivization.mk K v hv ∈ carrier✝ →
Projectivization.mk K w hw ∈ carrier✝ → Projectivization.mk K (v + w) hvw ∈ carrier✝
⊢ { carrier := carrier✝¹, mem_add' := mem_add'✝¹ }.carrier = { carrier := carrier✝, mem_add' := mem_add'✝ }.carrier →
{ carrier := carrier✝¹, mem_add' := mem_add'✝¹ } = { carrier := carrier✝, mem_add' := mem_add'✝ }
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
⊢ A ≤ ↑B → span A ≤ B
[PROOFSTEP]
intro h x hx
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x : ℙ K V
hx : x ∈ span A
⊢ x ∈ B
[PROOFSTEP]
induction' hx with y hy
[GOAL]
case of
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x y : ℙ K V
hy : y ∈ A
⊢ y ∈ B
[PROOFSTEP]
apply h
[GOAL]
case of.a
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x y : ℙ K V
hy : y ∈ A
⊢ y ∈ A
[PROOFSTEP]
assumption
[GOAL]
case mem_add
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x : ℙ K V
v✝ w✝ : V
hv✝ : v✝ ≠ 0
hw✝ : w✝ ≠ 0
hvw✝ : v✝ + w✝ ≠ 0
a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝)
a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝)
a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B
a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B
⊢ Projectivization.mk K (v✝ + w✝) hvw✝ ∈ B
[PROOFSTEP]
apply B.mem_add
[GOAL]
case mem_add.a
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x : ℙ K V
v✝ w✝ : V
hv✝ : v✝ ≠ 0
hw✝ : w✝ ≠ 0
hvw✝ : v✝ + w✝ ≠ 0
a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝)
a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝)
a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B
a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B
⊢ Projectivization.mk K v✝ ?mem_add.hv ∈ B
case mem_add.a
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x : ℙ K V
v✝ w✝ : V
hv✝ : v✝ ≠ 0
hw✝ : w✝ ≠ 0
hvw✝ : v✝ + w✝ ≠ 0
a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝)
a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝)
a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B
a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B
⊢ Projectivization.mk K w✝ ?mem_add.hw ∈ B
case mem_add.hv
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x : ℙ K V
v✝ w✝ : V
hv✝ : v✝ ≠ 0
hw✝ : w✝ ≠ 0
hvw✝ : v✝ + w✝ ≠ 0
a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝)
a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝)
a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B
a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B
⊢ v✝ ≠ 0
case mem_add.hw
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (ℙ K V)
B : Subspace K V
h : A ≤ ↑B
x : ℙ K V
v✝ w✝ : V
hv✝ : v✝ ≠ 0
hw✝ : w✝ ≠ 0
hvw✝ : v✝ + w✝ ≠ 0
a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝)
a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝)
a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B
a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B
⊢ w✝ ≠ 0
[PROOFSTEP]
assumption'
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (Subspace K V)
v w : V
hv : v ≠ 0
hw : w ≠ 0
hvw : v + w ≠ 0
h1 : Projectivization.mk K v hv ∈ sInf (SetLike.coe '' A)
h2 : Projectivization.mk K w hw ∈ sInf (SetLike.coe '' A)
t : Set (ℙ K V)
⊢ t ∈ SetLike.coe '' A → Projectivization.mk K (v + w) hvw ∈ t
[PROOFSTEP]
rintro ⟨s, hs, rfl⟩
[GOAL]
case intro.intro
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
A : Set (Subspace K V)
v w : V
hv : v ≠ 0
hw : w ≠ 0
hvw : v + w ≠ 0
h1 : Projectivization.mk K v hv ∈ sInf (SetLike.coe '' A)
h2 : Projectivization.mk K w hw ∈ sInf (SetLike.coe '' A)
s : Subspace K V
hs : s ∈ A
⊢ Projectivization.mk K (v + w) hvw ∈ ↑s
[PROOFSTEP]
exact s.mem_add v w hv hw _ (h1 s ⟨s, hs, rfl⟩) (h2 s ⟨s, hs, rfl⟩)
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
src✝ : Inf (Subspace K V) := inferInstance
⊢ ∀ (s : Set (Subspace K V)), IsGLB s (sInf s)
[PROOFSTEP]
refine fun s => ⟨fun a ha x hx => hx _ ⟨a, ha, rfl⟩, fun a ha x hx E => ?_⟩
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
src✝ : Inf (Subspace K V) := inferInstance
s : Set (Subspace K V)
a : Subspace K V
ha : a ∈ lowerBounds s
x : ℙ K V
hx : x ∈ a
E : Set (ℙ K V)
⊢ E ∈ SetLike.coe '' s → x ∈ E
[PROOFSTEP]
rintro ⟨E, hE, rfl⟩
[GOAL]
case intro.intro
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
src✝ : Inf (Subspace K V) := inferInstance
s : Set (Subspace K V)
a : Subspace K V
ha : a ∈ lowerBounds s
x : ℙ K V
hx : x ∈ a
E : Subspace K V
hE : E ∈ s
⊢ x ∈ ↑E
[PROOFSTEP]
exact ha hE hx
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ span Set.univ = ⊤
[PROOFSTEP]
rw [eq_top_iff, SetLike.le_def]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ ∀ ⦃x : ℙ K V⦄, x ∈ ⊤ → x ∈ span Set.univ
[PROOFSTEP]
intro x _hx
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
x : ℙ K V
_hx : x ∈ ⊤
⊢ x ∈ span Set.univ
[PROOFSTEP]
exact subset_span _ (Set.mem_univ x)
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
W : Subspace K V
⊢ W ⊔ span S = span (↑W ∪ S)
[PROOFSTEP]
rw [span_union, span_coe]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
W : Subspace K V
⊢ span S ⊔ W = span (S ∪ ↑W)
[PROOFSTEP]
rw [span_union, span_coe]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
u : ℙ K V
⊢ u ∈ span S ↔ ∀ (W : Subspace K V), S ⊆ ↑W → u ∈ W
[PROOFSTEP]
simp_rw [← span_le_subspace_iff]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
u : ℙ K V
⊢ u ∈ span S ↔ ∀ (W : Subspace K V), span S ≤ W → u ∈ W
[PROOFSTEP]
exact ⟨fun hu W hW => hW hu, fun W => W (span S) (le_refl _)⟩
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
⊢ span S = sInf {W | S ⊆ ↑W}
[PROOFSTEP]
ext x
[GOAL]
case carrier.h
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
x : ℙ K V
⊢ x ∈ (span S).carrier ↔ x ∈ (sInf {W | S ⊆ ↑W}).carrier
[PROOFSTEP]
simp_rw [mem_carrier_iff, mem_span x]
[GOAL]
case carrier.h
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
x : ℙ K V
⊢ (∀ (W : Subspace K V), S ⊆ ↑W → x ∈ W) ↔ x ∈ sInf {W | S ⊆ ↑W}
[PROOFSTEP]
refine ⟨fun hx => ?_, fun hx W hW => ?_⟩
[GOAL]
case carrier.h.refine_1
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
x : ℙ K V
hx : ∀ (W : Subspace K V), S ⊆ ↑W → x ∈ W
⊢ x ∈ sInf {W | S ⊆ ↑W}
[PROOFSTEP]
rintro W ⟨T, hT, rfl⟩
[GOAL]
case carrier.h.refine_1.intro.intro
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
x : ℙ K V
hx : ∀ (W : Subspace K V), S ⊆ ↑W → x ∈ W
T : Subspace K V
hT : T ∈ {W | S ⊆ ↑W}
⊢ x ∈ ↑T
[PROOFSTEP]
exact hx T hT
[GOAL]
case carrier.h.refine_2
K : Type u_1
V : Type u_2
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
S : Set (ℙ K V)
x : ℙ K V
hx : x ∈ sInf {W | S ⊆ ↑W}
W : Subspace K V
hW : S ⊆ ↑W
⊢ x ∈ W
[PROOFSTEP]
exact (@sInf_le _ _ {W : Subspace K V | S ⊆ ↑W} W hW) hx
| {"mathlib_filename": "Mathlib.LinearAlgebra.ProjectiveSpace.Subspace", "llama_tokens": 5020} |
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ ∀ (a b : { v // v ≠ 0 }), Setoid.r a b → Submodule.span K {↑a} = Submodule.span K {↑b}
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩ ⟨x, rfl : x • b = a⟩
[GOAL]
case mk.mk.intro
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
b : V
hb : b ≠ 0
x : Kˣ
ha : x • b ≠ 0
⊢ Submodule.span K {↑{ val := x • b, property := ha }} = Submodule.span K {↑{ val := b, property := hb }}
[PROOFSTEP]
exact Submodule.span_singleton_group_smul_eq _ x _
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
⊢ mk K v hv = mk K w hw ↔ ∃ a, a • w = v
[PROOFSTEP]
rw [mk_eq_mk_iff K v w hv hw]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
⊢ (∃ a, a • w = v) ↔ ∃ a, a • w = v
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
⊢ (∃ a, a • w = v) → ∃ a, a • w = v
[PROOFSTEP]
rintro ⟨a, ha⟩
[GOAL]
case mp.intro
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
a : Kˣ
ha : a • w = v
⊢ ∃ a, a • w = v
[PROOFSTEP]
exact ⟨a, ha⟩
[GOAL]
case mpr
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
⊢ (∃ a, a • w = v) → ∃ a, a • w = v
[PROOFSTEP]
rintro ⟨a, ha⟩
[GOAL]
case mpr.intro
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
a : K
ha : a • w = v
⊢ ∃ a, a • w = v
[PROOFSTEP]
refine' ⟨Units.mk0 a fun c => hv.symm _, ha⟩
[GOAL]
case mpr.intro
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v w : V
hv : v ≠ 0
hw : w ≠ 0
a : K
ha : a • w = v
c : a = 0
⊢ 0 = v
[PROOFSTEP]
rwa [c, zero_smul] at ha
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ Projectivization.submodule v = Submodule.span K {Projectivization.rep v}
[PROOFSTEP]
conv_lhs => rw [← v.mk_rep]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
| Projectivization.submodule v
[PROOFSTEP]
rw [← v.mk_rep]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
| Projectivization.submodule v
[PROOFSTEP]
rw [← v.mk_rep]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
| Projectivization.submodule v
[PROOFSTEP]
rw [← v.mk_rep]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ finrank K { x // x ∈ Projectivization.submodule v } = 1
[PROOFSTEP]
rw [submodule_eq]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ finrank K { x // x ∈ Submodule.span K {Projectivization.rep v} } = 1
[PROOFSTEP]
exact finrank_span_singleton v.rep_nonzero
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ FiniteDimensional K { x // x ∈ Projectivization.submodule v }
[PROOFSTEP]
rw [← v.mk_rep]
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ FiniteDimensional K
{ x // x ∈ Projectivization.submodule (mk K (Projectivization.rep v) (_ : Projectivization.rep v ≠ 0)) }
[PROOFSTEP]
change FiniteDimensional K (K ∙ v.rep)
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
v : ℙ K V
⊢ FiniteDimensional K { x // x ∈ Submodule.span K {Projectivization.rep v} }
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
u v : ℙ K V
h : Projectivization.submodule u = Projectivization.submodule v
⊢ u = v
[PROOFSTEP]
induction' u using ind with u hu
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
u✝ v : ℙ K V
h✝ : Projectivization.submodule u✝ = Projectivization.submodule v
u : V
hu : u ≠ 0
h : Projectivization.submodule (mk K u hu) = Projectivization.submodule v
⊢ mk K u hu = v
[PROOFSTEP]
induction' v using ind with v hv
[GOAL]
case h.h
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
u✝ v✝ : ℙ K V
h✝² : Projectivization.submodule u✝ = Projectivization.submodule v✝
u : V
hu : u ≠ 0
h✝¹ : Projectivization.submodule (mk K u hu) = Projectivization.submodule v✝
v : V
hv : v ≠ 0
h✝ : Projectivization.submodule u✝ = Projectivization.submodule (mk K v hv)
h : Projectivization.submodule (mk K u hu) = Projectivization.submodule (mk K v hv)
⊢ mk K u hu = mk K v hv
[PROOFSTEP]
rw [submodule_mk, submodule_mk, Submodule.span_singleton_eq_span_singleton] at h
[GOAL]
case h.h
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
u✝ v✝ : ℙ K V
h✝² : Projectivization.submodule u✝ = Projectivization.submodule v✝
u : V
hu : u ≠ 0
h✝¹ : Projectivization.submodule (mk K u hu) = Projectivization.submodule v✝
v : V
hv : v ≠ 0
h✝ : Projectivization.submodule u✝ = Projectivization.submodule (mk K v hv)
h : ∃ z, z • u = v
⊢ mk K u hu = mk K v hv
[PROOFSTEP]
exact ((mk_eq_mk_iff K v u hv hu).2 h).symm
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
⊢ H ∈ Set.range Projectivization.submodule ↔ finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
[PROOFSTEP]
refine ⟨fun ⟨v, hv⟩ ↦ hv ▸ v.finrank_submodule, fun h ↦ ?_⟩
[GOAL]
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
⊢ H ∈ Set.range Projectivization.submodule
[PROOFSTEP]
rcases finrank_eq_one_iff'.1 h with ⟨v : H, hv₀, hv : ∀ w : H, _⟩
[GOAL]
case intro.intro
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
v : { x // x ∈ H }
hv₀ : v ≠ 0
hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w
⊢ H ∈ Set.range Projectivization.submodule
[PROOFSTEP]
use mk K (v : V) (Subtype.coe_injective.ne hv₀)
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
v : { x // x ∈ H }
hv₀ : v ≠ 0
hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w
⊢ Projectivization.submodule (mk K ↑v (_ : ↑v ≠ ↑0)) = H
[PROOFSTEP]
rw [submodule_mk, SetLike.ext'_iff, Submodule.span_singleton_eq_range]
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
v : { x // x ∈ H }
hv₀ : v ≠ 0
hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w
⊢ (Set.range fun x => x • ↑v) = ↑H
[PROOFSTEP]
refine (Set.range_subset_iff.2 fun _ ↦ H.smul_mem _ v.2).antisymm fun x hx ↦ ?_
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
v : { x // x ∈ H }
hv₀ : v ≠ 0
hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w
x : V
hx : x ∈ ↑H
⊢ x ∈ Set.range fun x => x • ↑v
[PROOFSTEP]
rcases hv ⟨x, hx⟩ with ⟨c, hc⟩
[GOAL]
case h.intro
K : Type u_1
V : Type u_2
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
H : Submodule K V
h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1
v : { x // x ∈ H }
hv₀ : v ≠ 0
hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w
x : V
hx : x ∈ ↑H
c : K
hc : c • v = { val := x, property := hx }
⊢ x ∈ Set.range fun x => x • ↑v
[PROOFSTEP]
exact ⟨c, congr_arg Subtype.val hc⟩
[GOAL]
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
σ : K →+* L
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
v : { v // v ≠ 0 }
c : ↑f ↑v = 0
⊢ ↑f ↑v = ↑f 0
[PROOFSTEP]
simp [c]
[GOAL]
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
σ : K →+* L
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
⊢ (Setoid.r ⇒ Setoid.r) (fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) fun v =>
{ val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }
[PROOFSTEP]
rintro ⟨u, hu⟩ ⟨v, hv⟩ ⟨a, ha⟩
[GOAL]
case mk.mk.intro
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
σ : K →+* L
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u : V
hu : u ≠ 0
v : V
hv : v ≠ 0
a : Kˣ
ha : (fun m => m • ↑{ val := v, property := hv }) a = ↑{ val := u, property := hu }
⊢ Setoid.r ((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := u, property := hu })
((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := v, property := hv })
[PROOFSTEP]
use Units.map σ.toMonoidHom a
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
σ : K →+* L
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u : V
hu : u ≠ 0
v : V
hv : v ≠ 0
a : Kˣ
ha : (fun m => m • ↑{ val := v, property := hv }) a = ↑{ val := u, property := hu }
⊢ (fun m => m • ↑((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := v, property := hv }))
(↑(Units.map ↑σ) a) =
↑((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := u, property := hu })
[PROOFSTEP]
dsimp at ha ⊢
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
σ : K →+* L
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u : V
hu : u ≠ 0
v : V
hv : v ≠ 0
a : Kˣ
ha : a • v = u
⊢ ↑(Units.map ↑σ) a • ↑f v = ↑f u
[PROOFSTEP]
erw [← f.map_smulₛₗ, ha]
[GOAL]
K : Type u_1
V : Type u_2
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
L : Type u_3
W : Type u_4
inst✝³ : DivisionRing L
inst✝² : AddCommGroup W
inst✝¹ : Module L W
σ : K →+* L
τ : L →+* K
inst✝ : RingHomInvPair σ τ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u v : ℙ K V
h : map f hf u = map f hf v
⊢ u = v
[PROOFSTEP]
induction' u using ind with u hu
[GOAL]
case h
K : Type u_1
V : Type u_2
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
L : Type u_3
W : Type u_4
inst✝³ : DivisionRing L
inst✝² : AddCommGroup W
inst✝¹ : Module L W
σ : K →+* L
τ : L →+* K
inst✝ : RingHomInvPair σ τ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u✝ v : ℙ K V
h✝ : map f hf u✝ = map f hf v
u : V
hu : u ≠ 0
h : map f hf (mk K u hu) = map f hf v
⊢ mk K u hu = v
[PROOFSTEP]
induction' v using ind with v hv
[GOAL]
case h.h
K : Type u_1
V : Type u_2
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
L : Type u_3
W : Type u_4
inst✝³ : DivisionRing L
inst✝² : AddCommGroup W
inst✝¹ : Module L W
σ : K →+* L
τ : L →+* K
inst✝ : RingHomInvPair σ τ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u✝ v✝ : ℙ K V
h✝² : map f hf u✝ = map f hf v✝
u : V
hu : u ≠ 0
h✝¹ : map f hf (mk K u hu) = map f hf v✝
v : V
hv : v ≠ 0
h✝ : map f hf u✝ = map f hf (mk K v hv)
h : map f hf (mk K u hu) = map f hf (mk K v hv)
⊢ mk K u hu = mk K v hv
[PROOFSTEP]
simp only [map_mk, mk_eq_mk_iff'] at h ⊢
[GOAL]
case h.h
K : Type u_1
V : Type u_2
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
L : Type u_3
W : Type u_4
inst✝³ : DivisionRing L
inst✝² : AddCommGroup W
inst✝¹ : Module L W
σ : K →+* L
τ : L →+* K
inst✝ : RingHomInvPair σ τ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u✝ v✝ : ℙ K V
h✝² : map f hf u✝ = map f hf v✝
u : V
hu : u ≠ 0
h✝¹ : map f hf (mk K u hu) = map f hf v✝
v : V
hv : v ≠ 0
h✝ : map f hf u✝ = map f hf (mk K v hv)
h : ∃ a, a • ↑f v = ↑f u
⊢ ∃ a, a • v = u
[PROOFSTEP]
rcases h with ⟨a, ha⟩
[GOAL]
case h.h.intro
K : Type u_1
V : Type u_2
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
L : Type u_3
W : Type u_4
inst✝³ : DivisionRing L
inst✝² : AddCommGroup W
inst✝¹ : Module L W
σ : K →+* L
τ : L →+* K
inst✝ : RingHomInvPair σ τ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u✝ v✝ : ℙ K V
h✝¹ : map f hf u✝ = map f hf v✝
u : V
hu : u ≠ 0
h✝ : map f hf (mk K u hu) = map f hf v✝
v : V
hv : v ≠ 0
h : map f hf u✝ = map f hf (mk K v hv)
a : L
ha : a • ↑f v = ↑f u
⊢ ∃ a, a • v = u
[PROOFSTEP]
refine ⟨τ a, hf ?_⟩
[GOAL]
case h.h.intro
K : Type u_1
V : Type u_2
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
L : Type u_3
W : Type u_4
inst✝³ : DivisionRing L
inst✝² : AddCommGroup W
inst✝¹ : Module L W
σ : K →+* L
τ : L →+* K
inst✝ : RingHomInvPair σ τ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
u✝ v✝ : ℙ K V
h✝¹ : map f hf u✝ = map f hf v✝
u : V
hu : u ≠ 0
h✝ : map f hf (mk K u hu) = map f hf v✝
v : V
hv : v ≠ 0
h : map f hf u✝ = map f hf (mk K v hv)
a : L
ha : a • ↑f v = ↑f u
⊢ ↑f (↑τ a • v) = ↑f u
[PROOFSTEP]
rwa [f.map_smulₛₗ, RingHomInvPair.comp_apply_eq₂]
[GOAL]
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
⊢ map LinearMap.id (_ : Function.Injective ↑(LinearEquiv.refl K V)) = id
[PROOFSTEP]
ext ⟨v⟩
[GOAL]
case h.mk
K : Type u_1
V : Type u_2
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
L : Type u_3
W : Type u_4
inst✝² : DivisionRing L
inst✝¹ : AddCommGroup W
inst✝ : Module L W
x✝ : ℙ K V
v : { v // v ≠ 0 }
⊢ map LinearMap.id (_ : Function.Injective ↑(LinearEquiv.refl K V)) (Quot.mk Setoid.r v) = id (Quot.mk Setoid.r v)
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
V : Type u_2
inst✝⁹ : DivisionRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
L : Type u_3
W : Type u_4
inst✝⁶ : DivisionRing L
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module L W
F : Type u_5
U : Type u_6
inst✝³ : Field F
inst✝² : AddCommGroup U
inst✝¹ : Module F U
σ : K →+* L
τ : L →+* F
γ : K →+* F
inst✝ : RingHomCompTriple σ τ γ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
g : W →ₛₗ[τ] U
hg : Function.Injective ↑g
⊢ map (LinearMap.comp g f) (_ : Function.Injective (↑g ∘ fun x => ↑f x)) = map g hg ∘ map f hf
[PROOFSTEP]
ext ⟨v⟩
[GOAL]
case h.mk
K : Type u_1
V : Type u_2
inst✝⁹ : DivisionRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
L : Type u_3
W : Type u_4
inst✝⁶ : DivisionRing L
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module L W
F : Type u_5
U : Type u_6
inst✝³ : Field F
inst✝² : AddCommGroup U
inst✝¹ : Module F U
σ : K →+* L
τ : L →+* F
γ : K →+* F
inst✝ : RingHomCompTriple σ τ γ
f : V →ₛₗ[σ] W
hf : Function.Injective ↑f
g : W →ₛₗ[τ] U
hg : Function.Injective ↑g
x✝ : ℙ K V
v : { v // v ≠ 0 }
⊢ map (LinearMap.comp g f) (_ : Function.Injective (↑g ∘ fun x => ↑f x)) (Quot.mk Setoid.r v) =
(map g hg ∘ map f hf) (Quot.mk Setoid.r v)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.LinearAlgebra.ProjectiveSpace.Basic", "llama_tokens": 8024} |
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f g : M → R
x y : M
⊢ polar (f + g) x y = polar f x y + polar g x y
[PROOFSTEP]
simp only [polar, Pi.add_apply]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f g : M → R
x y : M
⊢ f (x + y) + g (x + y) - (f x + g x) - (f y + g y) = f (x + y) - f x - f y + (g (x + y) - g x - g y)
[PROOFSTEP]
abel
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f g : M → R
x y : M
⊢ f (x + y) + g (x + y) - (f x + g x) - (f y + g y) = f (x + y) - f x - f y + (g (x + y) - g x - g y)
[PROOFSTEP]
abel
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f : M → R
x y : M
⊢ polar (-f) x y = -polar f x y
[PROOFSTEP]
simp only [polar, Pi.neg_apply, sub_eq_add_neg, neg_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁴ : Ring R
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Monoid S
inst✝ : DistribMulAction S R
f : M → R
s : S
x y : M
⊢ polar (s • f) x y = s • polar f x y
[PROOFSTEP]
simp only [polar, Pi.smul_apply, smul_sub]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f : M → R
x y : M
⊢ polar f x y = polar f y x
[PROOFSTEP]
rw [polar, polar, add_comm, sub_sub, sub_sub, add_comm (f x) (f y)]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f : M → R
x x' y : M
⊢ polar f (x + x') y = polar f x y + polar f x' y ↔
f (x + x' + y) + (f x + f x' + f y) = f (x + x') + f (x' + y) + f (y + x)
[PROOFSTEP]
simp only [← add_assoc]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f : M → R
x x' y : M
⊢ polar f (x + x') y = polar f x y + polar f x' y ↔
f (x + x' + y) + f x + f x' + f y = f (x + x') + f (x' + y) + f (y + x)
[PROOFSTEP]
simp only [polar, sub_eq_iff_eq_add, eq_sub_iff_add_eq, sub_add_eq_add_sub, add_sub]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f : M → R
x x' y : M
⊢ f (x + x' + y) + f y + f x' + f y + f x = f (x + y) + f (x' + y) + f y + f (x + x') ↔
f (x + x' + y) + f x + f x' + f y = f (x + x') + f (x' + y) + f (y + x)
[PROOFSTEP]
simp only [add_right_comm _ (f y) _, add_right_comm _ (f x') (f x)]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : CommRing R₁
inst✝ : AddCommGroup M
f : M → R
x x' y : M
⊢ f (x + x' + y) + f x + f x' + f y + f y = f (x + y) + f (x' + y) + f (x + x') + f y ↔
f (x + x' + y) + f x + f x' + f y = f (x + x') + f (x' + y) + f (y + x)
[PROOFSTEP]
rw [add_comm y x, add_right_comm _ _ (f (x + y)), add_comm _ (f (x + y)), add_right_comm (f (x + y)), add_left_inj]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁴ : Ring R
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
F : Type u_6
inst✝¹ : Ring S
inst✝ : AddMonoidHomClass F R S
f : M → R
g : F
x y : M
⊢ polar (↑g ∘ f) x y = ↑g (polar f x y)
[PROOFSTEP]
simp only [polar, Pi.smul_apply, Function.comp_apply, map_sub]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q Q' x y : QuadraticForm R M
h : x.toFun = y.toFun
⊢ x = y
[PROOFSTEP]
cases x
[GOAL]
case mk
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q Q' y : QuadraticForm R M
toFun✝ : M → R
toFun_smul✝ : ∀ (a : R) (x : M), toFun✝ (a • x) = a * a * toFun✝ x
exists_companion'✝ : ∃ B, ∀ (x y : M), toFun✝ (x + y) = toFun✝ x + toFun✝ y + BilinForm.bilin B x y
h : { toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ }.toFun = y.toFun
⊢ { toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ } = y
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q Q' : QuadraticForm R M
toFun✝¹ : M → R
toFun_smul✝¹ : ∀ (a : R) (x : M), toFun✝¹ (a • x) = a * a * toFun✝¹ x
exists_companion'✝¹ : ∃ B, ∀ (x y : M), toFun✝¹ (x + y) = toFun✝¹ x + toFun✝¹ y + BilinForm.bilin B x y
toFun✝ : M → R
toFun_smul✝ : ∀ (a : R) (x : M), toFun✝ (a • x) = a * a * toFun✝ x
exists_companion'✝ : ∃ B, ∀ (x y : M), toFun✝ (x + y) = toFun✝ x + toFun✝ y + BilinForm.bilin B x y
h :
{ toFun := toFun✝¹, toFun_smul := toFun_smul✝¹, exists_companion' := exists_companion'✝¹ }.toFun =
{ toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ }.toFun
⊢ { toFun := toFun✝¹, toFun_smul := toFun_smul✝¹, exists_companion' := exists_companion'✝¹ } =
{ toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ }
[PROOFSTEP]
congr
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x y z : M
⊢ ↑Q (x + y + z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q (x + y) + ↑Q (y + z) + ↑Q (z + x)
[PROOFSTEP]
obtain ⟨B, h⟩ := Q.exists_companion
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x y z : M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
⊢ ↑Q (x + y + z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q (x + y) + ↑Q (y + z) + ↑Q (z + x)
[PROOFSTEP]
rw [add_comm z x]
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x y z : M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
⊢ ↑Q (x + y + z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q (x + y) + ↑Q (y + z) + ↑Q (x + z)
[PROOFSTEP]
simp [h]
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x y z : M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
⊢ ↑Q x + ↑Q y + BilinForm.bilin B x y + ↑Q z + (BilinForm.bilin B x z + BilinForm.bilin B y z) + (↑Q x + ↑Q y + ↑Q z) =
↑Q x + ↑Q y + BilinForm.bilin B x y + (↑Q y + ↑Q z + BilinForm.bilin B y z) + (↑Q x + ↑Q z + BilinForm.bilin B x z)
[PROOFSTEP]
abel
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x y z : M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
⊢ ↑Q x + ↑Q y + BilinForm.bilin B x y + ↑Q z + (BilinForm.bilin B x z + BilinForm.bilin B y z) + (↑Q x + ↑Q y + ↑Q z) =
↑Q x + ↑Q y + BilinForm.bilin B x y + (↑Q y + ↑Q z + BilinForm.bilin B y z) + (↑Q x + ↑Q z + BilinForm.bilin B x z)
[PROOFSTEP]
abel
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
⊢ ↑Q (x + x) = 4 * ↑Q x
[PROOFSTEP]
rw [← one_smul R x, ← add_smul, map_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
⊢ (1 + 1) * (1 + 1) * ↑Q x = 4 * ↑Q (1 • x)
[PROOFSTEP]
norm_num
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ ↑Q 0 = 0
[PROOFSTEP]
rw [← @zero_smul R _ _ _ _ (0 : M), map_smul, zero_mul, zero_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
a : S
x : M
⊢ ↑Q (a • x) = (a * a) • ↑Q x
[PROOFSTEP]
rw [← IsScalarTower.algebraMap_smul R a x, map_smul, ← RingHom.map_mul, Algebra.smul_def]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
⊢ ↑Q (-x) = ↑Q x
[PROOFSTEP]
rw [← @neg_one_smul R _ _ _ _ x, map_smul, neg_one_mul, neg_neg, one_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y : M
⊢ ↑Q (x - y) = ↑Q (y - x)
[PROOFSTEP]
rw [← neg_sub, map_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
y : M
⊢ polar (↑Q) 0 y = 0
[PROOFSTEP]
simp only [polar, zero_add, QuadraticForm.map_zero, sub_zero, sub_self]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a : R
x y : M
⊢ polar (↑Q) (a • x) y = a * polar (↑Q) x y
[PROOFSTEP]
obtain ⟨B, h⟩ := Q.exists_companion
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a : R
x y : M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
⊢ polar (↑Q) (a • x) y = a * polar (↑Q) x y
[PROOFSTEP]
simp_rw [polar, h, Q.map_smul, BilinForm.smul_left, sub_sub, add_sub_cancel']
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y : M
⊢ polar (↑Q) (-x) y = -polar (↑Q) x y
[PROOFSTEP]
rw [← neg_one_smul R x, polar_smul_left, neg_one_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x x' y : M
⊢ polar (↑Q) (x - x') y = polar (↑Q) x y - polar (↑Q) x' y
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, polar_add_left, polar_neg_left]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
y : M
⊢ polar (↑Q) y 0 = 0
[PROOFSTEP]
simp only [add_zero, polar, QuadraticForm.map_zero, sub_self]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y y' : M
⊢ polar (↑Q) x (y + y') = polar (↑Q) x y + polar (↑Q) x y'
[PROOFSTEP]
rw [polar_comm Q x, polar_comm Q x, polar_comm Q x, polar_add_left]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a : R
x y : M
⊢ polar (↑Q) x (a • y) = a * polar (↑Q) x y
[PROOFSTEP]
rw [polar_comm Q x, polar_comm Q x, polar_smul_left]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y : M
⊢ polar (↑Q) x (-y) = -polar (↑Q) x y
[PROOFSTEP]
rw [← neg_one_smul R y, polar_smul_right, neg_one_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y y' : M
⊢ polar (↑Q) x (y - y') = polar (↑Q) x y - polar (↑Q) x y'
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, polar_add_right, polar_neg_right]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
⊢ polar (↑Q) x x = 2 * ↑Q x
[PROOFSTEP]
rw [polar, map_add_self, sub_sub, sub_eq_iff_eq_add, ← two_mul, ← two_mul, ← mul_assoc]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
⊢ 4 * ↑Q x = 2 * 2 * ↑Q x
[PROOFSTEP]
norm_num
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x y z : M
⊢ polar (↑Q) x (y + z) = polar (↑Q) x y + polar (↑Q) x z
[PROOFSTEP]
simp_rw [polar_comm _ x, polar_add_left Q]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : CommRing R₁
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r : R
x y : M
⊢ polar (↑Q) x (r • y) = r * polar (↑Q) x y
[PROOFSTEP]
simp_rw [polar_comm _ x, polar_smul_left Q]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
a : S
x y : M
⊢ polar (↑Q) (a • x) y = a • polar (↑Q) x y
[PROOFSTEP]
rw [← IsScalarTower.algebraMap_smul R a x, polar_smul_left, Algebra.smul_def]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
a : S
x y : M
⊢ polar (↑Q) x (a • y) = a • polar (↑Q) x y
[PROOFSTEP]
rw [← IsScalarTower.algebraMap_smul R a y, polar_smul_right, Algebra.smul_def]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
toFun : M → R
toFun_smul : ∀ (a : R) (x : M), toFun (a • x) = a * a * toFun x
polar_add_left : ∀ (x x' y : M), polar toFun (x + x') y = polar toFun x y + polar toFun x' y
polar_smul_left : ∀ (a : R) (x y : M), polar toFun (a • x) y = a • polar toFun x y
x y z : M
⊢ polar toFun x (y + z) = polar toFun x y + polar toFun x z
[PROOFSTEP]
simp_rw [polar_comm _ x, polar_add_left]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
toFun : M → R
toFun_smul : ∀ (a : R) (x : M), toFun (a • x) = a * a * toFun x
polar_add_left : ∀ (x x' y : M), polar toFun (x + x') y = polar toFun x y + polar toFun x' y
polar_smul_left : ∀ (a : R) (x y : M), polar toFun (a • x) y = a • polar toFun x y
r : R
x y : M
⊢ polar toFun x (r • y) = r * polar toFun x y
[PROOFSTEP]
simp_rw [polar_comm _ x, polar_smul_left, smul_eq_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
toFun : M → R
toFun_smul : ∀ (a : R) (x : M), toFun (a • x) = a * a * toFun x
polar_add_left : ∀ (x x' y : M), polar toFun (x + x') y = polar toFun x y + polar toFun x' y
polar_smul_left : ∀ (a : R) (x y : M), polar toFun (a • x) y = a • polar toFun x y
x y : M
⊢ toFun (x + y) =
toFun x + toFun y +
BilinForm.bilin
{ bilin := polar toFun, bilin_add_left := polar_add_left, bilin_smul_left := polar_smul_left,
bilin_add_right := (_ : ∀ (x y z : M), polar toFun x (y + z) = polar toFun x y + polar toFun x z),
bilin_smul_right := (_ : ∀ (r : R) (x y : M), polar toFun x (r • y) = r * polar toFun x y) }
x y
[PROOFSTEP]
rw [BilinForm.coeFn_mk, polar, sub_sub, add_sub_cancel'_right]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
Q : QuadraticForm R M
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
x y : M
⊢ BilinForm.bilin (Exists.choose (_ : ∃ B, ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y)) x y =
BilinForm.bilin (polarBilin Q) x y
[PROOFSTEP]
rw [polarBilin_apply, polar, Q.exists_companion.choose_spec, sub_sub, add_sub_cancel']
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : Monoid S
inst✝⁴ : Monoid T
inst✝³ : DistribMulAction S R
inst✝² : DistribMulAction T R
inst✝¹ : SMulCommClass S R R
inst✝ : SMulCommClass T R R
a : S
Q : QuadraticForm R M
b : R
x : M
⊢ (a • ↑Q) (b • x) = b * b * (a • ↑Q) x
[PROOFSTEP]
rw [Pi.smul_apply, map_smul, Pi.smul_apply, mul_smul_comm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : Monoid S
inst✝⁴ : Monoid T
inst✝³ : DistribMulAction S R
inst✝² : DistribMulAction T R
inst✝¹ : SMulCommClass S R R
inst✝ : SMulCommClass T R R
a : S
Q : QuadraticForm R M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
⊢ ∀ (x y : M), (a • ↑Q) (x + y) = (a • ↑Q) x + (a • ↑Q) y + BilinForm.bilin (a • B) x y
[PROOFSTEP]
simp [h]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
x✝ : M
⊢ (fun x => 0) (a • x✝) = a * a * (fun x => 0) x✝
[PROOFSTEP]
simp only [mul_zero]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x✝¹ x✝ : M
⊢ (fun x => 0) (x✝¹ + x✝) = (fun x => 0) x✝¹ + (fun x => 0) x✝ + BilinForm.bilin 0 x✝¹ x✝
[PROOFSTEP]
simp only [add_zero, BilinForm.zero_apply]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q Q' : QuadraticForm R M
a : R
x : M
⊢ (↑Q + ↑Q') (a • x) = a * a * (↑Q + ↑Q') x
[PROOFSTEP]
simp only [Pi.add_apply, map_smul, mul_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q Q' : QuadraticForm R M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
B' : BilinForm R M
h' : ∀ (x y : M), ↑Q' (x + y) = ↑Q' x + ↑Q' y + BilinForm.bilin B' x y
x y : M
⊢ (↑Q + ↑Q') (x + y) = (↑Q + ↑Q') x + (↑Q + ↑Q') y + BilinForm.bilin (B + B') x y
[PROOFSTEP]
simp_rw [Pi.add_apply, h, h', BilinForm.add_apply, add_add_add_comm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : SMulCommClass S R R
Q : QuadraticForm R M
x : M
⊢ ↑(1 • Q) x = ↑Q x
[PROOFSTEP]
simp only [QuadraticForm.smul_apply, one_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : SMulCommClass S R R
a b : S
Q : QuadraticForm R M
x : M
⊢ ↑((a * b) • Q) x = ↑(a • b • Q) x
[PROOFSTEP]
simp only [smul_apply, mul_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : SMulCommClass S R R
a : S
⊢ a • 0 = 0
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : SMulCommClass S R R
a : S
x✝ : M
⊢ ↑(a • 0) x✝ = ↑0 x✝
[PROOFSTEP]
simp only [zero_apply, smul_apply, smul_zero]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : SMulCommClass S R R
a : S
Q Q' : QuadraticForm R M
⊢ a • (Q + Q') = a • Q + a • Q'
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : SMulCommClass S R R
a : S
Q Q' : QuadraticForm R M
x✝ : M
⊢ ↑(a • (Q + Q')) x✝ = ↑(a • Q + a • Q') x✝
[PROOFSTEP]
simp only [add_apply, smul_apply, smul_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : SMulCommClass S R R
a b : S
Q : QuadraticForm R M
⊢ (a + b) • Q = a • Q + b • Q
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : SMulCommClass S R R
a b : S
Q : QuadraticForm R M
x✝ : M
⊢ ↑((a + b) • Q) x✝ = ↑(a • Q + b • Q) x✝
[PROOFSTEP]
simp only [add_apply, smul_apply, add_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : SMulCommClass S R R
Q : QuadraticForm R M
⊢ 0 • Q = 0
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M
inst✝³ : Module R M
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : SMulCommClass S R R
Q : QuadraticForm R M
x✝ : M
⊢ ↑(0 • Q) x✝ = ↑0 x✝
[PROOFSTEP]
simp only [zero_apply, smul_apply, zero_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a : R
x : M
⊢ (-↑Q) (a • x) = a * a * (-↑Q) x
[PROOFSTEP]
simp only [Pi.neg_apply, map_smul, mul_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
x y : M
⊢ (-↑Q) (x + y) = (-↑Q) x + (-↑Q) y + BilinForm.bilin (-B) x y
[PROOFSTEP]
simp_rw [Pi.neg_apply, h, BilinForm.neg_apply, neg_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
N : Type v
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
Q : QuadraticForm R N
f : M →ₗ[R] N
a : R
x : M
⊢ (fun x => ↑Q (↑f x)) (a • x) = a * a * (fun x => ↑Q (↑f x)) x
[PROOFSTEP]
simp only [map_smul, f.map_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
N : Type v
inst✝¹ : AddCommMonoid N
inst✝ : Module R N
Q : QuadraticForm R N
f : M →ₗ[R] N
B : BilinForm R N
h : ∀ (x y : N), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
x y : M
⊢ (fun x => ↑Q (↑f x)) (x + y) =
(fun x => ↑Q (↑f x)) x + (fun x => ↑Q (↑f x)) y + BilinForm.bilin (BilinForm.comp B f f) x y
[PROOFSTEP]
simp_rw [f.map_add, h, BilinForm.comp_apply]
[GOAL]
S✝ : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
N : Type v
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
S : Type u_6
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
f : R →ₗ[S] S
Q : QuadraticForm R M
b : S
x : M
⊢ (fun x => ↑f (↑Q x)) (b • x) = b * b * (fun x => ↑f (↑Q x)) x
[PROOFSTEP]
simp only [Q.map_smul_of_tower b x, f.map_smul, smul_eq_mul]
[GOAL]
S✝ : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁸ : Semiring R
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
N : Type v
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
S : Type u_6
inst✝³ : CommSemiring S
inst✝² : Algebra S R
inst✝¹ : Module S M
inst✝ : IsScalarTower S R M
f : R →ₗ[S] S
Q : QuadraticForm R M
B : BilinForm R M
h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y
x y : M
⊢ (fun x => ↑f (↑Q x)) (x + y) =
(fun x => ↑f (↑Q x)) x + (fun x => ↑f (↑Q x)) y + BilinForm.bilin (LinearMap.compBilinForm f B) x y
[PROOFSTEP]
simp_rw [h, f.map_add, LinearMap.compBilinForm_apply]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f g : M →ₗ[R] R
a : R
x : M
⊢ (↑f * ↑g) (a • x) = a * a * (↑f * ↑g) x
[PROOFSTEP]
simp only [smul_eq_mul, RingHom.id_apply, Pi.mul_apply, LinearMap.map_smulₛₗ]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f g : M →ₗ[R] R
a : R
x : M
⊢ a * ↑f x * (a * ↑g x) = a * a * (↑f x * ↑g x)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f g : M →ₗ[R] R
x y : M
⊢ (↑f * ↑g) (x + y) =
(↑f * ↑g) x + (↑f * ↑g) y + BilinForm.bilin (BilinForm.linMulLin f g + BilinForm.linMulLin g f) x y
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f g : M →ₗ[R] R
x y : M
⊢ (↑f x + ↑f y) * (↑g x + ↑g y) = ↑f x * ↑g x + ↑f y * ↑g y + (↑f x * ↑g y + ↑g x * ↑f y)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
B✝ B : BilinForm R M
a : R
x : M
⊢ (fun x => bilin B x x) (a • x) = a * a * (fun x => bilin B x x) x
[PROOFSTEP]
simp only [mul_assoc, smul_right, smul_left]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
B✝ B : BilinForm R M
x y : M
⊢ (fun x => bilin B x x) (x + y) = (fun x => bilin B x x) x + (fun x => bilin B x x) y + bilin (B + ↑(flipHom ℕ) B) x y
[PROOFSTEP]
simp [add_add_add_comm, add_comm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
B : BilinForm R M
x y : M
⊢ polar (fun x => bilin B x x) x y = bilin B x y + bilin B y x
[PROOFSTEP]
simp only [add_assoc, add_sub_cancel', add_right, polar, add_left_inj, add_neg_cancel_left, add_left,
sub_eq_add_neg _ (B y y), add_comm (B y x) _]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q Q' : QuadraticForm R M
⊢ (fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q))
(Q + Q') =
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q))
Q +
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q))
Q'
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q Q' : QuadraticForm R M
x✝ y✝ : M
⊢ bilin
((fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q))
(Q + Q'))
x✝ y✝ =
bilin
((fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q +
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q')
x✝ y✝
[PROOFSTEP]
simp only [BilinForm.add_apply, BilinForm.smul_apply, coeFn_mk, polarBilin_apply, polar_add, coeFn_add, smul_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
s : S
Q : QuadraticForm R M
⊢ AddHom.toFun
{
toFun := fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q),
map_add' :=
(_ :
∀ (Q Q' : QuadraticForm R M),
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
(Q + Q') =
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q +
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q') }
(s • Q) =
↑(RingHom.id S) s •
AddHom.toFun
{
toFun := fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q),
map_add' :=
(_ :
∀ (Q Q' : QuadraticForm R M),
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
(Q + Q') =
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q +
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q') }
Q
[PROOFSTEP]
ext
-- porting note: added type annotations
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
s : S
Q : QuadraticForm R M
x✝ y✝ : M
⊢ bilin
(AddHom.toFun
{
toFun := fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q),
map_add' :=
(_ :
∀ (Q Q' : QuadraticForm R M),
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
(Q + Q') =
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q +
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q') }
(s • Q))
x✝ y✝ =
bilin
(↑(RingHom.id S) s •
AddHom.toFun
{
toFun := fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q),
map_add' :=
(_ :
∀ (Q Q' : QuadraticForm R M),
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
(Q + Q') =
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q +
(fun Q =>
(fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) }
(polarBilin Q))
Q') }
Q)
x✝ y✝
[PROOFSTEP]
simp only [RingHom.id_apply, polar_smul, smul_comm s (_ : Submonoid.center R) (_ : R), polarBilin_apply, coeFn_mk,
coeFn_smul, BilinForm.smul_apply]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q : QuadraticForm R M
x y : M
⊢ bilin (↑(associatedHom S) Q) x y = bilin (↑(associatedHom S) Q) y x
[PROOFSTEP]
simp only [associated_apply, add_comm, add_left_comm, sub_eq_add_neg, add_assoc]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₁
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module R₁ M
inst✝⁴ : CommSemiring S
inst✝³ : Algebra S R
inst✝² : Invertible 2
B₁ : BilinForm R M
Q : QuadraticForm R M
N : Type v
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : N →ₗ[R] M
⊢ ↑(associatedHom S) (comp Q f) = BilinForm.comp (↑(associatedHom S) Q) f f
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : CommRing R₁
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : Module R₁ M
inst✝⁴ : CommSemiring S
inst✝³ : Algebra S R
inst✝² : Invertible 2
B₁ : BilinForm R M
Q : QuadraticForm R M
N : Type v
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : N →ₗ[R] M
x✝ y✝ : N
⊢ bilin (↑(associatedHom S) (comp Q f)) x✝ y✝ = bilin (BilinForm.comp (↑(associatedHom S) Q) f f) x✝ y✝
[PROOFSTEP]
simp only [QuadraticForm.comp_apply, BilinForm.comp_apply, associated_apply, LinearMap.map_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q : QuadraticForm R M
B : BilinForm R M
x y : M
⊢ bilin (↑(associatedHom S) (toQuadraticForm B)) x y = ⅟2 * (bilin B x y + bilin B y x)
[PROOFSTEP]
simp only [associated_apply, ← polar_to_quadratic_form, polar, toQuadraticForm_apply]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q : QuadraticForm R M
h : BilinForm.IsSymm B₁
x y : M
⊢ bilin (↑(associatedHom S) (toQuadraticForm B₁)) x y = bilin B₁ x y
[PROOFSTEP]
rw [associated_toQuadraticForm, h.eq x y, ← two_mul, ← mul_assoc, invOf_mul_self, one_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q : QuadraticForm R M
x : M
⊢ bilin (↑(associatedHom S) Q) x x = ↑Q x
[PROOFSTEP]
rw [associated_apply, map_add_self, ← three_add_one_eq_four, ← two_add_one_eq_three, add_mul, add_mul, one_mul,
add_sub_cancel, add_sub_cancel, invOf_mul_self_assoc]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q✝ Q : QuadraticForm R M
hB₁ : ↑associated' Q ≠ 0
⊢ ∃ x, ↑Q x ≠ 0
[PROOFSTEP]
rw [← not_forall]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q✝ Q : QuadraticForm R M
hB₁ : ↑associated' Q ≠ 0
⊢ ¬∀ (x : M), ↑Q x = 0
[PROOFSTEP]
intro h
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q✝ Q : QuadraticForm R M
hB₁ : ↑associated' Q ≠ 0
h : ∀ (x : M), ↑Q x = 0
⊢ False
[PROOFSTEP]
apply hB₁
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : CommRing R₁
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module R₁ M
inst✝² : CommSemiring S
inst✝¹ : Algebra S R
inst✝ : Invertible 2
B₁ : BilinForm R M
Q✝ Q : QuadraticForm R M
hB₁ : ↑associated' Q ≠ 0
h : ∀ (x : M), ↑Q x = 0
⊢ ↑associated' Q = 0
[PROOFSTEP]
rw [(QuadraticForm.ext h : Q = 0), LinearMap.map_zero]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
f g : M →ₗ[R₁] R₁
⊢ ↑associated (linMulLin f g) = ⅟2 • (BilinForm.linMulLin f g + BilinForm.linMulLin g f)
[PROOFSTEP]
ext
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
f g : M →ₗ[R₁] R₁
x✝ y✝ : M
⊢ bilin (↑associated (linMulLin f g)) x✝ y✝ = bilin (⅟2 • (BilinForm.linMulLin f g + BilinForm.linMulLin g f)) x✝ y✝
[PROOFSTEP]
simp only [smul_add, Algebra.id.smul_eq_mul, BilinForm.linMulLin_apply, QuadraticForm.linMulLin_apply,
BilinForm.smul_apply, associated_apply, BilinForm.add_apply, LinearMap.map_add]
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
f g : M →ₗ[R₁] R₁
x✝ y✝ : M
⊢ ⅟2 * ((↑f x✝ + ↑f y✝) * (↑g x✝ + ↑g y✝) - ↑f x✝ * ↑g x✝ - ↑f y✝ * ↑g y✝) = ⅟2 * (↑f x✝ * ↑g y✝) + ⅟2 * (↑g x✝ * ↑f y✝)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ ¬Anisotropic Q ↔ ∃ x, x ≠ 0 ∧ ↑Q x = 0
[PROOFSTEP]
simp only [Anisotropic, not_forall, exists_prop, and_comm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Invertible 2
Q : QuadraticForm R M
hB : Anisotropic Q
x : M
hx : ∀ (n : M), bilin (↑associated' Q) x n = 0
⊢ ↑Q x = 0
[PROOFSTEP]
rw [← hx x]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Invertible 2
Q : QuadraticForm R M
hB : Anisotropic Q
x : M
hx : ∀ (n : M), bilin (↑associated' Q) x n = 0
⊢ ↑Q x = bilin (↑associated' Q) x x
[PROOFSTEP]
exact (associated_eq_self_apply _ _ x).symm
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
R₂ : Type u
inst✝² : OrderedRing R₂
inst✝¹ : AddCommMonoid M
inst✝ : Module R₂ M
Q₂ : QuadraticForm R₂ M
n : Type u_6
Q : QuadraticForm R₂ M
hQ : PosDef Q
x : M
hQx : ↑Q x = 0
hx : ¬x = 0
⊢ 0 < 0
[PROOFSTEP]
have := hQ _ hx
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
R₂ : Type u
inst✝² : OrderedRing R₂
inst✝¹ : AddCommMonoid M
inst✝ : Module R₂ M
Q₂ : QuadraticForm R₂ M
n : Type u_6
Q : QuadraticForm R₂ M
hQ : PosDef Q
x : M
hQx : ↑Q x = 0
hx : ¬x = 0
this : 0 < ↑Q x
⊢ 0 < 0
[PROOFSTEP]
rw [hQx] at this
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
R₂ : Type u
inst✝² : OrderedRing R₂
inst✝¹ : AddCommMonoid M
inst✝ : Module R₂ M
Q₂ : QuadraticForm R₂ M
n : Type u_6
Q : QuadraticForm R₂ M
hQ : PosDef Q
x : M
hQx : ↑Q x = 0
hx : ¬x = 0
this : 0 < 0
⊢ 0 < 0
[PROOFSTEP]
exact this
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : DecidableEq n
inst✝³ : CommRing R₁
inst✝² : AddCommMonoid M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
a : R₁
Q : QuadraticForm R₁ (n → R₁)
⊢ toMatrix' (a • Q) = a • toMatrix' Q
[PROOFSTEP]
simp only [toMatrix', LinearEquiv.map_smul, LinearMap.map_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : DecidableEq n
inst✝³ : CommRing R₁
inst✝² : AddCommMonoid M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ (n → R₁)
⊢ Matrix.IsSymm (toMatrix' Q)
[PROOFSTEP]
ext i j
[GOAL]
case a.h
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : DecidableEq n
inst✝³ : CommRing R₁
inst✝² : AddCommMonoid M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ (n → R₁)
i j : n
⊢ Matrix.transpose (toMatrix' Q) i j = toMatrix' Q i j
[PROOFSTEP]
rw [toMatrix', Matrix.transpose_apply, BilinForm.toMatrix'_apply, BilinForm.toMatrix'_apply, associated_isSymm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R₁
inst✝³ : DecidableEq n
inst✝² : Invertible 2
m : Type w
inst✝¹ : DecidableEq m
inst✝ : Fintype m
Q : QuadraticForm R₁ (m → R₁)
f : (n → R₁) →ₗ[R₁] m → R₁
⊢ toMatrix' (comp Q f) = (↑LinearMap.toMatrix' f)ᵀ * toMatrix' Q * ↑LinearMap.toMatrix' f
[PROOFSTEP]
ext
[GOAL]
case a.h
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R₁
inst✝³ : DecidableEq n
inst✝² : Invertible 2
m : Type w
inst✝¹ : DecidableEq m
inst✝ : Fintype m
Q : QuadraticForm R₁ (m → R₁)
f : (n → R₁) →ₗ[R₁] m → R₁
i✝ x✝ : n
⊢ toMatrix' (comp Q f) i✝ x✝ = ((↑LinearMap.toMatrix' f)ᵀ * toMatrix' Q * ↑LinearMap.toMatrix' f) i✝ x✝
[PROOFSTEP]
simp only [QuadraticForm.associated_comp, BilinForm.toMatrix'_comp, toMatrix']
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R₁
inst✝³ : DecidableEq n
inst✝² : Invertible 2
m : Type w
inst✝¹ : DecidableEq m
inst✝ : Fintype m
Q : QuadraticForm R₁ (n → R₁)
a : R₁
⊢ discr (a • Q) = a ^ Fintype.card n * discr Q
[PROOFSTEP]
simp only [discr, toMatrix'_smul, Matrix.det_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
n : Type w
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R₁
inst✝³ : DecidableEq n
inst✝² : Invertible 2
m : Type w
inst✝¹ : DecidableEq m
inst✝ : Fintype m
Q : QuadraticForm R₁ (n → R₁)
f : (n → R₁) →ₗ[R₁] n → R₁
⊢ discr (comp Q f) = det (↑LinearMap.toMatrix' f) * det (↑LinearMap.toMatrix' f) * discr Q
[PROOFSTEP]
simp only [Matrix.det_transpose, mul_left_comm, QuadraticForm.toMatrix'_comp, mul_comm, Matrix.det_mul, discr]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
htwo : Invertible 2
B : BilinForm R M
hB₁ : B ≠ 0
hB₂ : IsSymm B
⊢ ∃ x, ¬IsOrtho B x x
[PROOFSTEP]
lift B to QuadraticForm R M using hB₂ with Q
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
htwo : Invertible 2
B : BilinForm R M
Q : QuadraticForm R M
hB₁✝ hB₁ : ↑(QuadraticForm.associatedHom ℕ) Q ≠ 0
⊢ ∃ x, ¬IsOrtho (↑(QuadraticForm.associatedHom ℕ) Q) x x
[PROOFSTEP]
obtain ⟨x, hx⟩ := QuadraticForm.exists_quadraticForm_ne_zero hB₁
[GOAL]
case intro.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
htwo : Invertible 2
B : BilinForm R M
Q : QuadraticForm R M
hB₁✝ hB₁ : ↑(QuadraticForm.associatedHom ℕ) Q ≠ 0
x : M
hx : ↑Q x ≠ 0
⊢ ∃ x, ¬IsOrtho (↑(QuadraticForm.associatedHom ℕ) Q) x x
[PROOFSTEP]
exact ⟨x, fun h => hx (Q.associated_eq_self_apply ℕ x ▸ h)⟩
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
V : Type u
K : Type v
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
hK : Invertible 2
B : BilinForm K V
hB₂ : IsSymm B
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
induction' hd : finrank K V with d ih generalizing V
[GOAL]
case zero
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
hd : finrank K V = Nat.zero
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
simp_rw [Nat.zero_eq]
[GOAL]
case zero
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
hd : finrank K V = Nat.zero
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
exact ⟨basisOfFinrankZero hd, fun _ _ _ => zero_left _⟩
[GOAL]
case succ
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
hd : finrank K V = Nat.succ d
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
haveI :=
finrank_pos_iff.1
(hd.symm ▸ Nat.succ_pos d : 0 < finrank K V)
-- either the bilinear form is trivial or we can pick a non-null `x`
[GOAL]
case succ
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
hd : finrank K V = Nat.succ d
this : Nontrivial V
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
obtain rfl | hB₁ := eq_or_ne B 0
[GOAL]
case succ.inl
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B : BilinForm K V✝
hB₂✝ : IsSymm B
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
hd : finrank K V = Nat.succ d
this : Nontrivial V
hB₂ : IsSymm 0
⊢ ∃ v, iIsOrtho 0 ↑v
[PROOFSTEP]
let b := FiniteDimensional.finBasis K V
[GOAL]
case succ.inl
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B : BilinForm K V✝
hB₂✝ : IsSymm B
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
hd : finrank K V = Nat.succ d
this : Nontrivial V
hB₂ : IsSymm 0
b : Basis (Fin (finrank K V)) K V := finBasis K V
⊢ ∃ v, iIsOrtho 0 ↑v
[PROOFSTEP]
rw [hd] at b
[GOAL]
case succ.inl
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B : BilinForm K V✝
hB₂✝ : IsSymm B
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
hd : finrank K V = Nat.succ d
this : Nontrivial V
hB₂ : IsSymm 0
b : Basis (Fin (Nat.succ d)) K V
⊢ ∃ v, iIsOrtho 0 ↑v
[PROOFSTEP]
refine' ⟨b, fun i j _ => rfl⟩
[GOAL]
case succ.inr
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
hd : finrank K V = Nat.succ d
this : Nontrivial V
hB₁ : B ≠ 0
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
obtain ⟨x, hx⟩ := exists_bilinForm_self_ne_zero hB₁ hB₂
[GOAL]
case succ.inr.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
hd : finrank K V = Nat.succ d
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hx : ¬IsOrtho B x x
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
rw [← Submodule.finrank_add_eq_of_isCompl (isCompl_span_singleton_orthogonal hx).symm,
finrank_span_singleton (ne_zero_of_not_isOrtho_self x hx)] at hd
[GOAL]
case succ.inr.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
let B' := B.restrict (B.orthogonal <| K ∙ x)
[GOAL]
case succ.inr.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
obtain ⟨v', hv₁⟩ :=
ih (B.restrictSymm hB₂ _ : B'.IsSymm)
(Nat.succ.inj hd)
-- concatenate `x` with the basis obtained by induction
[GOAL]
case succ.inr.intro.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
let b :=
Basis.mkFinCons x v'
(by
rintro c y hy hc
rw [add_eq_zero_iff_neg_eq] at hc
rw [← hc, Submodule.neg_mem_iff] at hy
have := (isCompl_span_singleton_orthogonal hx).disjoint
rw [Submodule.disjoint_def] at this
have := this (c • x) (Submodule.smul_mem _ _ <| Submodule.mem_span_singleton_self _) hy
exact (smul_eq_zero.1 this).resolve_right fun h => hx <| h.symm ▸ zero_left _)
(by
intro y
refine' ⟨-B x y / B x x, fun z hz => _⟩
obtain ⟨c, rfl⟩ := Submodule.mem_span_singleton.1 hz
rw [IsOrtho, smul_left, add_right, smul_right, div_mul_cancel _ hx, add_neg_self, mul_zero])
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
⊢ ∀ (c : K) (x_1 : V), x_1 ∈ orthogonal B (Submodule.span K {x}) → c • x + x_1 = 0 → c = 0
[PROOFSTEP]
rintro c y hy hc
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
c : K
y : V
hy : y ∈ orthogonal B (Submodule.span K {x})
hc : c • x + y = 0
⊢ c = 0
[PROOFSTEP]
rw [add_eq_zero_iff_neg_eq] at hc
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
c : K
y : V
hy : y ∈ orthogonal B (Submodule.span K {x})
hc : -(c • x) = y
⊢ c = 0
[PROOFSTEP]
rw [← hc, Submodule.neg_mem_iff] at hy
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
c : K
y : V
hy : c • x ∈ orthogonal B (Submodule.span K {x})
hc : -(c • x) = y
⊢ c = 0
[PROOFSTEP]
have := (isCompl_span_singleton_orthogonal hx).disjoint
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this✝ : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
c : K
y : V
hy : c • x ∈ orthogonal B (Submodule.span K {x})
hc : -(c • x) = y
this : Disjoint (Submodule.span K {x}) (orthogonal B (Submodule.span K {x}))
⊢ c = 0
[PROOFSTEP]
rw [Submodule.disjoint_def] at this
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this✝ : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
c : K
y : V
hy : c • x ∈ orthogonal B (Submodule.span K {x})
hc : -(c • x) = y
this : ∀ (x_1 : V), x_1 ∈ Submodule.span K {x} → x_1 ∈ orthogonal B (Submodule.span K {x}) → x_1 = 0
⊢ c = 0
[PROOFSTEP]
have := this (c • x) (Submodule.smul_mem _ _ <| Submodule.mem_span_singleton_self _) hy
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this✝¹ : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
c : K
y : V
hy : c • x ∈ orthogonal B (Submodule.span K {x})
hc : -(c • x) = y
this✝ : ∀ (x_1 : V), x_1 ∈ Submodule.span K {x} → x_1 ∈ orthogonal B (Submodule.span K {x}) → x_1 = 0
this : c • x = 0
⊢ c = 0
[PROOFSTEP]
exact (smul_eq_zero.1 this).resolve_right fun h => hx <| h.symm ▸ zero_left _
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
⊢ ∀ (z : V), ∃ c, z + c • x ∈ orthogonal B (Submodule.span K {x})
[PROOFSTEP]
intro y
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
y : V
⊢ ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})
[PROOFSTEP]
refine' ⟨-B x y / B x x, fun z hz => _⟩
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
y z : V
hz : z ∈ Submodule.span K {x}
⊢ IsOrtho B z (y + (-bilin B x y / bilin B x x) • x)
[PROOFSTEP]
obtain ⟨c, rfl⟩ := Submodule.mem_span_singleton.1 hz
[GOAL]
case intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
y : V
c : K
hz : c • x ∈ Submodule.span K {x}
⊢ IsOrtho B (c • x) (y + (-bilin B x y / bilin B x x) • x)
[PROOFSTEP]
rw [IsOrtho, smul_left, add_right, smul_right, div_mul_cancel _ hx, add_neg_self, mul_zero]
[GOAL]
case succ.inr.intro.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
⊢ ∃ v, iIsOrtho B ↑v
[PROOFSTEP]
refine' ⟨b, _⟩
[GOAL]
case succ.inr.intro.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
⊢ iIsOrtho B ↑b
[PROOFSTEP]
rw [Basis.coe_mkFinCons]
[GOAL]
case succ.inr.intro.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
⊢ iIsOrtho B (Fin.cons x (Subtype.val ∘ ↑v'))
[PROOFSTEP]
intro j i
[GOAL]
case succ.inr.intro.intro
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i : Fin (Nat.succ d)
⊢ j ≠ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) j i
[PROOFSTEP]
refine' Fin.cases _ (fun i => _) i
[GOAL]
case succ.inr.intro.intro.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i : Fin (Nat.succ d)
⊢ j ≠ 0 → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) j 0
[PROOFSTEP]
refine' Fin.cases _ (fun j => _) j
[GOAL]
case succ.inr.intro.intro.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i✝ : Fin (Nat.succ d)
i : Fin d
⊢ j ≠ Fin.succ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) j (Fin.succ i)
[PROOFSTEP]
refine' Fin.cases _ (fun j => _) j
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i : Fin (Nat.succ d)
⊢ 0 ≠ 0 → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 0
[PROOFSTEP]
intro hij
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i : Fin (Nat.succ d)
j : Fin d
⊢ Fin.succ j ≠ 0 → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) 0
[PROOFSTEP]
intro hij
[GOAL]
case succ.inr.intro.intro.refine'_2.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i✝ : Fin (Nat.succ d)
i : Fin d
⊢ 0 ≠ Fin.succ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 (Fin.succ i)
[PROOFSTEP]
intro hij
[GOAL]
case succ.inr.intro.intro.refine'_2.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i✝ : Fin (Nat.succ d)
i j : Fin d
⊢ Fin.succ j ≠ Fin.succ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) (Fin.succ i)
[PROOFSTEP]
intro hij
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i : Fin (Nat.succ d)
hij : 0 ≠ 0
⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 0
[PROOFSTEP]
simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply]
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i : Fin (Nat.succ d)
j : Fin d
hij : Fin.succ j ≠ 0
⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) 0
[PROOFSTEP]
simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply]
[GOAL]
case succ.inr.intro.intro.refine'_2.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i✝ : Fin (Nat.succ d)
i : Fin d
hij : 0 ≠ Fin.succ i
⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 (Fin.succ i)
[PROOFSTEP]
simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply]
[GOAL]
case succ.inr.intro.intro.refine'_2.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i✝ : Fin (Nat.succ d)
i j : Fin d
hij : Fin.succ j ≠ Fin.succ i
⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) (Fin.succ i)
[PROOFSTEP]
simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply]
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i : Fin (Nat.succ d)
hij : 0 ≠ 0
⊢ IsOrtho B x x
[PROOFSTEP]
exact (hij rfl).elim
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i : Fin (Nat.succ d)
j : Fin d
hij : Fin.succ j ≠ 0
⊢ IsOrtho B (↑(↑v' j)) x
[PROOFSTEP]
rw [IsOrtho, hB₂]
[GOAL]
case succ.inr.intro.intro.refine'_1.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i : Fin (Nat.succ d)
j : Fin d
hij : Fin.succ j ≠ 0
⊢ bilin B x ↑(↑v' j) = 0
[PROOFSTEP]
exact (v' j).prop _ (Submodule.mem_span_singleton_self x)
[GOAL]
case succ.inr.intro.intro.refine'_2.refine'_1
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j i✝ : Fin (Nat.succ d)
i : Fin d
hij : 0 ≠ Fin.succ i
⊢ IsOrtho B x ↑(↑v' i)
[PROOFSTEP]
exact (v' i).prop _ (Submodule.mem_span_singleton_self x)
[GOAL]
case succ.inr.intro.intro.refine'_2.refine'_2
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
inst✝⁹ : Ring R
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R M
V✝ : Type u
K : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V✝
inst✝⁴ : Module K V✝
inst✝³ : FiniteDimensional K V✝
hK : Invertible 2
B✝ : BilinForm K V✝
hB₂✝ : IsSymm B✝
x✝ : ℕ
hd✝ : finrank K V✝ = x✝
d : ℕ
ih :
∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V},
IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v
V : Type u
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
B : BilinForm K V
hB₂ : IsSymm B
this : Nontrivial V
hB₁ : B ≠ 0
x : V
hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d
hx : ¬IsOrtho B x x
B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } :=
restrict B (orthogonal B (Submodule.span K {x}))
v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }
hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v'
b : Basis (Fin (d + 1)) K V :=
Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0)
(_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}))
j✝ i✝ : Fin (Nat.succ d)
i j : Fin d
hij : Fin.succ j ≠ Fin.succ i
⊢ IsOrtho B ↑(↑v' j) ↑(↑v' i)
[PROOFSTEP]
exact hv₁ (ne_of_apply_ne _ hij)
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
M₁ : Type u_6
inst✝⁶ : Semiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M
inst✝¹ : Module R M₁
ι : Type u_7
inst✝ : Fintype ι
v : Basis ι R M
Q : QuadraticForm R M
w : ι → R
⊢ ↑(basisRepr Q v) w = ↑Q (∑ i : ι, w i • ↑v i)
[PROOFSTEP]
rw [← v.equivFun_symm_apply]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁ : Type u_4
M : Type u_5
M₁ : Type u_6
inst✝⁶ : Semiring R
inst✝⁵ : CommSemiring R₁
inst✝⁴ : AddCommMonoid M
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M
inst✝¹ : Module R M₁
ι : Type u_7
inst✝ : Fintype ι
v : Basis ι R M
Q : QuadraticForm R M
w : ι → R
⊢ ↑(basisRepr Q v) w = ↑Q (↑(LinearEquiv.symm (Basis.equivFun v)) fun i => w i)
[PROOFSTEP]
rfl
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
⊢ basisRepr Q v = weightedSumSquares R₁ fun i => ↑Q (↑v i)
[PROOFSTEP]
ext w
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
⊢ ↑(basisRepr Q v) w = ↑(weightedSumSquares R₁ fun i => ↑Q (↑v i)) w
[PROOFSTEP]
rw [basisRepr_apply, ← @associated_eq_self_apply R₁, sum_left, weightedSumSquares_apply]
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
⊢ ∑ i : ι, bilin (↑(associatedHom R₁) Q) (w i • ↑v i) (∑ i : ι, w i • ↑v i) = ∑ i : ι, ↑Q (↑v i) • (w i * w i)
[PROOFSTEP]
refine' sum_congr rfl fun j hj => _
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
j : ι
hj : j ∈ univ
⊢ bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (∑ i : ι, w i • ↑v i) = ↑Q (↑v j) • (w j * w j)
[PROOFSTEP]
rw [← @associated_eq_self_apply R₁, sum_right, sum_eq_single_of_mem j hj]
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
j : ι
hj : j ∈ univ
⊢ bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (w j • ↑v j) = bilin (↑(associatedHom R₁) Q) (↑v j) (↑v j) • (w j * w j)
[PROOFSTEP]
rw [smul_left, smul_right, smul_eq_mul]
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
j : ι
hj : j ∈ univ
⊢ w j * (w j * bilin (↑(associatedHom R₁) Q) (↑v j) (↑v j)) = bilin (↑(associatedHom R₁) Q) (↑v j) (↑v j) * (w j * w j)
[PROOFSTEP]
ring
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
j : ι
hj : j ∈ univ
⊢ ∀ (b : ι), b ∈ univ → b ≠ j → bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (w b • ↑v b) = 0
[PROOFSTEP]
intro i _ hij
[GOAL]
case H
S : Type u_1
T : Type u_2
R : Type u_3
R₁✝ : Type u_4
M✝ : Type u_5
M₁ : Type u_6
inst✝¹⁰ : Semiring R
inst✝⁹ : CommSemiring R₁✝
inst✝⁸ : AddCommMonoid M✝
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : Module R M✝
inst✝⁵ : Module R M₁
ι : Type u_7
inst✝⁴ : Fintype ι
v✝ : Basis ι R M✝
R₁ : Type u_8
M : Type u_9
inst✝³ : CommRing R₁
inst✝² : AddCommGroup M
inst✝¹ : Module R₁ M
inst✝ : Invertible 2
Q : QuadraticForm R₁ M
v : Basis ι R₁ M
hv₂ : iIsOrtho (↑associated Q) ↑v
w : ι → R₁
j : ι
hj : j ∈ univ
i : ι
a✝ : i ∈ univ
hij : i ≠ j
⊢ bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (w i • ↑v i) = 0
[PROOFSTEP]
rw [smul_left, smul_right, show associatedHom R₁ Q (v j) (v i) = 0 from hv₂ hij.symm, mul_zero, mul_zero]
| {"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Basic", "llama_tokens": 51901} |
[GOAL]
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
v : V
⊢ v +ᵥ ⊥ = ⊥
[PROOFSTEP]
ext
[GOAL]
case h
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
v : V
x✝ : P
⊢ x✝ ∈ v +ᵥ ⊥ ↔ x✝ ∈ ⊥
[PROOFSTEP]
simp [pointwise_vadd_eq_map, map_bot]
[GOAL]
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
v : V
s : AffineSubspace k P
⊢ direction (v +ᵥ s) = direction s
[PROOFSTEP]
rw [pointwise_vadd_eq_map, map_direction]
[GOAL]
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
v : V
s : AffineSubspace k P
⊢ Submodule.map (↑(AffineEquiv.constVAdd k P v)).linear (direction s) = direction s
[PROOFSTEP]
exact Submodule.map_id _
[GOAL]
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
f : P₁ →ᵃ[k] P₂
v : V₁
s : AffineSubspace k P₁
⊢ map f (v +ᵥ s) = ↑f.linear v +ᵥ map f s
[PROOFSTEP]
erw [pointwise_vadd_eq_map, pointwise_vadd_eq_map, map_map, map_map]
[GOAL]
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
f : P₁ →ᵃ[k] P₂
v : V₁
s : AffineSubspace k P₁
⊢ map (AffineMap.comp f ↑(AffineEquiv.constVAdd k P₁ v)) s =
map (AffineMap.comp (↑(AffineEquiv.constVAdd k P₂ (↑f.linear v))) f) s
[PROOFSTEP]
congr 1
[GOAL]
case e_f
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
f : P₁ →ᵃ[k] P₂
v : V₁
s : AffineSubspace k P₁
⊢ AffineMap.comp f ↑(AffineEquiv.constVAdd k P₁ v) = AffineMap.comp (↑(AffineEquiv.constVAdd k P₂ (↑f.linear v))) f
[PROOFSTEP]
ext
[GOAL]
case e_f.h
k : Type u_1
inst✝⁹ : Ring k
V : Type u_2
P : Type u_3
V₁ : Type u_4
P₁ : Type u_5
V₂ : Type u_6
P₂ : Type u_7
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : AffineSpace V P
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module k V₁
inst✝³ : AffineSpace V₁ P₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module k V₂
inst✝ : AffineSpace V₂ P₂
f : P₁ →ᵃ[k] P₂
v : V₁
s : AffineSubspace k P₁
p✝ : P₁
⊢ ↑(AffineMap.comp f ↑(AffineEquiv.constVAdd k P₁ v)) p✝ =
↑(AffineMap.comp (↑(AffineEquiv.constVAdd k P₂ (↑f.linear v))) f) p✝
[PROOFSTEP]
exact f.map_vadd _ _
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Pointwise", "llama_tokens": 2003} |
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a : k
⊢ slope f a a = 0
[PROOFSTEP]
rw [slope, sub_self, inv_zero, zero_smul]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b : k
⊢ (b - a) • slope f a b = f b -ᵥ f a
[PROOFSTEP]
rcases eq_or_ne a b with (rfl | hne)
[GOAL]
case inl
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a : k
⊢ (a - a) • slope f a a = f a -ᵥ f a
[PROOFSTEP]
rw [sub_self, zero_smul, vsub_self]
[GOAL]
case inr
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b : k
hne : a ≠ b
⊢ (b - a) • slope f a b = f b -ᵥ f a
[PROOFSTEP]
rw [slope, smul_inv_smul₀ (sub_ne_zero.2 hne.symm)]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b : k
⊢ (b - a) • slope f a b +ᵥ f a = f b
[PROOFSTEP]
rw [sub_smul_slope, vsub_vadd]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → E
c : PE
⊢ (slope fun x => f x +ᵥ c) = slope f
[PROOFSTEP]
ext a b
[GOAL]
case h.h
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → E
c : PE
a b : k
⊢ slope (fun x => f x +ᵥ c) a b = slope f a b
[PROOFSTEP]
simp only [slope, vadd_vsub_vadd_cancel_right, vsub_eq_sub]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → E
a b : k
h : a ≠ b
⊢ slope (fun x => (x - a) • f x) a b = f b
[PROOFSTEP]
simp [slope, inv_smul_smul₀ (sub_ne_zero.2 h.symm)]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b : k
h : slope f a b = 0
⊢ f a = f b
[PROOFSTEP]
rw [← sub_smul_slope_vadd f a b, h, smul_zero, zero_vadd]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝⁶ : Field k
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module k E
inst✝³ : AddTorsor E PE
F : Type u_4
PF : Type u_5
inst✝² : AddCommGroup F
inst✝¹ : Module k F
inst✝ : AddTorsor F PF
f : PE →ᵃ[k] PF
g : k → PE
a b : k
⊢ slope (↑f ∘ g) a b = ↑f.linear (slope g a b)
[PROOFSTEP]
simp only [slope, (· ∘ ·), f.linear.map_smul, f.linearMap_vsub]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b : k
⊢ slope f a b = slope f b a
[PROOFSTEP]
rw [slope, slope, ← neg_vsub_eq_vsub_rev, smul_neg, ← neg_smul, neg_inv, neg_sub]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c
[PROOFSTEP]
by_cases hab : a = b
[GOAL]
case pos
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
hab : a = b
⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c
[PROOFSTEP]
subst hab
[GOAL]
case pos
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a c : k
⊢ ((a - a) / (c - a)) • slope f a a + ((c - a) / (c - a)) • slope f a c = slope f a c
[PROOFSTEP]
rw [sub_self, zero_div, zero_smul, zero_add]
[GOAL]
case pos
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a c : k
⊢ ((c - a) / (c - a)) • slope f a c = slope f a c
[PROOFSTEP]
by_cases hac : a = c
[GOAL]
case pos
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a c : k
hac : a = c
⊢ ((c - a) / (c - a)) • slope f a c = slope f a c
[PROOFSTEP]
simp [hac]
[GOAL]
case neg
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a c : k
hac : ¬a = c
⊢ ((c - a) / (c - a)) • slope f a c = slope f a c
[PROOFSTEP]
rw [div_self (sub_ne_zero.2 <| Ne.symm hac), one_smul]
[GOAL]
case neg
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
hab : ¬a = b
⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c
[PROOFSTEP]
by_cases hbc : b = c
[GOAL]
case pos
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
hab : ¬a = b
hbc : b = c
⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c
[PROOFSTEP]
subst hbc
[GOAL]
case pos
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b : k
hab : ¬a = b
⊢ ((b - a) / (b - a)) • slope f a b + ((b - b) / (b - a)) • slope f b b = slope f a b
[PROOFSTEP]
simp [sub_ne_zero.2 (Ne.symm hab)]
[GOAL]
case neg
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
hab : ¬a = b
hbc : ¬b = c
⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c
[PROOFSTEP]
rw [add_comm]
[GOAL]
case neg
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
hab : ¬a = b
hbc : ¬b = c
⊢ ((c - b) / (c - a)) • slope f b c + ((b - a) / (c - a)) • slope f a b = slope f a c
[PROOFSTEP]
simp_rw [slope, div_eq_inv_mul, mul_smul, ← smul_add, smul_inv_smul₀ (sub_ne_zero.2 <| Ne.symm hab),
smul_inv_smul₀ (sub_ne_zero.2 <| Ne.symm hbc), vsub_add_vsub_cancel]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b c : k
h : a ≠ c
⊢ ↑(lineMap (slope f a b) (slope f b c)) ((c - b) / (c - a)) = slope f a c
[PROOFSTEP]
field_simp [sub_ne_zero.2 h.symm, ← sub_div_sub_smul_slope_add_sub_div_sub_smul_slope f a b c, lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b r : k
⊢ ↑(lineMap (slope f (↑(lineMap a b) r) b) (slope f a (↑(lineMap a b) r))) r = slope f a b
[PROOFSTEP]
obtain rfl | hab : a = b ∨ a ≠ b := Classical.em _
[GOAL]
case inl
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a r : k
⊢ ↑(lineMap (slope f (↑(lineMap a a) r) a) (slope f a (↑(lineMap a a) r))) r = slope f a a
[PROOFSTEP]
simp
[GOAL]
case inr
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b r : k
hab : a ≠ b
⊢ ↑(lineMap (slope f (↑(lineMap a b) r) b) (slope f a (↑(lineMap a b) r))) r = slope f a b
[PROOFSTEP]
rw [slope_comm _ a, slope_comm _ a, slope_comm _ _ b]
[GOAL]
case inr
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b r : k
hab : a ≠ b
⊢ ↑(lineMap (slope f b (↑(lineMap a b) r)) (slope f (↑(lineMap a b) r) a)) r = slope f b a
[PROOFSTEP]
convert lineMap_slope_slope_sub_div_sub f b (lineMap a b r) a hab.symm using 2
[GOAL]
case h.e'_2.h.e'_6
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : Field k
inst✝² : AddCommGroup E
inst✝¹ : Module k E
inst✝ : AddTorsor E PE
f : k → PE
a b r : k
hab : a ≠ b
⊢ r = (a - ↑(lineMap a b) r) / (a - b)
[PROOFSTEP]
rw [lineMap_apply_ring, eq_div_iff (sub_ne_zero.2 hab), sub_mul, one_mul, mul_sub, ← sub_sub, sub_sub_cancel]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Slope", "llama_tokens": 4243} |
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
i : Injective ↑f
⊢ lift (Module.rank R M) ≤ lift (Module.rank R M')
[PROOFSTEP]
simp only [Module.rank_def]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
i : Injective ↑f
⊢ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) ≤
lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
[PROOFSTEP]
rw [Cardinal.lift_iSup (Cardinal.bddAbove_range.{v', v'} _), Cardinal.lift_iSup (Cardinal.bddAbove_range.{v, v} _)]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
i : Injective ↑f
⊢ ⨆ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i ≤
⨆ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i
[PROOFSTEP]
apply ciSup_mono' (Cardinal.bddAbove_range.{v', v} _)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
i : Injective ↑f
⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), ∃ i', lift #↑↑i ≤ lift #↑↑i'
[PROOFSTEP]
rintro ⟨s, li⟩
[GOAL]
case mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
i : Injective ↑f
s : Set M
li : LinearIndependent R Subtype.val
⊢ ∃ i', lift #↑↑{ val := s, property := li } ≤ lift #↑↑i'
[PROOFSTEP]
refine' ⟨⟨f '' s, _⟩, Cardinal.lift_mk_le'.mpr ⟨(Equiv.Set.image f s i).toEmbedding⟩⟩
[GOAL]
case mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
i : Injective ↑f
s : Set M
li : LinearIndependent R Subtype.val
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
exact (li.map' _ <| LinearMap.ker_eq_bot.mpr i).image
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
⊢ Module.rank R M ≤ ↑n
[PROOFSTEP]
rw [Module.rank_def]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι ≤ ↑n
[PROOFSTEP]
apply ciSup_le'
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ ↑n
[PROOFSTEP]
rintro ⟨s, li⟩
[GOAL]
case h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
n : ℕ
H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n
s : Set M
li : LinearIndependent R Subtype.val
⊢ #↑↑{ val := s, property := li } ≤ ↑n
[PROOFSTEP]
exact linearIndependent_bounded_of_finset_linearIndependent_bounded H _ li
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
⊢ lift (Module.rank R { x // x ∈ LinearMap.range f }) ≤ lift (Module.rank R M)
[PROOFSTEP]
simp only [Module.rank_def]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
⊢ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) ≤
lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
[PROOFSTEP]
rw [Cardinal.lift_iSup (Cardinal.bddAbove_range.{v', v'} _)]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
⊢ ⨆ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i ≤
lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
[PROOFSTEP]
apply ciSup_le'
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
⊢ ∀ (i : { s // LinearIndependent R Subtype.val }),
lift #↑↑i ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
[PROOFSTEP]
rintro ⟨s, li⟩
[GOAL]
case h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ lift #↑↑{ val := s, property := li } ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
[PROOFSTEP]
apply le_trans
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ lift #↑↑{ val := s, property := li } ≤ ?h.mk.b
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ ?h.mk.b ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
case h.mk.b
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ Cardinal.{max v' v}
[PROOFSTEP]
swap
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ ?h.mk.b ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι)
[PROOFSTEP]
apply Cardinal.lift_le.mpr
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ ?m.20621 ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ Cardinal.{v}
[PROOFSTEP]
refine' le_ciSup (Cardinal.bddAbove_range.{v, v} _) ⟨rangeSplitting f '' s, _⟩
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
apply LinearIndependent.of_comp f.rangeRestrict
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ LinearIndependent R (↑(LinearMap.rangeRestrict f) ∘ Subtype.val)
[PROOFSTEP]
convert li.comp (Equiv.Set.rangeSplittingImageEquiv f s) (Equiv.injective _) using 1
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
s : Set { x // x ∈ LinearMap.range f }
li : LinearIndependent R Subtype.val
⊢ lift #↑↑{ val := s, property := li } ≤
lift #↑↑{ val := rangeSplitting ↑f '' s, property := (_ : LinearIndependent R Subtype.val) }
[PROOFSTEP]
exact (Cardinal.lift_mk_eq'.mpr ⟨Equiv.Set.rangeSplittingImageEquiv f s⟩).ge
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M₁
⊢ Module.rank R { x // x ∈ LinearMap.range f } ≤ Module.rank R M
[PROOFSTEP]
simpa using lift_rank_range_le f
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
p : Submodule R M
⊢ lift (Module.rank R { x // x ∈ Submodule.map f p }) ≤ lift (Module.rank R { x // x ∈ p })
[PROOFSTEP]
have h := lift_rank_range_le (f.comp (Submodule.subtype p))
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
p : Submodule R M
h :
lift (Module.rank R { x // x ∈ LinearMap.range (LinearMap.comp f (Submodule.subtype p)) }) ≤
lift (Module.rank R { x // x ∈ p })
⊢ lift (Module.rank R { x // x ∈ Submodule.map f p }) ≤ lift (Module.rank R { x // x ∈ p })
[PROOFSTEP]
rwa [LinearMap.range_comp, range_subtype] at h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M₁
p : Submodule R M
⊢ Module.rank R { x // x ∈ Submodule.map f p } ≤ Module.rank R { x // x ∈ p }
[PROOFSTEP]
simpa using lift_rank_map_le f p
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M ≃ₗ[R] M'
⊢ lift (Module.rank R M) = lift (Module.rank R M')
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M ≃ₗ[R] M'
⊢ lift (Module.rank R M) ≤ lift (Module.rank R M')
[PROOFSTEP]
exact f.toLinearMap.lift_rank_le_of_injective f.injective
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M ≃ₗ[R] M'
⊢ lift (Module.rank R M') ≤ lift (Module.rank R M)
[PROOFSTEP]
exact f.symm.toLinearMap.lift_rank_le_of_injective f.symm.injective
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
⊢ Module.rank R { x // x ∈ ⊤ } = Module.rank R M
[PROOFSTEP]
have : (⊤ : Submodule R M) ≃ₗ[R] M := LinearEquiv.ofTop ⊤ rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
this : { x // x ∈ ⊤ } ≃ₗ[R] M
⊢ Module.rank R { x // x ∈ ⊤ } = Module.rank R M
[PROOFSTEP]
rw [this.rank_eq]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M'
h : Surjective ↑f
⊢ Module.rank R { x // x ∈ LinearMap.range f } = Module.rank R M'
[PROOFSTEP]
rw [LinearMap.range_eq_top.2 h, rank_top]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
s : Submodule R M
⊢ Module.rank R { x // x ∈ s } ≤ Module.rank R M
[PROOFSTEP]
rw [← rank_top R M]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
s : Submodule R M
⊢ Module.rank R { x // x ∈ s } ≤ Module.rank R { x // x ∈ ⊤ }
[PROOFSTEP]
exact rank_le_of_submodule _ _ le_top
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M₁
h : Surjective ↑f
⊢ Module.rank R M₁ ≤ Module.rank R M
[PROOFSTEP]
rw [← rank_range_of_surjective f h]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁶ : Ring R
M : Type v
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
M' : Type v'
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
M₁ : Type v
inst✝¹ : AddCommGroup M₁
inst✝ : Module R M₁
f : M →ₗ[R] M₁
h : Surjective ↑f
⊢ Module.rank R { x // x ∈ range f } ≤ Module.rank R M
[PROOFSTEP]
apply rank_range_le
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ lift #ι ≤ lift (Module.rank R M)
[PROOFSTEP]
apply le_trans
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ lift #ι ≤ ?b
[PROOFSTEP]
exact Cardinal.lift_mk_le'.mpr ⟨(Equiv.ofInjective _ hv.injective).toEmbedding⟩
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ lift #↑(range v) ≤ lift (Module.rank R M)
[PROOFSTEP]
simp only [Cardinal.lift_le, Module.rank_def]
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ #↑(range v) ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
[PROOFSTEP]
apply le_trans
[GOAL]
case a.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ #↑(range v) ≤ ?a.b✝
case a.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ ?a.b✝ ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
case a.b
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ Cardinal.{v}
[PROOFSTEP]
swap
[GOAL]
case a.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ ?a.b✝ ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
[PROOFSTEP]
exact le_ciSup (Cardinal.bddAbove_range.{v, v} _) ⟨range v, hv.coe_range⟩
[GOAL]
case a.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
v : ι → M
hv : LinearIndependent R v
⊢ #↑(range v) ≤ #↑↑{ val := range v, property := (_ : LinearIndependent R Subtype.val) }
[PROOFSTEP]
exact le_rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type v
v : ι → M
hv : LinearIndependent R v
⊢ #ι ≤ Module.rank R M
[PROOFSTEP]
simpa using cardinal_lift_le_rank_of_linearIndependent hv
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
⊢ Module.rank R PUnit = 0
[PROOFSTEP]
rw [← bot_eq_zero, ← le_bot_iff, Module.rank_def]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι ≤ ⊥
[PROOFSTEP]
apply ciSup_le'
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ ⊥
[PROOFSTEP]
rintro ⟨s, li⟩
[GOAL]
case h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
s : Set PUnit
li : LinearIndependent R Subtype.val
⊢ #↑↑{ val := s, property := li } ≤ ⊥
[PROOFSTEP]
rw [le_bot_iff, bot_eq_zero, Cardinal.mk_emptyCollection_iff, Subtype.coe_mk]
[GOAL]
case h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
s : Set PUnit
li : LinearIndependent R Subtype.val
⊢ s = ∅
[PROOFSTEP]
by_contra h
[GOAL]
case h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
s : Set PUnit
li : LinearIndependent R Subtype.val
h : ¬s = ∅
⊢ False
[PROOFSTEP]
obtain ⟨a, ha⟩ := nonempty_iff_ne_empty.2 h
[GOAL]
case h.mk.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
s : Set PUnit
li : LinearIndependent R Subtype.val
h : ¬s = ∅
a : PUnit
ha : a ∈ s
⊢ False
[PROOFSTEP]
simpa using LinearIndependent.ne_zero (⟨a, ha⟩ : s) li
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
⊢ Module.rank R { x // x ∈ ⊥ } = 0
[PROOFSTEP]
have : (⊥ : Submodule R M) ≃ₗ[R] PUnit := botEquivPUnit
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
this : { x // x ∈ ⊥ } ≃ₗ[R] PUnit
⊢ Module.rank R { x // x ∈ ⊥ } = 0
[PROOFSTEP]
rw [this.rank_eq, rank_punit]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
s : Submodule R M
h : 0 < Module.rank R { x // x ∈ s }
eq : s = ⊥
⊢ False
[PROOFSTEP]
rw [eq, rank_bot] at h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
s : Submodule R M
h : 0 < 0
eq : s = ⊥
⊢ False
[PROOFSTEP]
exact lt_irrefl _ h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : IsNoetherian R M
v : ι → M
hv : LinearIndependent R v
⊢ Finite ι
[PROOFSTEP]
have hwf := isNoetherian_iff_wellFounded.mp (by infer_instance : IsNoetherian R M)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : IsNoetherian R M
v : ι → M
hv : LinearIndependent R v
⊢ IsNoetherian R M
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : IsNoetherian R M
v : ι → M
hv : LinearIndependent R v
hwf : WellFounded fun x x_1 => x > x_1
⊢ Finite ι
[PROOFSTEP]
refine' CompleteLattice.WellFounded.finite_of_independent hwf hv.independent_span_singleton fun i contra => _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : IsNoetherian R M
v : ι → M
hv : LinearIndependent R v
hwf : WellFounded fun x x_1 => x > x_1
i : ι
contra : span R {v i} = ⊥
⊢ False
[PROOFSTEP]
apply hv.ne_zero i
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : IsNoetherian R M
v : ι → M
hv : LinearIndependent R v
hwf : WellFounded fun x x_1 => x > x_1
i : ι
contra : span R {v i} = ⊥
⊢ v i = 0
[PROOFSTEP]
have : v i ∈ R ∙ v i := Submodule.mem_span_singleton_self (v i)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : IsNoetherian R M
v : ι → M
hv : LinearIndependent R v
hwf : WellFounded fun x x_1 => x > x_1
i : ι
contra : span R {v i} = ⊥
this : v i ∈ span R {v i}
⊢ v i = 0
[PROOFSTEP]
rwa [contra, Submodule.mem_bot] at this
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
⊢ Finite ι
[PROOFSTEP]
classical
haveI := hw.to_subtype
cases nonempty_fintype w
rw [← not_infinite_iff_finite]
intro i
let S : Finset ι := Finset.univ.sup fun x : w => (b.repr x).support
let bS : Set M := b '' S
have h : ∀ x ∈ w, x ∈ span R bS := by
intro x m
rw [← b.total_repr x, Finsupp.span_image_eq_map_total, Submodule.mem_map]
use b.repr x
simp only [and_true_iff, eq_self_iff_true, Finsupp.mem_supported]
change (b.repr x).support ≤ S
convert Finset.le_sup (α := Finset ι) (by simp : (⟨x, m⟩ : w) ∈ Finset.univ)
rfl
-- Thus this finite subset of the basis elements spans the entire module.
have k : span R bS = ⊤ :=
eq_top_iff.2
(le_trans s.ge (span_le.2 h))
-- Now there is some `x : ι` not in `S`, since `ι` is infinite.
obtain ⟨x, nm⟩ := Infinite.exists_not_mem_finset S
have k' : b x ∈ span R bS := by
rw [k]
exact mem_top
refine' b.linearIndependent.not_mem_span_image _ k'
exact nm
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
⊢ Finite ι
[PROOFSTEP]
haveI := hw.to_subtype
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
⊢ Finite ι
[PROOFSTEP]
cases nonempty_fintype w
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
⊢ Finite ι
[PROOFSTEP]
rw [← not_infinite_iff_finite]
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
⊢ ¬Infinite ι
[PROOFSTEP]
intro i
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
⊢ False
[PROOFSTEP]
let S : Finset ι := Finset.univ.sup fun x : w => (b.repr x).support
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
⊢ False
[PROOFSTEP]
let bS : Set M := b '' S
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
⊢ False
[PROOFSTEP]
have h : ∀ x ∈ w, x ∈ span R bS := by
intro x m
rw [← b.total_repr x, Finsupp.span_image_eq_map_total, Submodule.mem_map]
use b.repr x
simp only [and_true_iff, eq_self_iff_true, Finsupp.mem_supported]
change (b.repr x).support ≤ S
convert Finset.le_sup (α := Finset ι) (by simp : (⟨x, m⟩ : w) ∈ Finset.univ)
rfl
-- Thus this finite subset of the basis elements spans the entire module.
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
⊢ ∀ (x : M), x ∈ w → x ∈ span R bS
[PROOFSTEP]
intro x m
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ x ∈ span R bS
[PROOFSTEP]
rw [← b.total_repr x, Finsupp.span_image_eq_map_total, Submodule.mem_map]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ ∃ y, y ∈ Finsupp.supported R R ↑S ∧ ↑(Finsupp.total ι M R ↑b) y = ↑(Finsupp.total ι M R ↑b) (↑b.repr x)
[PROOFSTEP]
use b.repr x
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ ↑b.repr x ∈ Finsupp.supported R R ↑S ∧ ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = ↑(Finsupp.total ι M R ↑b) (↑b.repr x)
[PROOFSTEP]
simp only [and_true_iff, eq_self_iff_true, Finsupp.mem_supported]
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ ↑(↑b.repr x).support ⊆ ↑(Finset.sup Finset.univ fun x => (↑b.repr ↑x).support)
[PROOFSTEP]
change (b.repr x).support ≤ S
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ (↑b.repr x).support ≤ S
[PROOFSTEP]
convert Finset.le_sup (α := Finset ι) (by simp : (⟨x, m⟩ : w) ∈ Finset.univ)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ { val := x, property := m } ∈ Finset.univ
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
x : M
m : x ∈ w
⊢ (↑b.repr x).support = (↑b.repr ↑{ val := x, property := m }).support
[PROOFSTEP]
rfl
-- Thus this finite subset of the basis elements spans the entire module.
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
⊢ False
[PROOFSTEP]
have k : span R bS = ⊤ :=
eq_top_iff.2
(le_trans s.ge (span_le.2 h))
-- Now there is some `x : ι` not in `S`, since `ι` is infinite.
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
k : span R bS = ⊤
⊢ False
[PROOFSTEP]
obtain ⟨x, nm⟩ := Infinite.exists_not_mem_finset S
[GOAL]
case intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
k : span R bS = ⊤
x : ι
nm : ¬x ∈ S
⊢ False
[PROOFSTEP]
have k' : b x ∈ span R bS := by
rw [k]
exact mem_top
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
k : span R bS = ⊤
x : ι
nm : ¬x ∈ S
⊢ ↑b x ∈ span R bS
[PROOFSTEP]
rw [k]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
k : span R bS = ⊤
x : ι
nm : ¬x ∈ S
⊢ ↑b x ∈ ⊤
[PROOFSTEP]
exact mem_top
[GOAL]
case intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
k : span R bS = ⊤
x : ι
nm : ¬x ∈ S
k' : ↑b x ∈ span R bS
⊢ False
[PROOFSTEP]
refine' b.linearIndependent.not_mem_span_image _ k'
[GOAL]
case intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
w : Set M
hw : Set.Finite w
s : span R w = ⊤
ι : Type w
b : Basis ι R M
this : Finite ↑w
val✝ : Fintype ↑w
i : Infinite ι
S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support
bS : Set M := ↑b '' ↑S
h : ∀ (x : M), x ∈ w → x ∈ span R bS
k : span R bS = ⊤
x : ι
nm : ¬x ∈ S
k' : ↑b x ∈ span R bS
⊢ ¬x ∈ ↑S
[PROOFSTEP]
exact nm
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
⊢ ⋃ (k : κ), ↑(↑b.repr (v k)).support = Set.univ
[PROOFSTEP]
by_contra h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
h : ¬⋃ (k : κ), ↑(↑b.repr (v k)).support = Set.univ
⊢ False
[PROOFSTEP]
simp only [← Ne.def, ne_univ_iff_exists_not_mem, mem_iUnion, not_exists_not, Finsupp.mem_support_iff, Finset.mem_coe] at
h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
h : ∃ a, ∀ (x : κ), ↑(↑b.repr (v x)) a = 0
⊢ False
[PROOFSTEP]
obtain ⟨b', w⟩ := h
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
⊢ False
[PROOFSTEP]
let v' : Option κ → M := fun o => o.elim (b b') v
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
⊢ False
[PROOFSTEP]
have r : range v ⊆ range v' := by
rintro - ⟨k, rfl⟩
use some k
rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
⊢ range v ⊆ range v'
[PROOFSTEP]
rintro - ⟨k, rfl⟩
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
k : κ
⊢ v k ∈ range v'
[PROOFSTEP]
use some k
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
k : κ
⊢ v' (some k) = v k
[PROOFSTEP]
rfl
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
⊢ False
[PROOFSTEP]
have r' : b b' ∉ range v := by
rintro ⟨k, p⟩
simpa [w] using congr_arg (fun m => (b.repr m) b') p
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
⊢ ¬↑b b' ∈ range v
[PROOFSTEP]
rintro ⟨k, p⟩
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
k : κ
p : v k = ↑b b'
⊢ False
[PROOFSTEP]
simpa [w] using congr_arg (fun m => (b.repr m) b') p
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
⊢ False
[PROOFSTEP]
have r'' : range v ≠ range v' := by
intro e
have p : b b' ∈ range v' := by
use none
rfl
rw [← e] at p
exact r' p
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
⊢ range v ≠ range v'
[PROOFSTEP]
intro e
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
e : range v = range v'
⊢ False
[PROOFSTEP]
have p : b b' ∈ range v' := by
use none
rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
e : range v = range v'
⊢ ↑b b' ∈ range v'
[PROOFSTEP]
use none
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
e : range v = range v'
⊢ v' none = ↑b b'
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
e : range v = range v'
p : ↑b b' ∈ range v'
⊢ False
[PROOFSTEP]
rw [← e] at p
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
e : range v = range v'
p : ↑b b' ∈ range v
⊢ False
[PROOFSTEP]
exact r' p
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
⊢ False
[PROOFSTEP]
have inj' : Injective v' := by
rintro (_ | k) (_ | k) z
· rfl
· exfalso
exact r' ⟨k, z.symm⟩
· exfalso
exact r' ⟨k, z⟩
· congr
exact i.injective z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
⊢ Injective v'
[PROOFSTEP]
rintro (_ | k) (_ | k) z
[GOAL]
case none.none
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
z : v' none = v' none
⊢ none = none
[PROOFSTEP]
rfl
[GOAL]
case none.some
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
k : κ
z : v' none = v' (some k)
⊢ none = some k
[PROOFSTEP]
exfalso
[GOAL]
case none.some.h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
k : κ
z : v' none = v' (some k)
⊢ False
[PROOFSTEP]
exact r' ⟨k, z.symm⟩
[GOAL]
case some.none
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
k : κ
z : v' (some k) = v' none
⊢ some k = none
[PROOFSTEP]
exfalso
[GOAL]
case some.none.h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
k : κ
z : v' (some k) = v' none
⊢ False
[PROOFSTEP]
exact r' ⟨k, z⟩
[GOAL]
case some.some
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
k✝ k : κ
z : v' (some k✝) = v' (some k)
⊢ some k✝ = some k
[PROOFSTEP]
congr
[GOAL]
case some.some.e_val
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
k✝ k : κ
z : v' (some k✝) = v' (some k)
⊢ k✝ = k
[PROOFSTEP]
exact i.injective z
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
⊢ False
[PROOFSTEP]
have i' : LinearIndependent R ((↑) : range v' → M) :=
by
rw [linearIndependent_subtype_range inj', linearIndependent_iff]
intro l z
rw [Finsupp.total_option] at z
simp only [Option.elim'] at z
change _ + Finsupp.total κ M R v l.some = 0 at z
have l₀ : l none = 0 := by
rw [← eq_neg_iff_add_eq_zero] at z
replace z := neg_eq_iff_eq_neg.mpr z
apply_fun fun x => b.repr x b' at z
simp only [repr_self, LinearEquiv.map_smul, mul_one, Finsupp.single_eq_same, Pi.neg_apply, Finsupp.smul_single',
LinearEquiv.map_neg, Finsupp.coe_neg] at z
erw [FunLike.congr_fun (Finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b'] at z
simpa [Finsupp.total_apply, w] using z
have l₁ : l.some = 0 := by
rw [l₀, zero_smul, zero_add] at z
exact linearIndependent_iff.mp i _ z
ext (_ | a)
· simp only [l₀, Finsupp.coe_zero, Pi.zero_apply]
· erw [FunLike.congr_fun l₁ a]
simp only [Finsupp.coe_zero, Pi.zero_apply]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
rw [linearIndependent_subtype_range inj', linearIndependent_iff]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
⊢ ∀ (l : Option κ →₀ R), ↑(Finsupp.total (Option κ) M R v') l = 0 → l = 0
[PROOFSTEP]
intro l z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑(Finsupp.total (Option κ) M R v') l = 0
⊢ l = 0
[PROOFSTEP]
rw [Finsupp.total_option] at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • v' none + ↑(Finsupp.total κ M R (v' ∘ some)) (Finsupp.some l) = 0
⊢ l = 0
[PROOFSTEP]
simp only [Option.elim'] at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z :
↑l none • Option.elim none (↑b b') v +
↑(Finsupp.total κ M R ((fun o => Option.elim o (↑b b') v) ∘ some)) (Finsupp.some l) =
0
⊢ l = 0
[PROOFSTEP]
change _ + Finsupp.total κ M R v l.some = 0 at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
⊢ l = 0
[PROOFSTEP]
have l₀ : l none = 0 := by
rw [← eq_neg_iff_add_eq_zero] at z
replace z := neg_eq_iff_eq_neg.mpr z
apply_fun fun x => b.repr x b' at z
simp only [repr_self, LinearEquiv.map_smul, mul_one, Finsupp.single_eq_same, Pi.neg_apply, Finsupp.smul_single',
LinearEquiv.map_neg, Finsupp.coe_neg] at z
erw [FunLike.congr_fun (Finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b'] at z
simpa [Finsupp.total_apply, w] using z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
⊢ ↑l none = 0
[PROOFSTEP]
rw [← eq_neg_iff_add_eq_zero] at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v = -↑(Finsupp.total κ M R v) (Finsupp.some l)
⊢ ↑l none = 0
[PROOFSTEP]
replace z := neg_eq_iff_eq_neg.mpr z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : -(↑l none • Option.elim none (↑b b') v) = ↑(Finsupp.total κ M R v) (Finsupp.some l)
⊢ ↑l none = 0
[PROOFSTEP]
apply_fun fun x => b.repr x b' at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑(↑b.repr (-(↑l none • Option.elim none (↑b b') v))) b' = ↑(↑b.repr (↑(Finsupp.total κ M R v) (Finsupp.some l))) b'
⊢ ↑l none = 0
[PROOFSTEP]
simp only [repr_self, LinearEquiv.map_smul, mul_one, Finsupp.single_eq_same, Pi.neg_apply, Finsupp.smul_single',
LinearEquiv.map_neg, Finsupp.coe_neg] at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : -↑(↑l none • ↑b.repr (Option.elim none (↑b b') v)) b' = ↑(↑b.repr (↑(Finsupp.total κ M R v) (Finsupp.some l))) b'
⊢ ↑l none = 0
[PROOFSTEP]
erw [FunLike.congr_fun (Finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b'] at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z :
-↑(↑l none • ↑b.repr (Option.elim none (↑b b') v)) b' =
↑(↑(Finsupp.total κ (ι →₀ R) R (↑↑b.repr ∘ v)) (Finsupp.some l)) b'
⊢ ↑l none = 0
[PROOFSTEP]
simpa [Finsupp.total_apply, w] using z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
⊢ l = 0
[PROOFSTEP]
have l₁ : l.some = 0 := by
rw [l₀, zero_smul, zero_add] at z
exact linearIndependent_iff.mp i _ z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
⊢ Finsupp.some l = 0
[PROOFSTEP]
rw [l₀, zero_smul, zero_add] at z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
⊢ Finsupp.some l = 0
[PROOFSTEP]
exact linearIndependent_iff.mp i _ z
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
l₁ : Finsupp.some l = 0
⊢ l = 0
[PROOFSTEP]
ext (_ | a)
[GOAL]
case h.none
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
l₁ : Finsupp.some l = 0
⊢ ↑l none = ↑0 none
[PROOFSTEP]
simp only [l₀, Finsupp.coe_zero, Pi.zero_apply]
[GOAL]
case h.some
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
l₁ : Finsupp.some l = 0
a : κ
⊢ ↑l (some a) = ↑0 (some a)
[PROOFSTEP]
erw [FunLike.congr_fun l₁ a]
[GOAL]
case h.some
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
l : Option κ →₀ R
z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0
l₀ : ↑l none = 0
l₁ : Finsupp.some l = 0
a : κ
⊢ ↑0 a = ↑0 (some a)
[PROOFSTEP]
simp only [Finsupp.coe_zero, Pi.zero_apply]
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
i' : LinearIndependent R Subtype.val
⊢ False
[PROOFSTEP]
dsimp [LinearIndependent.Maximal] at m
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : ∀ (s : Set M), LinearIndependent R Subtype.val → range v ⊆ s → range v = s
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
i' : LinearIndependent R Subtype.val
⊢ False
[PROOFSTEP]
specialize m (range v') i' r
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁷ : Ring R
M : Type v
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
M' : Type v'
inst✝⁴ : AddCommGroup M'
inst✝³ : Module R M'
M₁ : Type v
inst✝² : AddCommGroup M₁
inst✝¹ : Module R M₁
inst✝ : Nontrivial R
ι : Type w
b : Basis ι R M
κ : Type w'
v : κ → M
i : LinearIndependent R v
b' : ι
w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0
v' : Option κ → M := fun o => Option.elim o (↑b b') v
r : range v ⊆ range v'
r' : ¬↑b b' ∈ range v
r'' : range v ≠ range v'
inj' : Injective v'
i' : LinearIndependent R Subtype.val
m : range v = range v'
⊢ False
[PROOFSTEP]
exact r'' m
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
ι : Type w
b : Basis ι R M
inst✝ : Infinite ι
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
⊢ lift #ι ≤ lift #κ
[PROOFSTEP]
let Φ := fun k : κ => (b.repr (v k)).support
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
ι : Type w
b : Basis ι R M
inst✝ : Infinite ι
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
⊢ lift #ι ≤ lift #κ
[PROOFSTEP]
have w₁ : #ι ≤ #(Set.range Φ) := by
apply Cardinal.le_range_of_union_finset_eq_top
exact union_support_maximal_linearIndependent_eq_range_basis b v i m
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
ι : Type w
b : Basis ι R M
inst✝ : Infinite ι
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
⊢ #ι ≤ #↑(range Φ)
[PROOFSTEP]
apply Cardinal.le_range_of_union_finset_eq_top
[GOAL]
case w
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
ι : Type w
b : Basis ι R M
inst✝ : Infinite ι
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
⊢ ⋃ (a : κ), ↑(Φ a) = ⊤
[PROOFSTEP]
exact union_support_maximal_linearIndependent_eq_range_basis b v i m
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
ι : Type w
b : Basis ι R M
inst✝ : Infinite ι
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
w₁ : #ι ≤ #↑(range Φ)
⊢ lift #ι ≤ lift #κ
[PROOFSTEP]
have w₂ : Cardinal.lift.{w'} #(Set.range Φ) ≤ Cardinal.lift.{w} #κ := Cardinal.mk_range_le_lift
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
ι : Type w
b : Basis ι R M
inst✝ : Infinite ι
κ : Type w'
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
w₁ : #ι ≤ #↑(range Φ)
w₂ : lift #↑(range Φ) ≤ lift #κ
⊢ lift #ι ≤ lift #κ
[PROOFSTEP]
exact (Cardinal.lift_le.mpr w₁).trans w₂
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
⊢ lift #{ i // V i ≠ ⊥ } ≤ lift (Module.rank R M)
[PROOFSTEP]
set I := { i : ι // V i ≠ ⊥ }
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
⊢ lift #I ≤ lift (Module.rank R M)
[PROOFSTEP]
have hI : ∀ i : I, ∃ v ∈ V i, v ≠ (0 : M) := by
intro i
rw [← Submodule.ne_bot_iff]
exact i.prop
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
⊢ ∀ (i : I), ∃ v, v ∈ V ↑i ∧ v ≠ 0
[PROOFSTEP]
intro i
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
i : I
⊢ ∃ v, v ∈ V ↑i ∧ v ≠ 0
[PROOFSTEP]
rw [← Submodule.ne_bot_iff]
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
i : I
⊢ V ↑i ≠ ⊥
[PROOFSTEP]
exact i.prop
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
hI : ∀ (i : I), ∃ v, v ∈ V ↑i ∧ v ≠ 0
⊢ lift #I ≤ lift (Module.rank R M)
[PROOFSTEP]
choose v hvV hv using hI
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
v : I → M
hvV : ∀ (i : I), v i ∈ V ↑i
hv : ∀ (i : I), v i ≠ 0
⊢ lift #I ≤ lift (Module.rank R M)
[PROOFSTEP]
have : LinearIndependent R v := (hV.comp Subtype.coe_injective).linearIndependent _ hvV hv
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁸ : Ring R
M : Type v
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
M' : Type v'
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
M₁ : Type v
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : Nontrivial R
inst✝ : NoZeroSMulDivisors R M
V : ι → Submodule R M
hV : Independent V
I : Type w := { i // V i ≠ ⊥ }
v : I → M
hvV : ∀ (i : I), v i ∈ V ↑i
hv : ∀ (i : I), v i ≠ 0
this : LinearIndependent R v
⊢ lift #I ≤ lift (Module.rank R M)
[PROOFSTEP]
exact cardinal_lift_le_rank_of_linearIndependent' this
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
⊢ Module.rank R M = 1
[PROOFSTEP]
haveI := Module.subsingleton R M
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this : Subsingleton M
⊢ Module.rank R M = 1
[PROOFSTEP]
have : Nonempty { s : Set M // LinearIndependent R ((↑) : s → M) } := ⟨⟨∅, linearIndependent_empty _ _⟩⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
⊢ Module.rank R M = 1
[PROOFSTEP]
rw [Module.rank_def, ciSup_eq_of_forall_le_of_forall_lt_exists_gt]
[GOAL]
case h₁
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ 1
[PROOFSTEP]
rintro ⟨s, hs⟩
[GOAL]
case h₁.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
s : Set M
hs : LinearIndependent R Subtype.val
⊢ #↑↑{ val := s, property := hs } ≤ 1
[PROOFSTEP]
rw [Cardinal.mk_le_one_iff_set_subsingleton]
[GOAL]
case h₁.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
s : Set M
hs : LinearIndependent R Subtype.val
⊢ Set.Subsingleton ↑{ val := s, property := hs }
[PROOFSTEP]
apply subsingleton_of_subsingleton
[GOAL]
case h₂
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
⊢ ∀ (w : Cardinal.{v}), w < 1 → ∃ i, w < #↑↑i
[PROOFSTEP]
intro w hw
[GOAL]
case h₂
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
w : Cardinal.{v}
hw : w < 1
⊢ ∃ i, w < #↑↑i
[PROOFSTEP]
refine' ⟨⟨{0}, _⟩, _⟩
[GOAL]
case h₂.refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
w : Cardinal.{v}
hw : w < 1
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
rw [linearIndependent_iff']
[GOAL]
case h₂.refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
w : Cardinal.{v}
hw : w < 1
⊢ ∀ (s : Finset { x // x ∈ {0} }) (g : { x // x ∈ {0} } → R),
∑ i in s, g i • ↑i = 0 → ∀ (i : { x // x ∈ {0} }), i ∈ s → g i = 0
[PROOFSTEP]
intros
[GOAL]
case h₂.refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
w : Cardinal.{v}
hw : w < 1
s✝ : Finset { x // x ∈ {0} }
g✝ : { x // x ∈ {0} } → R
a✝¹ : ∑ i in s✝, g✝ i • ↑i = 0
i✝ : { x // x ∈ {0} }
a✝ : i✝ ∈ s✝
⊢ g✝ i✝ = 0
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case h₂.refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : Subsingleton R
this✝ : Subsingleton M
this : Nonempty { s // LinearIndependent R Subtype.val }
w : Cardinal.{v}
hw : w < 1
⊢ w < #↑↑{ val := {0}, property := (_ : LinearIndependent R Subtype.val) }
[PROOFSTEP]
exact hw.trans_eq (Cardinal.mk_singleton _).symm
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
⊢ 0 < Module.rank R M
[PROOFSTEP]
obtain ⟨x, hx⟩ := exists_ne (0 : M)
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
x : M
hx : x ≠ 0
⊢ 0 < Module.rank R M
[PROOFSTEP]
suffices 1 ≤ Module.rank R M by exact zero_lt_one.trans_le this
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
x : M
hx : x ≠ 0
this : 1 ≤ Module.rank R M
⊢ 0 < Module.rank R M
[PROOFSTEP]
exact zero_lt_one.trans_le this
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
x : M
hx : x ≠ 0
⊢ 1 ≤ Module.rank R M
[PROOFSTEP]
letI := Module.nontrivial R M
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
x : M
hx : x ≠ 0
this : Nontrivial R := Module.nontrivial R M
⊢ 1 ≤ Module.rank R M
[PROOFSTEP]
suffices LinearIndependent R fun y : ({ x } : Set M) => (y : M) by
simpa using cardinal_le_rank_of_linearIndependent this
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
x : M
hx : x ≠ 0
this✝ : Nontrivial R := Module.nontrivial R M
this : LinearIndependent R fun y => ↑y
⊢ 1 ≤ Module.rank R M
[PROOFSTEP]
simpa using cardinal_le_rank_of_linearIndependent this
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial M
x : M
hx : x ≠ 0
this : Nontrivial R := Module.nontrivial R M
⊢ LinearIndependent R fun y => ↑y
[PROOFSTEP]
exact linearIndependent_singleton hx
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
⊢ Module.rank R M = 0 ↔ ∀ (x : M), x = 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
h : Module.rank R M = 0
⊢ ∀ (x : M), x = 0
[PROOFSTEP]
contrapose! h
[GOAL]
case refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
h : ∃ x, x ≠ 0
⊢ Module.rank R M ≠ 0
[PROOFSTEP]
obtain ⟨x, hx⟩ := h
[GOAL]
case refine'_1.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
x : M
hx : x ≠ 0
⊢ Module.rank R M ≠ 0
[PROOFSTEP]
letI : Nontrivial M := nontrivial_of_ne _ _ hx
[GOAL]
case refine'_1.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
x : M
hx : x ≠ 0
this : Nontrivial M := nontrivial_of_ne x 0 hx
⊢ Module.rank R M ≠ 0
[PROOFSTEP]
exact rank_pos.ne'
[GOAL]
case refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
h : ∀ (x : M), x = 0
⊢ Module.rank R M = 0
[PROOFSTEP]
have : (⊤ : Submodule R M) = ⊥ := by
ext x
simp [h x]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
h : ∀ (x : M), x = 0
⊢ ⊤ = ⊥
[PROOFSTEP]
ext x
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
h : ∀ (x : M), x = 0
x : M
⊢ x ∈ ⊤ ↔ x ∈ ⊥
[PROOFSTEP]
simp [h x]
[GOAL]
case refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
h : ∀ (x : M), x = 0
this : ⊤ = ⊥
⊢ Module.rank R M = 0
[PROOFSTEP]
rw [← rank_top, this, rank_bot]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
⊢ 0 < Module.rank R M ↔ ∃ x, x ≠ 0
[PROOFSTEP]
rw [← not_iff_not]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : Nontrivial R
⊢ ¬0 < Module.rank R M ↔ ¬∃ x, x ≠ 0
[PROOFSTEP]
simpa using rank_zero_iff_forall_zero
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
⊢ lift #ι = lift #ι'
[PROOFSTEP]
classical
haveI := nontrivial_of_invariantBasisNumber R
cases fintypeOrInfinite ι
·
-- `v` is a finite basis, so by `basis_finite_of_finite_spans` so is `v'`.
-- haveI : Finite (range v) := Set.finite_range v
haveI := basis_finite_of_finite_spans _ (Set.finite_range v) v.span_eq v'
cases nonempty_fintype ι'
rw [Cardinal.mk_fintype, Cardinal.mk_fintype]
simp only [Cardinal.lift_natCast, Cardinal.natCast_inj]
-- Now we can use invariant basis number to show they have the same cardinality.
apply card_eq_of_linearEquiv R
exact
(Finsupp.linearEquivFunOnFinite R R ι).symm.trans v.repr.symm ≪≫ₗ v'.repr ≪≫ₗ Finsupp.linearEquivFunOnFinite R R ι'
·
-- `v` is an infinite basis,
-- so by `infinite_basis_le_maximal_linearIndependent`, `v'` is at least as big,
-- and then applying `infinite_basis_le_maximal_linearIndependent` again
-- we see they have the same cardinality.
have w₁ := infinite_basis_le_maximal_linearIndependent' v _ v'.linearIndependent v'.maximal
rcases Cardinal.lift_mk_le'.mp w₁ with ⟨f⟩
haveI : Infinite ι' := Infinite.of_injective f f.2
have w₂ := infinite_basis_le_maximal_linearIndependent' v' _ v.linearIndependent v.maximal
exact le_antisymm w₁ w₂
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
⊢ lift #ι = lift #ι'
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this : Nontrivial R
⊢ lift #ι = lift #ι'
[PROOFSTEP]
cases fintypeOrInfinite ι
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this : Nontrivial R
val✝ : Fintype ι
⊢ lift #ι = lift #ι'
[PROOFSTEP]
haveI := basis_finite_of_finite_spans _ (Set.finite_range v) v.span_eq v'
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝ : Fintype ι
this : Finite ι'
⊢ lift #ι = lift #ι'
[PROOFSTEP]
cases nonempty_fintype ι'
[GOAL]
case inl.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝¹ : Fintype ι
this : Finite ι'
val✝ : Fintype ι'
⊢ lift #ι = lift #ι'
[PROOFSTEP]
rw [Cardinal.mk_fintype, Cardinal.mk_fintype]
[GOAL]
case inl.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝¹ : Fintype ι
this : Finite ι'
val✝ : Fintype ι'
⊢ lift ↑(Fintype.card ι) = lift ↑(Fintype.card ι')
[PROOFSTEP]
simp only [Cardinal.lift_natCast, Cardinal.natCast_inj]
-- Now we can use invariant basis number to show they have the same cardinality.
[GOAL]
case inl.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝¹ : Fintype ι
this : Finite ι'
val✝ : Fintype ι'
⊢ Fintype.card ι = Fintype.card ι'
[PROOFSTEP]
apply card_eq_of_linearEquiv R
[GOAL]
case inl.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝¹ : Fintype ι
this : Finite ι'
val✝ : Fintype ι'
⊢ (ι → R) ≃ₗ[R] ι' → R
[PROOFSTEP]
exact
(Finsupp.linearEquivFunOnFinite R R ι).symm.trans v.repr.symm ≪≫ₗ v'.repr ≪≫ₗ Finsupp.linearEquivFunOnFinite R R ι'
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this : Nontrivial R
val✝ : Infinite ι
⊢ lift #ι = lift #ι'
[PROOFSTEP]
have w₁ := infinite_basis_le_maximal_linearIndependent' v _ v'.linearIndependent v'.maximal
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this : Nontrivial R
val✝ : Infinite ι
w₁ : lift #ι ≤ lift #ι'
⊢ lift #ι = lift #ι'
[PROOFSTEP]
rcases Cardinal.lift_mk_le'.mp w₁ with ⟨f⟩
[GOAL]
case inr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this : Nontrivial R
val✝ : Infinite ι
w₁ : lift #ι ≤ lift #ι'
f : ι ↪ ι'
⊢ lift #ι = lift #ι'
[PROOFSTEP]
haveI : Infinite ι' := Infinite.of_injective f f.2
[GOAL]
case inr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝ : Infinite ι
w₁ : lift #ι ≤ lift #ι'
f : ι ↪ ι'
this : Infinite ι'
⊢ lift #ι = lift #ι'
[PROOFSTEP]
have w₂ := infinite_basis_le_maximal_linearIndependent' v' _ v.linearIndependent v.maximal
[GOAL]
case inr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : InvariantBasisNumber R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
v' : Basis ι' R M
this✝ : Nontrivial R
val✝ : Infinite ι
w₁ : lift #ι ≤ lift #ι'
f : ι ↪ ι'
this : Infinite ι'
w₂ : lift #ι' ≤ lift #ι
⊢ lift #ι = lift #ι'
[PROOFSTEP]
exact le_antisymm w₁ w₂
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ Fintype.card ι ≤ Fintype.card ↑w
[PROOFSTEP]
fapply card_le_of_surjective' R
[GOAL]
case f
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ (↑w →₀ R) →ₗ[R] ι →₀ R
[PROOFSTEP]
exact b.repr.toLinearMap.comp (Finsupp.total w M R (↑))
[GOAL]
case i
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ Surjective ↑(LinearMap.comp (↑b.repr) (Finsupp.total (↑w) M R Subtype.val))
[PROOFSTEP]
apply Surjective.comp (g := b.repr.toLinearMap)
[GOAL]
case i.hg
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ Surjective ↑↑b.repr
case i.hf
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ Surjective fun x => ↑(Finsupp.total (↑w) M R Subtype.val) x
[PROOFSTEP]
apply LinearEquiv.surjective
[GOAL]
case i.hf
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ Surjective fun x => ↑(Finsupp.total (↑w) M R Subtype.val) x
[PROOFSTEP]
rw [← LinearMap.range_eq_top, Finsupp.range_total]
[GOAL]
case i.hf
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : RankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ span R (range Subtype.val) = ⊤
[PROOFSTEP]
simpa using s
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : RankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : RankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
this : Nontrivial R
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
haveI := basis_finite_of_finite_spans w (toFinite _) s b
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : RankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
this✝ : Nontrivial R
this : Finite ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : RankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
this✝ : Nontrivial R
this : Finite ι
val✝ : Fintype ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
rw [Cardinal.mk_fintype ι]
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : RankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
this✝ : Nontrivial R
this : Finite ι
val✝ : Fintype ι
⊢ ↑(Fintype.card ι) ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
simp only [Cardinal.natCast_le]
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : RankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
this✝ : Nontrivial R
this : Finite ι
val✝ : Fintype ι
⊢ Fintype.card ι ≤ Fintype.card ↑w
[PROOFSTEP]
exact Basis.le_span'' b s
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
cases fintypeOrInfinite J
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Fintype ↑J
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
rw [← Cardinal.lift_le, Cardinal.mk_range_eq_of_injective v.injective, Cardinal.mk_fintype J]
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Fintype ↑J
⊢ lift #ι ≤ lift ↑(Fintype.card ↑J)
[PROOFSTEP]
convert Cardinal.lift_le.{v}.2 (basis_le_span' v hJ)
[GOAL]
case h.e'_4
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Fintype ↑J
⊢ lift ↑(Fintype.card ↑J) = lift ↑(Fintype.card ↑J)
[PROOFSTEP]
simp
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
let S : J → Set ι := fun j => ↑(v.repr j).support
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
let S' : J → Set M := fun j => v '' S j
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
have hs : range v ⊆ ⋃ j, S' j := by
intro b hb
rcases mem_range.1 hb with ⟨i, hi⟩
have : span R J ≤ comap v.repr.toLinearMap (Finsupp.supported R R (⋃ j, S j)) :=
span_le.2 fun j hj x hx => ⟨_, ⟨⟨j, hj⟩, rfl⟩, hx⟩
rw [hJ] at this
replace : v.repr (v i) ∈ Finsupp.supported R R (⋃ j, S j) := this trivial
rw [v.repr_self, Finsupp.mem_supported, Finsupp.support_single_ne_zero _ one_ne_zero] at this
· subst b
rcases mem_iUnion.1 (this (Finset.mem_singleton_self _)) with ⟨j, hj⟩
exact mem_iUnion.2 ⟨j, (mem_image _ _ _).2 ⟨i, hj, rfl⟩⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
⊢ range ↑v ⊆ ⋃ (j : ↑J), S' j
[PROOFSTEP]
intro b hb
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
b : M
hb : b ∈ range ↑v
⊢ b ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
rcases mem_range.1 hb with ⟨i, hi⟩
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
b : M
hb : b ∈ range ↑v
i : ι
hi : ↑v i = b
⊢ b ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
have : span R J ≤ comap v.repr.toLinearMap (Finsupp.supported R R (⋃ j, S j)) :=
span_le.2 fun j hj x hx => ⟨_, ⟨⟨j, hj⟩, rfl⟩, hx⟩
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
b : M
hb : b ∈ range ↑v
i : ι
hi : ↑v i = b
this : span R J ≤ comap (↑v.repr) (Finsupp.supported R R (⋃ (j : ↑J), S j))
⊢ b ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
rw [hJ] at this
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
b : M
hb : b ∈ range ↑v
i : ι
hi : ↑v i = b
this : ⊤ ≤ comap (↑v.repr) (Finsupp.supported R R (⋃ (j : ↑J), S j))
⊢ b ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
replace : v.repr (v i) ∈ Finsupp.supported R R (⋃ j, S j) := this trivial
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
b : M
hb : b ∈ range ↑v
i : ι
hi : ↑v i = b
this : ↑v.repr (↑v i) ∈ Finsupp.supported R R (⋃ (j : ↑J), S j)
⊢ b ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
rw [v.repr_self, Finsupp.mem_supported, Finsupp.support_single_ne_zero _ one_ne_zero] at this
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
b : M
hb : b ∈ range ↑v
i : ι
hi : ↑v i = b
this : ↑{i} ⊆ ⋃ (j : ↑J), S j
⊢ b ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
subst b
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
i : ι
this : ↑{i} ⊆ ⋃ (j : ↑J), S j
hb : ↑v i ∈ range ↑v
⊢ ↑v i ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
rcases mem_iUnion.1 (this (Finset.mem_singleton_self _)) with ⟨j, hj⟩
[GOAL]
case intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
i : ι
this : ↑{i} ⊆ ⋃ (j : ↑J), S j
hb : ↑v i ∈ range ↑v
j : ↑J
hj : i ∈ S j
⊢ ↑v i ∈ ⋃ (j : ↑J), S' j
[PROOFSTEP]
exact mem_iUnion.2 ⟨j, (mem_image _ _ _).2 ⟨i, hj, rfl⟩⟩
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
hs : range ↑v ⊆ ⋃ (j : ↑J), S' j
⊢ #↑(range ↑v) ≤ #↑J
[PROOFSTEP]
refine' le_of_not_lt fun IJ => _
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
hs : range ↑v ⊆ ⋃ (j : ↑J), S' j
IJ : #↑J < #↑(range ↑v)
⊢ False
[PROOFSTEP]
suffices #(⋃ j, S' j) < #(range v) by exact not_le_of_lt this ⟨Set.embeddingOfSubset _ _ hs⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this✝ : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
hs : range ↑v ⊆ ⋃ (j : ↑J), S' j
IJ : #↑J < #↑(range ↑v)
this : #↑(⋃ (j : ↑J), S' j) < #↑(range ↑v)
⊢ False
[PROOFSTEP]
exact not_le_of_lt this ⟨Set.embeddingOfSubset _ _ hs⟩
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
hs : range ↑v ⊆ ⋃ (j : ↑J), S' j
IJ : #↑J < #↑(range ↑v)
⊢ #↑(⋃ (j : ↑J), S' j) < #↑(range ↑v)
[PROOFSTEP]
refine' lt_of_le_of_lt (le_trans Cardinal.mk_iUnion_le_sum_mk (Cardinal.sum_le_sum _ (fun _ => ℵ₀) _)) _
[GOAL]
case inr.refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
hs : range ↑v ⊆ ⋃ (j : ↑J), S' j
IJ : #↑J < #↑(range ↑v)
⊢ ∀ (i : ↑J), #↑(S' i) ≤ (fun x => ℵ₀) i
[PROOFSTEP]
exact fun j => (Cardinal.lt_aleph0_of_finite _).le
[GOAL]
case inr.refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : RankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
J : Set M
v : Basis ι R M
hJ : span R J = ⊤
this : Nontrivial R
val✝ : Infinite ↑J
S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support
S' : ↑J → Set M := fun j => ↑v '' S j
hs : range ↑v ⊆ ⋃ (j : ↑J), S' j
IJ : #↑J < #↑(range ↑v)
⊢ (sum fun x => ℵ₀) < #↑(range ↑v)
[PROOFSTEP]
simpa
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
⊢ Fintype.card ι ≤ Fintype.card ↑w
[PROOFSTEP]
fapply card_le_of_injective' R
[GOAL]
case f
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
⊢ (ι →₀ R) →ₗ[R] ↑w →₀ R
[PROOFSTEP]
apply Finsupp.total
[GOAL]
case f.v
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
⊢ ι → ↑w →₀ R
[PROOFSTEP]
exact fun i => Span.repr R w ⟨v i, s (mem_range_self i)⟩
[GOAL]
case i
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
⊢ Injective ↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) })
[PROOFSTEP]
intro f g h
[GOAL]
case i
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
f g : ι →₀ R
h :
↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) f =
↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) g
⊢ f = g
[PROOFSTEP]
apply_fun Finsupp.total w M R (↑) at h
[GOAL]
case i
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
f g : ι →₀ R
h :
↑(Finsupp.total (↑w) M R Subtype.val)
(↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) f) =
↑(Finsupp.total (↑w) M R Subtype.val)
(↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) g)
⊢ f = g
[PROOFSTEP]
simp only [Finsupp.total_total, Submodule.coe_mk, Span.finsupp_total_repr] at h
[GOAL]
case i
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
f g : ι →₀ R
h : ↑(Finsupp.total ι M R fun b => v b) f = ↑(Finsupp.total ι M R fun b => v b) g
⊢ f = g
[PROOFSTEP]
rw [← sub_eq_zero, ← LinearMap.map_sub] at h
[GOAL]
case i
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
f g : ι →₀ R
h✝ : ↑(Finsupp.total ι M R fun b => v b) f = ↑(Finsupp.total ι M R fun b => v b) g
h : ↑(Finsupp.total ι M R fun b => v b) (f - g) = 0
⊢ f = g
[PROOFSTEP]
exact sub_eq_zero.mp (linearIndependent_iff.mp i _ h)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
t : Finset ι
⊢ Finset.card t ≤ Fintype.card ↑w
[PROOFSTEP]
let v' := fun x : (t : Set ι) => v x
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
t : Finset ι
v' : ↑↑t → M := fun x => v ↑x
⊢ Finset.card t ≤ Fintype.card ↑w
[PROOFSTEP]
have i' : LinearIndependent R v' := i.comp _ Subtype.val_injective
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
t : Finset ι
v' : ↑↑t → M := fun x => v ↑x
i' : LinearIndependent R v'
⊢ Finset.card t ≤ Fintype.card ↑w
[PROOFSTEP]
have s' : range v' ≤ span R w := (range_comp_subset_range _ _).trans s
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
t : Finset ι
v' : ↑↑t → M := fun x => v ↑x
i' : LinearIndependent R v'
s' : range v' ≤ ↑(span R w)
⊢ Finset.card t ≤ Fintype.card ↑w
[PROOFSTEP]
simpa using linearIndependent_le_span_aux' v' i' w s'
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
haveI : Fintype ι := linearIndependentFintypeOfLeSpanFintype v i w s
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this : Fintype ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
rw [Cardinal.mk_fintype]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this : Fintype ι
⊢ ↑(Fintype.card ι) ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
simp only [Cardinal.natCast_le]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this : Fintype ι
⊢ Fintype.card ι ≤ Fintype.card ↑w
[PROOFSTEP]
exact linearIndependent_le_span_aux' v i w s
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ #ι ≤ ↑(Fintype.card ↑w)
[PROOFSTEP]
apply linearIndependent_le_span' v i w
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ range v ≤ ↑(span R w)
[PROOFSTEP]
rw [s]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : span R w = ⊤
⊢ range v ≤ ↑⊤
[PROOFSTEP]
exact le_top
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
v : ι → M
i : LinearIndependent R v
w : Finset M
s : span R ↑w = ⊤
⊢ #ι ≤ ↑(Finset.card w)
[PROOFSTEP]
simpa only [Finset.coe_sort_coe, Fintype.card_coe] using linearIndependent_le_span v i w s
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
⊢ #κ ≤ #ι
[PROOFSTEP]
classical
by_contra h
rw [not_le, ← Cardinal.mk_finset_of_infinite ι] at h
let Φ := fun k : κ => (b.repr (v k)).support
obtain ⟨s, w : Infinite ↑(Φ ⁻¹' { s })⟩ := Cardinal.exists_infinite_fiber Φ h (by infer_instance)
let v' := fun k : Φ ⁻¹' { s } => v k
have i' : LinearIndependent R v' := i.comp _ Subtype.val_injective
have w' : Fintype (Φ ⁻¹' { s }) :=
by
apply linearIndependentFintypeOfLeSpanFintype v' i' (s.image b)
rintro m ⟨⟨p, ⟨rfl⟩⟩, rfl⟩
simp only [SetLike.mem_coe, Subtype.coe_mk, Finset.coe_image]
apply Basis.mem_span_repr_support
exact w.false
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
⊢ #κ ≤ #ι
[PROOFSTEP]
by_contra h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : ¬#κ ≤ #ι
⊢ False
[PROOFSTEP]
rw [not_le, ← Cardinal.mk_finset_of_infinite ι] at h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
⊢ False
[PROOFSTEP]
let Φ := fun k : κ => (b.repr (v k)).support
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
⊢ False
[PROOFSTEP]
obtain ⟨s, w : Infinite ↑(Φ ⁻¹' { s })⟩ := Cardinal.exists_infinite_fiber Φ h (by infer_instance)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
⊢ Infinite (Finset ι)
[PROOFSTEP]
infer_instance
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
s : Finset ι
w : Infinite ↑(Φ ⁻¹' {s})
⊢ False
[PROOFSTEP]
let v' := fun k : Φ ⁻¹' { s } => v k
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
s : Finset ι
w : Infinite ↑(Φ ⁻¹' {s})
v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k
⊢ False
[PROOFSTEP]
have i' : LinearIndependent R v' := i.comp _ Subtype.val_injective
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
s : Finset ι
w : Infinite ↑(Φ ⁻¹' {s})
v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k
i' : LinearIndependent R v'
⊢ False
[PROOFSTEP]
have w' : Fintype (Φ ⁻¹' { s }) :=
by
apply linearIndependentFintypeOfLeSpanFintype v' i' (s.image b)
rintro m ⟨⟨p, ⟨rfl⟩⟩, rfl⟩
simp only [SetLike.mem_coe, Subtype.coe_mk, Finset.coe_image]
apply Basis.mem_span_repr_support
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
s : Finset ι
w : Infinite ↑(Φ ⁻¹' {s})
v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k
i' : LinearIndependent R v'
⊢ Fintype ↑(Φ ⁻¹' {s})
[PROOFSTEP]
apply linearIndependentFintypeOfLeSpanFintype v' i' (s.image b)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
s : Finset ι
w : Infinite ↑(Φ ⁻¹' {s})
v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k
i' : LinearIndependent R v'
⊢ range v' ≤ ↑(span R ↑(Finset.image (↑b) s))
[PROOFSTEP]
rintro m ⟨⟨p, ⟨rfl⟩⟩, rfl⟩
[GOAL]
case intro.mk.refl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
p : κ
w : Infinite ↑(Φ ⁻¹' {Φ p})
v' : ↑(Φ ⁻¹' {Φ p}) → M := fun k => v ↑k
i' : LinearIndependent R v'
⊢ v' { val := p, property := (_ : Φ p = Φ p) } ∈ ↑(span R ↑(Finset.image (↑b) (Φ p)))
[PROOFSTEP]
simp only [SetLike.mem_coe, Subtype.coe_mk, Finset.coe_image]
[GOAL]
case intro.mk.refl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
p : κ
w : Infinite ↑(Φ ⁻¹' {Φ p})
v' : ↑(Φ ⁻¹' {Φ p}) → M := fun k => v ↑k
i' : LinearIndependent R v'
⊢ v p ∈ span R (↑b '' ↑(↑b.repr (v p)).support)
[PROOFSTEP]
apply Basis.mem_span_repr_support
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
h : #(Finset ι) < #κ
Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support
s : Finset ι
w : Infinite ↑(Φ ⁻¹' {s})
v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k
i' : LinearIndependent R v'
w' : Fintype ↑(Φ ⁻¹' {s})
⊢ False
[PROOFSTEP]
exact w.false
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
⊢ #κ ≤ #ι
[PROOFSTEP]
classical
-- We split into cases depending on whether `ι` is infinite.
cases fintypeOrInfinite ι
· rw [Cardinal.mk_fintype ι]
-- When `ι` is finite, we have `linearIndependent_le_span`,
haveI : Nontrivial R := nontrivial_of_invariantBasisNumber R
rw [Fintype.card_congr (Equiv.ofInjective b b.injective)]
exact linearIndependent_le_span v i (range b) b.span_eq
·
-- and otherwise we have `linearIndependent_le_infinite_basis`.exact linearIndependent_le_infinite_basis b v i
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
⊢ #κ ≤ #ι
[PROOFSTEP]
cases fintypeOrInfinite ι
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
val✝ : Fintype ι
⊢ #κ ≤ #ι
[PROOFSTEP]
rw [Cardinal.mk_fintype ι]
-- When `ι` is finite, we have `linearIndependent_le_span`,
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
val✝ : Fintype ι
⊢ #κ ≤ ↑(Fintype.card ι)
[PROOFSTEP]
haveI : Nontrivial R := nontrivial_of_invariantBasisNumber R
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
val✝ : Fintype ι
this : Nontrivial R
⊢ #κ ≤ ↑(Fintype.card ι)
[PROOFSTEP]
rw [Fintype.card_congr (Equiv.ofInjective b b.injective)]
[GOAL]
case inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
val✝ : Fintype ι
this : Nontrivial R
⊢ #κ ≤ ↑(Fintype.card ↑(range ↑b))
[PROOFSTEP]
exact linearIndependent_le_span v i (range b) b.span_eq
[GOAL]
case inr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
κ : Type u_2
v : κ → M
i : LinearIndependent R v
val✝ : Infinite ι
⊢ #κ ≤ #ι
[PROOFSTEP]
exact linearIndependent_le_infinite_basis b v i
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝⁵ : Ring R✝
inst✝⁴ : StrongRankCondition R✝
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R✝ M
R : Type u_2
inst✝¹ : Ring R
inst✝ : StrongRankCondition R
n m : ℕ
v : Fin m → Fin n → R
h : LinearIndependent R v
⊢ m ≤ n
[PROOFSTEP]
simpa using linearIndependent_le_basis (Pi.basisFun R (Fin n)) v h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
⊢ #κ = #ι
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
⊢ #κ ≤ #ι
[PROOFSTEP]
exact linearIndependent_le_basis b v i
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
⊢ #ι ≤ #κ
[PROOFSTEP]
haveI : Nontrivial R := nontrivial_of_invariantBasisNumber R
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type u_2
b : Basis ι R M
inst✝ : Infinite ι
κ : Type u_2
v : κ → M
i : LinearIndependent R v
m : LinearIndependent.Maximal i
this : Nontrivial R
⊢ #ι ≤ #κ
[PROOFSTEP]
exact infinite_basis_le_maximal_linearIndependent b v i m
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
⊢ #ι = Module.rank R M
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ #ι = Module.rank R M
[PROOFSTEP]
rw [Module.rank_def]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ #ι = ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ #ι ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
[PROOFSTEP]
trans
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ #ι ≤ ?m.374465
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ ?m.374465 ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ Cardinal.{v}
[PROOFSTEP]
swap
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ ?m.374465 ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι
[PROOFSTEP]
apply le_ciSup (Cardinal.bddAbove_range.{v, v} _)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ { s // LinearIndependent R Subtype.val }
[PROOFSTEP]
exact
⟨Set.range v, by
convert v.reindexRange.linearIndependent
ext
simp⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ LinearIndependent R Subtype.val
[PROOFSTEP]
convert v.reindexRange.linearIndependent
[GOAL]
case h.e'_4
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ Subtype.val = ↑(reindexRange v)
[PROOFSTEP]
ext
[GOAL]
case h.e'_4.h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
x✝ : { x // x ∈ range ↑v }
⊢ ↑x✝ = ↑(reindexRange v) x✝
[PROOFSTEP]
simp
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ #ι ≤ #↑↑{ val := range ↑v, property := (_ : LinearIndependent R Subtype.val) }
[PROOFSTEP]
exact (Cardinal.mk_range_eq v v.injective).ge
[GOAL]
case a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι ≤ #ι
[PROOFSTEP]
apply ciSup_le'
[GOAL]
case a.h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ #ι
[PROOFSTEP]
rintro ⟨s, li⟩
[GOAL]
case a.h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type v
v : Basis ι R M
this : Nontrivial R
s : Set M
li : LinearIndependent R Subtype.val
⊢ #↑↑{ val := s, property := li } ≤ #ι
[PROOFSTEP]
apply linearIndependent_le_basis v _ li
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type w
inst✝ : Fintype ι
h : Basis ι R M
⊢ Module.rank R M = ↑(Fintype.card ι)
[PROOFSTEP]
classical
haveI := nontrivial_of_invariantBasisNumber R
rw [← h.mk_range_eq_rank, Cardinal.mk_fintype, Set.card_range_of_injective h.injective]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type w
inst✝ : Fintype ι
h : Basis ι R M
⊢ Module.rank R M = ↑(Fintype.card ι)
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁴ : Ring R
inst✝³ : StrongRankCondition R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
ι : Type w
inst✝ : Fintype ι
h : Basis ι R M
this : Nontrivial R
⊢ Module.rank R M = ↑(Fintype.card ι)
[PROOFSTEP]
rw [← h.mk_range_eq_rank, Cardinal.mk_fintype, Set.card_range_of_injective h.injective]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι'✝ : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
ι' : Type u_3
inst✝ : Fintype ι'
v : ι' → M
hv : LinearIndependent R v
⊢ Fintype.card ι' ≤ Fintype.card ι
[PROOFSTEP]
letI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι'✝ : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι : Type u_2
inst✝¹ : Fintype ι
b : Basis ι R M
ι' : Type u_3
inst✝ : Fintype ι'
v : ι' → M
hv : LinearIndependent R v
this : Nontrivial R := nontrivial_of_invariantBasisNumber R
⊢ Fintype.card ι' ≤ Fintype.card ι
[PROOFSTEP]
simpa [rank_eq_card_basis b, Cardinal.mk_fintype] using cardinal_lift_le_rank_of_linearIndependent' hv
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
⊢ lift #ι = lift (Module.rank R M)
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : Basis ι R M
this : Nontrivial R
⊢ lift #ι = lift (Module.rank R M)
[PROOFSTEP]
rw [← v.mk_range_eq_rank, Cardinal.mk_range_eq_of_injective v.injective]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι✝ : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
ι : Type u_2
b : Basis ι R M
h : Module.rank R M < ℵ₀
⊢ Nonempty (Fintype ι)
[PROOFSTEP]
rwa [← Cardinal.lift_lt, ← b.mk_eq_rank, Cardinal.lift_aleph0, Cardinal.lift_lt_aleph0,
Cardinal.lt_aleph0_iff_fintype] at h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
hv : LinearIndependent R v
⊢ Module.rank R { x // x ∈ span R (range v) } = #↑(range v)
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber R
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
v : ι → M
hv : LinearIndependent R v
this : Nontrivial R
⊢ Module.rank R { x // x ∈ span R (range v) } = #↑(range v)
[PROOFSTEP]
rw [← Cardinal.lift_inj, ← (Basis.span hv).mk_eq_rank,
Cardinal.mk_range_eq_of_injective (@LinearIndependent.injective ι R M v _ _ _ _ hv)]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
s : Set M
hs : LinearIndependent R fun x => ↑x
⊢ Module.rank R { x // x ∈ span R s } = #↑s
[PROOFSTEP]
rw [← @setOf_mem_eq _ s, ← Subtype.range_coe_subtype]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
s : Set M
hs : LinearIndependent R fun x => ↑x
⊢ Module.rank R { x // x ∈ span R (range Subtype.val) } = #↑(range Subtype.val)
[PROOFSTEP]
exact rank_span hs
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝⁵ : Ring R
inst✝⁴ : StrongRankCondition R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDomain R
inst✝ : Fintype ι
b : Basis ι R M
P : Submodule R M → Sort u_2
ih :
(N : Submodule R M) →
((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N
N : Submodule R M
m✝ : ℕ
hs : Fin m✝ → { x // x ∈ N }
hli : LinearIndependent R (Subtype.val ∘ hs)
⊢ m✝ ≤ Fintype.card ι
[PROOFSTEP]
simpa using b.card_le_card_of_linearIndependent hli
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
⊢ Fintype.card m = Fintype.card n
[PROOFSTEP]
obtain ⟨a, ha⟩ := Submodule.nonzero_mem_of_bot_lt (bot_lt_iff_ne_bot.mpr hI)
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
⊢ Fintype.card m = Fintype.card n
[PROOFSTEP]
have : LinearIndependent R fun i => b i • a :=
by
have hb := b.linearIndependent
rw [Fintype.linearIndependent_iff] at hb ⊢
intro g hg
apply hb g
simp only [← smul_assoc, ← Finset.sum_smul, smul_eq_zero] at hg
exact hg.resolve_right ha
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
⊢ LinearIndependent R fun i => ↑b i • a
[PROOFSTEP]
have hb := b.linearIndependent
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
hb : LinearIndependent R ↑b
⊢ LinearIndependent R fun i => ↑b i • a
[PROOFSTEP]
rw [Fintype.linearIndependent_iff] at hb ⊢
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
hb✝ : LinearIndependent R ↑b
hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0
⊢ ∀ (g : n → R), ∑ i : n, g i • ↑b i • a = 0 → ∀ (i : n), g i = 0
[PROOFSTEP]
intro g hg
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
hb✝ : LinearIndependent R ↑b
hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0
g : n → R
hg : ∑ i : n, g i • ↑b i • a = 0
⊢ ∀ (i : n), g i = 0
[PROOFSTEP]
apply hb g
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
hb✝ : LinearIndependent R ↑b
hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0
g : n → R
hg : ∑ i : n, g i • ↑b i • a = 0
⊢ ∑ i : n, g i • ↑b i = 0
[PROOFSTEP]
simp only [← smul_assoc, ← Finset.sum_smul, smul_eq_zero] at hg
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
hb✝ : LinearIndependent R ↑b
hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0
g : n → R
hg : ∑ i : n, g i • ↑b i = 0 ∨ a = 0
⊢ ∑ i : n, g i • ↑b i = 0
[PROOFSTEP]
exact hg.resolve_right ha
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R✝ : Type u
inst✝¹⁰ : Ring R✝
inst✝⁹ : StrongRankCondition R✝
M : Type v
inst✝⁸ : AddCommGroup M
inst✝⁷ : Module R✝ M
R : Type u_2
S : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : StrongRankCondition R
inst✝⁴ : Ring S
inst✝³ : IsDomain S
inst✝² : Algebra R S
n : Type u_4
m : Type u_5
inst✝¹ : Fintype n
inst✝ : Fintype m
b : Basis n R S
I : Ideal S
hI : I ≠ ⊥
c : Basis m R { x // x ∈ I }
a : { x // x ∈ I }
ha : a ≠ 0
this : LinearIndependent R fun i => ↑b i • a
⊢ Fintype.card m = Fintype.card n
[PROOFSTEP]
exact
le_antisymm
(b.card_le_card_of_linearIndependent
(c.linearIndependent.map' (Submodule.subtype I)
((LinearMap.ker_eq_bot (f := (Submodule.subtype I : I →ₗ[R] S))).mpr Subtype.coe_injective)))
(c.card_le_card_of_linearIndependent this)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
R : Type u
inst✝³ : Ring R
inst✝² : StrongRankCondition R
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ Module.rank R R = 1
[PROOFSTEP]
rw [← Cardinal.lift_inj, ← (Basis.singleton PUnit R).mk_eq_rank, Cardinal.mk_punit]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
cnd : lift (Module.rank K V) = lift (Module.rank K V')
⊢ Nonempty (V ≃ₗ[K] V')
[PROOFSTEP]
obtain ⟨⟨_, B⟩⟩ := Module.Free.exists_basis (R := K) (M := V)
[GOAL]
case intro.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
cnd : lift (Module.rank K V) = lift (Module.rank K V')
fst✝ : Type v
B : Basis fst✝ K V
⊢ Nonempty (V ≃ₗ[K] V')
[PROOFSTEP]
obtain ⟨⟨_, B'⟩⟩ := Module.Free.exists_basis (R := K) (M := V')
[GOAL]
case intro.mk.intro.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
cnd : lift (Module.rank K V) = lift (Module.rank K V')
fst✝¹ : Type v
B : Basis fst✝¹ K V
fst✝ : Type v'
B' : Basis fst✝ K V'
⊢ Nonempty (V ≃ₗ[K] V')
[PROOFSTEP]
have : Cardinal.lift.{v', v} #_ = Cardinal.lift.{v, v'} #_ := by rw [B.mk_eq_rank'', cnd, B'.mk_eq_rank'']
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
cnd : lift (Module.rank K V) = lift (Module.rank K V')
fst✝¹ : Type v
B : Basis fst✝¹ K V
fst✝ : Type v'
B' : Basis fst✝ K V'
⊢ lift #?m.460093 = lift #?m.460095
[PROOFSTEP]
rw [B.mk_eq_rank'', cnd, B'.mk_eq_rank'']
[GOAL]
case intro.mk.intro.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
cnd : lift (Module.rank K V) = lift (Module.rank K V')
fst✝¹ : Type v
B : Basis fst✝¹ K V
fst✝ : Type v'
B' : Basis fst✝ K V'
this : lift #fst✝¹ = lift #fst✝
⊢ Nonempty (V ≃ₗ[K] V')
[PROOFSTEP]
exact (Cardinal.lift_mk_eq.{v, v', 0}.1 this).map (B.equiv B')
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
⊢ Module.rank K (V × V') = lift (Module.rank K V) + lift (Module.rank K V')
[PROOFSTEP]
simpa [rank_eq_card_chooseBasisIndex K V, rank_eq_card_chooseBasisIndex K V', lift_umax, lift_umax'] using
((chooseBasis K V).prod (chooseBasis K V')).mk_eq_rank.symm
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
⊢ Module.rank K (V × V₁) = Module.rank K V + Module.rank K V₁
[PROOFSTEP]
simp
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Finite η
⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i)
[PROOFSTEP]
cases nonempty_fintype η
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Finite η
val✝ : Fintype η
⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i)
[PROOFSTEP]
let B i := chooseBasis K (φ i)
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Finite η
val✝ : Fintype η
B : (i : η) → Basis (ChooseBasisIndex K (φ i)) K (φ i) := fun i => chooseBasis K (φ i)
⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i)
[PROOFSTEP]
let b : Basis _ K (∀ i, φ i) := Pi.basis fun i => B i
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Finite η
val✝ : Fintype η
B : (i : η) → Basis (ChooseBasisIndex K (φ i)) K (φ i) := fun i => chooseBasis K (φ i)
b : Basis ((j : η) × ChooseBasisIndex K (φ j)) K ((i : η) → φ i) := Pi.basis fun i => B i
⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i)
[PROOFSTEP]
simp [← b.mk_eq_rank'', fun i => (B i).mk_eq_rank'']
[GOAL]
K : Type u
V✝ V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η✝ : Type u₁'
φ : η✝ → Type u_1
inst✝¹⁸ : Ring K
inst✝¹⁷ : StrongRankCondition K
inst✝¹⁶ : AddCommGroup V✝
inst✝¹⁵ : Module K V✝
inst✝¹⁴ : Module.Free K V✝
inst✝¹³ : AddCommGroup V'
inst✝¹² : Module K V'
inst✝¹¹ : Module.Free K V'
inst✝¹⁰ : AddCommGroup V₁
inst✝⁹ : Module K V₁
inst✝⁸ : Module.Free K V₁
inst✝⁷ : (i : η✝) → AddCommGroup (φ i)
inst✝⁶ : (i : η✝) → Module K (φ i)
inst✝⁵ : ∀ (i : η✝), Module.Free K (φ i)
inst✝⁴ : Fintype η✝
V η : Type u
inst✝³ : Fintype η
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Module.Free K V
⊢ Module.rank K (η → V) = ↑(Fintype.card η) * Module.rank K V
[PROOFSTEP]
rw [rank_pi, Cardinal.sum_const', Cardinal.mk_fintype]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Fintype η
⊢ Module.rank K (η → V) = ↑(Fintype.card η) * lift (Module.rank K V)
[PROOFSTEP]
rw [rank_pi, Cardinal.sum_const, Cardinal.mk_fintype, Cardinal.lift_natCast]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Fintype η
⊢ Module.rank K (η → K) = ↑(Fintype.card η)
[PROOFSTEP]
rw [rank_fun_eq_lift_mul, rank_self, Cardinal.lift_one, mul_one, Cardinal.natCast_inj]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁴ : Ring K
inst✝¹³ : StrongRankCondition K
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module K V
inst✝¹⁰ : Module.Free K V
inst✝⁹ : AddCommGroup V'
inst✝⁸ : Module K V'
inst✝⁷ : Module.Free K V'
inst✝⁶ : AddCommGroup V₁
inst✝⁵ : Module K V₁
inst✝⁴ : Module.Free K V₁
inst✝³ : (i : η) → AddCommGroup (φ i)
inst✝² : (i : η) → Module K (φ i)
inst✝¹ : ∀ (i : η), Module.Free K (φ i)
inst✝ : Fintype η
n : ℕ
⊢ Module.rank K (Fin n → K) = ↑n
[PROOFSTEP]
simp [rank_fun']
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn : Module.rank K V = ↑n
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
haveI := nontrivial_of_invariantBasisNumber K
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn : Module.rank K V = ↑n
this : Nontrivial K
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
have : Cardinal.lift.{u} (n : Cardinal.{v}) = Cardinal.lift.{v} (n : Cardinal.{u}) := by simp
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn : Module.rank K V = ↑n
this : Nontrivial K
⊢ lift ↑n = lift ↑n
[PROOFSTEP]
simp
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn : Module.rank K V = ↑n
this✝ : Nontrivial K
this : lift ↑n = lift ↑n
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
have hn := Cardinal.lift_inj.{v, u}.2 hn
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn✝ : Module.rank K V = ↑n
this✝ : Nontrivial K
this : lift ↑n = lift ↑n
hn : lift (Module.rank K V) = lift ↑n
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
rw [this] at hn
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn✝ : Module.rank K V = ↑n
this✝ : Nontrivial K
this : lift ↑n = lift ↑n
hn : lift (Module.rank K V) = lift ↑n
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
rw [← @rank_fin_fun K _ _ n] at hn
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn✝ : Module.rank K V = ↑n
this✝ : Nontrivial K
this : lift ↑n = lift ↑n
hn : lift (Module.rank K V) = lift (Module.rank K (Fin n → K))
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
haveI : Module.Free K (Fin n → K) := Module.Free.pi _ _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : StrongRankCondition K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Module.Free K V
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : Module.Free K V'
inst✝² : AddCommGroup V₁
inst✝¹ : Module K V₁
inst✝ : Module.Free K V₁
n : ℕ
hn✝ : Module.rank K V = ↑n
this✝¹ : Nontrivial K
this✝ : lift ↑n = lift ↑n
hn : lift (Module.rank K V) = lift (Module.rank K (Fin n → K))
this : Module.Free K (Fin n → K)
⊢ V ≃ₗ[K] Fin n → K
[PROOFSTEP]
exact Classical.choice (nonempty_linearEquiv_of_lift_rank_eq hn)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
s : Set V
⊢ Module.rank K { x // x ∈ span K s } ≤ #↑s
[PROOFSTEP]
obtain ⟨b, hb, hsab, hlib⟩ := exists_linearIndependent K s
[GOAL]
case intro.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
s b : Set V
hb : b ⊆ s
hsab : span K b = span K s
hlib : LinearIndependent K Subtype.val
⊢ Module.rank K { x // x ∈ span K s } ≤ #↑s
[PROOFSTEP]
convert Cardinal.mk_le_mk_of_subset hb
[GOAL]
case h.e'_3
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
s b : Set V
hb : b ⊆ s
hsab : span K b = span K s
hlib : LinearIndependent K Subtype.val
⊢ Module.rank K { x // x ∈ span K s } = #↑b
[PROOFSTEP]
rw [← hsab, rank_span_set hlib]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
s : Finset V
⊢ #↑↑s = ↑(Finset.card s)
[PROOFSTEP]
rw [Finset.coe_sort_coe, Cardinal.mk_coe_finset]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
p : Submodule K V
⊢ Module.rank K (V ⧸ p) + Module.rank K { x // x ∈ p } = Module.rank K V
[PROOFSTEP]
classical
let ⟨f⟩ := quotient_prod_linearEquiv p
exact rank_prod'.symm.trans f.rank_eq
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
p : Submodule K V
⊢ Module.rank K (V ⧸ p) + Module.rank K { x // x ∈ p } = Module.rank K V
[PROOFSTEP]
let ⟨f⟩ := quotient_prod_linearEquiv p
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
p : Submodule K V
f : ((V ⧸ p) × { x // x ∈ p }) ≃ₗ[K] V
⊢ Module.rank K (V ⧸ p) + Module.rank K { x // x ∈ p } = Module.rank K V
[PROOFSTEP]
exact rank_prod'.symm.trans f.rank_eq
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
f : V →ₗ[K] V₁
⊢ Module.rank K { x // x ∈ LinearMap.range f } + Module.rank K { x // x ∈ LinearMap.ker f } = Module.rank K V
[PROOFSTEP]
haveI := fun p : Submodule K V => Classical.decEq (V ⧸ p)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
f : V →ₗ[K] V₁
this : (p : Submodule K V) → DecidableEq (V ⧸ p)
⊢ Module.rank K { x // x ∈ LinearMap.range f } + Module.rank K { x // x ∈ LinearMap.ker f } = Module.rank K V
[PROOFSTEP]
rw [← f.quotKerEquivRange.rank_eq, rank_quotient_add_rank]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
f : V →ₗ[K] V₁
h : Surjective ↑f
⊢ Module.rank K V = Module.rank K V₁ + Module.rank K { x // x ∈ LinearMap.ker f }
[PROOFSTEP]
rw [← rank_range_add_rank_ker f, ← rank_range_of_surjective f h]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
⊢ ∃ x, LinearIndependent K (Fin.cons x v)
[PROOFSTEP]
have A : Submodule.span K (range v) ≠ ⊤ := by
intro H
rw [← rank_top, ← H] at h
have : Module.rank K (Submodule.span K (range v)) ≤ n :=
by
have := Cardinal.mk_range_le_lift (f := v)
simp only [Cardinal.lift_id'] at this
exact (rank_span_le _).trans (this.trans (by simp))
exact lt_irrefl _ (h.trans_le this)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
⊢ span K (range v) ≠ ⊤
[PROOFSTEP]
intro H
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
H : span K (range v) = ⊤
⊢ False
[PROOFSTEP]
rw [← rank_top, ← H] at h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K { x // x ∈ span K (range v) }
H : span K (range v) = ⊤
⊢ False
[PROOFSTEP]
have : Module.rank K (Submodule.span K (range v)) ≤ n :=
by
have := Cardinal.mk_range_le_lift (f := v)
simp only [Cardinal.lift_id'] at this
exact (rank_span_le _).trans (this.trans (by simp))
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K { x // x ∈ span K (range v) }
H : span K (range v) = ⊤
⊢ Module.rank K { x // x ∈ span K (range v) } ≤ ↑n
[PROOFSTEP]
have := Cardinal.mk_range_le_lift (f := v)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K { x // x ∈ span K (range v) }
H : span K (range v) = ⊤
this : lift #↑(range v) ≤ lift #(Fin n)
⊢ Module.rank K { x // x ∈ span K (range v) } ≤ ↑n
[PROOFSTEP]
simp only [Cardinal.lift_id'] at this
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K { x // x ∈ span K (range v) }
H : span K (range v) = ⊤
this : #↑(range v) ≤ lift #(Fin n)
⊢ Module.rank K { x // x ∈ span K (range v) } ≤ ↑n
[PROOFSTEP]
exact (rank_span_le _).trans (this.trans (by simp))
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K { x // x ∈ span K (range v) }
H : span K (range v) = ⊤
this : #↑(range v) ≤ lift #(Fin n)
⊢ lift #(Fin n) ≤ ↑n
[PROOFSTEP]
simp
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K { x // x ∈ span K (range v) }
H : span K (range v) = ⊤
this : Module.rank K { x // x ∈ span K (range v) } ≤ ↑n
⊢ False
[PROOFSTEP]
exact lt_irrefl _ (h.trans_le this)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
A : span K (range v) ≠ ⊤
⊢ ∃ x, LinearIndependent K (Fin.cons x v)
[PROOFSTEP]
obtain ⟨x, hx⟩ : ∃ x, x ∉ Submodule.span K (range v) :=
by
contrapose! A
exact Iff.mpr Submodule.eq_top_iff' A
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
A : span K (range v) ≠ ⊤
⊢ ∃ x, ¬x ∈ span K (range v)
[PROOFSTEP]
contrapose! A
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
A : ∀ (x : V), x ∈ span K (range v)
⊢ span K (range v) = ⊤
[PROOFSTEP]
exact Iff.mpr Submodule.eq_top_iff' A
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
A : span K (range v) ≠ ⊤
x : V
hx : ¬x ∈ span K (range v)
⊢ ∃ x, LinearIndependent K (Fin.cons x v)
[PROOFSTEP]
exact ⟨x, linearIndependent_fin_cons.2 ⟨hv, hx⟩⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
n : ℕ
v : Fin n → V
hv : LinearIndependent K v
h : ↑n < Module.rank K V
⊢ ∃ x, LinearIndependent K (Fin.snoc v x)
[PROOFSTEP]
simpa [linearIndependent_fin_cons, ← linearIndependent_fin_snoc] using exists_linear_independent_cons_of_lt_rank hv h
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
h : 1 < Module.rank K V
x : V
hx : x ≠ 0
⊢ ∃ y, LinearIndependent K ![x, y]
[PROOFSTEP]
obtain ⟨y, hy⟩ := exists_linear_independent_snoc_of_lt_rank (linearIndependent_unique ![x] hx) h
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
h : 1 < Module.rank K V
x : V
hx : x ≠ 0
y : V
hy : LinearIndependent K (Fin.snoc ![x] y)
⊢ ∃ y, LinearIndependent K ![x, y]
[PROOFSTEP]
have : Fin.snoc ![x] y = ![x, y] := Iff.mp List.ofFn_inj rfl
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
h : 1 < Module.rank K V
x : V
hx : x ≠ 0
y : V
hy : LinearIndependent K (Fin.snoc ![x] y)
this : Fin.snoc ![x] y = ![x, y]
⊢ ∃ y, LinearIndependent K ![x, y]
[PROOFSTEP]
rw [this] at hy
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
h : 1 < Module.rank K V
x : V
hx : x ≠ 0
y : V
hy : LinearIndependent K ![x, y]
this : Fin.snoc ![x] y = ![x, y]
⊢ ∃ y, LinearIndependent K ![x, y]
[PROOFSTEP]
exact ⟨y, hy⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
⊢ Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃
[PROOFSTEP]
have hf : Surjective (coprod db eb) := by rwa [← range_eq_top, range_coprod, eq_top_iff]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
⊢ Surjective ↑(coprod db eb)
[PROOFSTEP]
rwa [← range_eq_top, range_coprod, eq_top_iff]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
⊢ Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃
[PROOFSTEP]
conv =>
rhs
rw [← rank_prod', rank_eq_of_surjective _ hf]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
| Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃
[PROOFSTEP]
rhs
rw [← rank_prod', rank_eq_of_surjective _ hf]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
| Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃
[PROOFSTEP]
rhs
rw [← rank_prod', rank_eq_of_surjective _ hf]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
| Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃
[PROOFSTEP]
rhs
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
| Module.rank K V₂ + Module.rank K V₃
[PROOFSTEP]
rw [← rank_prod', rank_eq_of_surjective _ hf]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
⊢ Module.rank K V + Module.rank K V₁ = Module.rank K V + Module.rank K { x // x ∈ ker (coprod db eb) }
[PROOFSTEP]
congr 1
[GOAL]
case e_a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
⊢ Module.rank K V₁ = Module.rank K { x // x ∈ ker (coprod db eb) }
[PROOFSTEP]
apply LinearEquiv.rank_eq
[GOAL]
case e_a.f
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
⊢ V₁ ≃ₗ[K] { x // x ∈ ker (coprod db eb) }
[PROOFSTEP]
let L : V₁ →ₗ[K] ker (coprod db eb) := by
-- Porting note: this is needed to avoid a timeout
refine' LinearMap.codRestrict _ (prod cd (-ce)) _
· intro c
simp only [add_eq_zero_iff_eq_neg, LinearMap.prod_apply, mem_ker, Pi.prod, coprod_apply, neg_neg, map_neg,
neg_apply]
exact LinearMap.ext_iff.1 eq c
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
⊢ V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) }
[PROOFSTEP]
refine' LinearMap.codRestrict _ (prod cd (-ce)) _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
⊢ ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)
[PROOFSTEP]
intro c
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
c : V₁
⊢ ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)
[PROOFSTEP]
simp only [add_eq_zero_iff_eq_neg, LinearMap.prod_apply, mem_ker, Pi.prod, coprod_apply, neg_neg, map_neg, neg_apply]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
c : V₁
⊢ ↑db (↑cd c) = ↑eb (↑ce c)
[PROOFSTEP]
exact LinearMap.ext_iff.1 eq c
[GOAL]
case e_a.f
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
⊢ V₁ ≃ₗ[K] { x // x ∈ ker (coprod db eb) }
[PROOFSTEP]
refine' LinearEquiv.ofBijective L ⟨_, _⟩
[GOAL]
case e_a.f.refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
⊢ Injective ↑L
[PROOFSTEP]
rw [← ker_eq_bot, ker_codRestrict, ker_prod, hgd, bot_inf_eq]
[GOAL]
case e_a.f.refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
⊢ Surjective ↑L
[PROOFSTEP]
rw [← range_eq_top, eq_top_iff, range_codRestrict, ← map_le_iff_le_comap, Submodule.map_top, range_subtype]
[GOAL]
case e_a.f.refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
⊢ ker (coprod db eb) ≤ LinearMap.range (LinearMap.prod cd (-ce))
[PROOFSTEP]
rintro ⟨d, e⟩
[GOAL]
case e_a.f.refine'_2.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
d : V₂
e : V₃
⊢ (d, e) ∈ ker (coprod db eb) → (d, e) ∈ LinearMap.range (LinearMap.prod cd (-ce))
[PROOFSTEP]
have h := eq₂ d (-e)
[GOAL]
case e_a.f.refine'_2.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
d : V₂
e : V₃
h : ↑db d = ↑eb (-e) → ∃ c, ↑cd c = d ∧ ↑ce c = -e
⊢ (d, e) ∈ ker (coprod db eb) → (d, e) ∈ LinearMap.range (LinearMap.prod cd (-ce))
[PROOFSTEP]
simp only [add_eq_zero_iff_eq_neg, LinearMap.prod_apply, mem_ker, SetLike.mem_coe, Prod.mk.inj_iff, coprod_apply,
map_neg, neg_apply, LinearMap.mem_range, Pi.prod] at h ⊢
[GOAL]
case e_a.f.refine'_2.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
d : V₂
e : V₃
h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e
⊢ ↑db d = -↑eb e → ∃ y, ↑cd y = d ∧ -↑ce y = e
[PROOFSTEP]
intro hde
[GOAL]
case e_a.f.refine'_2.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde✝ : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
d : V₂
e : V₃
h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e
hde : ↑db d = -↑eb e
⊢ ∃ y, ↑cd y = d ∧ -↑ce y = e
[PROOFSTEP]
rcases h hde with ⟨c, h₁, h₂⟩
[GOAL]
case e_a.f.refine'_2.mk.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde✝ : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
d : V₂
e : V₃
h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e
hde : ↑db d = -↑eb e
c : V₁
h₁ : ↑cd c = d
h₂ : ↑ce c = -e
⊢ ∃ y, ↑cd y = d ∧ -↑ce y = e
[PROOFSTEP]
refine' ⟨c, h₁, _⟩
[GOAL]
case e_a.f.refine'_2.mk.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
db : V₂ →ₗ[K] V
eb : V₃ →ₗ[K] V
cd : V₁ →ₗ[K] V₂
ce : V₁ →ₗ[K] V₃
hde✝ : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb
hgd : ker cd = ⊥
eq : LinearMap.comp db cd = LinearMap.comp eb ce
eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e
hf : Surjective ↑(coprod db eb)
L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } :=
LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce))
(_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb))
d : V₂
e : V₃
h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e
hde : ↑db d = -↑eb e
c : V₁
h₁ : ↑cd c = d
h₂ : ↑ce c = -e
⊢ -↑ce c = e
[PROOFSTEP]
rw [h₂, _root_.neg_neg]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
⊢ ⊤ ≤ LinearMap.range (ofLe (_ : s ≤ s ⊔ t)) ⊔ LinearMap.range (ofLe (_ : t ≤ s ⊔ t))
[PROOFSTEP]
rw [← map_le_map_iff' (ker_subtype <| s ⊔ t), Submodule.map_sup, Submodule.map_top, ← LinearMap.range_comp, ←
LinearMap.range_comp, subtype_comp_ofLe, subtype_comp_ofLe, range_subtype, range_subtype, range_subtype]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
⊢ LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s)) =
LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t))
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case h.mk.a
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
x : V
hx : x ∈ s ⊓ t
⊢ ↑(↑(LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s))) { val := x, property := hx }) =
↑(↑(LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t))) { val := x, property := hx })
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
⊢ ∀ (d : { x // x ∈ s }) (e : { x // x ∈ t }),
↑(ofLe (_ : s ≤ s ⊔ t)) d = ↑(ofLe (_ : t ≤ s ⊔ t)) e →
∃ c, ↑(ofLe (_ : s ⊓ t ≤ s)) c = d ∧ ↑(ofLe (_ : s ⊓ t ≤ t)) c = e
[PROOFSTEP]
rintro ⟨b₁, hb₁⟩ ⟨b₂, hb₂⟩ eq
[GOAL]
case mk.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
b₁ : V
hb₁ : b₁ ∈ s
b₂ : V
hb₂ : b₂ ∈ t
eq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₂, property := hb₂ }
⊢ ∃ c,
↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧
↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₂, property := hb₂ }
[PROOFSTEP]
obtain rfl : b₁ = b₂ := congr_arg Subtype.val eq
[GOAL]
case mk.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
b₁ : V
hb₁ : b₁ ∈ s
hb₂ : b₁ ∈ t
eq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₁, property := hb₂ }
⊢ ∃ c,
↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧
↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₁, property := hb₂ }
[PROOFSTEP]
exact ⟨⟨b₁, hb₁, hb₂⟩, rfl, rfl⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
⊢ Module.rank K { x // x ∈ s ⊔ t } ≤ Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t }
[PROOFSTEP]
rw [← Submodule.rank_sup_add_rank_inf_eq]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : DivisionRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V'
inst✝⁶ : Module K V'
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V₂
inst✝² : Module K V₂
inst✝¹ : AddCommGroup V₃
inst✝ : Module K V₃
s t : Submodule K V
⊢ Module.rank K { x // x ∈ s ⊔ t } ≤ Module.rank K { x // x ∈ s ⊔ t } + Module.rank K { x // x ∈ s ⊓ t }
[PROOFSTEP]
exact self_le_add_right _ _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
⊢ c ≤ Module.rank K V ↔ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
⊢ c ≤ Module.rank K V → ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
intro h
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
h : c ≤ Module.rank K V
⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
let t := Basis.ofVectorSpace K V
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
h : c ≤ Module.rank K V
t : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
rw [← t.mk_eq_rank'', Cardinal.le_mk_iff_exists_subset] at h
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
h : ∃ p, p ⊆ ofVectorSpaceIndex K V ∧ #↑p = c
t : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
rcases h with ⟨s, hst, hsc⟩
[GOAL]
case mp.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
t : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
s : Set V
hst : s ⊆ ofVectorSpaceIndex K V
hsc : #↑s = c
⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
exact ⟨s, hsc, (ofVectorSpaceIndex.linearIndependent K V).mono hst⟩
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v}
⊢ (∃ s, #↑s = c ∧ LinearIndependent K Subtype.val) → c ≤ Module.rank K V
[PROOFSTEP]
rintro ⟨s, rfl, si⟩
[GOAL]
case mpr.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Set V
si : LinearIndependent K Subtype.val
⊢ #↑s ≤ Module.rank K V
[PROOFSTEP]
exact cardinal_le_rank_of_linearIndependent si
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
⊢ ↑n ≤ Module.rank K V ↔ ∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
simp only [le_rank_iff_exists_linearIndependent, Cardinal.mk_set_eq_nat_iff_finset]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K Subtype.val) ↔
∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K Subtype.val) →
∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩
[GOAL]
case mp.intro.intro.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
t : Finset V
si : LinearIndependent K Subtype.val
⊢ ∃ s, Finset.card s = Finset.card t ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
exact ⟨t, rfl, si⟩
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
⊢ (∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val) →
∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
rintro ⟨s, rfl, si⟩
[GOAL]
case mpr.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Finset V
si : LinearIndependent K Subtype.val
⊢ ∃ s_1, (∃ t, ↑t = s_1 ∧ Finset.card t = Finset.card s) ∧ LinearIndependent K Subtype.val
[PROOFSTEP]
exact ⟨s, ⟨s, rfl, rfl⟩, si⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
let b := Basis.ofVectorSpace K V
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
⊢ Module.rank K V ≤ 1 → ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
intro hd
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Module.rank K V ≤ 1
⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
rw [← b.mk_eq_rank'', Cardinal.le_one_iff_subsingleton, subsingleton_coe] at hd
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
rcases eq_empty_or_nonempty (ofVectorSpaceIndex K V) with (hb | ⟨⟨v₀, hv₀⟩⟩)
[GOAL]
case mp.inl
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
hb : ofVectorSpaceIndex K V = ∅
⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
hb : ofVectorSpaceIndex K V = ∅
⊢ ∀ (v : V), ∃ r, r • 0 = v
[PROOFSTEP]
have h' : ∀ v : V, v = 0 := by simpa [hb, Submodule.eq_bot_iff] using b.span_eq.symm
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
hb : ofVectorSpaceIndex K V = ∅
⊢ ∀ (v : V), v = 0
[PROOFSTEP]
simpa [hb, Submodule.eq_bot_iff] using b.span_eq.symm
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
hb : ofVectorSpaceIndex K V = ∅
h' : ∀ (v : V), v = 0
⊢ ∀ (v : V), ∃ r, r • 0 = v
[PROOFSTEP]
intro v
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
hb : ofVectorSpaceIndex K V = ∅
h' : ∀ (v : V), v = 0
v : V
⊢ ∃ r, r • 0 = v
[PROOFSTEP]
simp [h' v]
[GOAL]
case mp.inr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
v₀ : V
hv₀ : v₀ ∈ ofVectorSpaceIndex K V
⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
use v₀
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
v₀ : V
hv₀ : v₀ ∈ ofVectorSpaceIndex K V
⊢ ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
have h' : (K ∙ v₀) = ⊤ := by simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
v₀ : V
hv₀ : v₀ ∈ ofVectorSpaceIndex K V
⊢ span K {v₀} = ⊤
[PROOFSTEP]
simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
v₀ : V
hv₀ : v₀ ∈ ofVectorSpaceIndex K V
h' : span K {v₀} = ⊤
⊢ ∀ (v : V), ∃ r, r • v₀ = v
[PROOFSTEP]
intro v
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
v₀ : V
hv₀ : v₀ ∈ ofVectorSpaceIndex K V
h' : span K {v₀} = ⊤
v : V
⊢ ∃ r, r • v₀ = v
[PROOFSTEP]
have hv : v ∈ (⊤ : Submodule K V) := mem_top
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
hd : Set.Subsingleton (ofVectorSpaceIndex K V)
v₀ : V
hv₀ : v₀ ∈ ofVectorSpaceIndex K V
h' : span K {v₀} = ⊤
v : V
hv : v ∈ ⊤
⊢ ∃ r, r • v₀ = v
[PROOFSTEP]
rwa [← h', mem_span_singleton] at hv
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
⊢ (∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v) → Module.rank K V ≤ 1
[PROOFSTEP]
rintro ⟨v₀, hv₀⟩
[GOAL]
case mpr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
v₀ : V
hv₀ : ∀ (v : V), ∃ r, r • v₀ = v
⊢ Module.rank K V ≤ 1
[PROOFSTEP]
have h : (K ∙ v₀) = ⊤ := by
ext
simp [mem_span_singleton, hv₀]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
v₀ : V
hv₀ : ∀ (v : V), ∃ r, r • v₀ = v
⊢ span K {v₀} = ⊤
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
v₀ : V
hv₀ : ∀ (v : V), ∃ r, r • v₀ = v
x✝ : V
⊢ x✝ ∈ span K {v₀} ↔ x✝ ∈ ⊤
[PROOFSTEP]
simp [mem_span_singleton, hv₀]
[GOAL]
case mpr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
v₀ : V
hv₀ : ∀ (v : V), ∃ r, r • v₀ = v
h : span K {v₀} = ⊤
⊢ Module.rank K V ≤ 1
[PROOFSTEP]
rw [← rank_top, ← h]
[GOAL]
case mpr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
v₀ : V
hv₀ : ∀ (v : V), ∃ r, r • v₀ = v
h : span K {v₀} = ⊤
⊢ Module.rank K { x // x ∈ span K {v₀} } ≤ 1
[PROOFSTEP]
refine' (rank_span_le _).trans_eq _
[GOAL]
case mpr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V
v₀ : V
hv₀ : ∀ (v : V), ∃ r, r • v₀ = v
h : span K {v₀} = ⊤
⊢ #↑{v₀} = 1
[PROOFSTEP]
simp
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ Module.rank K { x // x ∈ s } ≤ 1 ↔ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
simp_rw [rank_le_one_iff, le_span_singleton_iff]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ (∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v) ↔ ∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ (∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v) → ∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
[PROOFSTEP]
rintro ⟨⟨v₀, hv₀⟩, h⟩
[GOAL]
case mp.intro.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
⊢ ∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
[PROOFSTEP]
use v₀, hv₀
[GOAL]
case right
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
⊢ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
[PROOFSTEP]
intro v hv
[GOAL]
case right
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
v : V
hv : v ∈ s
⊢ ∃ r, r • v₀ = v
[PROOFSTEP]
obtain ⟨r, hr⟩ := h ⟨v, hv⟩
[GOAL]
case right.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
v : V
hv : v ∈ s
r : K
hr : r • { val := v₀, property := hv₀ } = { val := v, property := hv }
⊢ ∃ r, r • v₀ = v
[PROOFSTEP]
use r
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
v : V
hv : v ∈ s
r : K
hr : r • { val := v₀, property := hv₀ } = { val := v, property := hv }
⊢ r • v₀ = v
[PROOFSTEP]
simp_rw [Subtype.ext_iff, coe_smul] at hr
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
v : V
hv : v ∈ s
r : K
hr : r • v₀ = v
⊢ r • v₀ = v
[PROOFSTEP]
exact hr
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ (∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v) → ∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v
[PROOFSTEP]
rintro ⟨v₀, hv₀, h⟩
[GOAL]
case mpr.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
⊢ ∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v
[PROOFSTEP]
use⟨v₀, hv₀⟩
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
⊢ ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v
[PROOFSTEP]
rintro ⟨v, hv⟩
[GOAL]
case h.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
v : V
hv : v ∈ s
⊢ ∃ r, r • { val := v₀, property := hv₀ } = { val := v, property := hv }
[PROOFSTEP]
obtain ⟨r, hr⟩ := h v hv
[GOAL]
case h.mk.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
v : V
hv : v ∈ s
r : K
hr : r • v₀ = v
⊢ ∃ r, r • { val := v₀, property := hv₀ } = { val := v, property := hv }
[PROOFSTEP]
use r
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
v : V
hv : v ∈ s
r : K
hr : r • v₀ = v
⊢ r • { val := v₀, property := hv₀ } = { val := v, property := hv }
[PROOFSTEP]
simp_rw [Subtype.ext_iff, coe_smul]
[GOAL]
case h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
hv₀ : v₀ ∈ s
h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v
v : V
hv : v ∈ s
r : K
hr : r • v₀ = v
⊢ r • v₀ = v
[PROOFSTEP]
exact hr
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ Module.rank K { x // x ∈ s } ≤ 1 ↔ ∃ v₀, s ≤ span K {v₀}
[PROOFSTEP]
rw [rank_submodule_le_one_iff]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ (∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}) ↔ ∃ v₀, s ≤ span K {v₀}
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ (∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}) → ∃ v₀, s ≤ span K {v₀}
[PROOFSTEP]
rintro ⟨v₀, _, h⟩
[GOAL]
case mp.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
left✝ : v₀ ∈ s
h : s ≤ span K {v₀}
⊢ ∃ v₀, s ≤ span K {v₀}
[PROOFSTEP]
exact ⟨v₀, h⟩
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
⊢ (∃ v₀, s ≤ span K {v₀}) → ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
rintro ⟨v₀, h⟩
[GOAL]
case mpr.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
by_cases hw : ∃ w : V, w ∈ s ∧ w ≠ 0
[GOAL]
case pos
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
hw : ∃ w, w ∈ s ∧ w ≠ 0
⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
rcases hw with ⟨w, hw, hw0⟩
[GOAL]
case pos.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
w : V
hw : w ∈ s
hw0 : w ≠ 0
⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
use w, hw
[GOAL]
case right
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
w : V
hw : w ∈ s
hw0 : w ≠ 0
⊢ s ≤ span K {w}
[PROOFSTEP]
rcases mem_span_singleton.1 (h hw) with ⟨r', rfl⟩
[GOAL]
case right.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
r' : K
hw : r' • v₀ ∈ s
hw0 : r' • v₀ ≠ 0
⊢ s ≤ span K {r' • v₀}
[PROOFSTEP]
have h0 : r' ≠ 0 := by
rintro rfl
simp at hw0
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
r' : K
hw : r' • v₀ ∈ s
hw0 : r' • v₀ ≠ 0
⊢ r' ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
hw : 0 • v₀ ∈ s
hw0 : 0 • v₀ ≠ 0
⊢ False
[PROOFSTEP]
simp at hw0
[GOAL]
case right.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
r' : K
hw : r' • v₀ ∈ s
hw0 : r' • v₀ ≠ 0
h0 : r' ≠ 0
⊢ s ≤ span K {r' • v₀}
[PROOFSTEP]
rwa [span_singleton_smul_eq (IsUnit.mk0 _ h0) _]
[GOAL]
case neg
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
hw : ¬∃ w, w ∈ s ∧ w ≠ 0
⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
push_neg at hw
[GOAL]
case neg
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
hw : ∀ (w : V), w ∈ s → w = 0
⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
rw [← Submodule.eq_bot_iff] at hw
[GOAL]
case neg
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
s : Submodule K V
v₀ : V
h : s ≤ span K {v₀}
hw : s = ⊥
⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}
[PROOFSTEP]
simp [hw]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
⊢ Module.rank K { x // x ∈ W } ≤ 1 ↔ IsPrincipal W
[PROOFSTEP]
simp only [rank_le_one_iff, Submodule.IsPrincipal_iff, le_antisymm_iff, le_span_singleton_iff,
span_singleton_le_iff_mem]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
⊢ (∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v) ↔ ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
⊢ (∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v) → ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W
[PROOFSTEP]
rintro ⟨⟨m, hm⟩, hm'⟩
[GOAL]
case mp.intro.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
m : V
hm : m ∈ W
hm' : ∀ (v : { x // x ∈ W }), ∃ r, r • { val := m, property := hm } = v
⊢ ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W
[PROOFSTEP]
choose f hf using hm'
[GOAL]
case mp.intro.mk
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
m : V
hm : m ∈ W
f : { x // x ∈ W } → K
hf : ∀ (v : { x // x ∈ W }), f v • { val := m, property := hm } = v
⊢ ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W
[PROOFSTEP]
exact ⟨m, ⟨fun v hv => ⟨f ⟨v, hv⟩, congr_arg ((↑) : W → V) (hf ⟨v, hv⟩)⟩, hm⟩⟩
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
⊢ (∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W) → ∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v
[PROOFSTEP]
rintro ⟨a, ⟨h, ha⟩⟩
[GOAL]
case mpr.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
a : V
h : ∀ (v : V), v ∈ W → ∃ r, r • a = v
ha : a ∈ W
⊢ ∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v
[PROOFSTEP]
choose f hf using h
[GOAL]
case mpr.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
W : Submodule K V
a : V
ha : a ∈ W
f : (v : V) → v ∈ W → K
hf : ∀ (v : V) (a_1 : v ∈ W), f v a_1 • a = v
⊢ ∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v
[PROOFSTEP]
exact ⟨⟨a, ha⟩, fun v => ⟨f v.1 v.2, Subtype.ext (hf v.1 v.2)⟩⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
⊢ Module.rank K V ≤ 1 ↔ IsPrincipal ⊤
[PROOFSTEP]
rw [← Submodule.rank_le_one_iff_isPrincipal, rank_top]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁷ : Ring K
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module K V
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V'
inst✝¹ : Module K V'
inst✝ : Nontrivial K
⊢ rank 0 = 0
[PROOFSTEP]
rw [rank, LinearMap.range_zero, rank_bot]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁸ : Ring K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V''
inst✝ : Module K V''
g : V →ₗ[K] V'
f : V' →ₗ[K] V''
⊢ rank (comp f g) ≤ rank f
[PROOFSTEP]
refine' rank_le_of_submodule _ _ _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁸ : Ring K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V''
inst✝ : Module K V''
g : V →ₗ[K] V'
f : V' →ₗ[K] V''
⊢ range (comp f g) ≤ range f
[PROOFSTEP]
rw [LinearMap.range_comp]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁸ : Ring K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V''
inst✝ : Module K V''
g : V →ₗ[K] V'
f : V' →ₗ[K] V''
⊢ Submodule.map f (range g) ≤ range f
[PROOFSTEP]
exact LinearMap.map_le_range
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁸ : Ring K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V''
inst✝ : Module K V''
g : V →ₗ[K] V'
f : V' →ₗ[K] V''
⊢ lift (rank (comp f g)) ≤ lift (rank g)
[PROOFSTEP]
rw [rank, rank, LinearMap.range_comp]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁸ : Ring K
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module K V
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : Module K V₁
inst✝³ : AddCommGroup V'
inst✝² : Module K V'
inst✝¹ : AddCommGroup V''
inst✝ : Module K V''
g : V →ₗ[K] V'
f : V' →ₗ[K] V''
⊢ lift (Module.rank K { x // x ∈ Submodule.map f (range g) }) ≤ lift (Module.rank K { x // x ∈ range g })
[PROOFSTEP]
exact lift_rank_map_le _ _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : Module K V₁
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : AddCommGroup V''
inst✝² : Module K V''
inst✝¹ : AddCommGroup V'₁
inst✝ : Module K V'₁
g : V →ₗ[K] V'
f : V' →ₗ[K] V'₁
⊢ rank (comp f g) ≤ rank g
[PROOFSTEP]
simpa only [Cardinal.lift_id] using lift_rank_comp_le_right g f
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝¹⁰ : Ring K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : Module K V₁
inst✝⁵ : AddCommGroup V'
inst✝⁴ : Module K V'
inst✝³ : AddCommGroup V''
inst✝² : Module K V''
inst✝¹ : AddCommGroup V'₁
inst✝ : Module K V'₁
g : V →ₗ[K] V'
f : V' →ₗ[K] V'₁
⊢ rank (comp f g) ≤ min (rank f) (rank g)
[PROOFSTEP]
simpa only [Cardinal.lift_id] using lift_rank_comp_le g f
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f g : V →ₗ[K] V'
⊢ rank (f + g) ≤ Module.rank K { x // x ∈ range f ⊔ range g }
[PROOFSTEP]
refine' rank_le_of_submodule _ _ _
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f g : V →ₗ[K] V'
⊢ range (f + g) ≤ range f ⊔ range g
[PROOFSTEP]
exact
LinearMap.range_le_iff_comap.2 <|
eq_top_iff'.2 fun x =>
show f x + g x ∈ (LinearMap.range f ⊔ LinearMap.range g : Submodule K V') from
mem_sup.2 ⟨_, ⟨x, rfl⟩, _, ⟨x, rfl⟩, rfl⟩
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
⊢ c ≤ rank f ↔ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
rcases f.rangeRestrict.exists_rightInverse_of_surjective f.range_rangeRestrict with ⟨g, hg⟩
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
⊢ c ≤ rank f ↔ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
have fg : LeftInverse f.rangeRestrict g := LinearMap.congr_fun hg
[GOAL]
case intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
⊢ c ≤ rank f ↔ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case intro.refine'_1
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
h : c ≤ rank f
⊢ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
rcases _root_.le_rank_iff_exists_linearIndependent.1 h with ⟨s, rfl, si⟩
[GOAL]
case intro.refine'_1.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set { x // x ∈ range f }
si : LinearIndependent K Subtype.val
h : #↑s ≤ rank f
⊢ ∃ s_1, lift #↑s_1 = lift #↑s ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
refine' ⟨g '' s, Cardinal.mk_image_eq_lift _ _ fg.injective, _⟩
[GOAL]
case intro.refine'_1.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set { x // x ∈ range f }
si : LinearIndependent K Subtype.val
h : #↑s ≤ rank f
⊢ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
replace fg : ∀ x, f (g x) = x
[GOAL]
case fg
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set { x // x ∈ range f }
si : LinearIndependent K Subtype.val
h : #↑s ≤ rank f
⊢ ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x
[PROOFSTEP]
intro x
[GOAL]
case fg
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set { x // x ∈ range f }
si : LinearIndependent K Subtype.val
h : #↑s ≤ rank f
x : { x // x ∈ range f }
⊢ ↑f (↑g x) = ↑x
[PROOFSTEP]
convert congr_arg Subtype.val (fg x)
[GOAL]
case intro.refine'_1.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
s : Set { x // x ∈ range f }
si : LinearIndependent K Subtype.val
h : #↑s ≤ rank f
fg : ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x
⊢ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
replace si : LinearIndependent K fun x : s => f (g x)
[GOAL]
case si
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
s : Set { x // x ∈ range f }
si : LinearIndependent K Subtype.val
h : #↑s ≤ rank f
fg : ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x
⊢ LinearIndependent K fun x => ↑f (↑g ↑x)
[PROOFSTEP]
simpa only [fg] using si.map' _ (ker_subtype _)
[GOAL]
case intro.refine'_1.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
s : Set { x // x ∈ range f }
h : #↑s ≤ rank f
fg : ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x
si : LinearIndependent K fun x => ↑f (↑g ↑x)
⊢ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
exact si.image_of_comp s g f
[GOAL]
case intro.refine'_2
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
⊢ (∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x) → c ≤ rank f
[PROOFSTEP]
rintro ⟨s, hsc, si⟩
[GOAL]
case intro.refine'_2.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set V
hsc : lift #↑s = lift c
si : LinearIndependent K fun x => ↑f ↑x
⊢ c ≤ rank f
[PROOFSTEP]
have : LinearIndependent K fun x : s => f.rangeRestrict x := LinearIndependent.of_comp f.range.subtype (by convert si)
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set V
hsc : lift #↑s = lift c
si : LinearIndependent K fun x => ↑f ↑x
⊢ LinearIndependent K (↑(Submodule.subtype (range f)) ∘ fun x => ↑(rangeRestrict f) ↑x)
[PROOFSTEP]
convert si
[GOAL]
case intro.refine'_2.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set V
hsc : lift #↑s = lift c
si : LinearIndependent K fun x => ↑f ↑x
this : LinearIndependent K fun x => ↑(rangeRestrict f) ↑x
⊢ c ≤ rank f
[PROOFSTEP]
convert cardinal_le_rank_of_linearIndependent this.image
[GOAL]
case h.e'_3
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set V
hsc : lift #↑s = lift c
si : LinearIndependent K fun x => ↑f ↑x
this : LinearIndependent K fun x => ↑(rangeRestrict f) ↑x
⊢ c = #↑(↑(rangeRestrict f) '' s)
[PROOFSTEP]
rw [← Cardinal.lift_inj, ← hsc, Cardinal.mk_image_eq_of_injOn_lift]
[GOAL]
case h.e'_3.h
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
c : Cardinal.{v'}
f : V →ₗ[K] V'
g : { x // x ∈ range f } →ₗ[K] V
hg : comp (rangeRestrict f) g = id
fg : LeftInverse ↑(rangeRestrict f) ↑g
s : Set V
hsc : lift #↑s = lift c
si : LinearIndependent K fun x => ↑f ↑x
this : LinearIndependent K fun x => ↑(rangeRestrict f) ↑x
⊢ InjOn (↑(rangeRestrict f)) s
[PROOFSTEP]
exact injOn_iff_injective.2 this.injective
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
f : V →ₗ[K] V'
⊢ ↑n ≤ rank f ↔ ∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
simp only [le_rank_iff_exists_linearIndependent, Cardinal.lift_natCast, Cardinal.lift_eq_nat_iff,
Cardinal.mk_set_eq_nat_iff_finset]
[GOAL]
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
f : V →ₗ[K] V'
⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K fun x => ↑f ↑x) ↔
∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
f : V →ₗ[K] V'
⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K fun x => ↑f ↑x) →
∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩
[GOAL]
case mp.intro.intro.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
t : Finset V
si : LinearIndependent K fun x => ↑f ↑x
⊢ ∃ s, Finset.card s = Finset.card t ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
exact ⟨t, rfl, si⟩
[GOAL]
case mpr
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
n : ℕ
f : V →ₗ[K] V'
⊢ (∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x) →
∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
rintro ⟨s, rfl, si⟩
[GOAL]
case mpr.intro.intro
K : Type u
V V₁ V₂ V₃ : Type v
V' V'₁ : Type v'
V'' : Type v''
ι : Type w
ι' : Type w'
η : Type u₁'
φ : η → Type u_1
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V'
inst✝ : Module K V'
f : V →ₗ[K] V'
s : Finset V
si : LinearIndependent K fun x => ↑f ↑x
⊢ ∃ s_1, (∃ t, ↑t = s_1 ∧ Finset.card t = Finset.card s) ∧ LinearIndependent K fun x => ↑f ↑x
[PROOFSTEP]
exact ⟨s, ⟨s, rfl, rfl⟩, si⟩
| {"mathlib_filename": "Mathlib.LinearAlgebra.Dimension", "llama_tokens": 142788} |
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁶ : Ring k
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : AddCommGroup V₂
inst✝³ : Module k V₁
inst✝² : Module k V₂
inst✝¹ : AddTorsor V₁ P₁
inst✝ : AddTorsor V₂ P₂
E : AffineSubspace k P₁
Ene : Nonempty { x // x ∈ E }
φ : P₁ →ᵃ[k] P₂
⊢ Nonempty { x // x ∈ map φ E }
[PROOFSTEP]
obtain ⟨x, hx⟩ := id Ene
[GOAL]
case intro.mk
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁶ : Ring k
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : AddCommGroup V₂
inst✝³ : Module k V₁
inst✝² : Module k V₂
inst✝¹ : AddTorsor V₁ P₁
inst✝ : AddTorsor V₂ P₂
E : AffineSubspace k P₁
Ene : Nonempty { x // x ∈ E }
φ : P₁ →ᵃ[k] P₂
x : P₁
hx : x ∈ E
⊢ Nonempty { x // x ∈ map φ E }
[PROOFSTEP]
refine' ⟨⟨φ x, AffineSubspace.mem_map.mpr ⟨x, hx, rfl⟩⟩⟩
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ { x // x ∈ E } →ᵃ[k] { x // x ∈ F }
[PROOFSTEP]
refine' ⟨_, _, _⟩
[GOAL]
case refine'_1
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ { x // x ∈ E } → { x // x ∈ F }
[PROOFSTEP]
exact fun x => ⟨φ x, hEF <| AffineSubspace.mem_map.mpr ⟨x, x.property, rfl⟩⟩
[GOAL]
case refine'_2
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ { x // x ∈ AffineSubspace.direction E } →ₗ[k] { x // x ∈ AffineSubspace.direction F }
[PROOFSTEP]
refine' φ.linear.restrict (_ : E.direction ≤ F.direction.comap φ.linear)
[GOAL]
case refine'_2
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F)
[PROOFSTEP]
rw [← Submodule.map_le_iff_le_comap, ← AffineSubspace.map_direction]
[GOAL]
case refine'_2
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ AffineSubspace.direction (AffineSubspace.map φ E) ≤ AffineSubspace.direction F
[PROOFSTEP]
exact AffineSubspace.direction_le hEF
[GOAL]
case refine'_3
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ ∀ (p : { x // x ∈ E }) (v : { x // x ∈ AffineSubspace.direction E }),
{ val := ↑φ ↑(v +ᵥ p), property := (_ : ↑φ ↑(v +ᵥ p) ∈ ↑F) } =
↑(LinearMap.restrict φ.linear
(_ : AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F)))
v +ᵥ
{ val := ↑φ ↑p, property := (_ : ↑φ ↑p ∈ ↑F) }
[PROOFSTEP]
intro p v
[GOAL]
case refine'_3
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
p : { x // x ∈ E }
v : { x // x ∈ AffineSubspace.direction E }
⊢ { val := ↑φ ↑(v +ᵥ p), property := (_ : ↑φ ↑(v +ᵥ p) ∈ ↑F) } =
↑(LinearMap.restrict φ.linear
(_ : AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F)))
v +ᵥ
{ val := ↑φ ↑p, property := (_ : ↑φ ↑p ∈ ↑F) }
[PROOFSTEP]
simp only [Subtype.ext_iff, Subtype.coe_mk, AffineSubspace.coe_vadd]
[GOAL]
case refine'_3
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
p : { x // x ∈ E }
v : { x // x ∈ AffineSubspace.direction E }
⊢ ↑φ (↑v +ᵥ ↑p) =
↑(↑(LinearMap.restrict φ.linear
(_ : AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F)))
v) +ᵥ
↑φ ↑p
[PROOFSTEP]
apply AffineMap.map_vadd
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁶ : Ring k
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : AddCommGroup V₂
inst✝³ : Module k V₁
inst✝² : Module k V₂
inst✝¹ : AddTorsor V₁ P₁
inst✝ : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
hEF : AffineSubspace.map φ E ≤ F
⊢ AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F)
[PROOFSTEP]
rw [← Submodule.map_le_iff_le_comap, ← AffineSubspace.map_direction]
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁶ : Ring k
inst✝⁵ : AddCommGroup V₁
inst✝⁴ : AddCommGroup V₂
inst✝³ : Module k V₁
inst✝² : Module k V₂
inst✝¹ : AddTorsor V₁ P₁
inst✝ : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
hEF : AffineSubspace.map φ E ≤ F
⊢ AffineSubspace.direction (AffineSubspace.map φ E) ≤ AffineSubspace.direction F
[PROOFSTEP]
exact AffineSubspace.direction_le hEF
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
hφ : Function.Injective ↑φ
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
⊢ Function.Injective ↑(restrict φ hEF)
[PROOFSTEP]
intro x y h
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
hφ : Function.Injective ↑φ
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
x y : { x // x ∈ E }
h : ↑(restrict φ hEF) x = ↑(restrict φ hEF) y
⊢ x = y
[PROOFSTEP]
simp only [Subtype.ext_iff, Subtype.coe_mk, AffineMap.restrict.coe_apply] at h ⊢
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
hφ : Function.Injective ↑φ
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
hEF : AffineSubspace.map φ E ≤ F
x y : { x // x ∈ E }
h : ↑φ ↑x = ↑φ ↑y
⊢ ↑x = ↑y
[PROOFSTEP]
exact hφ h
[GOAL]
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
h : AffineSubspace.map φ E = F
⊢ Function.Surjective ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F))
[PROOFSTEP]
rintro ⟨x, hx : x ∈ F⟩
[GOAL]
case mk
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
h : AffineSubspace.map φ E = F
x : P₂
hx : x ∈ F
⊢ ∃ a, ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) a = { val := x, property := hx }
[PROOFSTEP]
rw [← h, AffineSubspace.mem_map] at hx
[GOAL]
case mk
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
h : AffineSubspace.map φ E = F
x : P₂
hx✝ : x ∈ F
hx : ∃ y, y ∈ E ∧ ↑φ y = x
⊢ ∃ a, ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) a = { val := x, property := hx✝ }
[PROOFSTEP]
obtain ⟨y, hy, rfl⟩ := hx
[GOAL]
case mk.intro.intro
k : Type u_1
V₁ : Type u_2
P₁ : Type u_3
V₂ : Type u_4
P₂ : Type u_5
inst✝⁸ : Ring k
inst✝⁷ : AddCommGroup V₁
inst✝⁶ : AddCommGroup V₂
inst✝⁵ : Module k V₁
inst✝⁴ : Module k V₂
inst✝³ : AddTorsor V₁ P₁
inst✝² : AddTorsor V₂ P₂
φ : P₁ →ᵃ[k] P₂
E : AffineSubspace k P₁
F : AffineSubspace k P₂
inst✝¹ : Nonempty { x // x ∈ E }
inst✝ : Nonempty { x // x ∈ F }
h : AffineSubspace.map φ E = F
y : P₁
hy : y ∈ E
hx : ↑φ y ∈ F
⊢ ∃ a, ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) a = { val := ↑φ y, property := hx }
[PROOFSTEP]
exact ⟨⟨y, hy⟩, rfl⟩
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Restrict", "llama_tokens": 5418} |
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
⊢ LinearIndependent R fun ix => single ix.fst (f ix.fst ix.snd)
[PROOFSTEP]
apply @linearIndependent_iUnion_finite R _ _ _ _ ι φ fun i x => single i (f i x)
[GOAL]
case hindep
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
⊢ ∀ (j : ι), LinearIndependent R fun x => single j (f j x)
[PROOFSTEP]
intro i
[GOAL]
case hindep
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
⊢ LinearIndependent R fun x => single i (f i x)
[PROOFSTEP]
have h_disjoint : Disjoint (span R (range (f i))) (ker (lsingle i)) :=
by
rw [ker_lsingle]
exact disjoint_bot_right
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
⊢ Disjoint (span R (Set.range (f i))) (ker (lsingle i))
[PROOFSTEP]
rw [ker_lsingle]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
⊢ Disjoint (span R (Set.range (f i))) ⊥
[PROOFSTEP]
exact disjoint_bot_right
[GOAL]
case hindep
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
h_disjoint : Disjoint (span R (Set.range (f i))) (ker (lsingle i))
⊢ LinearIndependent R fun x => single i (f i x)
[PROOFSTEP]
apply (hf i).map h_disjoint
[GOAL]
case hd
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
⊢ ∀ (i : ι) (t : Set ι),
Set.Finite t →
¬i ∈ t →
Disjoint (span R (Set.range fun x => single i (f i x)))
(⨆ (i : ι) (_ : i ∈ t), span R (Set.range fun x => single i (f i x)))
[PROOFSTEP]
intro i t _ hit
[GOAL]
case hd
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i ∈ t
⊢ Disjoint (span R (Set.range fun x => single i (f i x)))
(⨆ (i : ι) (_ : i ∈ t), span R (Set.range fun x => single i (f i x)))
[PROOFSTEP]
refine' (disjoint_lsingle_lsingle { i } t (disjoint_singleton_left.2 hit)).mono _ _
[GOAL]
case hd.refine'_1
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i ∈ t
⊢ span R (Set.range fun x => single i (f i x)) ≤ ⨆ (a : ι) (_ : a ∈ {i}), LinearMap.range (lsingle a)
[PROOFSTEP]
rw [span_le]
[GOAL]
case hd.refine'_1
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i ∈ t
⊢ (Set.range fun x => single i (f i x)) ⊆ ↑(⨆ (a : ι) (_ : a ∈ {i}), LinearMap.range (lsingle a))
[PROOFSTEP]
simp only [iSup_singleton]
[GOAL]
case hd.refine'_1
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i ∈ t
⊢ (Set.range fun x => single i (f i x)) ⊆ ↑(LinearMap.range (lsingle i))
[PROOFSTEP]
rw [range_coe]
[GOAL]
case hd.refine'_1
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i ∈ t
⊢ (Set.range fun x => single i (f i x)) ⊆ Set.range ↑(lsingle i)
[PROOFSTEP]
apply range_comp_subset_range _ (lsingle i)
[GOAL]
case hd.refine'_2
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i ∈ t
⊢ ⨆ (i : ι) (_ : i ∈ t), span R (Set.range fun x => single i (f i x)) ≤
⨆ (a : ι) (_ : a ∈ t), LinearMap.range (lsingle a)
[PROOFSTEP]
refine' iSup₂_mono fun i hi => _
[GOAL]
case hd.refine'_2
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i✝ : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i✝ ∈ t
i : ι
hi : i ∈ t
⊢ span R (Set.range fun x => single i (f i x)) ≤ LinearMap.range (lsingle i)
[PROOFSTEP]
rw [span_le, range_coe]
[GOAL]
case hd.refine'_2
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
φ : ι → Type u_4
f : (ι : ι) → φ ι → M
hf : ∀ (i : ι), LinearIndependent R (f i)
i✝ : ι
t : Set ι
a✝ : Set.Finite t
hit : ¬i✝ ∈ t
i : ι
hi : i ∈ t
⊢ (Set.range fun x => single i (f i x)) ⊆ Set.range ↑(lsingle i)
[PROOFSTEP]
apply range_comp_subset_range _ (lsingle i)
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : ι →₀ M
ix : (i : ι) × φ i
⊢ (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0
[PROOFSTEP]
simp only [Finset.mem_sigma, mem_support_iff, and_iff_right_iff_imp, Ne.def]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : ι →₀ M
ix : (i : ι) × φ i
⊢ ¬↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd = 0 → ¬↑g ix.fst = 0
[PROOFSTEP]
intro b hg
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b✝ : (i : ι) → Basis (φ i) R M
g : ι →₀ M
ix : (i : ι) × φ i
b : ¬↑(↑(b✝ ix.fst).repr (↑g ix.fst)) ix.snd = 0
hg : ↑g ix.fst = 0
⊢ False
[PROOFSTEP]
simp [hg] at b
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g h : ι →₀ M
⊢ (fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h
[PROOFSTEP]
ext ⟨i, x⟩
[GOAL]
case h.mk
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g h : ι →₀ M
i : ι
x : φ i
⊢ ↑((fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h))
{ fst := i, snd := x } =
↑((fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h)
{ fst := i, snd := x }
[PROOFSTEP]
simp only [coe_mk, add_apply, LinearEquiv.map_add]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
c : R
h : ι →₀ M
⊢ AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h
[PROOFSTEP]
ext ⟨i, x⟩
[GOAL]
case h.mk
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
c : R
h : ι →₀ M
i : ι
x : φ i
⊢ ↑(AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h))
{ fst := i, snd := x } =
↑(↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h)
{ fst := i, snd := x }
[PROOFSTEP]
simp only [coe_mk, smul_apply, LinearEquiv.map_smul, RingHom.id_apply]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : (i : ι) × φ i →₀ R
i : ι
⊢ i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0
[PROOFSTEP]
rw [Ne.def, ← (b i).repr.injective.eq_iff, (b i).repr.apply_symm_apply, FunLike.ext_iff]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : (i : ι) × φ i →₀ R
i : ι
⊢ i ∈ Finset.image Sigma.fst g.support ↔
¬∀ (x : φ i),
↑(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))) x = ↑(↑(b i).repr 0) x
[PROOFSTEP]
simp only [exists_prop, LinearEquiv.map_zero, comapDomain_apply, zero_apply, exists_and_right, mem_support_iff,
exists_eq_right, Sigma.exists, Finset.mem_image, not_forall]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : ι →₀ M
⊢ (fun g =>
{ support := Finset.image Sigma.fst g.support,
toFun := fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))),
mem_support_toFun :=
(_ :
∀ (i : ι),
i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) },
map_smul' :=
(_ :
∀ (c : R) (h : ι →₀ M),
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h) }.toAddHom
g) =
g
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : ι →₀ M
i : ι
⊢ ↑((fun g =>
{ support := Finset.image Sigma.fst g.support,
toFun := fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))),
mem_support_toFun :=
(_ :
∀ (i : ι),
i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) },
map_smul' :=
(_ :
∀ (c : R) (h : ι →₀ M),
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h) }.toAddHom
g))
i =
↑g i
[PROOFSTEP]
rw [← (b i).repr.injective.eq_iff]
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : ι →₀ M
i : ι
⊢ ↑(b i).repr
(↑((fun g =>
{ support := Finset.image Sigma.fst g.support,
toFun := fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))),
mem_support_toFun :=
(_ :
∀ (i : ι),
i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) },
map_smul' :=
(_ :
∀ (c : R) (h : ι →₀ M),
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h) }.toAddHom
g))
i) =
↑(b i).repr (↑g i)
[PROOFSTEP]
ext x
[GOAL]
case h.h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : ι →₀ M
i : ι
x : φ i
⊢ ↑(↑(b i).repr
(↑((fun g =>
{ support := Finset.image Sigma.fst g.support,
toFun := fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))),
mem_support_toFun :=
(_ :
∀ (i : ι),
i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) },
map_smul' :=
(_ :
∀ (c : R) (h : ι →₀ M),
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{
support :=
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{
support :=
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{
support :=
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{
support :=
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠
0) })
g +
(fun g =>
{
support :=
Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈
Finset.sigma g.support fun i =>
(↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠
0) })
h) }
h) }.toAddHom
g))
i))
x =
↑(↑(b i).repr (↑g i)) x
[PROOFSTEP]
simp only [coe_mk, LinearEquiv.apply_symm_apply, comapDomain_apply]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : (i : ι) × φ i →₀ R
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) },
map_smul' :=
(_ :
∀ (c : R) (h : ι →₀ M),
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h) }.toAddHom
((fun g =>
{ support := Finset.image Sigma.fst g.support,
toFun := fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))),
mem_support_toFun :=
(_ :
∀ (i : ι),
i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0) })
g) =
g
[PROOFSTEP]
ext ⟨i, x⟩
[GOAL]
case h.mk
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
g : (i : ι) × φ i →₀ R
i : ι
x : φ i
⊢ ↑(AddHom.toFun
{
toAddHom :=
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) },
map_smul' :=
(_ :
∀ (c : R) (h : ι →₀ M),
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
(c • h) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) },
map_add' :=
(_ :
∀ (g h : ι →₀ M),
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
(g + h) =
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
g +
(fun g =>
{ support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support,
toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd,
mem_support_toFun :=
(_ :
∀ (ix : (i : ι) × φ i),
(ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔
(fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) })
h) }
h) }.toAddHom
((fun g =>
{ support := Finset.image Sigma.fst g.support,
toFun := fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))),
mem_support_toFun :=
(_ :
∀ (i : ι),
i ∈ Finset.image Sigma.fst g.support ↔
(fun i =>
↑(LinearEquiv.symm (b i).repr)
(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))))
i ≠
0) })
g))
{ fst := i, snd := x } =
↑g { fst := i, snd := x }
[PROOFSTEP]
simp only [coe_mk, LinearEquiv.apply_symm_apply, comapDomain_apply]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x : φ i
⊢ ↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)) =
single { fst := i, snd := x } 1
[PROOFSTEP]
classical
ext ⟨j, y⟩
by_cases h : i = j
· cases h
simp only [basis_repr, single_eq_same, Basis.repr_self, Finsupp.single_apply_left sigma_mk_injective]
· have : Sigma.mk i x ≠ Sigma.mk j y := fun h' => h <| congrArg (fun s => s.fst) h'
simp only [basis_repr, single_apply, h, this, false_and_iff, if_false, LinearEquiv.map_zero, zero_apply]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x : φ i
⊢ ↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)) =
single { fst := i, snd := x } 1
[PROOFSTEP]
ext ⟨j, y⟩
[GOAL]
case h.mk
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x : φ i
j : ι
y : φ j
⊢ ↑(↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)))
{ fst := j, snd := y } =
↑(single { fst := i, snd := x } 1) { fst := j, snd := y }
[PROOFSTEP]
by_cases h : i = j
[GOAL]
case pos
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x : φ i
j : ι
y : φ j
h : i = j
⊢ ↑(↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)))
{ fst := j, snd := y } =
↑(single { fst := i, snd := x } 1) { fst := j, snd := y }
[PROOFSTEP]
cases h
[GOAL]
case pos.refl
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x y : φ i
⊢ ↑(↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)))
{ fst := i, snd := y } =
↑(single { fst := i, snd := x } 1) { fst := i, snd := y }
[PROOFSTEP]
simp only [basis_repr, single_eq_same, Basis.repr_self, Finsupp.single_apply_left sigma_mk_injective]
[GOAL]
case neg
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x : φ i
j : ι
y : φ j
h : ¬i = j
⊢ ↑(↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)))
{ fst := j, snd := y } =
↑(single { fst := i, snd := x } 1) { fst := j, snd := y }
[PROOFSTEP]
have : Sigma.mk i x ≠ Sigma.mk j y := fun h' => h <| congrArg (fun s => s.fst) h'
[GOAL]
case neg
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
φ : ι → Type u_4
b : (i : ι) → Basis (φ i) R M
x✝ : (i : ι) × φ i
i : ι
x : φ i
j : ι
y : φ j
h : ¬i = j
this : { fst := i, snd := x } ≠ { fst := j, snd := y }
⊢ ↑(↑(Finsupp.basis b).repr
(single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)))
{ fst := j, snd := y } =
↑(single { fst := i, snd := x } 1) { fst := j, snd := y }
[PROOFSTEP]
simp only [basis_repr, single_apply, h, this, false_and_iff, if_false, LinearEquiv.map_zero, zero_apply]
[GOAL]
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i : n
⊢ (Finset.sum Finset.univ fun x => Finsupp.single x (if i = x then a else 0)) = Finsupp.single i a
[PROOFSTEP]
rw [Finset.sum_congr_set { i } (fun x : n => Finsupp.single x (ite (i = x) a 0)) fun _ => Finsupp.single i a]
[GOAL]
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i : n
⊢ (Finset.sum Finset.univ fun x => Finsupp.single i a) = Finsupp.single i a
[PROOFSTEP]
simp
[GOAL]
case w
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i : n
⊢ ∀ (x : n), x ∈ {i} → Finsupp.single x (if i = x then a else 0) = Finsupp.single i a
[PROOFSTEP]
intro x hx
[GOAL]
case w
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i x : n
hx : x ∈ {i}
⊢ Finsupp.single x (if i = x then a else 0) = Finsupp.single i a
[PROOFSTEP]
rw [Set.mem_singleton_iff] at hx
[GOAL]
case w
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i x : n
hx : x = i
⊢ Finsupp.single x (if i = x then a else 0) = Finsupp.single i a
[PROOFSTEP]
simp [hx]
[GOAL]
case w'
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i : n
⊢ ∀ (x : n), ¬x ∈ {i} → Finsupp.single x (if i = x then a else 0) = 0
[PROOFSTEP]
intro x hx
[GOAL]
case w'
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i x : n
hx : ¬x ∈ {i}
⊢ Finsupp.single x (if i = x then a else 0) = 0
[PROOFSTEP]
have hx' : ¬i = x := by
refine' ne_comm.mp _
rwa [mem_singleton_iff] at hx
[GOAL]
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i x : n
hx : ¬x ∈ {i}
⊢ ¬i = x
[PROOFSTEP]
refine' ne_comm.mp _
[GOAL]
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i x : n
hx : ¬x ∈ {i}
⊢ x ≠ i
[PROOFSTEP]
rwa [mem_singleton_iff] at hx
[GOAL]
case w'
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : R
i x : n
hx : ¬x ∈ {i}
hx' : ¬i = x
⊢ Finsupp.single x (if i = x then a else 0) = 0
[PROOFSTEP]
simp [hx']
[GOAL]
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
b : n → M
i : n
⊢ (Finset.sum Finset.univ fun x => (if i = x then 1 else 0) • b x) = b i
[PROOFSTEP]
simp only [ite_smul, zero_smul, one_smul, Finset.sum_ite_eq, Finset.mem_univ, ite_true]
[GOAL]
R : Type u_1
M : Type u_2
n : Type u_3
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
b : Basis n R M
i : n
⊢ ↑(LinearEquiv.symm (equivFun b)) (↑(stdBasis R (fun x => R) i) 1) = ↑b i
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.LinearAlgebra.FinsuppVectorSpace", "llama_tokens": 30698} |
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
⊢ affineSpan k (range id) = ⊤
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
f g : AffineBasis ι k P
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
g : AffineBasis ι k P
toFun✝ : ι → P
ind'✝ : AffineIndependent k toFun✝
tot'✝ : affineSpan k (range toFun✝) = ⊤
h : { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
toFun✝¹ : ι → P
ind'✝¹ : AffineIndependent k toFun✝¹
tot'✝¹ : affineSpan k (range toFun✝¹) = ⊤
toFun✝ : ι → P
ind'✝ : AffineIndependent k toFun✝
tot'✝ : affineSpan k (range toFun✝) = ⊤
h : { toFun := toFun✝¹, ind' := ind'✝¹, tot' := tot'✝¹ }.toFun = { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ }.toFun
⊢ { toFun := toFun✝¹, ind' := ind'✝¹, tot' := tot'✝¹ } = { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ }
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
hι : IsEmpty ι
⊢ False
[PROOFSTEP]
simpa only [@range_eq_empty _ _ hι, AffineSubspace.span_empty, bot_ne_top] using b.tot
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e✝ e : ι ≃ ι'
⊢ affineSpan k (range (↑b ∘ ↑e.symm)) = ⊤
[PROOFSTEP]
rw [e.symm.surjective.range_comp]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e✝ e : ι ≃ ι'
⊢ affineSpan k (range ↑b) = ⊤
[PROOFSTEP]
exact b.3
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
⊢ ⊤ ≤ Submodule.span k (range fun i_1 => ↑b ↑i_1 -ᵥ ↑b i)
[PROOFSTEP]
suffices Submodule.span k (range fun j : { x // x ≠ i } => b ↑j -ᵥ b i) = vectorSpan k (range b) by
rw [this, ← direction_affineSpan, b.tot, AffineSubspace.direction_top]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
this : Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = vectorSpan k (range ↑b)
⊢ ⊤ ≤ Submodule.span k (range fun i_1 => ↑b ↑i_1 -ᵥ ↑b i)
[PROOFSTEP]
rw [this, ← direction_affineSpan, b.tot, AffineSubspace.direction_top]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
⊢ Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = vectorSpan k (range ↑b)
[PROOFSTEP]
conv_rhs => rw [← image_univ]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
| vectorSpan k (range ↑b)
[PROOFSTEP]
rw [← image_univ]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
| vectorSpan k (range ↑b)
[PROOFSTEP]
rw [← image_univ]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
| vectorSpan k (range ↑b)
[PROOFSTEP]
rw [← image_univ]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
⊢ Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = vectorSpan k (↑b '' univ)
[PROOFSTEP]
rw [vectorSpan_image_eq_span_vsub_set_right_ne k b (mem_univ i)]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
⊢ Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = Submodule.span k ((fun x => x -ᵥ ↑b i) '' (↑b '' (univ \ {i})))
[PROOFSTEP]
congr
[GOAL]
case e_s
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
⊢ (range fun j => ↑b ↑j -ᵥ ↑b i) = (fun x => x -ᵥ ↑b i) '' (↑b '' (univ \ {i}))
[PROOFSTEP]
ext v
[GOAL]
case e_s.h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
v : V
⊢ (v ∈ range fun j => ↑b ↑j -ᵥ ↑b i) ↔ v ∈ (fun x => x -ᵥ ↑b i) '' (↑b '' (univ \ {i}))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
i : ι
j : { j // j ≠ i }
⊢ ↑(basisOf b i) j = ↑b ↑j -ᵥ ↑b i
[PROOFSTEP]
simp [basisOf]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι'
⊢ basisOf (reindex b e) i =
Basis.reindex (basisOf b (↑e.symm i)) (Equiv.subtypeEquiv e (_ : ∀ (x : ι), ¬x = ↑e.symm i ↔ ¬↑e x = i))
[PROOFSTEP]
ext j
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
i : ι'
j : { j // j ≠ i }
⊢ ↑(basisOf (reindex b e) i) j =
↑(Basis.reindex (basisOf b (↑e.symm i)) (Equiv.subtypeEquiv e (_ : ∀ (x : ι), ¬x = ↑e.symm i ↔ ¬↑e x = i))) j
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
q : P
v : V
⊢ (fun q => 1 - ↑(Basis.sumCoords (basisOf b i)) (q -ᵥ ↑b i)) (v +ᵥ q) =
↑(-Basis.sumCoords (basisOf b i)) v +ᵥ (fun q => 1 - ↑(Basis.sumCoords (basisOf b i)) (q -ᵥ ↑b i)) q
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
q : P
v : V
⊢ 1 - ↑(Basis.sumCoords (basisOf b i)) (v +ᵥ q -ᵥ ↑b i) =
↑(-Basis.sumCoords (basisOf b i)) v +ᵥ (1 - ↑(Basis.sumCoords (basisOf b i)) (q -ᵥ ↑b i))
[PROOFSTEP]
rw [vadd_vsub_assoc, LinearMap.map_add, vadd_eq_add, LinearMap.neg_apply, sub_add_eq_sub_sub_swap, add_comm,
sub_eq_add_neg]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι'
⊢ coord (reindex b e) i = coord b (↑e.symm i)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι'
p✝ : P
⊢ ↑(coord (reindex b e) i) p✝ = ↑(coord b (↑e.symm i)) p✝
[PROOFSTEP]
classical simp [AffineBasis.coord]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι'
p✝ : P
⊢ ↑(coord (reindex b e) i) p✝ = ↑(coord b (↑e.symm i)) p✝
[PROOFSTEP]
simp [AffineBasis.coord]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
i : ι
⊢ ↑(coord b i) (↑b i) = 1
[PROOFSTEP]
simp only [coord, Basis.coe_sumCoords, LinearEquiv.map_zero, LinearEquiv.coe_coe, sub_zero, AffineMap.coe_mk,
Finsupp.sum_zero_index, vsub_self]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
h : i ≠ j
⊢ ↑(coord b i) (↑b j) = 0
[PROOFSTEP]
rw [coord, AffineMap.coe_mk, ← @Subtype.coe_mk _ (fun j => j ≠ i) j h.symm, ← b.basisOf_apply,
Basis.sumCoords_self_apply, sub_self]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : DecidableEq ι
i j : ι
⊢ ↑(coord b i) (↑b j) = if i = j then 1 else 0
[PROOFSTEP]
cases' eq_or_ne i j with h h
[GOAL]
case inl
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : DecidableEq ι
i j : ι
h : i = j
⊢ ↑(coord b i) (↑b j) = if i = j then 1 else 0
[PROOFSTEP]
simp [h]
[GOAL]
case inr
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : DecidableEq ι
i j : ι
h : i ≠ j
⊢ ↑(coord b i) (↑b j) = if i = j then 1 else 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
hi : i ∈ s
w : ι → k
hw : Finset.sum s w = 1
⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = w i
[PROOFSTEP]
classical simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_true, mul_boole, hw,
Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
hi : i ∈ s
w : ι → k
hw : Finset.sum s w = 1
⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = w i
[PROOFSTEP]
simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_true, mul_boole, hw, Function.comp_apply,
smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
hi : ¬i ∈ s
w : ι → k
hw : Finset.sum s w = 1
⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = 0
[PROOFSTEP]
classical simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_false, mul_boole, hw,
Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
hi : ¬i ∈ s
w : ι → k
hw : Finset.sum s w = 1
⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = 0
[PROOFSTEP]
simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_false, mul_boole, hw,
Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
⊢ ∑ i : ι, ↑(coord b i) q = 1
[PROOFSTEP]
have hq : q ∈ affineSpan k (range b) := by
rw [b.tot]
exact AffineSubspace.mem_top k V q
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
⊢ q ∈ affineSpan k (range ↑b)
[PROOFSTEP]
rw [b.tot]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
⊢ q ∈ ⊤
[PROOFSTEP]
exact AffineSubspace.mem_top k V q
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
hq : q ∈ affineSpan k (range ↑b)
⊢ ∑ i : ι, ↑(coord b i) q = 1
[PROOFSTEP]
obtain ⟨w, hw, rfl⟩ := eq_affineCombination_of_mem_affineSpan_of_fintype hq
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
w : ι → k
hw : ∑ i : ι, w i = 1
hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b)
⊢ ∑ i : ι, ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w) = 1
[PROOFSTEP]
convert hw
[GOAL]
case h.e'_2.a
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
w : ι → k
hw : ∑ i : ι, w i = 1
hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b)
x✝ : ι
a✝ : x✝ ∈ Finset.univ
⊢ ↑(coord b x✝) (↑(Finset.affineCombination k Finset.univ ↑b) w) = w x✝
[PROOFSTEP]
exact b.coord_apply_combination_of_mem (Finset.mem_univ _) hw
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q) = q
[PROOFSTEP]
have hq : q ∈ affineSpan k (range b) := by
rw [b.tot]
exact AffineSubspace.mem_top k V q
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
⊢ q ∈ affineSpan k (range ↑b)
[PROOFSTEP]
rw [b.tot]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
⊢ q ∈ ⊤
[PROOFSTEP]
exact AffineSubspace.mem_top k V q
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
q : P
hq : q ∈ affineSpan k (range ↑b)
⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q) = q
[PROOFSTEP]
obtain ⟨w, hw, rfl⟩ := eq_affineCombination_of_mem_affineSpan_of_fintype hq
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
w : ι → k
hw : ∑ i : ι, w i = 1
hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b)
⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i =>
↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w)) =
↑(Finset.affineCombination k Finset.univ ↑b) w
[PROOFSTEP]
congr
[GOAL]
case intro.intro.h.e_6.h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
w : ι → k
hw : ∑ i : ι, w i = 1
hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b)
⊢ (fun i => ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w)) = w
[PROOFSTEP]
ext i
[GOAL]
case intro.intro.h.e_6.h.h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
w : ι → k
hw : ∑ i : ι, w i = 1
hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b)
i : ι
⊢ ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w) = w i
[PROOFSTEP]
exact b.coord_apply_combination_of_mem (Finset.mem_univ i) hw
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b✝ : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
b : AffineBasis ι k V
v : V
⊢ ∑ i : ι, ↑(coord b i) v • ↑b i = v
[PROOFSTEP]
have hb := b.affineCombination_coord_eq_self v
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b✝ : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Fintype ι
b : AffineBasis ι k V
v : V
hb : (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) v) = v
⊢ ∑ i : ι, ↑(coord b i) v • ↑b i = v
[PROOFSTEP]
rwa [Finset.univ.affineCombination_eq_linear_combination _ _ (b.sum_coord_apply_eq_one v)] at hb
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Finite ι
q₁ q₂ : P
h : ∀ (i : ι), ↑(coord b i) q₁ = ↑(coord b i) q₂
⊢ q₁ = q₂
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Finite ι
q₁ q₂ : P
h : ∀ (i : ι), ↑(coord b i) q₁ = ↑(coord b i) q₂
val✝ : Fintype ι
⊢ q₁ = q₂
[PROOFSTEP]
rw [← b.affineCombination_coord_eq_self q₁, ← b.affineCombination_coord_eq_self q₂]
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
inst✝ : Finite ι
q₁ q₂ : P
h : ∀ (i : ι), ↑(coord b i) q₁ = ↑(coord b i) q₂
val✝ : Fintype ι
⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q₁) =
↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q₂
[PROOFSTEP]
simp only [h]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
⊢ ↑(coord b i) = 1
[PROOFSTEP]
ext q
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
have hp : (range b).Subsingleton := by
rw [← image_univ]
apply Subsingleton.image
apply subsingleton_of_subsingleton
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
⊢ Set.Subsingleton (range ↑b)
[PROOFSTEP]
rw [← image_univ]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
⊢ Set.Subsingleton (↑b '' univ)
[PROOFSTEP]
apply Subsingleton.image
[GOAL]
case hs
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
⊢ Set.Subsingleton univ
[PROOFSTEP]
apply subsingleton_of_subsingleton
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
haveI := AffineSubspace.subsingleton_of_subsingleton_span_eq_top hp b.tot
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
let s : Finset ι := { i }
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
have hi : i ∈ s := by simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
⊢ i ∈ s
[PROOFSTEP]
simp
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
hi : i ∈ s
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
have hw : s.sum (Function.const ι (1 : k)) = 1 := by simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
hi : i ∈ s
⊢ Finset.sum s (Function.const ι 1) = 1
[PROOFSTEP]
simp
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
hi : i ∈ s
hw : Finset.sum s (Function.const ι 1) = 1
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
have hq : q = s.affineCombination k b (Function.const ι (1 : k)) := by simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
hi : i ∈ s
hw : Finset.sum s (Function.const ι 1) = 1
⊢ q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1)
[PROOFSTEP]
simp
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Subsingleton ι
i : ι
q : P
hp : Set.Subsingleton (range ↑b)
this : Subsingleton P
s : Finset ι := {i}
hi : i ∈ s
hw : Finset.sum s (Function.const ι 1) = 1
hq : q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1)
⊢ ↑(coord b i) q = OfNat.ofNat 1 q
[PROOFSTEP]
rw [Pi.one_apply, hq, b.coord_apply_combination_of_mem hi hw, Function.const_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
⊢ Function.Surjective ↑(coord b i)
[PROOFSTEP]
classical
intro x
obtain ⟨j, hij⟩ := exists_ne i
let s : Finset ι := { i, j }
have hi : i ∈ s := by simp
have _ : j ∈ s := by simp
let w : ι → k := fun j' => if j' = i then x else 1 - x
have hw : s.sum w = 1 := by
-- Porting note: previously this subgoal worked just by:
-- simp [hij, Finset.sum_ite, Finset.filter_insert, Finset.filter_eq']
-- I'm not sure why `simp` can not successfully use `Finset.filter_eq'`.
simp [Finset.sum_ite, Finset.filter_insert, hij]
erw [Finset.filter_eq']
simp [hij.symm]
use s.affineCombination k b w
simp [b.coord_apply_combination_of_mem hi hw]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
⊢ Function.Surjective ↑(coord b i)
[PROOFSTEP]
intro x
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
obtain ⟨j, hij⟩ := exists_ne i
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
let s : Finset ι := { i, j }
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
have hi : i ∈ s := by simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
⊢ i ∈ s
[PROOFSTEP]
simp
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
have _ : j ∈ s := by simp
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
⊢ j ∈ s
[PROOFSTEP]
simp
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
let w : ι → k := fun j' => if j' = i then x else 1 - x
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
w : ι → k := fun j' => if j' = i then x else 1 - x
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
have hw : s.sum w = 1 := by
-- Porting note: previously this subgoal worked just by:
-- simp [hij, Finset.sum_ite, Finset.filter_insert, Finset.filter_eq']
-- I'm not sure why `simp` can not successfully use `Finset.filter_eq'`.
simp [Finset.sum_ite, Finset.filter_insert, hij]
erw [Finset.filter_eq']
simp [hij.symm]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
w : ι → k := fun j' => if j' = i then x else 1 - x
⊢ Finset.sum s w = 1
[PROOFSTEP]
simp [Finset.sum_ite, Finset.filter_insert, hij]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
w : ι → k := fun j' => if j' = i then x else 1 - x
⊢ ↑(Finset.card (insert i (Finset.filter (fun x => x = i) {j}))) * x + (1 - x) = 1
[PROOFSTEP]
erw [Finset.filter_eq']
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
w : ι → k := fun j' => if j' = i then x else 1 - x
⊢ ↑(Finset.card (insert i (if i ∈ {j} then {i} else ∅))) * x + (1 - x) = 1
[PROOFSTEP]
simp [hij.symm]
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
w : ι → k := fun j' => if j' = i then x else 1 - x
hw : Finset.sum s w = 1
⊢ ∃ a, ↑(coord b i) a = x
[PROOFSTEP]
use s.affineCombination k b w
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
s✝ : Finset ι
i✝ j✝ : ι
e : ι ≃ ι'
inst✝ : Nontrivial ι
i : ι
x : k
j : ι
hij : j ≠ i
s : Finset ι := {i, j}
hi : i ∈ s
x✝ : j ∈ s
w : ι → k := fun j' => if j' = i then x else 1 - x
hw : Finset.sum s w = 1
⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = x
[PROOFSTEP]
simp [b.coord_apply_combination_of_mem hi hw]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
v w : V
⊢ (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
v w : V
i : ι
⊢ (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) i =
((fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) i
[PROOFSTEP]
simp only [LinearMap.map_add, Pi.add_apply, neg_add]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
t : k
v : V
⊢ AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
(t • v) =
↑(RingHom.id k) t •
AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
v
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
t : k
v : V
i : ι
⊢ AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
(t • v) i =
(↑(RingHom.id k) t •
AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
v)
i
[PROOFSTEP]
simp only [LinearMap.map_smul, Pi.smul_apply, smul_neg, RingHom.id_apply, mul_neg]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i j : ι
e : ι ≃ ι'
p : P
v : V
⊢ (fun q i => ↑(coord b i) q) (v +ᵥ p) =
↑{
toAddHom :=
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) },
map_smul' :=
(_ :
∀ (t : k) (v : V),
AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
(t • v) =
↑(RingHom.id k) t •
AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
v) }
v +ᵥ
(fun q i => ↑(coord b i) q) p
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
p : P
v : V
i : ι
⊢ (fun q i => ↑(coord b i) q) (v +ᵥ p) i =
(↑{
toAddHom :=
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) },
map_smul' :=
(_ :
∀ (t : k) (v : V),
AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
(t • v) =
↑(RingHom.id k) t •
AddHom.toFun
{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
v) }
v +ᵥ
(fun q i => ↑(coord b i) q) p)
i
[PROOFSTEP]
rw [LinearMap.coe_mk, Pi.vadd_apply']
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
p : P
v : V
i : ι
⊢ (fun q i => ↑(coord b i) q) (v +ᵥ p) i =
↑{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v,
map_add' :=
(_ :
∀ (v w : V),
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) =
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v +
(fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }
v i +ᵥ
(fun q i => ↑(coord b i) q) p i
[PROOFSTEP]
dsimp
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
p : P
v : V
i : ι
⊢ ↑(coord b i) (v +ᵥ p) = (-Finsupp.sum (↑(basisOf b i).repr v) fun x => id) + ↑(coord b i) p
[PROOFSTEP]
rw [AffineMap.map_vadd, linear_eq_sumCoords, LinearMap.neg_apply]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : Ring k
inst✝ : Module k V
b : AffineBasis ι k P
s : Finset ι
i✝ j : ι
e : ι ≃ ι'
p : P
v : V
i : ι
⊢ -↑(Basis.sumCoords (basisOf b i)) v +ᵥ ↑(coord b i) p =
(-Finsupp.sum (↑(basisOf b i).repr v) fun x => id) + ↑(coord b i) p
[PROOFSTEP]
simp only [ne_eq, Basis.coe_sumCoords, vadd_eq_add]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : DivisionRing k
inst✝¹ : Module k V
inst✝ : CharZero k
b : AffineBasis ι k P
s : Finset ι
i : ι
hi : i ∈ s
⊢ ↑(coord b i) (Finset.centroid k s ↑b) = (↑(Finset.card s))⁻¹
[PROOFSTEP]
rw [Finset.centroid, b.coord_apply_combination_of_mem hi (s.sum_centroidWeights_eq_one_of_nonempty _ ⟨i, hi⟩),
Finset.centroidWeights, Function.const_apply]
[GOAL]
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : DivisionRing k
inst✝ : Module k V
t : Set P
ht : affineSpan k t = ⊤
⊢ ∃ s x b, ↑b = Subtype.val
[PROOFSTEP]
obtain ⟨s, hst, h_tot, h_ind⟩ := exists_affineIndependent k V t
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : DivisionRing k
inst✝ : Module k V
t : Set P
ht : affineSpan k t = ⊤
s : Set P
hst : s ⊆ t
h_tot : affineSpan k s = affineSpan k t
h_ind : AffineIndependent k Subtype.val
⊢ ∃ s x b, ↑b = Subtype.val
[PROOFSTEP]
refine' ⟨s, hst, ⟨(↑), h_ind, _⟩, rfl⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
k : Type u_3
V : Type u_4
P : Type u_5
inst✝³ : AddCommGroup V
inst✝² : AffineSpace V P
inst✝¹ : DivisionRing k
inst✝ : Module k V
t : Set P
ht : affineSpan k t = ⊤
s : Set P
hst : s ⊆ t
h_tot : affineSpan k s = affineSpan k t
h_ind : AffineIndependent k Subtype.val
⊢ affineSpan k (range Subtype.val) = ⊤
[PROOFSTEP]
rw [Subtype.range_coe, h_tot, ht]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Basis", "llama_tokens": 22063} |
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Basic", "llama_tokens": 0} |
|
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f✝ f' : AlternatingMap R M N ι
g✝ g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
f g : AlternatingMap R M N ι
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
rcases f with ⟨⟨_, _, _⟩, _⟩
[GOAL]
case mk.mk
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g✝ g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
g : AlternatingMap R M N ι
toFun✝ : (ι → M) → N
map_add'✝ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
map_eq_zero_of_eq'✝ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → MultilinearMap.toFun { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } v = 0
h :
(fun f => f.toFun)
{ toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ },
map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ } =
(fun f => f.toFun) g
⊢ { toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ },
map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ } =
g
[PROOFSTEP]
rcases g with ⟨⟨_, _, _⟩, _⟩
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
toFun✝¹ : (ι → M) → N
map_add'✝¹ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun✝¹ (update m i (x + y)) = toFun✝¹ (update m i x) + toFun✝¹ (update m i y)
map_smul'✝¹ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun✝¹ (update m i (c • x)) = c • toFun✝¹ (update m i x)
map_eq_zero_of_eq'✝¹ :
∀ (v : ι → M) (i j : ι),
v i = v j →
i ≠ j → MultilinearMap.toFun { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } v = 0
toFun✝ : (ι → M) → N
map_add'✝ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
map_eq_zero_of_eq'✝ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → MultilinearMap.toFun { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } v = 0
h :
(fun f => f.toFun)
{ toMultilinearMap := { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ },
map_eq_zero_of_eq' := map_eq_zero_of_eq'✝¹ } =
(fun f => f.toFun)
{ toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ },
map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ }
⊢ { toMultilinearMap := { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ },
map_eq_zero_of_eq' := map_eq_zero_of_eq'✝¹ } =
{ toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ },
map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f✝ f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
f : (ι → M) → N
h₁ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), f (update m i (x + y)) = f (update m i x) + f (update m i y)
h₂ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), f (update m i (c • x)) = c • f (update m i x)
h₃ :
∀ (v : ι → M) (i j : ι),
v i = v j →
i ≠ j →
MultilinearMap.toFun
{ toFun := f,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
f (update m i (x + y)) = f (update m i x) + f (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
f (update m i (c • x)) = c • f (update m i x)) }
v =
0
⊢ ↑{
toMultilinearMap :=
{ toFun := f,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
f (update m i (x + y)) = f (update m i x) + f (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
f (update m i (c • x)) = c • f (update m i x)) },
map_eq_zero_of_eq' := h₃ } =
{ toFun := f, map_add' := h₁, map_smul' := h₂ }
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
v : ι → M
hv : ¬Injective v
⊢ ↑f v = 0
[PROOFSTEP]
rw [Function.Injective] at hv
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
v : ι → M
hv : ¬∀ ⦃a₁ a₂ : ι⦄, v a₁ = v a₂ → a₁ = a₂
⊢ ↑f v = 0
[PROOFSTEP]
push_neg at hv
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
v : ι → M
hv : Exists fun ⦃a₁⦄ => Exists fun ⦃a₂⦄ => v a₁ = v a₂ ∧ a₁ ≠ a₂
⊢ ↑f v = 0
[PROOFSTEP]
rcases hv with ⟨i₁, i₂, heq, hne⟩
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
v : ι → M
i₁ i₂ : ι
heq : v i₁ = v i₂
hne : i₁ ≠ i₂
⊢ ↑f v = 0
[PROOFSTEP]
exact f.map_eq_zero_of_eq v heq hne
[GOAL]
R : Type u_1
inst✝¹³ : Semiring R
M : Type u_2
inst✝¹² : AddCommMonoid M
inst✝¹¹ : Module R M
N : Type u_3
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : Module R N
P : Type u_4
inst✝⁸ : AddCommMonoid P
inst✝⁷ : Module R P
M' : Type u_5
inst✝⁶ : AddCommGroup M'
inst✝⁵ : Module R M'
N' : Type u_6
inst✝⁴ : AddCommGroup N'
inst✝³ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f✝ f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
S : Type u_10
inst✝² : Monoid S
inst✝¹ : DistribMulAction S N
inst✝ : SMulCommClass R S N
c : S
f : AlternatingMap R M N ι
src✝ : MultilinearMap R (fun x => M) N := c • ↑f
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src✝ (update m i (x + y)) =
MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) }
v =
0
[PROOFSTEP]
simp [f.map_eq_zero_of_eq v h hij]
[GOAL]
R✝ : Type u_1
inst✝¹⁵ : Semiring R✝
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R✝ M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R✝ N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R✝ P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R✝ M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R✝ N'
ι✝ : Type u_7
ι' : Type u_8
ι'' : Type u_9
f✝ f' : AlternatingMap R✝ M N ι✝
g g₂ : AlternatingMap R✝ M N' ι✝
g' : AlternatingMap R✝ M' N' ι✝
v✝ : ι✝ → M
v' : ι✝ → M'
R : Type u_10
M₁ : Type u_11
M₂ : Type u_12
ι : Type u_13
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M₁
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M₁
inst✝ : Module R M₂
f : AlternatingMap R M₁ R ι
z : M₂
src✝ : MultilinearMap R (fun x => M₁) M₂ := MultilinearMap.smulRight (↑f) z
v : ι → M₁
i j : ι
h : v i = v j
hne : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M₁) (i : ι) (x y : M₁),
MultilinearMap.toFun src✝ (update m i (x + y)) =
MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M₁) (i : ι) (c : R) (x : M₁),
MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) }
v =
0
[PROOFSTEP]
simp [f.map_eq_zero_of_eq v h hne]
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
a b : AlternatingMap R M N ι
src✝ : MultilinearMap R (fun x => M) N := ↑a + ↑b
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src✝ (update m i (x + y)) =
MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) }
v =
0
[PROOFSTEP]
simp [a.map_eq_zero_of_eq v h hij, b.map_eq_zero_of_eq v h hij]
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
src✝ : MultilinearMap R (fun x => M) N := 0
v : ι → M
i j : ι
x✝¹ : v i = v j
x✝ : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src✝ (update m i (x + y)) =
MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) }
v =
0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f✝ f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
f : AlternatingMap R M N' ι
src✝ : MultilinearMap R (fun x => M) N' := -↑f
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src✝ (update m i (x + y)) =
MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) }
v =
0
[PROOFSTEP]
simp [f.map_eq_zero_of_eq v h hij]
[GOAL]
R : Type u_1
inst✝¹⁰ : Semiring R
M : Type u_2
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module R M
N : Type u_3
inst✝⁷ : AddCommMonoid N
inst✝⁶ : Module R N
P : Type u_4
inst✝⁵ : AddCommMonoid P
inst✝⁴ : Module R P
M' : Type u_5
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
N' : Type u_6
inst✝¹ : AddCommGroup N'
inst✝ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
f✝ f' : AlternatingMap R M N ι
g✝ g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
f g : AlternatingMap R M N' ι
src✝ : MultilinearMap R (fun x => M) N' := ↑f - ↑g
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src✝ (update m i (x + y)) =
MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) }
v =
0
[PROOFSTEP]
simp [f.map_eq_zero_of_eq v h hij, g.map_eq_zero_of_eq v h hij]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N₂ : Type u_10
inst✝¹ : AddCommMonoid N₂
inst✝ : Module R N₂
g : N →ₗ[R] N₂
f : AlternatingMap R M N ι
src✝ : MultilinearMap R (fun x => M) N₂ := compMultilinearMap g ↑f
v : ι → M
i j : ι
h : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src✝ (Function.update m i (x + y)) =
MultilinearMap.toFun src✝ (Function.update m i x) + MultilinearMap.toFun src✝ (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src✝ (Function.update m i (c • x)) =
c • MultilinearMap.toFun src✝ (Function.update m i x)) }
v =
0
[PROOFSTEP]
simp [f.map_eq_zero_of_eq v h hij]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N₂ : Type u_10
inst✝¹ : AddCommMonoid N₂
inst✝ : Module R N₂
g : N →ₗ[R] N₂
⊢ (fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N₂ : Type u_10
inst✝¹ : AddCommMonoid N₂
inst✝ : Module R N₂
g : N →ₗ[R] N₂
x✝ : ι → M
⊢ ↑((fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0)
x✝ =
↑0 x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N₂ : Type u_10
inst✝¹ : AddCommMonoid N₂
inst✝ : Module R N₂
g : N →ₗ[R] N₂
a b : AlternatingMap R M N ι
⊢ ZeroHom.toFun
{
toFun := fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) },
map_zero' :=
(_ :
(fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0) }
(a + b) =
ZeroHom.toFun
{
toFun := fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) },
map_zero' :=
(_ :
(fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0) }
a +
ZeroHom.toFun
{
toFun := fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) },
map_zero' :=
(_ :
(fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0) }
b
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N₂ : Type u_10
inst✝¹ : AddCommMonoid N₂
inst✝ : Module R N₂
g : N →ₗ[R] N₂
a b : AlternatingMap R M N ι
x✝ : ι → M
⊢ ↑(ZeroHom.toFun
{
toFun := fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) },
map_zero' :=
(_ :
(fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0) }
(a + b))
x✝ =
↑(ZeroHom.toFun
{
toFun := fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) },
map_zero' :=
(_ :
(fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0) }
a +
ZeroHom.toFun
{
toFun := fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) },
map_zero' :=
(_ :
(fun f =>
let src := compMultilinearMap g ↑f;
{
toMultilinearMap :=
{ toFun := src.toFun,
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
MultilinearMap.toFun src (Function.update m i (x + y)) =
MultilinearMap.toFun src (Function.update m i x) +
MultilinearMap.toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
MultilinearMap.toFun src (Function.update m i (c • x)) =
c • MultilinearMap.toFun src (Function.update m i x)) },
map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) })
0 =
0) }
b)
x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
g : M₂ →ₗ[R] M
⊢ compLinearMap 0 g = 0
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
g : M₂ →ₗ[R] M
x✝ : ι → M₂
⊢ ↑(compLinearMap 0 g) x✝ = ↑0 x✝
[PROOFSTEP]
simp only [compLinearMap_apply, zero_apply]
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f₁ f₂ : AlternatingMap R M N ι
g : M₂ →ₗ[R] M
⊢ compLinearMap (f₁ + f₂) g = compLinearMap f₁ g + compLinearMap f₂ g
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f₁ f₂ : AlternatingMap R M N ι
g : M₂ →ₗ[R] M
x✝ : ι → M₂
⊢ ↑(compLinearMap (f₁ + f₂) g) x✝ = ↑(compLinearMap f₁ g + compLinearMap f₂ g) x✝
[PROOFSTEP]
simp only [compLinearMap_apply, add_apply]
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
inst✝ : Nonempty ι
f : AlternatingMap R M N ι
⊢ compLinearMap f 0 = 0
[PROOFSTEP]
ext
-- Porting note: Was `simp_rw [.., ← Pi.zero_def, map_zero, zero_apply]`.
[GOAL]
case H
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
inst✝ : Nonempty ι
f : AlternatingMap R M N ι
x✝ : ι → M₂
⊢ ↑(compLinearMap f 0) x✝ = ↑0 x✝
[PROOFSTEP]
simp_rw [compLinearMap_apply, LinearMap.zero_apply, ← Pi.zero_def, zero_apply]
[GOAL]
case H
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
inst✝ : Nonempty ι
f : AlternatingMap R M N ι
x✝ : ι → M₂
⊢ ↑f 0 = 0
[PROOFSTEP]
exact map_zero f
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f : M₂ →ₗ[R] M
hf : Function.Surjective ↑f
g₁ g₂ : AlternatingMap R M N ι
h : (fun g => compLinearMap g f) g₁ = (fun g => compLinearMap g f) g₂
x : ι → M
⊢ ↑g₁ x = ↑g₂ x
[PROOFSTEP]
simpa [Function.surjInv_eq hf] using ext_iff.mp h (Function.surjInv hf ∘ x)
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
⊢ update v i (v j) i = update v i (v j) j
[PROOFSTEP]
rw [Function.update_same, Function.update_noteq hij.symm]
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
m : M
⊢ update (update v i m) j m i = update (update v i m) j m j
[PROOFSTEP]
rw [Function.update_same, Function.update_noteq hij, Function.update_same]
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
⊢ ↑f (v ∘ ↑(Equiv.swap i j)) + ↑f v = 0
[PROOFSTEP]
rw [Equiv.comp_swap_eq_update]
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
⊢ ↑f (update (update v j (v i)) i (v j)) + ↑f v = 0
[PROOFSTEP]
convert f.map_update_update v hij (v i + v j)
[GOAL]
case h.e'_2
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
⊢ ↑f (update (update v j (v i)) i (v j)) + ↑f v = ↑f (update (update v i (v i + v j)) j (v i + v j))
[PROOFSTEP]
simp [f.map_update_self _ hij, f.map_update_self _ hij.symm, Function.update_comm hij (v i + v j) (v _) v,
Function.update_comm hij.symm (v i) (v i) v]
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
⊢ ↑f v + ↑f (v ∘ ↑(Equiv.swap i j)) = 0
[PROOFSTEP]
rw [add_comm]
[GOAL]
R : Type u_1
inst✝¹⁵ : Semiring R
M : Type u_2
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : Module R M
N : Type u_3
inst✝¹² : AddCommMonoid N
inst✝¹¹ : Module R N
P : Type u_4
inst✝¹⁰ : AddCommMonoid P
inst✝⁹ : Module R P
M' : Type u_5
inst✝⁸ : AddCommGroup M'
inst✝⁷ : Module R M'
N' : Type u_6
inst✝⁶ : AddCommGroup N'
inst✝⁵ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁴ : AddCommMonoid M₂
inst✝³ : Module R M₂
M₃ : Type u_11
inst✝² : AddCommMonoid M₃
inst✝¹ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
⊢ ↑f (v ∘ ↑(Equiv.swap i j)) + ↑f v = 0
[PROOFSTEP]
exact f.map_swap_add v hij
[GOAL]
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
M₃ : Type u_11
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
v : ι → M
σ : Equiv.Perm ι
⊢ ↑g (v ∘ ↑σ) = ↑Equiv.Perm.sign σ • ↑g v
[PROOFSTEP]
induction' σ using Equiv.Perm.swap_induction_on' with s x y hxy hI
[GOAL]
case a
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
M₃ : Type u_11
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
v : ι → M
⊢ ↑g (v ∘ ↑1) = ↑Equiv.Perm.sign 1 • ↑g v
[PROOFSTEP]
simp
[GOAL]
case a
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
M₃ : Type u_11
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
v : ι → M
s : Equiv.Perm ι
x y : ι
hxy : x ≠ y
hI : ↑g (v ∘ ↑s) = ↑Equiv.Perm.sign s • ↑g v
⊢ ↑g (v ∘ ↑(s * Equiv.swap x y)) = ↑Equiv.Perm.sign (s * Equiv.swap x y) • ↑g v
[PROOFSTEP]
simpa [← Function.comp.assoc, g.map_swap (v ∘ s) hxy, Equiv.Perm.sign_swap hxy, -Equiv.Perm.sign_swap'] using hI
[GOAL]
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
M₃ : Type u_11
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
σ : Equiv.Perm ι
⊢ ↑g v = ↑Equiv.Perm.sign σ • ↑g (v ∘ ↑σ)
[PROOFSTEP]
rw [g.map_perm, smul_smul]
[GOAL]
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M₂
M₃ : Type u_11
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
σ : Equiv.Perm ι
⊢ ↑g v = (↑Equiv.Perm.sign σ * ↑Equiv.Perm.sign σ) • ↑g v
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f✝ f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M
v' : ι → M'
σ : ι ≃ ι'
f : AlternatingMap R M N ι
src✝ : MultilinearMap R (fun x => M) N := MultilinearMap.domDomCongr σ ↑f
v : ι' → M
i j : ι'
hv : v i = v j
hij : i ≠ j
⊢ (v ∘ ↑σ) (↑σ.symm i) = (v ∘ ↑σ) (↑σ.symm j)
[PROOFSTEP]
simpa using hv
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f✝ f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
σ : ι ≃ ι'
f : AlternatingMap R M N ι
⊢ domDomCongr σ.symm (domDomCongr σ f) = f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f✝ f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
σ : ι ≃ ι'
f : AlternatingMap R M N ι
x✝ : ι → M
⊢ ↑(domDomCongr σ.symm (domDomCongr σ f)) x✝ = ↑f x✝
[PROOFSTEP]
simp [Function.comp]
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
σ : ι ≃ ι'
m : AlternatingMap R M N ι'
⊢ domDomCongr σ (domDomCongr σ.symm m) = m
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝³ : AddCommMonoid M₂
inst✝² : Module R M₂
M₃ : Type u_11
inst✝¹ : AddCommMonoid M₃
inst✝ : Module R M₃
f f' : AlternatingMap R M N ι
g g₂ : AlternatingMap R M N' ι
g' : AlternatingMap R M' N' ι
v : ι → M
v' : ι → M'
σ : ι ≃ ι'
m : AlternatingMap R M N ι'
x✝ : ι' → M
⊢ ↑(domDomCongr σ (domDomCongr σ.symm m)) x✝ = ↑m x✝
[PROOFSTEP]
simp [Function.comp]
[GOAL]
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h : ¬LinearIndependent K v
⊢ ↑f v = 0
[PROOFSTEP]
obtain ⟨s, g, h, i, hi, hz⟩ := not_linearIndependent_iff.mp h
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
h : (Finset.sum s fun i => g i • v i) = 0
i : ι
hi : i ∈ s
hz : g i ≠ 0
⊢ ↑f v = 0
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
h : (Finset.sum s fun i => g i • v i) = 0
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
⊢ ↑f v = 0
[PROOFSTEP]
suffices f (update v i (g i • v i)) = 0
by
rw [f.map_smul, Function.update_eq_self, smul_eq_zero] at this
exact Or.resolve_left this hz
[GOAL]
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
h : (Finset.sum s fun i => g i • v i) = 0
i : ι
hi : i ∈ s
hz : g i ≠ 0
this✝ : DecidableEq ι := Classical.decEq ι
this : ↑f (update v i (g i • v i)) = 0
⊢ ↑f v = 0
[PROOFSTEP]
rw [f.map_smul, Function.update_eq_self, smul_eq_zero] at this
[GOAL]
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
h : (Finset.sum s fun i => g i • v i) = 0
i : ι
hi : i ∈ s
hz : g i ≠ 0
this✝ : DecidableEq ι := Classical.decEq ι
this : g i = 0 ∨ ↑f v = 0
⊢ ↑f v = 0
[PROOFSTEP]
exact Or.resolve_left this hz
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
h : (Finset.sum s fun i => g i • v i) = 0
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
⊢ ↑f (update v i (g i • v i)) = 0
[PROOFSTEP]
rw [← (funext fun x => ite_self (c := i = x) (d := Classical.decEq ι i x) (g x • v x))] at h
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
i : ι
h : (Finset.sum s fun x => if i = x then g x • v x else g x • v x) = 0
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
⊢ ↑f (update v i (g i • v i)) = 0
[PROOFSTEP]
rw [Finset.sum_ite, Finset.filter_eq, Finset.filter_ne, if_pos hi, Finset.sum_singleton, add_eq_zero_iff_eq_neg] at h
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x
⊢ ↑f (update v i (g i • v i)) = 0
[PROOFSTEP]
rw [h, f.map_neg, f.map_update_sum, neg_eq_zero]
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x
⊢ (Finset.sum (Finset.erase s i) fun a => ↑f (update v i (g a • v a))) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case intro.intro.intro.intro.intro.h
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x
⊢ ∀ (x : ι), x ∈ Finset.erase s i → ↑f (update v i (g x • v x)) = 0
[PROOFSTEP]
intro j hj
[GOAL]
case intro.intro.intro.intro.intro.h
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x
j : ι
hj : j ∈ Finset.erase s i
⊢ ↑f (update v i (g j • v j)) = 0
[PROOFSTEP]
obtain ⟨hij, _⟩ := Finset.mem_erase.mp hj
[GOAL]
case intro.intro.intro.intro.intro.h.intro
R : Type u_1
inst✝²⁰ : Semiring R
M✝ : Type u_2
inst✝¹⁹ : AddCommMonoid M✝
inst✝¹⁸ : Module R M✝
N✝ : Type u_3
inst✝¹⁷ : AddCommMonoid N✝
inst✝¹⁶ : Module R N✝
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
M₂ : Type u_10
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : Module R M₂
M₃ : Type u_11
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M₃
f✝ f' : AlternatingMap R M✝ N✝ ι
g✝ g₂ : AlternatingMap R M✝ N' ι
g' : AlternatingMap R M' N' ι
v✝ : ι → M✝
v' : ι → M'
K : Type u_12
inst✝⁵ : Ring K
M : Type u_13
inst✝⁴ : AddCommGroup M
inst✝³ : Module K M
N : Type u_14
inst✝² : AddCommGroup N
inst✝¹ : Module K N
inst✝ : NoZeroSMulDivisors K N
f : AlternatingMap K M N ι
v : ι → M
h✝ : ¬LinearIndependent K v
s : Finset ι
g : ι → K
i : ι
hi : i ∈ s
hz : g i ≠ 0
this : DecidableEq ι := Classical.decEq ι
h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x
j : ι
hj : j ∈ Finset.erase s i
hij : j ≠ i
right✝ : j ∈ s
⊢ ↑f (update v i (g j • v j)) = 0
[PROOFSTEP]
rw [f.map_smul, f.map_update_self _ hij.symm, smul_zero]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
m : MultilinearMap R (fun x => M) N'
v : ι → M
i j : ι
i_ne_j : i ≠ j
hv : v i = v j
⊢ ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0
[PROOFSTEP]
rw [sum_apply]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
m : MultilinearMap R (fun x => M) N'
v : ι → M
i j : ι
i_ne_j : i ≠ j
hv : v i = v j
⊢ ∑ a : Perm ι, ↑(↑Perm.sign a • domDomCongr a m) v = 0
[PROOFSTEP]
exact
Finset.sum_involution
(fun σ _ => swap i j * σ)
-- Porting note: `-Equiv.Perm.sign_swap'` is required.
(fun σ _ => by simp [Perm.sign_swap i_ne_j, apply_swap_eq_self hv, -Equiv.Perm.sign_swap'])
(fun σ _ _ => (not_congr swap_mul_eq_iff).mpr i_ne_j) (fun σ _ => Finset.mem_univ _) fun σ _ =>
swap_mul_involutive i j σ
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
m : MultilinearMap R (fun x => M) N'
v : ι → M
i j : ι
i_ne_j : i ≠ j
hv : v i = v j
σ : Perm ι
x✝ : σ ∈ Finset.univ
⊢ ↑(↑Perm.sign σ • domDomCongr σ m) v +
↑(↑Perm.sign ((fun σ x => swap i j * σ) σ x✝) • domDomCongr ((fun σ x => swap i j * σ) σ x✝) m) v =
0
[PROOFSTEP]
simp [Perm.sign_swap i_ne_j, apply_swap_eq_self hv, -Equiv.Perm.sign_swap']
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
⊢ (fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
x✝ : ι → M
⊢ ↑((fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0)
x✝ =
↑0 x✝
[PROOFSTEP]
simp only [mk_coe, AlternatingMap.coe_mk, sum_apply, smul_apply, domDomCongr_apply, zero_apply, smul_zero,
Finset.sum_const_zero, AlternatingMap.zero_apply]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
a b : MultilinearMap R (fun x => M) N'
⊢ ZeroHom.toFun
{
toFun := fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) },
map_zero' :=
(_ :
(fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0) }
(a + b) =
ZeroHom.toFun
{
toFun := fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) },
map_zero' :=
(_ :
(fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0) }
a +
ZeroHom.toFun
{
toFun := fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) },
map_zero' :=
(_ :
(fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0) }
b
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
a b : MultilinearMap R (fun x => M) N'
x✝ : ι → M
⊢ ↑(ZeroHom.toFun
{
toFun := fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) },
map_zero' :=
(_ :
(fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0) }
(a + b))
x✝ =
↑(ZeroHom.toFun
{
toFun := fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) },
map_zero' :=
(_ :
(fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0) }
a +
ZeroHom.toFun
{
toFun := fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) },
map_zero' :=
(_ :
(fun m =>
let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m;
{
toMultilinearMap :=
{ toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M),
toFun src (Function.update m i (x + y)) =
toFun src (Function.update m i x) + toFun src (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M),
toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) },
map_eq_zero_of_eq' :=
(_ :
∀ (v : ι → M) (i j : ι),
v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) })
0 =
0) }
b)
x✝
[PROOFSTEP]
simp only [mk_coe, AlternatingMap.coe_mk, sum_apply, smul_apply, domDomCongr_apply, add_apply, smul_add,
Finset.sum_add_distrib, AlternatingMap.add_apply]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
m : MultilinearMap R (fun x => M) N'
v : ι → M
⊢ ↑(↑alternatization m) v = ∑ σ : Perm ι, ↑Perm.sign σ • ↑(domDomCongr σ m) v
[PROOFSTEP]
simp only [alternatization_def, smul_apply, sum_apply]
[GOAL]
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
a : AlternatingMap R M N' ι
⊢ ↑MultilinearMap.alternatization ↑a = Nat.factorial (Fintype.card ι) • a
[PROOFSTEP]
apply AlternatingMap.coe_injective
[GOAL]
case a
R : Type u_1
inst✝¹² : Semiring R
M : Type u_2
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : Module R M
N : Type u_3
inst✝⁹ : AddCommMonoid N
inst✝⁸ : Module R N
P : Type u_4
inst✝⁷ : AddCommMonoid P
inst✝⁶ : Module R P
M' : Type u_5
inst✝⁵ : AddCommGroup M'
inst✝⁴ : Module R M'
N' : Type u_6
inst✝³ : AddCommGroup N'
inst✝² : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
a : AlternatingMap R M N' ι
⊢ ↑(↑MultilinearMap.alternatization ↑a) = ↑(Nat.factorial (Fintype.card ι) • a)
[PROOFSTEP]
simp_rw [MultilinearMap.alternatization_def, ← coe_domDomCongr, domDomCongr_perm, coe_smul, smul_smul,
Int.units_mul_self, one_smul, Finset.sum_const, Finset.card_univ, Fintype.card_perm, ← coe_multilinearMap, coe_smul]
[GOAL]
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N'₂ : Type u_10
inst✝³ : AddCommGroup N'₂
inst✝² : Module R N'₂
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
g : N' →ₗ[R] N'₂
f : MultilinearMap R (fun x => M) N'
⊢ ↑MultilinearMap.alternatization (compMultilinearMap g f) = ↑(compAlternatingMap g) (↑MultilinearMap.alternatization f)
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
inst✝¹⁴ : Semiring R
M : Type u_2
inst✝¹³ : AddCommMonoid M
inst✝¹² : Module R M
N : Type u_3
inst✝¹¹ : AddCommMonoid N
inst✝¹⁰ : Module R N
P : Type u_4
inst✝⁹ : AddCommMonoid P
inst✝⁸ : Module R P
M' : Type u_5
inst✝⁷ : AddCommGroup M'
inst✝⁶ : Module R M'
N' : Type u_6
inst✝⁵ : AddCommGroup N'
inst✝⁴ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
N'₂ : Type u_10
inst✝³ : AddCommGroup N'₂
inst✝² : Module R N'₂
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
g : N' →ₗ[R] N'₂
f : MultilinearMap R (fun x => M) N'
x✝ : ι → M
⊢ ↑(↑MultilinearMap.alternatization (compMultilinearMap g f)) x✝ =
↑(↑(compAlternatingMap g) (↑MultilinearMap.alternatization f)) x✝
[PROOFSTEP]
simp [MultilinearMap.alternatization_def]
[GOAL]
R : Type u_1
inst✝²⁰ : Semiring R
M : Type u_2
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
N : Type u_3
inst✝¹⁷ : AddCommMonoid N
inst✝¹⁶ : Module R N
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝⁹ : Fintype ιa
inst✝⁸ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁷ : CommSemiring R'
inst✝⁶ : AddCommGroup N₁
inst✝⁵ : Module R' N₁
inst✝⁴ : AddCommGroup N₂
inst✝³ : Module R' N₂
inst✝² : AddCommMonoid Mᵢ
inst✝¹ : Module R' Mᵢ
α : Type u_16
β : Type u_17
inst✝ : DecidableEq (α ⊕ β)
i j : α ⊕ β
σ : ModSumCongr α β
⊢ SMul.smul (swap i j) (SMul.smul (swap i j) σ) = σ
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
R : Type u_1
inst✝²⁰ : Semiring R
M : Type u_2
inst✝¹⁹ : AddCommMonoid M
inst✝¹⁸ : Module R M
N : Type u_3
inst✝¹⁷ : AddCommMonoid N
inst✝¹⁶ : Module R N
P : Type u_4
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : Module R P
M' : Type u_5
inst✝¹³ : AddCommGroup M'
inst✝¹² : Module R M'
N' : Type u_6
inst✝¹¹ : AddCommGroup N'
inst✝¹⁰ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝⁹ : Fintype ιa
inst✝⁸ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁷ : CommSemiring R'
inst✝⁶ : AddCommGroup N₁
inst✝⁵ : Module R' N₁
inst✝⁴ : AddCommGroup N₂
inst✝³ : Module R' N₂
inst✝² : AddCommMonoid Mᵢ
inst✝¹ : Module R' Mᵢ
α : Type u_16
β : Type u_17
inst✝ : DecidableEq (α ⊕ β)
i j : α ⊕ β
σ✝ : ModSumCongr α β
σ : Perm (α ⊕ β)
⊢ SMul.smul (swap i j) (SMul.smul (swap i j) (Quotient.mk'' σ)) = Quotient.mk'' σ
[PROOFSTEP]
exact _root_.congr_arg Quotient.mk'' (Equiv.swap_mul_involutive i j σ)
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
H : Setoid.r σ₁ σ₂
⊢ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂
[PROOFSTEP]
rw [QuotientGroup.leftRel_apply] at H
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
H : σ₁⁻¹ * σ₂ ∈ MonoidHom.range (Perm.sumCongrHom ιa ιb)
⊢ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂
[PROOFSTEP]
obtain ⟨⟨sl, sr⟩, h⟩ := H
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
h : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = σ₁⁻¹ * σ₂
⊢ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂
[PROOFSTEP]
ext v
[GOAL]
case intro.mk.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
h : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = σ₁⁻¹ * σ₂
v : ιa ⊕ ιb → Mᵢ
⊢ ↑((fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁) v =
↑((fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂) v
[PROOFSTEP]
simp only [MultilinearMap.domDomCongr_apply, MultilinearMap.domCoprod_apply, coe_multilinearMap,
MultilinearMap.smul_apply]
[GOAL]
case intro.mk.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
h : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = σ₁⁻¹ * σ₂
v : ιa ⊕ ιb → Mᵢ
⊢ (↑Perm.sign σ₁ • (↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) =
↑Perm.sign σ₂ • (↑a fun i => v (↑σ₂ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₂ (Sum.inr i))
[PROOFSTEP]
replace h := inv_mul_eq_iff_eq_mul.mp h.symm
[GOAL]
case intro.mk.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
v : ιa ⊕ ιb → Mᵢ
h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)
⊢ (↑Perm.sign σ₁ • (↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) =
↑Perm.sign σ₂ • (↑a fun i => v (↑σ₂ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₂ (Sum.inr i))
[PROOFSTEP]
have :
Equiv.Perm.sign (σ₁ * Perm.sumCongrHom _ _ (sl, sr)) =
Equiv.Perm.sign σ₁ * (Equiv.Perm.sign sl * Equiv.Perm.sign sr) :=
by simp
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
v : ιa ⊕ ιb → Mᵢ
h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)
⊢ ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr)
[PROOFSTEP]
simp
[GOAL]
case intro.mk.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
v : ιa ⊕ ιb → Mᵢ
h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)
this : ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr)
⊢ (↑Perm.sign σ₁ • (↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) =
↑Perm.sign σ₂ • (↑a fun i => v (↑σ₂ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₂ (Sum.inr i))
[PROOFSTEP]
rw [h, this, mul_smul, mul_smul, smul_left_cancel_iff, ← TensorProduct.tmul_smul, TensorProduct.smul_tmul']
[GOAL]
case intro.mk.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
v : ιa ⊕ ιb → Mᵢ
h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)
this : ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr)
⊢ ((↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) =
(↑Perm.sign sl • ↑a fun i => v (↑(σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i))) ⊗ₜ[R']
(↑Perm.sign sr • ↑b fun i => v (↑(σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i)))
[PROOFSTEP]
simp only [Sum.map_inr, Perm.sumCongrHom_apply, Perm.sumCongr_apply, Sum.map_inl, Function.comp_apply, Perm.coe_mul]
-- Porting note: Was `rw`.
[GOAL]
case intro.mk.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
σ₁ σ₂ : Perm (ιa ⊕ ιb)
sl : Perm ιa
sr : Perm ιb
v : ιa ⊕ ιb → Mᵢ
h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)
this : ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr)
⊢ ((↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) =
(↑Perm.sign sl • ↑a fun i => v (↑σ₁ (Sum.inl (↑sl i)))) ⊗ₜ[R']
(↑Perm.sign sr • ↑b fun i => v (↑σ₁ (Sum.inr (↑sr i))))
[PROOFSTEP]
erw [← a.map_congr_perm fun i => v (σ₁ _), ← b.map_congr_perm fun i => v (σ₁ _)]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
⊢ ↑(summand a b σ) v + ↑(summand a b (swap i j • σ)) v = 0
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ ↑(summand a b (Quotient.mk'' σ)) v + ↑(summand a b (swap i j • Quotient.mk'' σ)) v = 0
[PROOFSTEP]
dsimp only [Quotient.liftOn'_mk'', Quotient.map'_mk'', MulAction.Quotient.smul_mk, domCoprod.summand]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ ↑(↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) v +
↑(↑Perm.sign (swap i j • σ) • MultilinearMap.domDomCongr (swap i j • σ) (MultilinearMap.domCoprod ↑a ↑b)) v =
0
[PROOFSTEP]
rw [smul_eq_mul, Perm.sign_mul, Perm.sign_swap hij]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ ↑(↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) v +
↑((-1 * ↑Perm.sign σ) • MultilinearMap.domDomCongr (swap i j * σ) (MultilinearMap.domCoprod ↑a ↑b)) v =
0
[PROOFSTEP]
simp only [one_mul, neg_mul, Function.comp_apply, Units.neg_smul, Perm.coe_mul, Units.val_neg,
MultilinearMap.smul_apply, MultilinearMap.neg_apply, MultilinearMap.domDomCongr_apply, MultilinearMap.domCoprod_apply]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) +
-(↑Perm.sign σ •
(↑↑a fun i_1 => v (↑(swap i j) (↑σ (Sum.inl i_1)))) ⊗ₜ[R']
↑↑b fun i_1 => v (↑(swap i j) (↑σ (Sum.inr i_1)))) =
0
[PROOFSTEP]
convert add_right_neg (G := N₁ ⊗[R'] N₂) _ using 6
[GOAL]
case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_9.h.e'_6
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ (fun i_1 => v (↑(swap i j) (↑σ (Sum.inl i_1)))) = fun i => v (↑σ (Sum.inl i))
[PROOFSTEP]
ext k
[GOAL]
case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_9.h.e'_6.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
k : ιa
⊢ v (↑(swap i j) (↑σ (Sum.inl k))) = v (↑σ (Sum.inl k))
[PROOFSTEP]
rw [Equiv.apply_swap_eq_self hv]
[GOAL]
case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_10.h.e'_6
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ (fun i_1 => v (↑(swap i j) (↑σ (Sum.inr i_1)))) = fun i => v (↑σ (Sum.inr i))
[PROOFSTEP]
ext k
[GOAL]
case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_10.h.e'_6.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
k : ιb
⊢ v (↑(swap i j) (↑σ (Sum.inr k))) = v (↑σ (Sum.inr k))
[PROOFSTEP]
rw [Equiv.apply_swap_eq_self hv]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
⊢ swap i j • σ = σ → ↑(summand a b σ) v = 0
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ swap i j • Quotient.mk'' σ = Quotient.mk'' σ → ↑(summand a b (Quotient.mk'' σ)) v = 0
[PROOFSTEP]
dsimp only [Quotient.liftOn'_mk'', Quotient.map'_mk'', MultilinearMap.smul_apply, MultilinearMap.domDomCongr_apply,
MultilinearMap.domCoprod_apply, domCoprod.summand]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
⊢ swap i j • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
intro hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
cases' hi : σ⁻¹ i with val val
[GOAL]
case inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιa
hi : ↑σ⁻¹ i = Sum.inl val
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
cases' hj : σ⁻¹ j with val_1 val_1
[GOAL]
case inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιb
hi : ↑σ⁻¹ i = Sum.inr val
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
cases' hj : σ⁻¹ j with val_1 val_1
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιa
hi : ↑σ⁻¹ i = Sum.inl val
val_1 : ιa
hj : ↑σ⁻¹ j = Sum.inl val_1
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
rw [Perm.inv_eq_iff_eq] at hi hj
[GOAL]
case inl.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιa
hi : ↑σ⁻¹ i = Sum.inl val
val_1 : ιb
hj : ↑σ⁻¹ j = Sum.inr val_1
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
rw [Perm.inv_eq_iff_eq] at hi hj
[GOAL]
case inr.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιb
hi : ↑σ⁻¹ i = Sum.inr val
val_1 : ιa
hj : ↑σ⁻¹ j = Sum.inl val_1
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
rw [Perm.inv_eq_iff_eq] at hi hj
[GOAL]
case inr.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιb
hi : ↑σ⁻¹ i = Sum.inr val
val_1 : ιb
hj : ↑σ⁻¹ j = Sum.inr val_1
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
rw [Perm.inv_eq_iff_eq] at hi hj
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιa
hi : i = ↑σ (Sum.inl val)
val_1 : ιa
hj : j = ↑σ (Sum.inl val_1)
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
substs hi hj
[GOAL]
case inl.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιa
hi : i = ↑σ (Sum.inl val)
val_1 : ιb
hj : j = ↑σ (Sum.inr val_1)
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
substs hi hj
[GOAL]
case inr.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιb
hi : i = ↑σ (Sum.inr val)
val_1 : ιa
hj : j = ↑σ (Sum.inl val_1)
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
substs hi hj
[GOAL]
case inr.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
σ : Perm (ιa ⊕ ιb)
hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ
val : ιb
hi : i = ↑σ (Sum.inr val)
val_1 : ιb
hj : j = ↑σ (Sum.inr val_1)
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
substs hi hj
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
val val_1 : ιa
hv : v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1))
hij : ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1)
hσ : swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
revert val val_1
[GOAL]
case inl.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
val : ιa
val_1 : ιb
hv : v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1))
hij : ↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1)
hσ : swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
revert val val_1
[GOAL]
case inr.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
val : ιb
val_1 : ιa
hv : v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1))
hij : ↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1)
hσ : swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
revert val val_1
[GOAL]
case inr.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
val val_1 : ιb
hv : v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1))
hij : ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1)
hσ : swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
revert val val_1
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιa),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
case inl.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιa) (val_1 : ιb),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
case inr.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιb) (val_1 : ιa),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
case inr.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιb),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inl.inr =>
intro i' j' _ _ hσ
obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ)
replace hσ := Equiv.congr_fun hσ (Sum.inl i')
dsimp only at hσ
rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ
simp at hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιa) (val_1 : ιb),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inl.inr =>
intro i' j' _ _ hσ
obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ)
replace hσ := Equiv.congr_fun hσ (Sum.inl i')
dsimp only at hσ
rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ
simp at hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιa) (val_1 : ιb),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
intro i' j' _ _ hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιa
j' : ιb
hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j'))
hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j')
hσ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ)
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιa
j' : ιb
hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j'))
hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = ((fun x x_1 => x • x_1) (swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j'))) σ)⁻¹ * σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
replace hσ := Equiv.congr_fun hσ (Sum.inl i')
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιa
j' : ιb
hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j'))
hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ :
↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i') =
↑(((fun x x_1 => x • x_1) (swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j'))) σ)⁻¹ * σ) (Sum.inl i')
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
dsimp only at hσ
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιa
j' : ιb
hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j'))
hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ :
↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i') =
↑((swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • σ)⁻¹ * σ) (Sum.inl i')
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιa
j' : ιb
hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j'))
hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i') = ↑(swap (Sum.inl i') (Sum.inr j')) (Sum.inl i')
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
simp at hσ
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιa),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
case inr.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιb) (val_1 : ιa),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
case inr.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιb),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inr.inl =>
intro i' j' _ _ hσ
obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ)
replace hσ := Equiv.congr_fun hσ (Sum.inr i')
dsimp only at hσ
rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ
simp at hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιb) (val_1 : ιa),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inr.inl =>
intro i' j' _ _ hσ
obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ)
replace hσ := Equiv.congr_fun hσ (Sum.inr i')
dsimp only at hσ
rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ
simp at hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val : ιb) (val_1 : ιa),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
intro i' j' _ _ hσ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιb
j' : ιa
hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j'))
hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j')
hσ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ)
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιb
j' : ιa
hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j'))
hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = ((fun x x_1 => x • x_1) (swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j'))) σ)⁻¹ * σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
replace hσ := Equiv.congr_fun hσ (Sum.inr i')
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιb
j' : ιa
hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j'))
hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ :
↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i') =
↑(((fun x x_1 => x • x_1) (swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j'))) σ)⁻¹ * σ) (Sum.inr i')
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
dsimp only at hσ
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιb
j' : ιa
hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j'))
hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ :
↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i') =
↑((swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • σ)⁻¹ * σ) (Sum.inr i')
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ
[GOAL]
case intro.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' : ιb
j' : ιa
hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j'))
hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
sl : Perm ιa
sr : Perm ιb
hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i') = ↑(swap (Sum.inr i') (Sum.inl j')) (Sum.inr i')
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
simp at hσ
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιa),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
case inr.inr
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιb),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inr.inr =>
intro i' j' hv hij _
convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _
convert TensorProduct.tmul_zero (R := R') (M := N₁) N₂ _
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιb),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inr.inr =>
intro i' j' hv hij _
convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _
convert TensorProduct.tmul_zero (R := R') (M := N₁) N₂ _
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιb),
v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) →
↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) →
swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
intro i' j' hv hij _
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' j' : ιb
hv : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inr j'))
hij : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _
[GOAL]
case h.e'_2.h.e'_6
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' j' : ιb
hv : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inr j'))
hij : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ ((↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
convert TensorProduct.tmul_zero (R := R') (M := N₁) N₂ _
[GOAL]
case h.e'_2.h.e'_10
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' j' : ιb
hv : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inr j'))
hij : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inr j')
hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
[GOAL]
case inl.inl
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιa),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inl.inl =>
intro i' j' hv hij _
convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _
convert TensorProduct.zero_tmul (R := R') N₁ (N := N₂) _
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιa),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
case inl.inl =>
intro i' j' hv hij _
convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _
convert TensorProduct.zero_tmul (R := R') N₁ (N := N₂) _
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
⊢ ∀ (val val_1 : ιa),
v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) →
↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) →
swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ →
(↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
intro i' j' hv hij _
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' j' : ιa
hv : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inl j'))
hij : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _
[GOAL]
case h.e'_2.h.e'_6
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' j' : ιa
hv : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inl j'))
hij : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ ((↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0
[PROOFSTEP]
convert TensorProduct.zero_tmul (R := R') N₁ (N := N₂) _
[GOAL]
case h.e'_2.h.e'_9
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
σ✝ : Perm.ModSumCongr ιa ιb
v : ιa ⊕ ιb → Mᵢ
σ : Perm (ιa ⊕ ιb)
i' j' : ιa
hv : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inl j'))
hij : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inl j')
hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ
⊢ (↑↑a fun i => v (↑σ (Sum.inl i))) = 0
[PROOFSTEP]
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
src✝ : MultilinearMap R' (fun x => Mᵢ) (N₁ ⊗[R'] N₂) := ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
⊢ MultilinearMap.toFun
{ toFun := fun v => ↑(∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ) v,
map_add' :=
(_ :
∀ [inst : DecidableEq (ιa ⊕ ιb)] (m : ιa ⊕ ιb → Mᵢ) (i : ιa ⊕ ιb) (x y : Mᵢ),
MultilinearMap.toFun src✝ (Function.update m i (x + y)) =
MultilinearMap.toFun src✝ (Function.update m i x) + MultilinearMap.toFun src✝ (Function.update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq (ιa ⊕ ιb)] (m : ιa ⊕ ιb → Mᵢ) (i : ιa ⊕ ιb) (c : R') (x : Mᵢ),
MultilinearMap.toFun src✝ (Function.update m i (c • x)) =
c • MultilinearMap.toFun src✝ (Function.update m i x)) }
v =
0
[PROOFSTEP]
dsimp only
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
src✝ : MultilinearMap R' (fun x => Mᵢ) (N₁ ⊗[R'] N₂) := ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
⊢ ↑(∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ) v = 0
[PROOFSTEP]
rw [MultilinearMap.sum_apply]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
src✝ : MultilinearMap R' (fun x => Mᵢ) (N₁ ⊗[R'] N₂) := ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ
v : ιa ⊕ ιb → Mᵢ
i j : ιa ⊕ ιb
hv : v i = v j
hij : i ≠ j
⊢ ∑ a_1 : Perm.ModSumCongr ιa ιb, ↑(domCoprod.summand a b a_1) v = 0
[PROOFSTEP]
exact
Finset.sum_involution (fun σ _ => Equiv.swap i j • σ)
(fun σ _ => domCoprod.summand_add_swap_smul_eq_zero a b σ hv hij)
(fun σ _ => mt <| domCoprod.summand_eq_zero_of_smul_invariant a b σ hv hij) (fun σ _ => Finset.mem_univ _)
fun σ _ => Equiv.Perm.ModSumCongr.swap_smul_involutive i j σ
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
⊢ AlternatingMap R' Mᵢ N₁ ιa →ₗ[R'] AlternatingMap R' Mᵢ N₂ ιb →ₗ[R'] AlternatingMap R' Mᵢ (N₁ ⊗[R'] N₂) (ιa ⊕ ιb)
[PROOFSTEP]
refine' LinearMap.mk₂ R' domCoprod (fun m₁ m₂ n => _) (fun c m n => _) (fun m n₁ n₂ => _) fun c m n => _
[GOAL]
case refine'_1
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
⊢ domCoprod (m₁ + m₂) n = domCoprod m₁ n + domCoprod m₂ n
[PROOFSTEP]
ext
[GOAL]
case refine'_1.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ↑(domCoprod (m₁ + m₂) n) x✝ = ↑(domCoprod m₁ n + domCoprod m₂ n) x✝
[PROOFSTEP]
simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply,
domCoprod.summand]
[GOAL]
case refine'_1.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ∑ x : Perm.ModSumCongr ιa ιb,
↑(Quotient.liftOn' x
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂))
x✝ =
∑ x : Perm.ModSumCongr ιa ιb,
(↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂))
x✝ +
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂))
x✝)
[PROOFSTEP]
congr
[GOAL]
case refine'_1.H.e_f
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ (fun x =>
↑(Quotient.liftOn' x
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂))
x✝) =
fun x =>
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂))
x✝ +
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂))
x✝
[PROOFSTEP]
ext σ
[GOAL]
case refine'_1.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ : Perm.ModSumCongr ιa ιb
⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂))
x✝ =
↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂))
x✝ +
↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂))
x✝
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
case refine'_1.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂))
x✝ =
↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂))
x✝ +
↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂))
x✝
[PROOFSTEP]
simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply]
[GOAL]
case refine'_1.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' ((↑m₁ + ↑m₂) ⊗ₜ[R'] ↑n))) x✝ =
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ +
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul,
LinearMap.map_add, LinearMap.map_smul]
[GOAL]
case refine'_1.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ •
↑(MultilinearMap.domDomCongr σ
(↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n) + ↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n)))
x✝ =
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ +
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
first
| rw [← smul_add]
| rw [smul_comm]
[GOAL]
case refine'_1.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ •
↑(MultilinearMap.domDomCongr σ
(↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n) + ↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n)))
x✝ =
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ +
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rw [← smul_add]
[GOAL]
case refine'_1.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ •
↑(MultilinearMap.domDomCongr σ
(↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n) + ↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n)))
x✝ =
↑Perm.sign σ •
(↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ +
↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
⊢ domCoprod (c • m) n = c • domCoprod m n
[PROOFSTEP]
ext
[GOAL]
case refine'_2.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ↑(domCoprod (c • m) n) x✝ = ↑(c • domCoprod m n) x✝
[PROOFSTEP]
simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply,
domCoprod.summand]
[GOAL]
case refine'_2.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ∑ x : Perm.ModSumCongr ιa ιb,
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂))
x✝ =
∑ x : Perm.ModSumCongr ιa ιb,
c •
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
congr
[GOAL]
case refine'_2.H.e_f
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ (fun x =>
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂))
x✝) =
fun x =>
c •
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
ext σ
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ : Perm.ModSumCongr ιa ιb
⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂))
x✝ =
c •
↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂))
x✝ =
c •
↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply]
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' ((c • ↑m) ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul,
LinearMap.map_add, LinearMap.map_smul]
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
first
| rw [← smul_add]
| rw [smul_comm]
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rw [← smul_add]
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rw [smul_comm]
[GOAL]
case refine'_2.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
↑Perm.sign σ • c • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
⊢ domCoprod m (n₁ + n₂) = domCoprod m n₁ + domCoprod m n₂
[PROOFSTEP]
ext
[GOAL]
case refine'_3.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ↑(domCoprod m (n₁ + n₂)) x✝ = ↑(domCoprod m n₁ + domCoprod m n₂) x✝
[PROOFSTEP]
simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply,
domCoprod.summand]
[GOAL]
case refine'_3.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ∑ x : Perm.ModSumCongr ιa ιb,
↑(Quotient.liftOn' x
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂))
x✝ =
∑ x : Perm.ModSumCongr ιa ιb,
(↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂))
x✝ +
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂))
x✝)
[PROOFSTEP]
congr
[GOAL]
case refine'_3.H.e_f
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ (fun x =>
↑(Quotient.liftOn' x
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂))
x✝) =
fun x =>
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂))
x✝ +
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂))
x✝
[PROOFSTEP]
ext σ
[GOAL]
case refine'_3.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ : Perm.ModSumCongr ιa ιb
⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂))
x✝ =
↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂))
x✝ +
↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂))
x✝
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
case refine'_3.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂))
x✝ =
↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂))
x✝ +
↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂))
x✝
[PROOFSTEP]
simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply]
[GOAL]
case refine'_3.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] (↑n₁ + ↑n₂)))) x✝ =
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ +
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝
[PROOFSTEP]
simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul,
LinearMap.map_add, LinearMap.map_smul]
[GOAL]
case refine'_3.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ •
↑(MultilinearMap.domDomCongr σ
(↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁) + ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂)))
x✝ =
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ +
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝
[PROOFSTEP]
first
| rw [← smul_add]
| rw [smul_comm]
[GOAL]
case refine'_3.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ •
↑(MultilinearMap.domDomCongr σ
(↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁) + ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂)))
x✝ =
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ +
↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝
[PROOFSTEP]
rw [← smul_add]
[GOAL]
case refine'_3.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
m : AlternatingMap R' Mᵢ N₁ ιa
n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ •
↑(MultilinearMap.domDomCongr σ
(↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁) + ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂)))
x✝ =
↑Perm.sign σ •
(↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ +
↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
⊢ domCoprod m (c • n) = c • domCoprod m n
[PROOFSTEP]
ext
[GOAL]
case refine'_4.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ↑(domCoprod m (c • n)) x✝ = ↑(c • domCoprod m n) x✝
[PROOFSTEP]
simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply,
domCoprod.summand]
[GOAL]
case refine'_4.H
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ ∑ x : Perm.ModSumCongr ιa ιb,
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂))
x✝ =
∑ x : Perm.ModSumCongr ιa ιb,
c •
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
congr
[GOAL]
case refine'_4.H.e_f
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
⊢ (fun x =>
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂))
x✝) =
fun x =>
c •
↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
ext σ
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ : Perm.ModSumCongr ιa ιb
⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂))
x✝ =
c •
↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
refine Quotient.inductionOn' σ fun σ => ?_
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n)))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂))
x✝ =
c •
↑(Quotient.liftOn' (Quotient.mk'' σ)
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n))
(_ :
∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)),
Setoid.r σ₁ σ₂ →
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ =
(fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂))
x✝
[PROOFSTEP]
simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply]
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] (c • ↑n)))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul,
LinearMap.map_add, LinearMap.map_smul]
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
first
| rw [← smul_add]
| rw [smul_comm]
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rw [← smul_add]
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rw [smul_comm]
[GOAL]
case refine'_4.H.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
c : R'
m : AlternatingMap R' Mᵢ N₁ ιa
n : AlternatingMap R' Mᵢ N₂ ιb
x✝ : ιa ⊕ ιb → Mᵢ
σ✝ : Perm.ModSumCongr ιa ιb
σ : Perm (ιa ⊕ ιb)
⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ =
↑Perm.sign σ • c • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ domCoprod ↑(↑alternatization a) ↑(↑alternatization b) =
∑ σa : Perm ιa, ∑ σb : Perm ιb, ↑Perm.sign σa • ↑Perm.sign σb • domCoprod (domDomCongr σa a) (domDomCongr σb b)
[PROOFSTEP]
simp_rw [← MultilinearMap.domCoprod'_apply, MultilinearMap.alternatization_coe]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ ↑domCoprod' ((∑ x : Perm ιa, ↑Perm.sign x • domDomCongr x a) ⊗ₜ[R'] ∑ x : Perm ιb, ↑Perm.sign x • domDomCongr x b) =
∑ x : Perm ιa,
∑ x_1 : Perm ιb, ↑Perm.sign x • ↑Perm.sign x_1 • ↑domCoprod' (domDomCongr x a ⊗ₜ[R'] domDomCongr x_1 b)
[PROOFSTEP]
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, LinearMap.map_sum, ← TensorProduct.smul_tmul',
TensorProduct.tmul_smul]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ ∑ x : Perm ιa,
∑ x_1 : Perm ιb, ↑domCoprod' (↑Perm.sign x • ↑Perm.sign x_1 • domDomCongr x a ⊗ₜ[R'] domDomCongr x_1 b) =
∑ x : Perm ιa,
∑ x_1 : Perm ιb, ↑Perm.sign x • ↑Perm.sign x_1 • ↑domCoprod' (domDomCongr x a ⊗ₜ[R'] domDomCongr x_1 b)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ ↑alternatization (domCoprod a b) = AlternatingMap.domCoprod (↑alternatization a) (↑alternatization b)
[PROOFSTEP]
apply coe_multilinearMap_injective
[GOAL]
case a
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ ↑(↑alternatization (domCoprod a b)) = ↑(AlternatingMap.domCoprod (↑alternatization a) (↑alternatization b))
[PROOFSTEP]
rw [domCoprod_coe, MultilinearMap.alternatization_coe,
Finset.sum_partition (QuotientGroup.leftRel (Perm.sumCongrHom ιa ιb).range)]
[GOAL]
case a
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ ∑ xbar in Finset.image Quotient.mk'' Finset.univ,
∑ y in
Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = xbar)
Finset.univ,
↑Perm.sign y • domDomCongr y (domCoprod a b) =
∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand (↑alternatization a) (↑alternatization b) σ
[PROOFSTEP]
congr 1
[GOAL]
case a.e_f
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
⊢ (fun xbar =>
∑ y in
Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = xbar)
Finset.univ,
↑Perm.sign y • domDomCongr y (domCoprod a b)) =
fun σ => domCoprod.summand (↑alternatization a) (↑alternatization b) σ
[PROOFSTEP]
ext1 σ
[GOAL]
case a.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
⊢ ∑ y in
Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = σ)
Finset.univ,
↑Perm.sign y • domDomCongr y (domCoprod a b) =
domCoprod.summand (↑alternatization a) (↑alternatization b) σ
[PROOFSTEP]
refine
Quotient.inductionOn' σ fun σ =>
?_
-- unfold the quotient mess left by `Finset.sum_partition`
-- Porting note: Was `conv in .. => ..`.
[GOAL]
case a.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
⊢ ∑ y in
Finset.filter
(fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = Quotient.mk'' σ)
Finset.univ,
↑Perm.sign y • domDomCongr y (domCoprod a b) =
domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ)
[PROOFSTEP]
erw [@Finset.filter_congr _ _
(fun a =>
@Quotient.decidableEq _ _ (QuotientGroup.leftRelDecidable (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
(Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) a) (Quotient.mk'' σ))
_ (s := Finset.univ) fun x _ => QuotientGroup.eq' (s := MonoidHom.range (Perm.sumCongrHom ιa ιb)) (a := x) (b := σ)]
-- eliminate a multiplication
[GOAL]
case a.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
⊢ ∑ y in Finset.filter (fun x => x⁻¹ * σ ∈ MonoidHom.range (Perm.sumCongrHom ιa ιb)) Finset.univ,
↑Perm.sign y • domDomCongr y (domCoprod a b) =
domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ)
[PROOFSTEP]
rw [← Finset.map_univ_equiv (Equiv.mulLeft σ), Finset.filter_map, Finset.sum_map]
[GOAL]
case a.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
⊢ ∑ x in
Finset.filter
((fun x => x⁻¹ * σ ∈ MonoidHom.range (Perm.sumCongrHom ιa ιb)) ∘ ↑(Equiv.toEmbedding (Equiv.mulLeft σ)))
Finset.univ,
↑Perm.sign (↑(Equiv.toEmbedding (Equiv.mulLeft σ)) x) •
domDomCongr (↑(Equiv.toEmbedding (Equiv.mulLeft σ)) x) (domCoprod a b) =
domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ)
[PROOFSTEP]
simp_rw [Equiv.coe_toEmbedding, Equiv.coe_mulLeft, (· ∘ ·), mul_inv_rev, inv_mul_cancel_right, Subgroup.inv_mem_iff,
MonoidHom.mem_range, Finset.univ_filter_exists, Finset.sum_image (Perm.sumCongrHom_injective.injOn _)]
-- now we're ready to clean up the RHS, pulling out the summation
[GOAL]
case a.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
⊢ ∑ x : Perm ιa × Perm ιb,
↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) x) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) x) (domCoprod a b) =
domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ)
[PROOFSTEP]
rw [domCoprod.summand_mk'', MultilinearMap.domCoprod_alternization_coe, ← Finset.sum_product', Finset.univ_product_univ,
← MultilinearMap.domDomCongrEquiv_apply, _root_.map_sum, Finset.smul_sum]
[GOAL]
case a.e_f.h
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
⊢ ∑ x : Perm ιa × Perm ιb,
↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) x) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) x) (domCoprod a b) =
∑ x : Perm ιa × Perm ιb,
↑Perm.sign σ •
↑(domDomCongrEquiv σ)
(↑Perm.sign x.fst • ↑Perm.sign x.snd • domCoprod (domDomCongr x.fst a) (domDomCongr x.snd b))
[PROOFSTEP]
congr 1
[GOAL]
case a.e_f.h.e_f
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
⊢ (fun x =>
↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) x) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) x) (domCoprod a b)) =
fun x =>
↑Perm.sign σ •
↑(domDomCongrEquiv σ)
(↑Perm.sign x.fst • ↑Perm.sign x.snd • domCoprod (domDomCongr x.fst a) (domDomCongr x.snd b))
[PROOFSTEP]
ext1 ⟨al, ar⟩
[GOAL]
case a.e_f.h.e_f.h.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
al : Perm ιa
ar : Perm ιb
⊢ ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) •
domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) (domCoprod a b) =
↑Perm.sign σ •
↑(domDomCongrEquiv σ)
(↑Perm.sign (al, ar).fst •
↑Perm.sign (al, ar).snd • domCoprod (domDomCongr (al, ar).fst a) (domDomCongr (al, ar).snd b))
[PROOFSTEP]
dsimp only
-- pull out the pair of smuls on the RHS, by rewriting to `_ →ₗ[ℤ] _` and back
[GOAL]
case a.e_f.h.e_f.h.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
al : Perm ιa
ar : Perm ιb
⊢ ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) •
domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) (domCoprod a b) =
↑Perm.sign σ •
↑(domDomCongrEquiv σ) (↑Perm.sign al • ↑Perm.sign ar • domCoprod (domDomCongr al a) (domDomCongr ar b))
[PROOFSTEP]
rw [← AddEquiv.coe_toAddMonoidHom, ← AddMonoidHom.coe_toIntLinearMap, LinearMap.map_smul_of_tower,
LinearMap.map_smul_of_tower, AddMonoidHom.coe_toIntLinearMap, AddEquiv.coe_toAddMonoidHom,
MultilinearMap.domDomCongrEquiv_apply]
-- pick up the pieces
[GOAL]
case a.e_f.h.e_f.h.mk
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : MultilinearMap R' (fun x => Mᵢ) N₁
b : MultilinearMap R' (fun x => Mᵢ) N₂
σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb)))
σ : Perm (ιa ⊕ ιb)
al : Perm ιa
ar : Perm ιb
⊢ ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) •
domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) (domCoprod a b) =
↑Perm.sign σ • ↑Perm.sign al • ↑Perm.sign ar • domDomCongr σ (domCoprod (domDomCongr al a) (domDomCongr ar b))
[PROOFSTEP]
rw [MultilinearMap.domDomCongr_mul, Perm.sign_mul, Perm.sumCongrHom_apply,
MultilinearMap.domCoprod_domDomCongr_sumCongr, Perm.sign_sumCongr, mul_smul, mul_smul]
[GOAL]
R : Type u_1
inst✝²¹ : Semiring R
M : Type u_2
inst✝²⁰ : AddCommMonoid M
inst✝¹⁹ : Module R M
N : Type u_3
inst✝¹⁸ : AddCommMonoid N
inst✝¹⁷ : Module R N
P : Type u_4
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : Module R P
M' : Type u_5
inst✝¹⁴ : AddCommGroup M'
inst✝¹³ : Module R M'
N' : Type u_6
inst✝¹² : AddCommGroup N'
inst✝¹¹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ιa : Type u_10
ιb : Type u_11
inst✝¹⁰ : Fintype ιa
inst✝⁹ : Fintype ιb
R' : Type u_12
Mᵢ : Type u_13
N₁ : Type u_14
N₂ : Type u_15
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommGroup N₁
inst✝⁶ : Module R' N₁
inst✝⁵ : AddCommGroup N₂
inst✝⁴ : Module R' N₂
inst✝³ : AddCommMonoid Mᵢ
inst✝² : Module R' Mᵢ
inst✝¹ : DecidableEq ιa
inst✝ : DecidableEq ιb
a : AlternatingMap R' Mᵢ N₁ ιa
b : AlternatingMap R' Mᵢ N₂ ιb
⊢ ↑alternatization (domCoprod ↑a ↑b) =
(Nat.factorial (Fintype.card ιa) * Nat.factorial (Fintype.card ιb)) • AlternatingMap.domCoprod a b
[PROOFSTEP]
rw [MultilinearMap.domCoprod_alternization, coe_alternatization, coe_alternatization, mul_smul, ←
AlternatingMap.domCoprod'_apply, ← AlternatingMap.domCoprod'_apply, ← TensorProduct.smul_tmul',
TensorProduct.tmul_smul, LinearMap.map_smul_of_tower AlternatingMap.domCoprod',
LinearMap.map_smul_of_tower AlternatingMap.domCoprod']
[GOAL]
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ι₁ : Type u_10
inst✝⁵ : Finite ι
R' : Type u_11
N₁ : Type u_12
N₂ : Type u_13
inst✝⁴ : CommSemiring R'
inst✝³ : AddCommMonoid N₁
inst✝² : AddCommMonoid N₂
inst✝¹ : Module R' N₁
inst✝ : Module R' N₂
f g : AlternatingMap R' N₁ N₂ ι
e : Basis ι₁ R' N₁
h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
⊢ f = g
[PROOFSTEP]
classical
refine' AlternatingMap.coe_multilinearMap_injective (Basis.ext_multilinear e fun v => _)
by_cases hi : Function.Injective v
· exact h v hi
· have : ¬Function.Injective fun i => e (v i) := hi.imp Function.Injective.of_comp
rw [coe_multilinearMap, coe_multilinearMap, f.map_eq_zero_of_not_injective _ this,
g.map_eq_zero_of_not_injective _ this]
[GOAL]
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ι₁ : Type u_10
inst✝⁵ : Finite ι
R' : Type u_11
N₁ : Type u_12
N₂ : Type u_13
inst✝⁴ : CommSemiring R'
inst✝³ : AddCommMonoid N₁
inst✝² : AddCommMonoid N₂
inst✝¹ : Module R' N₁
inst✝ : Module R' N₂
f g : AlternatingMap R' N₁ N₂ ι
e : Basis ι₁ R' N₁
h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
⊢ f = g
[PROOFSTEP]
refine' AlternatingMap.coe_multilinearMap_injective (Basis.ext_multilinear e fun v => _)
[GOAL]
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ι₁ : Type u_10
inst✝⁵ : Finite ι
R' : Type u_11
N₁ : Type u_12
N₂ : Type u_13
inst✝⁴ : CommSemiring R'
inst✝³ : AddCommMonoid N₁
inst✝² : AddCommMonoid N₂
inst✝¹ : Module R' N₁
inst✝ : Module R' N₂
f g : AlternatingMap R' N₁ N₂ ι
e : Basis ι₁ R' N₁
h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
v : ι → ι₁
⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i)
[PROOFSTEP]
by_cases hi : Function.Injective v
[GOAL]
case pos
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ι₁ : Type u_10
inst✝⁵ : Finite ι
R' : Type u_11
N₁ : Type u_12
N₂ : Type u_13
inst✝⁴ : CommSemiring R'
inst✝³ : AddCommMonoid N₁
inst✝² : AddCommMonoid N₂
inst✝¹ : Module R' N₁
inst✝ : Module R' N₂
f g : AlternatingMap R' N₁ N₂ ι
e : Basis ι₁ R' N₁
h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
v : ι → ι₁
hi : Function.Injective v
⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i)
[PROOFSTEP]
exact h v hi
[GOAL]
case neg
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ι₁ : Type u_10
inst✝⁵ : Finite ι
R' : Type u_11
N₁ : Type u_12
N₂ : Type u_13
inst✝⁴ : CommSemiring R'
inst✝³ : AddCommMonoid N₁
inst✝² : AddCommMonoid N₂
inst✝¹ : Module R' N₁
inst✝ : Module R' N₂
f g : AlternatingMap R' N₁ N₂ ι
e : Basis ι₁ R' N₁
h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
v : ι → ι₁
hi : ¬Function.Injective v
⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i)
[PROOFSTEP]
have : ¬Function.Injective fun i => e (v i) := hi.imp Function.Injective.of_comp
[GOAL]
case neg
R : Type u_1
inst✝¹⁶ : Semiring R
M : Type u_2
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : Module R M
N : Type u_3
inst✝¹³ : AddCommMonoid N
inst✝¹² : Module R N
P : Type u_4
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : Module R P
M' : Type u_5
inst✝⁹ : AddCommGroup M'
inst✝⁸ : Module R M'
N' : Type u_6
inst✝⁷ : AddCommGroup N'
inst✝⁶ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
ι₁ : Type u_10
inst✝⁵ : Finite ι
R' : Type u_11
N₁ : Type u_12
N₂ : Type u_13
inst✝⁴ : CommSemiring R'
inst✝³ : AddCommMonoid N₁
inst✝² : AddCommMonoid N₂
inst✝¹ : Module R' N₁
inst✝ : Module R' N₂
f g : AlternatingMap R' N₁ N₂ ι
e : Basis ι₁ R' N₁
h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i)
v : ι → ι₁
hi : ¬Function.Injective v
this : ¬Function.Injective fun i => ↑e (v i)
⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i)
[PROOFSTEP]
rw [coe_multilinearMap, coe_multilinearMap, f.map_eq_zero_of_not_injective _ this,
g.map_eq_zero_of_not_injective _ this]
[GOAL]
R : Type u_1
inst✝¹⁹ : Semiring R
M : Type u_2
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
N : Type u_3
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : Module R N
P : Type u_4
inst✝¹⁴ : AddCommMonoid P
inst✝¹³ : Module R P
M' : Type u_5
inst✝¹² : AddCommGroup M'
inst✝¹¹ : Module R M'
N' : Type u_6
inst✝¹⁰ : AddCommGroup N'
inst✝⁹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
R' : Type u_10
M'' : Type u_11
M₂'' : Type u_12
N'' : Type u_13
N₂'' : Type u_14
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : AddCommMonoid N''
inst✝⁴ : AddCommMonoid N₂''
inst✝³ : Module R' M''
inst✝² : Module R' M₂''
inst✝¹ : Module R' N''
inst✝ : Module R' N₂''
n : ℕ
f : AlternatingMap R' M'' N'' (Fin (Nat.succ n))
m : M''
src✝ : (fun x => MultilinearMap R' (fun i => M'') N'') m := ↑(MultilinearMap.curryLeft ↑f) m
v : Fin n → M''
i j : Fin n
hv : v i = v j
hij : i ≠ j
⊢ Matrix.vecCons m v (Fin.succ i) = Matrix.vecCons m v (Fin.succ j)
[PROOFSTEP]
rwa [Matrix.cons_val_succ, Matrix.cons_val_succ]
[GOAL]
R : Type u_1
inst✝¹⁹ : Semiring R
M : Type u_2
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
N : Type u_3
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : Module R N
P : Type u_4
inst✝¹⁴ : AddCommMonoid P
inst✝¹³ : Module R P
M' : Type u_5
inst✝¹² : AddCommGroup M'
inst✝¹¹ : Module R M'
N' : Type u_6
inst✝¹⁰ : AddCommGroup N'
inst✝⁹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
R' : Type u_10
M'' : Type u_11
M₂'' : Type u_12
N'' : Type u_13
N₂'' : Type u_14
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : AddCommMonoid N''
inst✝⁴ : AddCommMonoid N₂''
inst✝³ : Module R' M''
inst✝² : Module R' M₂''
inst✝¹ : Module R' N''
inst✝ : Module R' N₂''
n : ℕ
f : AlternatingMap R' M'' N'' (Fin (Nat.succ (Nat.succ n)))
m : M''
x : Fin n → M''
⊢ Matrix.vecCons m (Matrix.vecCons m x) 0 = Matrix.vecCons m (Matrix.vecCons m x) 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁹ : Semiring R
M : Type u_2
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
N : Type u_3
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : Module R N
P : Type u_4
inst✝¹⁴ : AddCommMonoid P
inst✝¹³ : Module R P
M' : Type u_5
inst✝¹² : AddCommGroup M'
inst✝¹¹ : Module R M'
N' : Type u_6
inst✝¹⁰ : AddCommGroup N'
inst✝⁹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
R' : Type u_10
M'' : Type u_11
M₂'' : Type u_12
N'' : Type u_13
N₂'' : Type u_14
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : AddCommMonoid N''
inst✝⁴ : AddCommMonoid N₂''
inst✝³ : Module R' M''
inst✝² : Module R' M₂''
inst✝¹ : Module R' N''
inst✝ : Module R' N₂''
n : ℕ
g : M₂'' →ₗ[R'] M''
f : AlternatingMap R' M'' N'' (Fin (Nat.succ n))
m : M₂''
v : Fin n → M₂''
⊢ ∀ (x : Fin (Nat.succ n)),
↑((fun x => g) x) (Matrix.vecCons m v x) = Matrix.vecCons (↑g m) (fun i => ↑((fun x => g) i) (v i)) x
[PROOFSTEP]
refine' Fin.cases _ _
[GOAL]
case refine'_1
R : Type u_1
inst✝¹⁹ : Semiring R
M : Type u_2
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
N : Type u_3
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : Module R N
P : Type u_4
inst✝¹⁴ : AddCommMonoid P
inst✝¹³ : Module R P
M' : Type u_5
inst✝¹² : AddCommGroup M'
inst✝¹¹ : Module R M'
N' : Type u_6
inst✝¹⁰ : AddCommGroup N'
inst✝⁹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
R' : Type u_10
M'' : Type u_11
M₂'' : Type u_12
N'' : Type u_13
N₂'' : Type u_14
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : AddCommMonoid N''
inst✝⁴ : AddCommMonoid N₂''
inst✝³ : Module R' M''
inst✝² : Module R' M₂''
inst✝¹ : Module R' N''
inst✝ : Module R' N₂''
n : ℕ
g : M₂'' →ₗ[R'] M''
f : AlternatingMap R' M'' N'' (Fin (Nat.succ n))
m : M₂''
v : Fin n → M₂''
⊢ ↑((fun x => g) 0) (Matrix.vecCons m v 0) = Matrix.vecCons (↑g m) (fun i => ↑((fun x => g) i) (v i)) 0
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
R : Type u_1
inst✝¹⁹ : Semiring R
M : Type u_2
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : Module R M
N : Type u_3
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : Module R N
P : Type u_4
inst✝¹⁴ : AddCommMonoid P
inst✝¹³ : Module R P
M' : Type u_5
inst✝¹² : AddCommGroup M'
inst✝¹¹ : Module R M'
N' : Type u_6
inst✝¹⁰ : AddCommGroup N'
inst✝⁹ : Module R N'
ι : Type u_7
ι' : Type u_8
ι'' : Type u_9
R' : Type u_10
M'' : Type u_11
M₂'' : Type u_12
N'' : Type u_13
N₂'' : Type u_14
inst✝⁸ : CommSemiring R'
inst✝⁷ : AddCommMonoid M''
inst✝⁶ : AddCommMonoid M₂''
inst✝⁵ : AddCommMonoid N''
inst✝⁴ : AddCommMonoid N₂''
inst✝³ : Module R' M''
inst✝² : Module R' M₂''
inst✝¹ : Module R' N''
inst✝ : Module R' N₂''
n : ℕ
g : M₂'' →ₗ[R'] M''
f : AlternatingMap R' M'' N'' (Fin (Nat.succ n))
m : M₂''
v : Fin n → M₂''
⊢ ∀ (i : Fin n),
↑((fun x => g) (Fin.succ i)) (Matrix.vecCons m v (Fin.succ i)) =
Matrix.vecCons (↑g m) (fun i => ↑((fun x => g) i) (v i)) (Fin.succ i)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.LinearAlgebra.Alternating", "llama_tokens": 145617} |
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
inst✝ : DecidableEq ι
⊢ toMatrix b ↑b = 1
[PROOFSTEP]
ext i j
[GOAL]
case a.h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁴ : AddCommGroup V
inst✝³ : AffineSpace V P
inst✝² : Ring k
inst✝¹ : Module k V
b : AffineBasis ι k P
inst✝ : DecidableEq ι
i j : ι
⊢ toMatrix b (↑b) i j = OfNat.ofNat 1 i j
[PROOFSTEP]
rw [toMatrix_apply, coord_apply, Matrix.one_eq_pi_single, Pi.single_apply]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι'✝ : Type u_1
inst✝¹ : Fintype ι'✝
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
ι' : Type u_2
q : ι' → P
i : ι'
⊢ ∑ j : ι, toMatrix b q i j = 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
⊢ AffineIndependent k p
[PROOFSTEP]
rw [affineIndependent_iff_eq_of_fintype_affineCombination_eq]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
⊢ ∀ (w1 w2 : ι' → k),
∑ i : ι', w1 i = 1 →
∑ i : ι', w2 i = 1 →
↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2
[PROOFSTEP]
intro w₁ w₂ hw₁ hw₂ hweq
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
⊢ w₁ = w₂
[PROOFSTEP]
have hweq' : (b.toMatrix p).vecMul w₁ = (b.toMatrix p).vecMul w₂ :=
by
ext j
change
(∑ i, w₁ i • b.coord j (p i)) =
∑ i,
w₂ i •
b.coord j
(p i)
-- Porting note: Added `u` because `∘` was causing trouble
have u : (fun i => b.coord j (p i)) = b.coord j ∘ p := by simp only [(· ∘ ·)]
rw [← Finset.univ.affineCombination_eq_linear_combination _ _ hw₁, ←
Finset.univ.affineCombination_eq_linear_combination _ _ hw₂, u, ← Finset.univ.map_affineCombination p w₁ hw₁, ←
Finset.univ.map_affineCombination p w₂ hw₂, hweq]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
⊢ vecMul w₁ (toMatrix b p) = vecMul w₂ (toMatrix b p)
[PROOFSTEP]
ext j
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
j : ι
⊢ vecMul w₁ (toMatrix b p) j = vecMul w₂ (toMatrix b p) j
[PROOFSTEP]
change
(∑ i, w₁ i • b.coord j (p i)) =
∑ i,
w₂ i •
b.coord j
(p i)
-- Porting note: Added `u` because `∘` was causing trouble
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
j : ι
⊢ ∑ i : ι', w₁ i • ↑(coord b j) (p i) = ∑ i : ι', w₂ i • ↑(coord b j) (p i)
[PROOFSTEP]
have u : (fun i => b.coord j (p i)) = b.coord j ∘ p := by simp only [(· ∘ ·)]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
j : ι
⊢ (fun i => ↑(coord b j) (p i)) = ↑(coord b j) ∘ p
[PROOFSTEP]
simp only [(· ∘ ·)]
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
j : ι
u : (fun i => ↑(coord b j) (p i)) = ↑(coord b j) ∘ p
⊢ ∑ i : ι', w₁ i • ↑(coord b j) (p i) = ∑ i : ι', w₂ i • ↑(coord b j) (p i)
[PROOFSTEP]
rw [← Finset.univ.affineCombination_eq_linear_combination _ _ hw₁, ←
Finset.univ.affineCombination_eq_linear_combination _ _ hw₂, u, ← Finset.univ.map_affineCombination p w₁ hw₁, ←
Finset.univ.map_affineCombination p w₂ hw₂, hweq]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
hweq' : vecMul w₁ (toMatrix b p) = vecMul w₂ (toMatrix b p)
⊢ w₁ = w₂
[PROOFSTEP]
replace hweq' := congr_arg (fun w => A.vecMul w) hweq'
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι'
p : ι' → P
A : Matrix ι ι' k
hA : toMatrix b p * A = 1
w₁ w₂ : ι' → k
hw₁ : ∑ i : ι', w₁ i = 1
hw₂ : ∑ i : ι', w₂ i = 1
hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂
hweq' : (fun w => vecMul w A) (vecMul w₁ (toMatrix b p)) = (fun w => vecMul w A) (vecMul w₂ (toMatrix b p))
⊢ w₁ = w₂
[PROOFSTEP]
simpa only [Matrix.vecMul_vecMul, hA, Matrix.vecMul_one] using hweq'
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
⊢ affineSpan k (range p) = ⊤
[PROOFSTEP]
suffices ∀ i, b i ∈ affineSpan k (range p)
by
rw [eq_top_iff, ← b.tot, affineSpan_le]
rintro q ⟨i, rfl⟩
exact this i
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
this : ∀ (i : ι), ↑b i ∈ affineSpan k (range p)
⊢ affineSpan k (range p) = ⊤
[PROOFSTEP]
rw [eq_top_iff, ← b.tot, affineSpan_le]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
this : ∀ (i : ι), ↑b i ∈ affineSpan k (range p)
⊢ range ↑b ⊆ ↑(affineSpan k (range p))
[PROOFSTEP]
rintro q ⟨i, rfl⟩
[GOAL]
case intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
this : ∀ (i : ι), ↑b i ∈ affineSpan k (range p)
i : ι
⊢ ↑b i ∈ ↑(affineSpan k (range p))
[PROOFSTEP]
exact this i
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
⊢ ∀ (i : ι), ↑b i ∈ affineSpan k (range p)
[PROOFSTEP]
intro i
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
⊢ ↑b i ∈ affineSpan k (range p)
[PROOFSTEP]
have hAi : ∑ j, A i j = 1 := by
calc
∑ j, A i j = ∑ j, A i j * ∑ l, b.toMatrix p j l := by simp
_ = ∑ j, ∑ l, A i j * b.toMatrix p j l := by simp_rw [Finset.mul_sum]
_ = ∑ l, ∑ j, A i j * b.toMatrix p j l := by rw [Finset.sum_comm]
_ = ∑ l, (A * b.toMatrix p) i l := rfl
_ = 1 := by simp [hA, Matrix.one_apply, Finset.filter_eq]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
⊢ ∑ j : ι', A i j = 1
[PROOFSTEP]
calc
∑ j, A i j = ∑ j, A i j * ∑ l, b.toMatrix p j l := by simp
_ = ∑ j, ∑ l, A i j * b.toMatrix p j l := by simp_rw [Finset.mul_sum]
_ = ∑ l, ∑ j, A i j * b.toMatrix p j l := by rw [Finset.sum_comm]
_ = ∑ l, (A * b.toMatrix p) i l := rfl
_ = 1 := by simp [hA, Matrix.one_apply, Finset.filter_eq]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
⊢ ∑ j : ι', A i j = ∑ j : ι', A i j * ∑ l : ι, toMatrix b p j l
[PROOFSTEP]
simp
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
⊢ ∑ j : ι', A i j * ∑ l : ι, toMatrix b p j l = ∑ j : ι', ∑ l : ι, A i j * toMatrix b p j l
[PROOFSTEP]
simp_rw [Finset.mul_sum]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
⊢ ∑ j : ι', ∑ l : ι, A i j * toMatrix b p j l = ∑ l : ι, ∑ j : ι', A i j * toMatrix b p j l
[PROOFSTEP]
rw [Finset.sum_comm]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
⊢ ∑ l : ι, (A * toMatrix b p) i l = 1
[PROOFSTEP]
simp [hA, Matrix.one_apply, Finset.filter_eq]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
⊢ ↑b i ∈ affineSpan k (range p)
[PROOFSTEP]
have hbi : b i = Finset.univ.affineCombination k p (A i) :=
by
apply b.ext_elem
intro j
rw [b.coord_apply, Finset.univ.map_affineCombination _ _ hAi,
Finset.univ.affineCombination_eq_linear_combination _ _ hAi]
change _ = (A * b.toMatrix p) i j
simp_rw [hA, Matrix.one_apply, @eq_comm _ i j]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
⊢ ↑b i = ↑(Finset.affineCombination k Finset.univ p) (A i)
[PROOFSTEP]
apply b.ext_elem
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
⊢ ∀ (i_1 : ι), ↑(coord b i_1) (↑b i) = ↑(coord b i_1) (↑(Finset.affineCombination k Finset.univ p) (A i))
[PROOFSTEP]
intro j
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
j : ι
⊢ ↑(coord b j) (↑b i) = ↑(coord b j) (↑(Finset.affineCombination k Finset.univ p) (A i))
[PROOFSTEP]
rw [b.coord_apply, Finset.univ.map_affineCombination _ _ hAi,
Finset.univ.affineCombination_eq_linear_combination _ _ hAi]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
j : ι
⊢ (if j = i then 1 else 0) = ∑ i_1 : ι', A i i_1 • (↑(coord b j) ∘ p) i_1
[PROOFSTEP]
change _ = (A * b.toMatrix p) i j
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
j : ι
⊢ (if j = i then 1 else 0) = (A * toMatrix b p) i j
[PROOFSTEP]
simp_rw [hA, Matrix.one_apply, @eq_comm _ i j]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
hbi : ↑b i = ↑(Finset.affineCombination k Finset.univ p) (A i)
⊢ ↑b i ∈ affineSpan k (range p)
[PROOFSTEP]
rw [hbi]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι' → P
A : Matrix ι ι' k
hA : A * toMatrix b p = 1
i : ι
hAi : ∑ j : ι', A i j = 1
hbi : ↑b i = ↑(Finset.affineCombination k Finset.univ p) (A i)
⊢ ↑(Finset.affineCombination k Finset.univ p) (A i) ∈ affineSpan k (range p)
[PROOFSTEP]
exact affineCombination_mem_affineSpan hAi p
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) = ↑(coords b) x
[PROOFSTEP]
ext j
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j = ↑(coords b) x j
[PROOFSTEP]
change _ = b.coord j x
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j = ↑(coord b j) x
[PROOFSTEP]
conv_rhs => rw [← b₂.affineCombination_coord_eq_self x]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
| ↑(coord b j) x
[PROOFSTEP]
rw [← b₂.affineCombination_coord_eq_self x]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
| ↑(coord b j) x
[PROOFSTEP]
rw [← b₂.affineCombination_coord_eq_self x]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
| ↑(coord b j) x
[PROOFSTEP]
rw [← b₂.affineCombination_coord_eq_self x]
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j =
↑(coord b j) (↑(Finset.affineCombination k Finset.univ ↑b₂) fun i => ↑(coord b₂ i) x)
[PROOFSTEP]
rw [Finset.map_affineCombination _ _ _ (b₂.sum_coord_apply_eq_one x)]
[GOAL]
case h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : Ring k
inst✝² : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝¹ : Fintype ι'
inst✝ : Fintype ι
b₂ : AffineBasis ι k P
x : P
j : ι
⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j =
↑(Finset.affineCombination ((fun a => k) x) Finset.univ (↑(coord b j) ∘ ↑b₂)) fun i => ↑(coord b₂ i) x
[PROOFSTEP]
simp [Matrix.vecMul, Matrix.dotProduct, toMatrix_apply, coords]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι
⊢ toMatrix b ↑b₂ * toMatrix b₂ ↑b = 1
[PROOFSTEP]
ext l m
[GOAL]
case a.h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι
l m : ι
⊢ (toMatrix b ↑b₂ * toMatrix b₂ ↑b) l m = OfNat.ofNat 1 l m
[PROOFSTEP]
change (b₂.toMatrix b).vecMul (b.coords (b₂ l)) m = _
[GOAL]
case a.h
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁶ : AddCommGroup V
inst✝⁵ : AffineSpace V P
inst✝⁴ : Ring k
inst✝³ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝² : Fintype ι'
inst✝¹ : Fintype ι
b₂ : AffineBasis ι k P
inst✝ : DecidableEq ι
l m : ι
⊢ vecMul (↑(coords b) (↑b₂ l)) (toMatrix b₂ ↑b) m = OfNat.ofNat 1 l m
[PROOFSTEP]
rw [toMatrix_vecMul_coords, coords_apply, ← toMatrix_apply, toMatrix_self]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
⊢ IsUnit (toMatrix b p) ↔ AffineIndependent k p ∧ affineSpan k (range p) = ⊤
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
⊢ IsUnit (toMatrix b p) → AffineIndependent k p ∧ affineSpan k (range p) = ⊤
[PROOFSTEP]
rintro ⟨⟨B, A, hA, hA'⟩, rfl : B = b.toMatrix p⟩
[GOAL]
case mp.intro.mk
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
A : Matrix ι ι k
hA : toMatrix b p * A = 1
hA' : A * toMatrix b p = 1
⊢ AffineIndependent k p ∧ affineSpan k (range p) = ⊤
[PROOFSTEP]
exact ⟨b.affineIndependent_of_toMatrix_right_inv p hA, b.affineSpan_eq_top_of_toMatrix_left_inv p hA'⟩
[GOAL]
case mpr
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
⊢ AffineIndependent k p ∧ affineSpan k (range p) = ⊤ → IsUnit (toMatrix b p)
[PROOFSTEP]
rintro ⟨h_tot, h_ind⟩
[GOAL]
case mpr.intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
h_tot : AffineIndependent k p
h_ind : affineSpan k (range p) = ⊤
⊢ IsUnit (toMatrix b p)
[PROOFSTEP]
let b' : AffineBasis ι k P := ⟨p, h_tot, h_ind⟩
[GOAL]
case mpr.intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
h_tot : AffineIndependent k p
h_ind : affineSpan k (range p) = ⊤
b' : AffineBasis ι k P := { toFun := p, ind' := h_tot, tot' := h_ind }
⊢ IsUnit (toMatrix b p)
[PROOFSTEP]
change IsUnit (b.toMatrix b')
[GOAL]
case mpr.intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁷ : AddCommGroup V
inst✝⁶ : AffineSpace V P
inst✝⁵ : Ring k
inst✝⁴ : Module k V
b : AffineBasis ι k P
ι' : Type u_1
inst✝³ : Fintype ι'
inst✝² : Fintype ι
b₂ : AffineBasis ι k P
inst✝¹ : DecidableEq ι
inst✝ : Nontrivial k
p : ι → P
h_tot : AffineIndependent k p
h_ind : affineSpan k (range p) = ⊤
b' : AffineBasis ι k P := { toFun := p, ind' := h_tot, tot' := h_ind }
⊢ IsUnit (toMatrix b ↑b')
[PROOFSTEP]
exact b.isUnit_toMatrix b'
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : CommRing k
inst✝² : Module k V
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b b₂ : AffineBasis ι k P
x : P
⊢ vecMul (↑(coords b) x) (toMatrix b ↑b₂)⁻¹ = ↑(coords b₂) x
[PROOFSTEP]
have hu := b.isUnit_toMatrix b₂
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : CommRing k
inst✝² : Module k V
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b b₂ : AffineBasis ι k P
x : P
hu : IsUnit (toMatrix b ↑b₂)
⊢ vecMul (↑(coords b) x) (toMatrix b ↑b₂)⁻¹ = ↑(coords b₂) x
[PROOFSTEP]
rw [Matrix.isUnit_iff_isUnit_det] at hu
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : CommRing k
inst✝² : Module k V
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b b₂ : AffineBasis ι k P
x : P
hu : IsUnit (det (toMatrix b ↑b₂))
⊢ vecMul (↑(coords b) x) (toMatrix b ↑b₂)⁻¹ = ↑(coords b₂) x
[PROOFSTEP]
rw [← b.toMatrix_vecMul_coords b₂, Matrix.vecMul_vecMul, Matrix.mul_nonsing_inv _ hu, Matrix.vecMul_one]
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : CommRing k
inst✝² : Module k V
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b b₂ : AffineBasis ι k P
x : P
⊢ det (toMatrix b ↑b₂) • ↑(coords b₂) x = ↑(cramer (toMatrix b ↑b₂)ᵀ) (↑(coords b) x)
[PROOFSTEP]
have hu := b.isUnit_toMatrix b₂
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : CommRing k
inst✝² : Module k V
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b b₂ : AffineBasis ι k P
x : P
hu : IsUnit (toMatrix b ↑b₂)
⊢ det (toMatrix b ↑b₂) • ↑(coords b₂) x = ↑(cramer (toMatrix b ↑b₂)ᵀ) (↑(coords b) x)
[PROOFSTEP]
rw [Matrix.isUnit_iff_isUnit_det] at hu
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : CommRing k
inst✝² : Module k V
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
b b₂ : AffineBasis ι k P
x : P
hu : IsUnit (det (toMatrix b ↑b₂))
⊢ det (toMatrix b ↑b₂) • ↑(coords b₂) x = ↑(cramer (toMatrix b ↑b₂)ᵀ) (↑(coords b) x)
[PROOFSTEP]
rw [← b.toMatrix_inv_vecMul_toMatrix, Matrix.det_smul_inv_vecMul_eq_cramer_transpose _ _ hu]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Matrix", "llama_tokens": 14293} |
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
motive : M ⊗[R] N → Prop
z : M ⊗[R] N
zero : motive 0
tmul : ∀ (x : M) (y : N), motive (x ⊗ₜ[R] y)
add : ∀ (x y : M ⊗[R] N), motive x → motive y → motive (x + y)
x : FreeAddMonoid (M × N)
x✝ : M × N
y : FreeAddMonoid (M × N)
ih : motive ↑y
m : M
n : N
⊢ motive ↑(FreeAddMonoid.of (m, n) + y)
[PROOFSTEP]
rw [AddCon.coe_add]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
motive : M ⊗[R] N → Prop
z : M ⊗[R] N
zero : motive 0
tmul : ∀ (x : M) (y : N), motive (x ⊗ₜ[R] y)
add : ∀ (x y : M ⊗[R] N), motive x → motive y → motive (x + y)
x : FreeAddMonoid (M × N)
x✝ : M × N
y : FreeAddMonoid (M × N)
ih : motive ↑y
m : M
n : N
⊢ motive (↑(FreeAddMonoid.of (m, n)) + ↑y)
[PROOFSTEP]
exact add _ _ (tmul ..) ih
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
⊢ (r • m) ⊗ₜ[R] n = m ⊗ₜ[R] (r • n)
[PROOFSTEP]
conv_lhs => rw [← one_smul R m]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
| (r • m) ⊗ₜ[R] n
[PROOFSTEP]
rw [← one_smul R m]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
| (r • m) ⊗ₜ[R] n
[PROOFSTEP]
rw [← one_smul R m]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
| (r • m) ⊗ₜ[R] n
[PROOFSTEP]
rw [← one_smul R m]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
⊢ (r • 1 • m) ⊗ₜ[R] n = m ⊗ₜ[R] (r • n)
[PROOFSTEP]
conv_rhs => rw [← one_smul R n]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
| m ⊗ₜ[R] (r • n)
[PROOFSTEP]
rw [← one_smul R n]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
| m ⊗ₜ[R] (r • n)
[PROOFSTEP]
rw [← one_smul R n]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
| m ⊗ₜ[R] (r • n)
[PROOFSTEP]
rw [← one_smul R n]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
⊢ (r • 1 • m) ⊗ₜ[R] n = m ⊗ₜ[R] (r • 1 • n)
[PROOFSTEP]
rw [← smul_assoc, ← smul_assoc]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMul R' R
inst✝² : IsScalarTower R' R M
inst✝¹ : DistribMulAction R' N
inst✝ : IsScalarTower R' R N
r : R'
m : M
n : N
⊢ ((r • 1) • m) ⊗ₜ[R] n = m ⊗ₜ[R] ((r • 1) • n)
[PROOFSTEP]
exact Quotient.sound' <| AddConGen.Rel.of _ _ <| Eqv.of_smul _ _ _
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r : R'
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
n : N
⊢ ↑(SMul.aux r) (FreeAddMonoid.of (0, n)) = ↑(SMul.aux r) 0
[PROOFSTEP]
simp_rw [map_zero, SMul.aux_of, smul_zero, zero_tmul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r : R'
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m : M
⊢ ↑(SMul.aux r) (FreeAddMonoid.of (m, 0)) = ↑(SMul.aux r) 0
[PROOFSTEP]
simp_rw [map_zero, SMul.aux_of, tmul_zero]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r : R'
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m₁ m₂ : M
n : N
⊢ ↑(SMul.aux r) (FreeAddMonoid.of (m₁, n) + FreeAddMonoid.of (m₂, n)) = ↑(SMul.aux r) (FreeAddMonoid.of (m₁ + m₂, n))
[PROOFSTEP]
simp_rw [map_add, SMul.aux_of, smul_add, add_tmul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r : R'
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m : M
n₁ n₂ : N
⊢ ↑(SMul.aux r) (FreeAddMonoid.of (m, n₁) + FreeAddMonoid.of (m, n₂)) = ↑(SMul.aux r) (FreeAddMonoid.of (m, n₁ + n₂))
[PROOFSTEP]
simp_rw [map_add, SMul.aux_of, tmul_add]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r : R'
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
s : R
m : M
n : N
⊢ ↑(SMul.aux r) (FreeAddMonoid.of (s • m, n)) = ↑(SMul.aux r) (FreeAddMonoid.of (m, s • n))
[PROOFSTEP]
rw [SMul.aux_of, SMul.aux_of, ← smul_comm, smul_tmul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r : R'
x✝ y✝ : FreeAddMonoid (M × N)
hxy : Eqv R M N x✝ y✝
x y : FreeAddMonoid (M × N)
⊢ ↑(SMul.aux r) (x + y) = ↑(SMul.aux r) (y + x)
[PROOFSTEP]
simp_rw [map_add, add_comm]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
⊢ 0 • 0 = 0
[PROOFSTEP]
rw [TensorProduct.smul_zero]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
m : M
n : N
⊢ 0 • m ⊗ₜ[R] n = 0
[PROOFSTEP]
rw [this, zero_smul, zero_tmul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x✝ : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
x y : M ⊗[R] N
ihx : 0 • x = 0
ihy : 0 • y = 0
⊢ 0 • (x + y) = 0
[PROOFSTEP]
rw [TensorProduct.smul_add, ihx, ihy, add_zero]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x : M ⊗[R] N
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
⊢ 1 • 0 = 0
[PROOFSTEP]
rw [TensorProduct.smul_zero]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x : M ⊗[R] N
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
m : M
n : N
⊢ 1 • m ⊗ₜ[R] n = m ⊗ₜ[R] n
[PROOFSTEP]
rw [this, one_smul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x✝ : M ⊗[R] N
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
x y : M ⊗[R] N
ihx : 1 • x = x
ihy : 1 • y = y
⊢ 1 • (x + y) = x + y
[PROOFSTEP]
rw [TensorProduct.smul_add, ihx, ihy]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r s : R''
x : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
⊢ (r + s) • 0 = r • 0 + s • 0
[PROOFSTEP]
simp_rw [TensorProduct.smul_zero, add_zero]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r s : R''
x : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
m : M
n : N
⊢ (r + s) • m ⊗ₜ[R] n = r • m ⊗ₜ[R] n + s • m ⊗ₜ[R] n
[PROOFSTEP]
simp_rw [this, add_smul, add_tmul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r s : R''
x✝ : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
x y : M ⊗[R] N
ihx : (r + s) • x = r • x + s • x
ihy : (r + s) • y = r • y + s • y
⊢ (r + s) • (x + y) = r • (x + y) + s • (x + y)
[PROOFSTEP]
simp_rw [TensorProduct.smul_add]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r s : R''
x✝ : M ⊗[R] N
this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
x y : M ⊗[R] N
ihx : (r + s) • x = r • x + s • x
ihy : (r + s) • y = r • y + s • y
⊢ (r + s) • x + (r + s) • y = r • x + r • y + (s • x + s • y)
[PROOFSTEP]
rw [ihx, ihy, add_add_add_comm]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
src✝¹ : AddCommSemigroup (M ⊗[R] N) := addCommSemigroup M N
src✝ : AddZeroClass (M ⊗[R] N) := addZeroClass M N
⊢ ∀ (x : M ⊗[R] N), (fun n v => n • v) 0 x = 0
[PROOFSTEP]
simp [TensorProduct.zero_smul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
src✝¹ : AddCommSemigroup (M ⊗[R] N) := addCommSemigroup M N
src✝ : AddZeroClass (M ⊗[R] N) := addZeroClass M N
⊢ ∀ (n : ℕ) (x : M ⊗[R] N), (fun n v => n • v) (n + 1) x = x + (fun n v => n • v) n x
[PROOFSTEP]
simp only [TensorProduct.one_smul, TensorProduct.add_smul, add_comm, forall_const]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
r s : R'
x : M ⊗[R] N
⊢ (r * s) • 0 = r • s • 0
[PROOFSTEP]
simp_rw [TensorProduct.smul_zero]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
r s : R'
x : M ⊗[R] N
m : M
n : N
⊢ (r * s) • m ⊗ₜ[R] n = r • s • m ⊗ₜ[R] n
[PROOFSTEP]
simp_rw [this, mul_smul]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
r s : R'
x✝ x y : M ⊗[R] N
ihx : (r * s) • x = r • s • x
ihy : (r * s) • y = r • s • y
⊢ (r * s) • (x + y) = r • s • (x + y)
[PROOFSTEP]
simp_rw [TensorProduct.smul_add]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n
r s : R'
x✝ x y : M ⊗[R] N
ihx : (r * s) • x = r • s • x
ihy : (r * s) • y = r • s • y
⊢ (r * s) • x + (r * s) • y = r • s • x + r • s • y
[PROOFSTEP]
rw [ihx, ihy]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
r s : R
m : M
n : N
⊢ (r • m) ⊗ₜ[R] (s • n) = (r * s) • m ⊗ₜ[R] n
[PROOFSTEP]
simp_rw [smul_tmul, tmul_smul, mul_smul]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMulCommClass R R' M
inst✝² : SMulCommClass R R'' M
inst✝¹ : Module R''ᵐᵒᵖ M
inst✝ : IsCentralScalar R'' M
r : R''
x : M ⊗[R] N
⊢ MulOpposite.op r • 0 = r • 0
[PROOFSTEP]
rw [smul_zero, smul_zero]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMulCommClass R R' M
inst✝² : SMulCommClass R R'' M
inst✝¹ : Module R''ᵐᵒᵖ M
inst✝ : IsCentralScalar R'' M
r : R''
x✝ : M ⊗[R] N
x : M
y : N
⊢ MulOpposite.op r • x ⊗ₜ[R] y = r • x ⊗ₜ[R] y
[PROOFSTEP]
rw [smul_tmul', smul_tmul', op_smul_eq_smul]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
inst✝³ : SMulCommClass R R' M
inst✝² : SMulCommClass R R'' M
inst✝¹ : Module R''ᵐᵒᵖ M
inst✝ : IsCentralScalar R'' M
r : R''
x✝ x y : M ⊗[R] N
hx : MulOpposite.op r • x = r • x
hy : MulOpposite.op r • y = r • y
⊢ MulOpposite.op r • (x + y) = r • (x + y)
[PROOFSTEP]
rw [smul_add, smul_add, hx, hy]
[GOAL]
R : Type u_1
inst✝²⁰ : CommSemiring R
R' : Type u_2
inst✝¹⁹ : Monoid R'
R'' : Type u_3
inst✝¹⁸ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : AddCommMonoid Q
inst✝¹³ : AddCommMonoid S
inst✝¹² : Module R M
inst✝¹¹ : Module R N
inst✝¹⁰ : Module R P
inst✝⁹ : Module R Q
inst✝⁸ : Module R S
inst✝⁷ : DistribMulAction R' M
inst✝⁶ : Module R'' M
inst✝⁵ : SMulCommClass R R' M
inst✝⁴ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝³ : Monoid R'₂
inst✝² : DistribMulAction R'₂ M
inst✝¹ : SMulCommClass R R'₂ M
inst✝ : SMulCommClass R' R'₂ M
r' : R'
r'₂ : R'₂
x : M ⊗[R] N
⊢ r' • r'₂ • 0 = r'₂ • r' • 0
[PROOFSTEP]
simp_rw [TensorProduct.smul_zero]
[GOAL]
R : Type u_1
inst✝²⁰ : CommSemiring R
R' : Type u_2
inst✝¹⁹ : Monoid R'
R'' : Type u_3
inst✝¹⁸ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : AddCommMonoid Q
inst✝¹³ : AddCommMonoid S
inst✝¹² : Module R M
inst✝¹¹ : Module R N
inst✝¹⁰ : Module R P
inst✝⁹ : Module R Q
inst✝⁸ : Module R S
inst✝⁷ : DistribMulAction R' M
inst✝⁶ : Module R'' M
inst✝⁵ : SMulCommClass R R' M
inst✝⁴ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝³ : Monoid R'₂
inst✝² : DistribMulAction R'₂ M
inst✝¹ : SMulCommClass R R'₂ M
inst✝ : SMulCommClass R' R'₂ M
r' : R'
r'₂ : R'₂
x : M ⊗[R] N
m : M
n : N
⊢ r' • r'₂ • m ⊗ₜ[R] n = r'₂ • r' • m ⊗ₜ[R] n
[PROOFSTEP]
simp_rw [smul_tmul', smul_comm]
[GOAL]
R : Type u_1
inst✝²⁰ : CommSemiring R
R' : Type u_2
inst✝¹⁹ : Monoid R'
R'' : Type u_3
inst✝¹⁸ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : AddCommMonoid Q
inst✝¹³ : AddCommMonoid S
inst✝¹² : Module R M
inst✝¹¹ : Module R N
inst✝¹⁰ : Module R P
inst✝⁹ : Module R Q
inst✝⁸ : Module R S
inst✝⁷ : DistribMulAction R' M
inst✝⁶ : Module R'' M
inst✝⁵ : SMulCommClass R R' M
inst✝⁴ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝³ : Monoid R'₂
inst✝² : DistribMulAction R'₂ M
inst✝¹ : SMulCommClass R R'₂ M
inst✝ : SMulCommClass R' R'₂ M
r' : R'
r'₂ : R'₂
x✝ x y : M ⊗[R] N
ihx : r' • r'₂ • x = r'₂ • r' • x
ihy : r' • r'₂ • y = r'₂ • r' • y
⊢ r' • r'₂ • (x + y) = r'₂ • r' • (x + y)
[PROOFSTEP]
simp_rw [TensorProduct.smul_add]
[GOAL]
R : Type u_1
inst✝²⁰ : CommSemiring R
R' : Type u_2
inst✝¹⁹ : Monoid R'
R'' : Type u_3
inst✝¹⁸ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid N
inst✝¹⁵ : AddCommMonoid P
inst✝¹⁴ : AddCommMonoid Q
inst✝¹³ : AddCommMonoid S
inst✝¹² : Module R M
inst✝¹¹ : Module R N
inst✝¹⁰ : Module R P
inst✝⁹ : Module R Q
inst✝⁸ : Module R S
inst✝⁷ : DistribMulAction R' M
inst✝⁶ : Module R'' M
inst✝⁵ : SMulCommClass R R' M
inst✝⁴ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝³ : Monoid R'₂
inst✝² : DistribMulAction R'₂ M
inst✝¹ : SMulCommClass R R'₂ M
inst✝ : SMulCommClass R' R'₂ M
r' : R'
r'₂ : R'₂
x✝ x y : M ⊗[R] N
ihx : r' • r'₂ • x = r'₂ • r' • x
ihy : r' • r'₂ • y = r'₂ • r' • y
⊢ r' • r'₂ • x + r' • r'₂ • y = r'₂ • r' • x + r'₂ • r' • y
[PROOFSTEP]
rw [ihx, ihy]
[GOAL]
R : Type u_1
inst✝²¹ : CommSemiring R
R' : Type u_2
inst✝²⁰ : Monoid R'
R'' : Type u_3
inst✝¹⁹ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : AddCommMonoid N
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : AddCommMonoid Q
inst✝¹⁴ : AddCommMonoid S
inst✝¹³ : Module R M
inst✝¹² : Module R N
inst✝¹¹ : Module R P
inst✝¹⁰ : Module R Q
inst✝⁹ : Module R S
inst✝⁸ : DistribMulAction R' M
inst✝⁷ : Module R'' M
inst✝⁶ : SMulCommClass R R' M
inst✝⁵ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝⁴ : Monoid R'₂
inst✝³ : DistribMulAction R'₂ M
inst✝² : SMulCommClass R R'₂ M
inst✝¹ : SMul R'₂ R'
inst✝ : IsScalarTower R'₂ R' M
s : R'₂
r : R'
x : M ⊗[R] N
⊢ (s • r) • 0 = s • r • 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝²¹ : CommSemiring R
R' : Type u_2
inst✝²⁰ : Monoid R'
R'' : Type u_3
inst✝¹⁹ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : AddCommMonoid N
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : AddCommMonoid Q
inst✝¹⁴ : AddCommMonoid S
inst✝¹³ : Module R M
inst✝¹² : Module R N
inst✝¹¹ : Module R P
inst✝¹⁰ : Module R Q
inst✝⁹ : Module R S
inst✝⁸ : DistribMulAction R' M
inst✝⁷ : Module R'' M
inst✝⁶ : SMulCommClass R R' M
inst✝⁵ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝⁴ : Monoid R'₂
inst✝³ : DistribMulAction R'₂ M
inst✝² : SMulCommClass R R'₂ M
inst✝¹ : SMul R'₂ R'
inst✝ : IsScalarTower R'₂ R' M
s : R'₂
r : R'
x : M ⊗[R] N
m : M
n : N
⊢ (s • r) • m ⊗ₜ[R] n = s • r • m ⊗ₜ[R] n
[PROOFSTEP]
rw [smul_tmul', smul_tmul', smul_tmul', smul_assoc]
[GOAL]
R : Type u_1
inst✝²¹ : CommSemiring R
R' : Type u_2
inst✝²⁰ : Monoid R'
R'' : Type u_3
inst✝¹⁹ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁸ : AddCommMonoid M
inst✝¹⁷ : AddCommMonoid N
inst✝¹⁶ : AddCommMonoid P
inst✝¹⁵ : AddCommMonoid Q
inst✝¹⁴ : AddCommMonoid S
inst✝¹³ : Module R M
inst✝¹² : Module R N
inst✝¹¹ : Module R P
inst✝¹⁰ : Module R Q
inst✝⁹ : Module R S
inst✝⁸ : DistribMulAction R' M
inst✝⁷ : Module R'' M
inst✝⁶ : SMulCommClass R R' M
inst✝⁵ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝⁴ : Monoid R'₂
inst✝³ : DistribMulAction R'₂ M
inst✝² : SMulCommClass R R'₂ M
inst✝¹ : SMul R'₂ R'
inst✝ : IsScalarTower R'₂ R' M
s : R'₂
r : R'
x✝ x y : M ⊗[R] N
ihx : (s • r) • x = s • r • x
ihy : (s • r) • y = s • r • y
⊢ (s • r) • (x + y) = s • r • (x + y)
[PROOFSTEP]
rw [smul_add, smul_add, smul_add, ihx, ihy]
[GOAL]
R : Type u_1
inst✝²⁵ : CommSemiring R
R' : Type u_2
inst✝²⁴ : Monoid R'
R'' : Type u_3
inst✝²³ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝²² : AddCommMonoid M
inst✝²¹ : AddCommMonoid N
inst✝²⁰ : AddCommMonoid P
inst✝¹⁹ : AddCommMonoid Q
inst✝¹⁸ : AddCommMonoid S
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module R N
inst✝¹⁵ : Module R P
inst✝¹⁴ : Module R Q
inst✝¹³ : Module R S
inst✝¹² : DistribMulAction R' M
inst✝¹¹ : Module R'' M
inst✝¹⁰ : SMulCommClass R R' M
inst✝⁹ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝⁸ : Monoid R'₂
inst✝⁷ : DistribMulAction R'₂ M
inst✝⁶ : SMulCommClass R R'₂ M
inst✝⁵ : SMul R'₂ R'
inst✝⁴ : DistribMulAction R'₂ N
inst✝³ : DistribMulAction R' N
inst✝² : CompatibleSMul R R'₂ M N
inst✝¹ : CompatibleSMul R R' M N
inst✝ : IsScalarTower R'₂ R' N
s : R'₂
r : R'
x : M ⊗[R] N
⊢ (s • r) • 0 = s • r • 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝²⁵ : CommSemiring R
R' : Type u_2
inst✝²⁴ : Monoid R'
R'' : Type u_3
inst✝²³ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝²² : AddCommMonoid M
inst✝²¹ : AddCommMonoid N
inst✝²⁰ : AddCommMonoid P
inst✝¹⁹ : AddCommMonoid Q
inst✝¹⁸ : AddCommMonoid S
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module R N
inst✝¹⁵ : Module R P
inst✝¹⁴ : Module R Q
inst✝¹³ : Module R S
inst✝¹² : DistribMulAction R' M
inst✝¹¹ : Module R'' M
inst✝¹⁰ : SMulCommClass R R' M
inst✝⁹ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝⁸ : Monoid R'₂
inst✝⁷ : DistribMulAction R'₂ M
inst✝⁶ : SMulCommClass R R'₂ M
inst✝⁵ : SMul R'₂ R'
inst✝⁴ : DistribMulAction R'₂ N
inst✝³ : DistribMulAction R' N
inst✝² : CompatibleSMul R R'₂ M N
inst✝¹ : CompatibleSMul R R' M N
inst✝ : IsScalarTower R'₂ R' N
s : R'₂
r : R'
x : M ⊗[R] N
m : M
n : N
⊢ (s • r) • m ⊗ₜ[R] n = s • r • m ⊗ₜ[R] n
[PROOFSTEP]
rw [← tmul_smul, ← tmul_smul, ← tmul_smul, smul_assoc]
[GOAL]
R : Type u_1
inst✝²⁵ : CommSemiring R
R' : Type u_2
inst✝²⁴ : Monoid R'
R'' : Type u_3
inst✝²³ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝²² : AddCommMonoid M
inst✝²¹ : AddCommMonoid N
inst✝²⁰ : AddCommMonoid P
inst✝¹⁹ : AddCommMonoid Q
inst✝¹⁸ : AddCommMonoid S
inst✝¹⁷ : Module R M
inst✝¹⁶ : Module R N
inst✝¹⁵ : Module R P
inst✝¹⁴ : Module R Q
inst✝¹³ : Module R S
inst✝¹² : DistribMulAction R' M
inst✝¹¹ : Module R'' M
inst✝¹⁰ : SMulCommClass R R' M
inst✝⁹ : SMulCommClass R R'' M
R'₂ : Type u_9
inst✝⁸ : Monoid R'₂
inst✝⁷ : DistribMulAction R'₂ M
inst✝⁶ : SMulCommClass R R'₂ M
inst✝⁵ : SMul R'₂ R'
inst✝⁴ : DistribMulAction R'₂ N
inst✝³ : DistribMulAction R' N
inst✝² : CompatibleSMul R R'₂ M N
inst✝¹ : CompatibleSMul R R' M N
inst✝ : IsScalarTower R'₂ R' N
s : R'₂
r : R'
x✝ x y : M ⊗[R] N
ihx : (s • r) • x = s • r • x
ihy : (s • r) • y = s • r • y
⊢ (s • r) • (x + y) = s • r • (x + y)
[PROOFSTEP]
rw [smul_add, smul_add, smul_add, ihx, ihy]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
c : R
m : M
n : N
⊢ (fun x x_1 => x ⊗ₜ[R] x_1) (c • m) n = c • (fun x x_1 => x ⊗ₜ[R] x_1) m n
[PROOFSTEP]
simp_rw [smul_tmul, tmul_smul]
[GOAL]
R : Type u_1
inst✝¹⁷ : CommSemiring R
R' : Type u_2
inst✝¹⁶ : Monoid R'
R'' : Type u_3
inst✝¹⁵ : Semiring R''
M : Type u_4
N : Type u_5
P✝ : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid N
inst✝¹² : AddCommMonoid P✝
inst✝¹¹ : AddCommMonoid Q
inst✝¹⁰ : AddCommMonoid S
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P✝
inst✝⁶ : Module R Q
inst✝⁵ : Module R S
inst✝⁴ : DistribMulAction R' M
inst✝³ : Module R'' M
inst✝² : SMulCommClass R R' M
inst✝¹ : SMulCommClass R R'' M
x₁ : M
x₂ : N
P : Prop
inst✝ : Decidable P
⊢ (if P then x₁ else 0) ⊗ₜ[R] x₂ = if P then x₁ ⊗ₜ[R] x₂ else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝¹⁷ : CommSemiring R
R' : Type u_2
inst✝¹⁶ : Monoid R'
R'' : Type u_3
inst✝¹⁵ : Semiring R''
M : Type u_4
N : Type u_5
P✝ : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid N
inst✝¹² : AddCommMonoid P✝
inst✝¹¹ : AddCommMonoid Q
inst✝¹⁰ : AddCommMonoid S
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P✝
inst✝⁶ : Module R Q
inst✝⁵ : Module R S
inst✝⁴ : DistribMulAction R' M
inst✝³ : Module R'' M
inst✝² : SMulCommClass R R' M
inst✝¹ : SMulCommClass R R'' M
x₁ : M
x₂ : N
P : Prop
inst✝ : Decidable P
h✝ : P
⊢ x₁ ⊗ₜ[R] x₂ = x₁ ⊗ₜ[R] x₂
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
inst✝¹⁷ : CommSemiring R
R' : Type u_2
inst✝¹⁶ : Monoid R'
R'' : Type u_3
inst✝¹⁵ : Semiring R''
M : Type u_4
N : Type u_5
P✝ : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid N
inst✝¹² : AddCommMonoid P✝
inst✝¹¹ : AddCommMonoid Q
inst✝¹⁰ : AddCommMonoid S
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P✝
inst✝⁶ : Module R Q
inst✝⁵ : Module R S
inst✝⁴ : DistribMulAction R' M
inst✝³ : Module R'' M
inst✝² : SMulCommClass R R' M
inst✝¹ : SMulCommClass R R'' M
x₁ : M
x₂ : N
P : Prop
inst✝ : Decidable P
h✝ : ¬P
⊢ 0 ⊗ₜ[R] x₂ = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁷ : CommSemiring R
R' : Type u_2
inst✝¹⁶ : Monoid R'
R'' : Type u_3
inst✝¹⁵ : Semiring R''
M : Type u_4
N : Type u_5
P✝ : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid N
inst✝¹² : AddCommMonoid P✝
inst✝¹¹ : AddCommMonoid Q
inst✝¹⁰ : AddCommMonoid S
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P✝
inst✝⁶ : Module R Q
inst✝⁵ : Module R S
inst✝⁴ : DistribMulAction R' M
inst✝³ : Module R'' M
inst✝² : SMulCommClass R R' M
inst✝¹ : SMulCommClass R R'' M
x₁ : M
x₂ : N
P : Prop
inst✝ : Decidable P
⊢ (x₁ ⊗ₜ[R] if P then x₂ else 0) = if P then x₁ ⊗ₜ[R] x₂ else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝¹⁷ : CommSemiring R
R' : Type u_2
inst✝¹⁶ : Monoid R'
R'' : Type u_3
inst✝¹⁵ : Semiring R''
M : Type u_4
N : Type u_5
P✝ : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid N
inst✝¹² : AddCommMonoid P✝
inst✝¹¹ : AddCommMonoid Q
inst✝¹⁰ : AddCommMonoid S
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P✝
inst✝⁶ : Module R Q
inst✝⁵ : Module R S
inst✝⁴ : DistribMulAction R' M
inst✝³ : Module R'' M
inst✝² : SMulCommClass R R' M
inst✝¹ : SMulCommClass R R'' M
x₁ : M
x₂ : N
P : Prop
inst✝ : Decidable P
h✝ : P
⊢ x₁ ⊗ₜ[R] x₂ = x₁ ⊗ₜ[R] x₂
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
inst✝¹⁷ : CommSemiring R
R' : Type u_2
inst✝¹⁶ : Monoid R'
R'' : Type u_3
inst✝¹⁵ : Semiring R''
M : Type u_4
N : Type u_5
P✝ : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid N
inst✝¹² : AddCommMonoid P✝
inst✝¹¹ : AddCommMonoid Q
inst✝¹⁰ : AddCommMonoid S
inst✝⁹ : Module R M
inst✝⁸ : Module R N
inst✝⁷ : Module R P✝
inst✝⁶ : Module R Q
inst✝⁵ : Module R S
inst✝⁴ : DistribMulAction R' M
inst✝³ : Module R'' M
inst✝² : SMulCommClass R R' M
inst✝¹ : SMulCommClass R R'' M
x₁ : M
x₂ : N
P : Prop
inst✝ : Decidable P
h✝ : ¬P
⊢ x₁ ⊗ₜ[R] 0 = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
α : Type u_9
s : Finset α
m : α → M
n : N
⊢ (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n
[PROOFSTEP]
classical
induction' s using Finset.induction with a s has ih h
· simp
· simp [Finset.sum_insert has, add_tmul, ih]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
α : Type u_9
s : Finset α
m : α → M
n : N
⊢ (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n
[PROOFSTEP]
induction' s using Finset.induction with a s has ih h
[GOAL]
case empty
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
α : Type u_9
m : α → M
n : N
⊢ (∑ a in ∅, m a) ⊗ₜ[R] n = ∑ a in ∅, m a ⊗ₜ[R] n
[PROOFSTEP]
simp
[GOAL]
case insert
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
α : Type u_9
m : α → M
n : N
a : α
s : Finset α
has : ¬a ∈ s
ih : (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n
⊢ (∑ a in insert a s, m a) ⊗ₜ[R] n = ∑ a in insert a s, m a ⊗ₜ[R] n
[PROOFSTEP]
simp [Finset.sum_insert has, add_tmul, ih]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
m : M
α : Type u_9
s : Finset α
n : α → N
⊢ m ⊗ₜ[R] ∑ a in s, n a = ∑ a in s, m ⊗ₜ[R] n a
[PROOFSTEP]
classical
induction' s using Finset.induction with a s has ih h
· simp
· simp [Finset.sum_insert has, tmul_add, ih]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
m : M
α : Type u_9
s : Finset α
n : α → N
⊢ m ⊗ₜ[R] ∑ a in s, n a = ∑ a in s, m ⊗ₜ[R] n a
[PROOFSTEP]
induction' s using Finset.induction with a s has ih h
[GOAL]
case empty
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
m : M
α : Type u_9
n : α → N
⊢ m ⊗ₜ[R] ∑ a in ∅, n a = ∑ a in ∅, m ⊗ₜ[R] n a
[PROOFSTEP]
simp
[GOAL]
case insert
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
m : M
α : Type u_9
n : α → N
a : α
s : Finset α
has : ¬a ∈ s
ih : m ⊗ₜ[R] ∑ a in s, n a = ∑ a in s, m ⊗ₜ[R] n a
⊢ m ⊗ₜ[R] ∑ a in insert a s, n a = ∑ a in insert a s, m ⊗ₜ[R] n a
[PROOFSTEP]
simp [Finset.sum_insert has, tmul_add, ih]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
⊢ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} = ⊤
[PROOFSTEP]
ext t
[GOAL]
case h
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
⊢ t ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} ↔ t ∈ ⊤
[PROOFSTEP]
simp only [Submodule.mem_top, iff_true_iff]
[GOAL]
case h
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
⊢ t ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
refine t.induction_on ?_ ?_ ?_
[GOAL]
case h.refine_1
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
⊢ 0 ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
exact Submodule.zero_mem _
[GOAL]
case h.refine_2
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
⊢ ∀ (x : M) (y : N), x ⊗ₜ[R] y ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
intro m n
[GOAL]
case h.refine_2
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
m : M
n : N
⊢ m ⊗ₜ[R] n ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
apply Submodule.subset_span
[GOAL]
case h.refine_2.a
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
m : M
n : N
⊢ m ⊗ₜ[R] n ∈ {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
use m, n
[GOAL]
case h.refine_3
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t : M ⊗[R] N
⊢ ∀ (x y : M ⊗[R] N),
x ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} →
y ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} → x + y ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
intro t₁ t₂ ht₁ ht₂
[GOAL]
case h.refine_3
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
t t₁ t₂ : M ⊗[R] N
ht₁ : t₁ ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
ht₂ : t₂ ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
⊢ t₁ + t₂ ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
exact Submodule.add_mem _ ht₁ ht₂
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
⊢ Submodule.map₂ (mk R M N) ⊤ ⊤ = ⊤
[PROOFSTEP]
rw [← top_le_iff, ← span_tmul_eq_top, Submodule.map₂_eq_span_image2]
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
⊢ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} ≤ Submodule.span R (Set.image2 (fun m n => ↑(↑(mk R M N) m) n) ↑⊤ ↑⊤)
[PROOFSTEP]
exact Submodule.span_mono fun _ ⟨m, n, h⟩ => ⟨m, n, trivial, trivial, h⟩
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x : M ⊗[R] N
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
⊢ ∃ m n, x = m ⊗ₜ[R] n
[PROOFSTEP]
induction x using TensorProduct.induction_on with
| zero =>
use 0, 0
rw [TensorProduct.zero_tmul]
| tmul m n => use m, n
| add x y h₁ h₂ =>
obtain ⟨m₁, n₁, rfl⟩ := h₁
obtain ⟨m₂, n₂, rfl⟩ := h₂
apply h
[GOAL]
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
x : M ⊗[R] N
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
⊢ ∃ m n, x = m ⊗ₜ[R] n
[PROOFSTEP]
induction x using TensorProduct.induction_on with
| zero =>
use 0, 0
rw [TensorProduct.zero_tmul]
| tmul m n => use m, n
| add x y h₁ h₂ =>
obtain ⟨m₁, n₁, rfl⟩ := h₁
obtain ⟨m₂, n₂, rfl⟩ := h₂
apply h
[GOAL]
case zero
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
⊢ ∃ m n, 0 = m ⊗ₜ[R] n
[PROOFSTEP]
| zero =>
use 0, 0
rw [TensorProduct.zero_tmul]
[GOAL]
case zero
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
⊢ ∃ m n, 0 = m ⊗ₜ[R] n
[PROOFSTEP]
use 0, 0
[GOAL]
case h
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
⊢ 0 = 0 ⊗ₜ[R] 0
[PROOFSTEP]
rw [TensorProduct.zero_tmul]
[GOAL]
case tmul
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
m : M
n : N
⊢ ∃ m_1 n_1, m ⊗ₜ[R] n = m_1 ⊗ₜ[R] n_1
[PROOFSTEP]
| tmul m n => use m, n
[GOAL]
case tmul
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
m : M
n : N
⊢ ∃ m_1 n_1, m ⊗ₜ[R] n = m_1 ⊗ₜ[R] n_1
[PROOFSTEP]
use m, n
[GOAL]
case add
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
x y : M ⊗[R] N
h₁ : ∃ m n, x = m ⊗ₜ[R] n
h₂ : ∃ m n, y = m ⊗ₜ[R] n
⊢ ∃ m n, x + y = m ⊗ₜ[R] n
[PROOFSTEP]
| add x y h₁ h₂ =>
obtain ⟨m₁, n₁, rfl⟩ := h₁
obtain ⟨m₂, n₂, rfl⟩ := h₂
apply h
[GOAL]
case add
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
x y : M ⊗[R] N
h₁ : ∃ m n, x = m ⊗ₜ[R] n
h₂ : ∃ m n, y = m ⊗ₜ[R] n
⊢ ∃ m n, x + y = m ⊗ₜ[R] n
[PROOFSTEP]
obtain ⟨m₁, n₁, rfl⟩ := h₁
[GOAL]
case add.intro.intro
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
y : M ⊗[R] N
h₂ : ∃ m n, y = m ⊗ₜ[R] n
m₁ : M
n₁ : N
⊢ ∃ m n, m₁ ⊗ₜ[R] n₁ + y = m ⊗ₜ[R] n
[PROOFSTEP]
obtain ⟨m₂, n₂, rfl⟩ := h₂
[GOAL]
case add.intro.intro.intro.intro
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : Module R M
inst✝⁷ : Module R N
inst✝⁶ : Module R P
inst✝⁵ : Module R Q
inst✝⁴ : Module R S
inst✝³ : DistribMulAction R' M
inst✝² : Module R'' M
inst✝¹ : SMulCommClass R R' M
inst✝ : SMulCommClass R R'' M
h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
m₁ : M
n₁ : N
m₂ : M
n₂ : N
⊢ ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n
[PROOFSTEP]
apply h
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
n : N
⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (0, n)) =
↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) 0
[PROOFSTEP]
simp_rw [map_zero, FreeAddMonoid.lift_eval_of, f.map_zero₂]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m : M
⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, 0)) =
↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) 0
[PROOFSTEP]
simp_rw [map_zero, FreeAddMonoid.lift_eval_of, (f m).map_zero]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m₁ m₂ : M
n : N
⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m₁, n) + FreeAddMonoid.of (m₂, n)) =
↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m₁ + m₂, n))
[PROOFSTEP]
simp_rw [map_add, FreeAddMonoid.lift_eval_of, f.map_add₂]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m : M
n₁ n₂ : N
⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, n₁) + FreeAddMonoid.of (m, n₂)) =
↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, n₁ + n₂))
[PROOFSTEP]
simp_rw [map_add, FreeAddMonoid.lift_eval_of, (f m).map_add]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
r : R
m : M
n : N
⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (r • m, n)) =
↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, r • n))
[PROOFSTEP]
simp_rw [FreeAddMonoid.lift_eval_of, f.map_smul₂, (f m).map_smul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
x✝ y✝ : FreeAddMonoid (M × N)
hxy : Eqv R M N x✝ y✝
x y : FreeAddMonoid (M × N)
⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (x + y) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (y + x)
[PROOFSTEP]
simp_rw [map_add, add_comm]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
r : R
x : M ⊗[R] N
p : M
q : N
⊢ ↑(liftAux f) (r • p ⊗ₜ[R] q) = r • ↑(liftAux f) (p ⊗ₜ[R] q)
[PROOFSTEP]
simp_rw [← tmul_smul, liftAux_tmul, (f p).map_smul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
r : R
x p q : M ⊗[R] N
ih1 : ↑(liftAux f) (r • p) = r • ↑(liftAux f) p
ih2 : ↑(liftAux f) (r • q) = r • ↑(liftAux f) q
⊢ ↑(liftAux f) (r • (p + q)) = r • ↑(liftAux f) (p + q)
[PROOFSTEP]
simp_rw [smul_add, (liftAux f).map_add, ih1, ih2, smul_add]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : M ⊗[R] N →ₗ[R] P
H : ∀ (x : M) (y : N), ↑g (x ⊗ₜ[R] y) = ↑h (x ⊗ₜ[R] y)
z : M ⊗[R] N
⊢ ↑g 0 = ↑h 0
[PROOFSTEP]
simp_rw [LinearMap.map_zero]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : M ⊗[R] N →ₗ[R] P
H : ∀ (x : M) (y : N), ↑g (x ⊗ₜ[R] y) = ↑h (x ⊗ₜ[R] y)
z x y : M ⊗[R] N
ihx : ↑g x = ↑h x
ihy : ↑g y = ↑h y
⊢ ↑g (x + y) = ↑h (x + y)
[PROOFSTEP]
rw [g.map_add, h.map_add, ihx, ihy]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g : M ⊗[R] N →ₗ[R] P
H : ∀ (x : M) (y : N), ↑g (x ⊗ₜ[R] y) = ↑(↑f x) y
m : M
n : N
⊢ ↑g (m ⊗ₜ[R] n) = ↑(lift f) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [H, lift.tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g : P →ₗ[R] Q
x✝¹ : M
x✝ : N
⊢ ↑(LinearMap.comp g (lift f)) (x✝¹ ⊗ₜ[R] x✝) = ↑(↑(LinearMap.compr₂ f g) x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f✝ : M →ₗ[R] N →ₗ[R] P
f : M ⊗[R] N →ₗ[R] P
⊢ lift (LinearMap.compr₂ (mk R M N) f) = f
[PROOFSTEP]
rw [lift_compr₂ f, lift_mk, LinearMap.comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : M ⊗[R] N →ₗ[R] P
H : LinearMap.compr₂ (mk R M N) g = LinearMap.compr₂ (mk R M N) h
⊢ g = h
[PROOFSTEP]
rw [← lift_mk_compr₂ g, H, lift_mk_compr₂]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f✝ f : M →ₗ[R] N →ₗ[R] P
m : M
n : N
⊢ ↑(↑(uncurry R M N P) f) (m ⊗ₜ[R] n) = ↑(↑f m) n
[PROOFSTEP]
rw [uncurry, LinearMap.flip_apply, lift.tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f✝ f : M →ₗ[R] N →ₗ[R] P
m : M
n : N
⊢ ↑(↑(↑(LinearMap.comp LinearMap.lflip (LinearMap.flip LinearMap.id)) m) n) f = ↑(↑f m) n
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : (M ⊗[R] N) ⊗[R] P →ₗ[R] Q
H : ∀ (x : M) (y : N) (z : P), ↑g ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h ((x ⊗ₜ[R] y) ⊗ₜ[R] z)
⊢ g = h
[PROOFSTEP]
ext x y z
[GOAL]
case H.H.h.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : (M ⊗[R] N) ⊗[R] P →ₗ[R] Q
H : ∀ (x : M) (y : N) (z : P), ↑g ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h ((x ⊗ₜ[R] y) ⊗ₜ[R] z)
x : M
y : N
z : P
⊢ ↑(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) P) g)) x) y) z =
↑(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) P) h)) x) y) z
[PROOFSTEP]
exact H x y z
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : ((M ⊗[R] N) ⊗[R] P) ⊗[R] Q →ₗ[R] S
H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑g (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z)
⊢ g = h
[PROOFSTEP]
ext w x y z
[GOAL]
case H.H.H.h.h.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
g h : ((M ⊗[R] N) ⊗[R] P) ⊗[R] Q →ₗ[R] S
H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑g (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z)
w : M
x : N
y : P
z : Q
⊢ ↑(↑(↑(↑(LinearMap.compr₂ (mk R M N)
(LinearMap.compr₂ (mk R (M ⊗[R] N) P) (LinearMap.compr₂ (mk R ((M ⊗[R] N) ⊗[R] P) Q) g)))
w)
x)
y)
z =
↑(↑(↑(↑(LinearMap.compr₂ (mk R M N)
(LinearMap.compr₂ (mk R (M ⊗[R] N) P) (LinearMap.compr₂ (mk R ((M ⊗[R] N) ⊗[R] P) Q) h)))
w)
x)
y)
z
[PROOFSTEP]
exact H w x y z
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
φ ψ : (M ⊗[R] N) ⊗[R] P ⊗[R] Q →ₗ[R] S
H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑φ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) = ↑ψ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z)
⊢ φ = ψ
[PROOFSTEP]
ext m n p q
[GOAL]
case H.H.h.h.H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] N →ₗ[R] P
φ ψ : (M ⊗[R] N) ⊗[R] P ⊗[R] Q →ₗ[R] S
H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑φ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) = ↑ψ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z)
m : M
n : N
p : P
q : Q
⊢ ↑(↑(LinearMap.compr₂ (mk R P Q)
(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) (P ⊗[R] Q)) φ)) m) n))
p)
q =
↑(↑(LinearMap.compr₂ (mk R P Q)
(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) (P ⊗[R] Q)) ψ)) m) n))
p)
q
[PROOFSTEP]
exact H m n p q
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
x✝ : M
⊢ ↑(LinearMap.comp (lift (LinearMap.lsmul R M)) (↑(mk R R M) 1)) x✝ = ↑LinearMap.id x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
r : R
m : M
⊢ ↑(LinearMap.comp (↑(mk R R M) 1) (lift (LinearMap.lsmul R M))) (r ⊗ₜ[R] m) = ↑LinearMap.id (r ⊗ₜ[R] m)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
r : R
m : M
⊢ r • 1 ⊗ₜ[R] m = r ⊗ₜ[R] m
[PROOFSTEP]
rw [← tmul_smul, ← smul_tmul, smul_eq_mul, mul_one]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
⊢ (M ⊗[R] N) ⊗[R] P ≃ₗ[R] M ⊗[R] N ⊗[R] P
[PROOFSTEP]
refine
LinearEquiv.ofLinear (lift <| lift <| comp (lcurry R _ _ _) <| mk _ _ _)
(lift <| comp (uncurry R _ _ _) <| curry <| mk _ _ _) (ext <| LinearMap.ext fun m => ext' fun n p => ?_)
(ext <| flip_inj <| LinearMap.ext fun p => ext' fun m n => ?_)
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P))
(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))))
m)
(n ⊗ₜ[R] p) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
repeat'
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P))
(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))))
m)
(n ⊗ₜ[R] p) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P))
(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))))
m)
(n ⊗ₜ[R] p) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P))
(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))))
m)
(n ⊗ₜ[R] p) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) =
↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [uncurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [uncurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [curry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p) =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p =
↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [uncurry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [curry_apply]
[GOAL]
case refine_1
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
m : M
n : N
p : P
⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p)
[PROOFSTEP]
rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
repeat'
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(LinearMap.flip
(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))))
p)
(m ⊗ₜ[R] n) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))
(m ⊗ₜ[R] n))
p =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))
(m ⊗ₜ[R] n))
p =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(compr₂ (mk R (M ⊗[R] N) P)
(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))
(m ⊗ₜ[R] n))
p =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))
(↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p)) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(compr₂ (mk R (M ⊗[R] N) P) LinearMap.id) (m ⊗ₜ[R] n)) p
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(compr₂ (mk R (M ⊗[R] N) P) LinearMap.id) (m ⊗ₜ[R] n)) p
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑(↑(compr₂ (mk R (M ⊗[R] N) P) LinearMap.id) (m ⊗ₜ[R] n)) p
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))
(↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) =
↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [uncurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [uncurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [curry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
first
| rw [lift.tmul]
| rw [compr₂_apply]
| rw [comp_apply]
| rw [mk_apply]
| rw [flip_apply]
| rw [lcurry_apply]
| rw [uncurry_apply]
| rw [curry_apply]
| rw [id_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lift.tmul]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [compr₂_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [comp_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [mk_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [flip_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [lcurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [uncurry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [curry_apply]
[GOAL]
case refine_2
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
p : P
m : M
n : N
⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p)
[PROOFSTEP]
rw [id_apply]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ range (map f g) = Submodule.span R {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t}
[PROOFSTEP]
simp only [← Submodule.map_top, ← span_tmul_eq_top, Submodule.map_span, Set.mem_image, Set.mem_setOf_eq]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ Submodule.span R ((fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t}) =
Submodule.span R {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t}
[PROOFSTEP]
congr
[GOAL]
case e_s
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} = {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t}
[PROOFSTEP]
ext t
[GOAL]
case e_s.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
t : P ⊗[R] Q
⊢ t ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} ↔ t ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t}
[PROOFSTEP]
constructor
[GOAL]
case e_s.h.mp
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
t : P ⊗[R] Q
⊢ t ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} → t ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t}
[PROOFSTEP]
rintro ⟨_, ⟨⟨m, n, rfl⟩, rfl⟩⟩
[GOAL]
case e_s.h.mp.intro.intro.intro.intro
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
m : M
n : N
⊢ (fun a => ↑(map f g) a) (m ⊗ₜ[R] n) ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t}
[PROOFSTEP]
use m, n
[GOAL]
case h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
m : M
n : N
⊢ ↑f m ⊗ₜ[R] ↑g n = (fun a => ↑(map f g) a) (m ⊗ₜ[R] n)
[PROOFSTEP]
simp only [map_tmul]
[GOAL]
case e_s.h.mpr
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
t : P ⊗[R] Q
⊢ t ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} → t ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
rintro ⟨m, n, rfl⟩
[GOAL]
case e_s.h.mpr.intro.intro
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
m : M
n : N
⊢ ↑f m ⊗ₜ[R] ↑g n ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t}
[PROOFSTEP]
refine ⟨_, ⟨⟨m, n, rfl⟩, ?_⟩⟩
[GOAL]
case e_s.h.mpr.intro.intro
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M →ₗ[R] P
g : N →ₗ[R] Q
m : M
n : N
⊢ (fun a => ↑(map f g) a) (m ⊗ₜ[R] n) = ↑f m ⊗ₜ[R] ↑g n
[PROOFSTEP]
simp only [map_tmul]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
⊢ map LinearMap.id LinearMap.id = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
x✝¹ : M
x✝ : N
⊢ ↑(↑(compr₂ (mk R M N) (map LinearMap.id LinearMap.id)) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) LinearMap.id) x✝¹) x✝
[PROOFSTEP]
simp only [mk_apply, id_coe, compr₂_apply, id.def, map_tmul]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f : M →ₗ[R] M
g : N →ₗ[R] N
n : ℕ
⊢ map f g ^ n = map (f ^ n) (g ^ n)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f : M →ₗ[R] M
g : N →ₗ[R] N
⊢ map f g ^ Nat.zero = map (f ^ Nat.zero) (g ^ Nat.zero)
[PROOFSTEP]
simp only [Nat.zero_eq, pow_zero, map_one]
[GOAL]
case succ
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f : M →ₗ[R] M
g : N →ₗ[R] N
n : ℕ
ih : map f g ^ n = map (f ^ n) (g ^ n)
⊢ map f g ^ Nat.succ n = map (f ^ Nat.succ n) (g ^ Nat.succ n)
[PROOFSTEP]
simp only [pow_succ', ih, map_mul]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f₁ f₂ : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ map (f₁ + f₂) g = map f₁ g + map f₂ g
[PROOFSTEP]
ext
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f₁ f₂ : M →ₗ[R] P
g : N →ₗ[R] Q
x✝¹ : M
x✝ : N
⊢ ↑(↑(compr₂ (mk R M N) (map (f₁ + f₂) g)) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (map f₁ g + map f₂ g)) x✝¹) x✝
[PROOFSTEP]
simp only [add_tmul, compr₂_apply, mk_apply, map_tmul, add_apply]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f : M →ₗ[R] P
g₁ g₂ : N →ₗ[R] Q
⊢ map f (g₁ + g₂) = map f g₁ + map f g₂
[PROOFSTEP]
ext
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
f : M →ₗ[R] P
g₁ g₂ : N →ₗ[R] Q
x✝¹ : M
x✝ : N
⊢ ↑(↑(compr₂ (mk R M N) (map f (g₁ + g₂))) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (map f g₁ + map f g₂)) x✝¹) x✝
[PROOFSTEP]
simp only [tmul_add, compr₂_apply, mk_apply, map_tmul, add_apply]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
r : R
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ map (r • f) g = r • map f g
[PROOFSTEP]
ext
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
r : R
f : M →ₗ[R] P
g : N →ₗ[R] Q
x✝¹ : M
x✝ : N
⊢ ↑(↑(compr₂ (mk R M N) (map (r • f) g)) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (r • map f g)) x✝¹) x✝
[PROOFSTEP]
simp only [smul_tmul, compr₂_apply, mk_apply, map_tmul, smul_apply, tmul_smul]
[GOAL]
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
r : R
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ map f (r • g) = r • map f g
[PROOFSTEP]
ext
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁸ : CommSemiring R
R' : Type u_2
inst✝¹⁷ : Monoid R'
R'' : Type u_3
inst✝¹⁶ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid N
inst✝¹³ : AddCommMonoid P
inst✝¹² : AddCommMonoid Q
inst✝¹¹ : AddCommMonoid S
inst✝¹⁰ : Module R M
inst✝⁹ : Module R N
inst✝⁸ : Module R P
inst✝⁷ : Module R Q
inst✝⁶ : Module R S
inst✝⁵ : DistribMulAction R' M
inst✝⁴ : Module R'' M
P' : Type u_9
Q' : Type u_10
inst✝³ : AddCommMonoid P'
inst✝² : Module R P'
inst✝¹ : AddCommMonoid Q'
inst✝ : Module R Q'
r : R
f : M →ₗ[R] P
g : N →ₗ[R] Q
x✝¹ : M
x✝ : N
⊢ ↑(↑(compr₂ (mk R M N) (map f (r • g))) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (r • map f g)) x✝¹) x✝
[PROOFSTEP]
simp only [smul_tmul, compr₂_apply, mk_apply, map_tmul, smul_apply, tmul_smul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M ≃ₗ[R] P
g : N ≃ₗ[R] Q
m : P
n : Q
⊢ ↑(comp (map ↑f ↑g) (map ↑(LinearEquiv.symm f) ↑(LinearEquiv.symm g))) (m ⊗ₜ[R] n) = ↑LinearMap.id (m ⊗ₜ[R] n)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
f : M ≃ₗ[R] P
g : N ≃ₗ[R] Q
m : M
n : N
⊢ ↑(comp (map ↑(LinearEquiv.symm f) ↑(LinearEquiv.symm g)) (map ↑f ↑g)) (m ⊗ₜ[R] n) = ↑LinearMap.id (m ⊗ₜ[R] n)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
⊢ LinearEquiv.symm (tensorTensorTensorComm R M N P Q) = tensorTensorTensorComm R M P N Q
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
x✝ : (M ⊗[R] P) ⊗[R] N ⊗[R] Q
⊢ ↑(LinearEquiv.symm (tensorTensorTensorComm R M N P Q)) x✝ = ↑(tensorTensorTensorComm R M P N Q) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ f g : N →ₗ[R] P
⊢ lTensor M (f + g) = lTensor M f + lTensor M g
[PROOFSTEP]
ext x y
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ f g : N →ₗ[R] P
x : M
y : N
⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M (f + g))) x) y =
↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M f + lTensor M g)) x) y
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, add_apply, lTensor_tmul, tmul_add]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
r : R
f : N →ₗ[R] P
⊢ AddHom.toFun
{ toFun := lTensor M, map_add' := (_ : ∀ (f g : N →ₗ[R] P), lTensor M (f + g) = lTensor M f + lTensor M g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := lTensor M, map_add' := (_ : ∀ (f g : N →ₗ[R] P), lTensor M (f + g) = lTensor M f + lTensor M g) } f
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
r : R
f : N →ₗ[R] P
⊢ lTensor M (r • f) = r • lTensor M f
[PROOFSTEP]
ext x y
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
r : R
f : N →ₗ[R] P
x : M
y : N
⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M (r • f))) x) y =
↑(↑(compr₂ (TensorProduct.mk R M N) (r • lTensor M f)) x) y
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, tmul_smul, smul_apply, lTensor_tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ f g : N →ₗ[R] P
⊢ (fun f => rTensor M f) (f + g) = (fun f => rTensor M f) f + (fun f => rTensor M f) g
[PROOFSTEP]
ext x y
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ f g : N →ₗ[R] P
x : N
y : M
⊢ ↑(↑(compr₂ (TensorProduct.mk R N M) ((fun f => rTensor M f) (f + g))) x) y =
↑(↑(compr₂ (TensorProduct.mk R N M) ((fun f => rTensor M f) f + (fun f => rTensor M f) g)) x) y
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, add_apply, rTensor_tmul, add_tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
r : R
f : N →ₗ[R] P
⊢ AddHom.toFun
{ toFun := fun f => rTensor M f,
map_add' :=
(_ :
∀ (f g : N →ₗ[R] P), (fun f => rTensor M f) (f + g) = (fun f => rTensor M f) f + (fun f => rTensor M f) g) }
(r • f) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun f => rTensor M f,
map_add' :=
(_ :
∀ (f g : N →ₗ[R] P),
(fun f => rTensor M f) (f + g) = (fun f => rTensor M f) f + (fun f => rTensor M f) g) }
f
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
r : R
f : N →ₗ[R] P
⊢ rTensor M (r • f) = r • rTensor M f
[PROOFSTEP]
ext x y
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
r : R
f : N →ₗ[R] P
x : N
y : M
⊢ ↑(↑(compr₂ (TensorProduct.mk R N M) (rTensor M (r • f))) x) y =
↑(↑(compr₂ (TensorProduct.mk R N M) (r • rTensor M f)) x) y
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, smul_tmul, tmul_smul, smul_apply, rTensor_tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
⊢ lTensor M (comp g f) = comp (lTensor M g) (lTensor M f)
[PROOFSTEP]
ext m n
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
m : M
n : N
⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M (comp g f))) m) n =
↑(↑(compr₂ (TensorProduct.mk R M N) (comp (lTensor M g) (lTensor M f))) m) n
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, comp_apply, lTensor_tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
x : M ⊗[R] N
⊢ ↑(lTensor M (comp g f)) x = ↑(lTensor M g) (↑(lTensor M f) x)
[PROOFSTEP]
rw [lTensor_comp, coe_comp]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
x : M ⊗[R] N
⊢ (↑(lTensor M g) ∘ ↑(lTensor M f)) x = ↑(lTensor M g) (↑(lTensor M f) x)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
⊢ rTensor M (comp g f) = comp (rTensor M g) (rTensor M f)
[PROOFSTEP]
ext m n
[GOAL]
case H.h.h
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
m : N
n : M
⊢ ↑(↑(compr₂ (TensorProduct.mk R N M) (rTensor M (comp g f))) m) n =
↑(↑(compr₂ (TensorProduct.mk R N M) (comp (rTensor M g) (rTensor M f))) m) n
[PROOFSTEP]
simp only [compr₂_apply, mk_apply, comp_apply, rTensor_tmul]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
x : N ⊗[R] M
⊢ ↑(rTensor M (comp g f)) x = ↑(rTensor M g) (↑(rTensor M f) x)
[PROOFSTEP]
rw [rTensor_comp, coe_comp]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
x : N ⊗[R] M
⊢ (↑(rTensor M g) ∘ ↑(rTensor M f)) x = ↑(rTensor M g) (↑(rTensor M f) x)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
x : M ⊗[R] N
⊢ ↑(lTensor M id) x = x
[PROOFSTEP]
rw [lTensor_id, id_coe, id.def]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f : N →ₗ[R] P
x : N ⊗[R] M
⊢ ↑(rTensor M id) x = x
[PROOFSTEP]
rw [rTensor_id, id_coe, id.def]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ comp (lTensor P g) (rTensor N f) = map f g
[PROOFSTEP]
simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ comp (rTensor Q f) (lTensor M g) = map f g
[PROOFSTEP]
simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : M →ₗ[R] P
g : N →ₗ[R] Q
f' : S →ₗ[R] M
⊢ comp (map f g) (rTensor N f') = map (comp f f') g
[PROOFSTEP]
simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : M →ₗ[R] P
g : N →ₗ[R] Q
g' : S →ₗ[R] N
⊢ comp (map f g) (lTensor M g') = map f (comp g g')
[PROOFSTEP]
simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f' : P →ₗ[R] S
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ comp (rTensor Q f') (map f g) = map (comp f' f) g
[PROOFSTEP]
simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g✝ : P →ₗ[R] Q
f✝ : N →ₗ[R] P
g' : Q →ₗ[R] S
f : M →ₗ[R] P
g : N →ₗ[R] Q
⊢ comp (lTensor P g') (map f g) = map f (comp g' g)
[PROOFSTEP]
simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : M →ₗ[R] M
n : ℕ
⊢ rTensor N f ^ n = rTensor N (f ^ n)
[PROOFSTEP]
have h := TensorProduct.map_pow f (id : N →ₗ[R] N) n
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : M →ₗ[R] M
n : ℕ
h : map f id ^ n = map (f ^ n) (id ^ n)
⊢ rTensor N f ^ n = rTensor N (f ^ n)
[PROOFSTEP]
rwa [id_pow] at h
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : N →ₗ[R] N
n : ℕ
⊢ lTensor M f ^ n = lTensor M (f ^ n)
[PROOFSTEP]
have h := TensorProduct.map_pow (id : M →ₗ[R] M) f n
[GOAL]
R : Type u_1
inst✝¹⁴ : CommSemiring R
R' : Type u_2
inst✝¹³ : Monoid R'
R'' : Type u_3
inst✝¹² : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid N
inst✝⁹ : AddCommMonoid P
inst✝⁸ : AddCommMonoid Q
inst✝⁷ : AddCommMonoid S
inst✝⁶ : Module R M
inst✝⁵ : Module R N
inst✝⁴ : Module R P
inst✝³ : Module R Q
inst✝² : Module R S
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P →ₗ[R] Q
f✝ : N →ₗ[R] P
f : N →ₗ[R] N
n : ℕ
h : map id f ^ n = map (id ^ n) (f ^ n)
⊢ lTensor M f ^ n = lTensor M (f ^ n)
[PROOFSTEP]
rwa [id_pow] at h
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
n : N
⊢ ↑(Neg.aux R) (FreeAddMonoid.of (0, n)) = ↑(Neg.aux R) 0
[PROOFSTEP]
simp_rw [map_zero, Neg.aux_of, neg_zero, zero_tmul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m : M
⊢ ↑(Neg.aux R) (FreeAddMonoid.of (m, 0)) = ↑(Neg.aux R) 0
[PROOFSTEP]
simp_rw [map_zero, Neg.aux_of, tmul_zero]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m₁ m₂ : M
n : N
⊢ ↑(Neg.aux R) (FreeAddMonoid.of (m₁, n) + FreeAddMonoid.of (m₂, n)) = ↑(Neg.aux R) (FreeAddMonoid.of (m₁ + m₂, n))
[PROOFSTEP]
simp_rw [map_add, Neg.aux_of, neg_add, add_tmul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
m : M
n₁ n₂ : N
⊢ ↑(Neg.aux R) (FreeAddMonoid.of (m, n₁) + FreeAddMonoid.of (m, n₂)) = ↑(Neg.aux R) (FreeAddMonoid.of (m, n₁ + n₂))
[PROOFSTEP]
simp_rw [map_add, Neg.aux_of, tmul_add]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x y : FreeAddMonoid (M × N)
hxy : Eqv R M N x y
s : R
m : M
n : N
⊢ ↑(Neg.aux R) (FreeAddMonoid.of (s • m, n)) = ↑(Neg.aux R) (FreeAddMonoid.of (m, s • n))
[PROOFSTEP]
simp_rw [Neg.aux_of, ← smul_neg, ← smul_tmul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ y✝ : FreeAddMonoid (M × N)
hxy : Eqv R M N x✝ y✝
x y : FreeAddMonoid (M × N)
⊢ ↑(Neg.aux R) (x + y) = ↑(Neg.aux R) (y + x)
[PROOFSTEP]
simp_rw [map_add, add_comm]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x : M ⊗[R] N
⊢ -0 + 0 = 0
[PROOFSTEP]
rw [add_zero]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x : M ⊗[R] N
⊢ -0 = 0
[PROOFSTEP]
apply (Neg.aux R).map_zero
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ : M ⊗[R] N
x : M
y : N
⊢ -x ⊗ₜ[R] y + x ⊗ₜ[R] y = 0
[PROOFSTEP]
convert (add_tmul (R := R) (-x) x y).symm
[GOAL]
case h.e'_3
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ : M ⊗[R] N
x : M
y : N
⊢ 0 = (-x + x) ⊗ₜ[R] y
[PROOFSTEP]
rw [add_left_neg, zero_tmul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
⊢ -(x + y) + (x + y) = 0
[PROOFSTEP]
suffices : -x + x + (-y + y) = 0
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
this : -x + x + (-y + y) = 0
⊢ -(x + y) + (x + y) = 0
[PROOFSTEP]
rw [← this]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
this : -x + x + (-y + y) = 0
⊢ -(x + y) + (x + y) = -x + x + (-y + y)
[PROOFSTEP]
unfold Neg.neg neg
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
this : -x + x + (-y + y) = 0
⊢ { neg := ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) }.1
(x + y) +
(x + y) =
{ neg := ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) }.1
x +
x +
({
neg :=
↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R)
(_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) }.1
y +
y)
[PROOFSTEP]
simp only
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
this : -x + x + (-y + y) = 0
⊢ ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) (x + y) +
(x + y) =
↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + x +
(↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + y)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
this : -x + x + (-y + y) = 0
⊢ ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x +
↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y +
(x + y) =
↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + x +
(↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + y)
[PROOFSTEP]
abel
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
this : -x + x + (-y + y) = 0
⊢ ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x +
↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y +
(x + y) =
↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + x +
(↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + y)
[PROOFSTEP]
abel
[GOAL]
case this
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
x✝ x y : M ⊗[R] N
hx : -x + x = 0
hy : -y + y = 0
⊢ -x + x + (-y + y) = 0
[PROOFSTEP]
rw [hx, hy, add_zero]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid
⊢ ∀ (a : M ⊗[R] N), (fun n v => n • v) 0 a = 0
[PROOFSTEP]
simp [TensorProduct.zero_smul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid
⊢ ∀ (n : ℕ) (a : M ⊗[R] N), (fun n v => n • v) (Int.ofNat (Nat.succ n)) a = a + (fun n v => n • v) (Int.ofNat n) a
[PROOFSTEP]
simp [Nat.succ_eq_one_add, TensorProduct.one_smul, TensorProduct.add_smul]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid
n : ℕ
x : M ⊗[R] N
⊢ (fun n v => n • v) (Int.negSucc n) x = -(fun n v => n • v) (↑(Nat.succ n)) x
[PROOFSTEP]
change (-n.succ : ℤ) • x = -(((n : ℤ) + 1) • x)
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid
n : ℕ
x : M ⊗[R] N
⊢ -↑(Nat.succ n) • x = -((↑n + 1) • x)
[PROOFSTEP]
rw [← zero_add (_ • x), ← TensorProduct.add_left_neg ((n.succ : ℤ) • x), add_assoc, ← add_smul, ← sub_eq_add_neg,
sub_self, zero_smul, add_zero]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid
n : ℕ
x : M ⊗[R] N
⊢ -(↑(Nat.succ n) • x) = -((↑n + 1) • x)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
r : ℤ
m : M
n : N
⊢ (0 • m) ⊗ₜ[R] n = m ⊗ₜ[R] (0 • n)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
r✝ : ℤ
m : M
n : N
r : ℕ
ih : (↑r • m) ⊗ₜ[R] n = m ⊗ₜ[R] (↑r • n)
⊢ ((↑r + 1) • m) ⊗ₜ[R] n = m ⊗ₜ[R] ((↑r + 1) • n)
[PROOFSTEP]
simpa [add_smul, tmul_add, add_tmul] using ih
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
r✝ : ℤ
m : M
n : N
r : ℕ
ih : (-↑r • m) ⊗ₜ[R] n = m ⊗ₜ[R] (-↑r • n)
⊢ ((-↑r - 1) • m) ⊗ₜ[R] n = m ⊗ₜ[R] ((-↑r - 1) • n)
[PROOFSTEP]
simpa [sub_smul, tmul_sub, sub_tmul] using ih
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f g : N →ₗ[R] P
⊢ lTensor M (f - g) = lTensor M f - lTensor M g
[PROOFSTEP]
simp_rw [← coe_lTensorHom]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f g : N →ₗ[R] P
⊢ ↑(lTensorHom M) (f - g) = ↑(lTensorHom M) f - ↑(lTensorHom M) g
[PROOFSTEP]
exact (lTensorHom (R := R) (N := N) (P := P) M).map_sub f g
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f g : N →ₗ[R] P
⊢ rTensor M (f - g) = rTensor M f - rTensor M g
[PROOFSTEP]
simp only [← coe_rTensorHom]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f g : N →ₗ[R] P
⊢ ↑(rTensorHom M) (f - g) = ↑(rTensorHom M) f - ↑(rTensorHom M) g
[PROOFSTEP]
exact (rTensorHom (R := R) (N := N) (P := P) M).map_sub f g
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f : N →ₗ[R] P
⊢ lTensor M (-f) = -lTensor M f
[PROOFSTEP]
simp only [← coe_lTensorHom]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f : N →ₗ[R] P
⊢ ↑(lTensorHom M) (-f) = -↑(lTensorHom M) f
[PROOFSTEP]
exact (lTensorHom (R := R) (N := N) (P := P) M).map_neg f
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f : N →ₗ[R] P
⊢ rTensor M (-f) = -rTensor M f
[PROOFSTEP]
simp only [← coe_rTensorHom]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
Q : Type u_5
S : Type u_6
inst✝⁹ : AddCommGroup M
inst✝⁸ : AddCommGroup N
inst✝⁷ : AddCommGroup P
inst✝⁶ : AddCommGroup Q
inst✝⁵ : AddCommGroup S
inst✝⁴ : Module R M
inst✝³ : Module R N
inst✝² : Module R P
inst✝¹ : Module R Q
inst✝ : Module R S
f : N →ₗ[R] P
⊢ ↑(rTensorHom M) (-f) = -↑(rTensorHom M) f
[PROOFSTEP]
exact (rTensorHom (R := R) (N := N) (P := P) M).map_neg f
| {"mathlib_filename": "Mathlib.LinearAlgebra.TensorProduct", "llama_tokens": 141057} |
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ ↑(pointReflection R (midpoint R x y)) x = y
[PROOFSTEP]
rw [midpoint, pointReflection_apply, lineMap_apply, vadd_vsub, vadd_vadd, ← add_smul, ← two_mul, mul_invOf_self,
one_smul, vsub_vadd]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ ↑(pointReflection (midpoint R x y)) x = y
[PROOFSTEP]
rw [midpoint, pointReflection_apply, lineMap_apply, vadd_vsub, vadd_vadd, ← add_smul, ← two_mul, mul_invOf_self,
one_smul, vsub_vadd]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ midpoint R x y = midpoint R y x
[PROOFSTEP]
rw [midpoint, ← lineMap_apply_one_sub, one_sub_invOf_two, midpoint]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ ↑(pointReflection R (midpoint R x y)) y = x
[PROOFSTEP]
rw [midpoint_comm, AffineEquiv.pointReflection_midpoint_left]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ ↑(pointReflection (midpoint R x y)) y = x
[PROOFSTEP]
rw [midpoint_comm, Equiv.pointReflection_midpoint_left]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p₁ p₂ : P
⊢ midpoint R p₁ p₂ -ᵥ p₂ = ⅟2 • (p₁ -ᵥ p₂)
[PROOFSTEP]
rw [midpoint_comm, midpoint_vsub_left]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p₁ p₂ : P
⊢ p₂ -ᵥ midpoint R p₁ p₂ = ⅟2 • (p₂ -ᵥ p₁)
[PROOFSTEP]
rw [midpoint_comm, left_vsub_midpoint]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p₁ p₂ p : P
⊢ midpoint R p₁ p₂ -ᵥ p = ⅟2 • (p₁ -ᵥ p) + ⅟2 • (p₂ -ᵥ p)
[PROOFSTEP]
rw [← vsub_sub_vsub_cancel_right p₁ p p₂, smul_sub, sub_eq_add_neg, ← smul_neg, neg_vsub_eq_vsub_rev, add_assoc,
invOf_two_smul_add_invOf_two_smul, ← vadd_vsub_assoc, midpoint_comm, midpoint, lineMap_apply]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p₁ p₂ p : P
⊢ p -ᵥ midpoint R p₁ p₂ = ⅟2 • (p -ᵥ p₁) + ⅟2 • (p -ᵥ p₂)
[PROOFSTEP]
rw [← neg_vsub_eq_vsub_rev, midpoint_vsub, neg_add, ← smul_neg, ← smul_neg, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ midpoint R x y = x ↔ x = y
[PROOFSTEP]
rw [midpoint_eq_iff, pointReflection_self]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ x = midpoint R x y ↔ x = y
[PROOFSTEP]
rw [eq_comm, midpoint_eq_left_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ midpoint R x y = y ↔ x = y
[PROOFSTEP]
rw [midpoint_comm, midpoint_eq_left_iff, eq_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x y : P
⊢ y = midpoint R x y ↔ x = y
[PROOFSTEP]
rw [eq_comm, midpoint_eq_right_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z x x' y y' : P
⊢ midpoint R x y = midpoint R x' y' ↔ x -ᵥ x' = y' -ᵥ y
[PROOFSTEP]
rw [← @vsub_eq_zero_iff_eq V, midpoint_vsub_midpoint, midpoint_eq_iff, pointReflection_apply, vsub_eq_sub, zero_sub,
vadd_eq_add, add_zero, neg_eq_iff_eq_neg, neg_vsub_eq_vsub_rev]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R x y +ᵥ midpoint R x y = midpoint R x y +ᵥ midpoint R y x
[PROOFSTEP]
rw [midpoint_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R x y +ᵥ midpoint R y x = x + y
[PROOFSTEP]
rw [midpoint_vadd_midpoint, vadd_eq_add, vadd_eq_add, add_comm, midpoint_self]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ 0 -ᵥ x = y -ᵥ (x + y)
[PROOFSTEP]
simp [sub_add_eq_sub_sub_swap]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R x y = ⅟2 • (x + y)
[PROOFSTEP]
rw [midpoint_eq_iff, pointReflection_apply, vsub_eq_sub, vadd_eq_add, sub_add_eq_add_sub, ← two_smul R, smul_smul,
mul_invOf_self, one_smul, add_sub_cancel']
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y z : P
x : V
⊢ midpoint R x (-x) = 0
[PROOFSTEP]
rw [midpoint_eq_smul_add, add_neg_self, smul_zero]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y z : P
x : V
⊢ midpoint R (-x) x = 0
[PROOFSTEP]
simpa using midpoint_self_neg R (-x)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R (x - y) (x + y) = x
[PROOFSTEP]
rw [sub_eq_add_neg, ← vadd_eq_add, ← vadd_eq_add, ← midpoint_vadd_midpoint]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R x x +ᵥ midpoint R (-y) y = x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R (x + y) (x - y) = x
[PROOFSTEP]
rw [midpoint_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x✝ y✝ z : P
x y : V
⊢ midpoint R (x - y) (x + y) = x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R' : Type u_2
E : Type u_3
F : Type u_4
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
inst✝³ : Ring R'
inst✝² : Invertible 2
inst✝¹ : AddCommGroup F
inst✝ : Module R' F
f : E → F
h0 : f 0 = 0
hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y)
x y : E
⊢ f (x + y) = f 0 + f (x + y)
[PROOFSTEP]
rw [h0, zero_add]
[GOAL]
R : Type u_1
R' : Type u_2
E : Type u_3
F : Type u_4
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
inst✝³ : Ring R'
inst✝² : Invertible 2
inst✝¹ : AddCommGroup F
inst✝ : Module R' F
f : E → F
h0 : f 0 = 0
hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y)
x y : E
⊢ midpoint R' (f 0) (f (x + y)) + midpoint R' (f 0) (f (x + y)) = f (midpoint R x y) + f (midpoint R x y)
[PROOFSTEP]
rw [← hm, midpoint_zero_add]
[GOAL]
R : Type u_1
R' : Type u_2
E : Type u_3
F : Type u_4
inst✝⁷ : Ring R
inst✝⁶ : Invertible 2
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module R E
inst✝³ : Ring R'
inst✝² : Invertible 2
inst✝¹ : AddCommGroup F
inst✝ : Module R' F
f : E → F
h0 : f 0 = 0
hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y)
x y : E
⊢ f (midpoint R x y) + f (midpoint R x y) = f x + f y
[PROOFSTEP]
rw [hm, midpoint_add_self]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Midpoint", "llama_tokens": 5685} |
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
α : Type u_20
R : Type u_21
M : Type u_22
M₂ : Type u_23
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
v : α →₀ M
c : R
h : α → M →ₗ[R] M₂
⊢ (sum (c • v) fun a => ↑(h a)) = c • sum v fun a => ↑(h a)
[PROOFSTEP]
rw [Finsupp.sum_smul_index', Finsupp.smul_sum]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
α : Type u_20
R : Type u_21
M : Type u_22
M₂ : Type u_23
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
v : α →₀ M
c : R
h : α → M →ₗ[R] M₂
⊢ (sum v fun i c_1 => ↑(h i) (c • c_1)) = sum v fun a b => c • ↑(h a) b
[PROOFSTEP]
simp only [map_smul]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
α : Type u_20
R : Type u_21
M : Type u_22
M₂ : Type u_23
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
v : α →₀ M
c : R
h : α → M →ₗ[R] M₂
⊢ ∀ (i : α), ↑(h i) 0 = 0
[PROOFSTEP]
intro i
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
α : Type u_20
R : Type u_21
M : Type u_22
M₂ : Type u_23
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
v : α →₀ M
c : R
h : α → M →ₗ[R] M₂
i : α
⊢ ↑(h i) 0 = 0
[PROOFSTEP]
exact (h i).map_zero
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
α✝ : Type u_20
inst✝⁴ : Finite α✝
inst✝³ : AddCommMonoid M
inst✝² : Semiring R
inst✝¹ : Module R M
α : Type u_21
inst✝ : Unique α
m : M
⊢ ↑(LinearEquiv.symm (finsuppUnique R M α)) m = single default m
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
α✝ : Type u_20
inst✝⁴ : Finite α✝
inst✝³ : AddCommMonoid M
inst✝² : Semiring R
inst✝¹ : Module R M
α : Type u_21
inst✝ : Unique α
m : M
⊢ ↑(↑(LinearEquiv.symm (finsuppUnique R M α)) m) default = ↑(single default m) default
[PROOFSTEP]
simp [LinearEquiv.finsuppUnique, Equiv.funUnique, single, Pi.single, equivFunOnFinite, Function.update]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
ι : Type u_20
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
R : Type u_21
inst✝ : Semiring R
x : ι → R
⊢ x = ∑ i : ι, x i • fun j => if i = j then 1 else 0
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
ι : Type u_20
inst✝² : Fintype ι
inst✝¹ : DecidableEq ι
R : Type u_21
inst✝ : Semiring R
x : ι → R
x✝ : ι
⊢ x x✝ = Finset.sum Finset.univ (fun i => x i • fun j => if i = j then 1 else 0) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
⊢ M →ₛₗ[σ₁₂] { x // x ∈ p }
[PROOFSTEP]
refine' { toFun := fun c => ⟨f c, h c⟩ .. }
[GOAL]
case refine'_1
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
⊢ ∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y
[PROOFSTEP]
intros
[GOAL]
case refine'_2
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
⊢ ∀ (r : R) (x : M),
AddHom.toFun
{ toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) },
map_add' :=
(_ :
∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) }
(r • x) =
↑σ₁₂ r •
AddHom.toFun
{ toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) },
map_add' :=
(_ :
∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) }
x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
x✝ y✝ : M
⊢ (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x✝ + y✝) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x✝ +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y✝
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case refine'_2
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
r✝ : R
x✝ : M
⊢ AddHom.toFun
{ toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) },
map_add' :=
(_ :
∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) }
(r✝ • x✝) =
↑σ₁₂ r✝ •
AddHom.toFun
{ toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) },
map_add' :=
(_ :
∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) }
x✝
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case refine'_1.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
x✝ y✝ : M
⊢ ↑((fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x✝ + y✝)) =
↑((fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x✝ +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y✝)
[PROOFSTEP]
simp
[GOAL]
case refine'_2.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R₂ M₂
f : M →ₛₗ[σ₁₂] M₂
h : ∀ (c : M), ↑f c ∈ p
r✝ : R
x✝ : M
⊢ ↑(AddHom.toFun
{ toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) },
map_add' :=
(_ :
∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) }
(r✝ • x✝)) =
↑(↑σ₁₂ r✝ •
AddHom.toFun
{ toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) },
map_add' :=
(_ :
∀ (x y : M),
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) =
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x +
(fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) }
x✝)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁸ : Semiring R
inst✝¹⁷ : Semiring R₂
inst✝¹⁶ : Semiring R₃
inst✝¹⁵ : Semiring R₄
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₁
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R₂ M₂
inst✝⁶ : Module R₃ M₃
inst✝⁵ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝² : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝ : Subsingleton M
src✝ : Inhabited (M →ₛₗ[σ₁₂] M₂) := inferInstanceAs (Inhabited (M →ₛₗ[σ₁₂] M₂))
f : M →ₛₗ[σ₁₂] M₂
x : M
⊢ ↑f x = ↑default x
[PROOFSTEP]
rw [Subsingleton.elim x 0, map_zero, map_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
⊢ toAddMonoidHom 0 = 0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
x✝ : M
⊢ ↑(toAddMonoidHom 0) x✝ = ↑0 x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
⊢ ∀ (x y : M →ₛₗ[σ₁₂] M₂),
ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } (x + y) =
ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } x +
ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } y
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
x✝ y✝ : M →ₛₗ[σ₁₂] M₂
⊢ ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } (x✝ + y✝) =
ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } x✝ +
ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } y✝
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
x✝¹ y✝ : M →ₛₗ[σ₁₂] M₂
x✝ : M
⊢ ↑(ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } (x✝¹ + y✝)) x✝ =
↑(ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } x✝¹ +
ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } y✝)
x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝²¹ : Semiring R
inst✝²⁰ : Semiring R₂
inst✝¹⁹ : Semiring R₃
inst✝¹⁸ : Semiring R₄
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid M₁
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : AddCommMonoid M₃
inst✝¹³ : AddCommMonoid M₄
inst✝¹² : Module R M
inst✝¹¹ : Module R M₁
inst✝¹⁰ : Module R₂ M₂
inst✝⁹ : Module R₃ M₃
inst✝⁸ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝³ : Semiring S
inst✝² : Module R S
inst✝¹ : Module S M
inst✝ : IsScalarTower R S M
f : M₁ →ₗ[R] S
x✝ : M
x y : M₁
⊢ (fun b => ↑f b • x✝) (x + y) = (fun b => ↑f b • x✝) x + (fun b => ↑f b • x✝) y
[PROOFSTEP]
dsimp only
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝²¹ : Semiring R
inst✝²⁰ : Semiring R₂
inst✝¹⁹ : Semiring R₃
inst✝¹⁸ : Semiring R₄
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid M₁
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : AddCommMonoid M₃
inst✝¹³ : AddCommMonoid M₄
inst✝¹² : Module R M
inst✝¹¹ : Module R M₁
inst✝¹⁰ : Module R₂ M₂
inst✝⁹ : Module R₃ M₃
inst✝⁸ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝³ : Semiring S
inst✝² : Module R S
inst✝¹ : Module S M
inst✝ : IsScalarTower R S M
f : M₁ →ₗ[R] S
x✝ : M
x y : M₁
⊢ ↑f (x + y) • x✝ = ↑f x • x✝ + ↑f y • x✝
[PROOFSTEP]
rw [f.map_add, add_smul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝²¹ : Semiring R
inst✝²⁰ : Semiring R₂
inst✝¹⁹ : Semiring R₃
inst✝¹⁸ : Semiring R₄
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid M₁
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : AddCommMonoid M₃
inst✝¹³ : AddCommMonoid M₄
inst✝¹² : Module R M
inst✝¹¹ : Module R M₁
inst✝¹⁰ : Module R₂ M₂
inst✝⁹ : Module R₃ M₃
inst✝⁸ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝³ : Semiring S
inst✝² : Module R S
inst✝¹ : Module S M
inst✝ : IsScalarTower R S M
f : M₁ →ₗ[R] S
x : M
b : R
y : M₁
⊢ AddHom.toFun
{ toFun := fun b => ↑f b • x,
map_add' :=
(_ : ∀ (x_1 y : M₁), (fun b => ↑f b • x) (x_1 + y) = (fun b => ↑f b • x) x_1 + (fun b => ↑f b • x) y) }
(b • y) =
↑(RingHom.id R) b •
AddHom.toFun
{ toFun := fun b => ↑f b • x,
map_add' :=
(_ : ∀ (x_1 y : M₁), (fun b => ↑f b • x) (x_1 + y) = (fun b => ↑f b • x) x_1 + (fun b => ↑f b • x) y) }
y
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝²¹ : Semiring R
inst✝²⁰ : Semiring R₂
inst✝¹⁹ : Semiring R₃
inst✝¹⁸ : Semiring R₄
inst✝¹⁷ : AddCommMonoid M
inst✝¹⁶ : AddCommMonoid M₁
inst✝¹⁵ : AddCommMonoid M₂
inst✝¹⁴ : AddCommMonoid M₃
inst✝¹³ : AddCommMonoid M₄
inst✝¹² : Module R M
inst✝¹¹ : Module R M₁
inst✝¹⁰ : Module R₂ M₂
inst✝⁹ : Module R₃ M₃
inst✝⁸ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝³ : Semiring S
inst✝² : Module R S
inst✝¹ : Module S M
inst✝ : IsScalarTower R S M
f : M₁ →ₗ[R] S
x : M
b : R
y : M₁
⊢ ↑f (b • y) • x = b • ↑f y • x
[PROOFSTEP]
rw [map_smul, smul_assoc]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁸ : Semiring R
inst✝¹⁷ : Semiring R₂
inst✝¹⁶ : Semiring R₃
inst✝¹⁵ : Semiring R₄
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₁
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R₂ M₂
inst✝⁶ : Module R₃ M₃
inst✝⁵ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝² : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝ : Nontrivial M
⊢ Nontrivial (Module.End R M)
[PROOFSTEP]
obtain ⟨m, ne⟩ := (nontrivial_iff_exists_ne (0 : M)).mp inferInstance
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁸ : Semiring R
inst✝¹⁷ : Semiring R₂
inst✝¹⁶ : Semiring R₃
inst✝¹⁵ : Semiring R₄
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₁
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M₄
inst✝⁹ : Module R M
inst✝⁸ : Module R M₁
inst✝⁷ : Module R₂ M₂
inst✝⁶ : Module R₃ M₃
inst✝⁵ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝² : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝ : Nontrivial M
m : M
ne : m ≠ 0
⊢ Nontrivial (Module.End R M)
[PROOFSTEP]
exact nontrivial_of_ne 1 0 fun p => ne (LinearMap.congr_fun p m)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f : Module.End R M
m : M
k l : ℕ
hk : k ≤ l
hm : ↑(f ^ k) m = 0
⊢ ↑(f ^ l) m = 0
[PROOFSTEP]
rw [← tsub_add_cancel_of_le hk, pow_add, mul_apply, hm, map_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
f : M →ₛₗ[σ₁₂] M₂
g : Module.End R M
g₂ : Module.End R₂ M₂
h : comp g₂ f = comp f g
k : ℕ
⊢ comp (g₂ ^ k) f = comp f (g ^ k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
f : M →ₛₗ[σ₁₂] M₂
g : Module.End R M
g₂ : Module.End R₂ M₂
h : comp g₂ f = comp f g
⊢ comp (g₂ ^ Nat.zero) f = comp f (g ^ Nat.zero)
[PROOFSTEP]
simp only [pow_zero, Nat.zero_eq]
[GOAL]
case zero
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
f : M →ₛₗ[σ₁₂] M₂
g : Module.End R M
g₂ : Module.End R₂ M₂
h : comp g₂ f = comp f g
⊢ comp 1 f = comp f 1
[PROOFSTEP]
rfl
[GOAL]
case succ
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
f : M →ₛₗ[σ₁₂] M₂
g : Module.End R M
g₂ : Module.End R₂ M₂
h : comp g₂ f = comp f g
k : ℕ
ih : comp (g₂ ^ k) f = comp f (g ^ k)
⊢ comp (g₂ ^ Nat.succ k) f = comp f (g ^ Nat.succ k)
[PROOFSTEP]
rw [pow_succ, pow_succ, LinearMap.mul_eq_comp, LinearMap.comp_assoc, ih, ← LinearMap.comp_assoc, h,
LinearMap.comp_assoc, LinearMap.mul_eq_comp]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
N : Submodule R M
g : Module.End R { x // x ∈ N }
G : Module.End R M
h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g
k : ℕ
hG : G ^ k = 0
⊢ g ^ k = 0
[PROOFSTEP]
ext m
[GOAL]
case h.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
N : Submodule R M
g : Module.End R { x // x ∈ N }
G : Module.End R M
h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g
k : ℕ
hG : G ^ k = 0
m : { x // x ∈ N }
⊢ ↑(↑(g ^ k) m) = ↑(↑0 m)
[PROOFSTEP]
have hg : N.subtype.comp (g ^ k) m = 0 := by rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
N : Submodule R M
g : Module.End R { x // x ∈ N }
G : Module.End R M
h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g
k : ℕ
hG : G ^ k = 0
m : { x // x ∈ N }
⊢ ↑(comp (Submodule.subtype N) (g ^ k)) m = 0
[PROOFSTEP]
rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply]
[GOAL]
case h.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₃] M₃
N : Submodule R M
g : Module.End R { x // x ∈ N }
G : Module.End R M
h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g
k : ℕ
hG : G ^ k = 0
m : { x // x ∈ N }
hg : ↑(comp (Submodule.subtype N) (g ^ k)) m = 0
⊢ ↑(↑(g ^ k) m) = ↑(↑0 m)
[PROOFSTEP]
simpa using hg
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
n : ℕ
⊢ f' ^ (n + 1) = comp (f' ^ n) f'
[PROOFSTEP]
rw [pow_succ', mul_eq_comp]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
h : Surjective ↑f'
n : ℕ
⊢ Surjective ↑(f' ^ (n + 1))
[PROOFSTEP]
rw [iterate_succ]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
h : Surjective ↑f'
n : ℕ
⊢ Surjective ↑(comp (f' ^ n) f')
[PROOFSTEP]
exact (iterate_surjective h n).comp h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
h : Injective ↑f'
n : ℕ
⊢ Injective ↑(f' ^ (n + 1))
[PROOFSTEP]
rw [iterate_succ]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
h : Injective ↑f'
n : ℕ
⊢ Injective ↑(comp (f' ^ n) f')
[PROOFSTEP]
exact (iterate_injective h n).comp h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
h : Bijective ↑f'
n : ℕ
⊢ Bijective ↑(f' ^ (n + 1))
[PROOFSTEP]
rw [iterate_succ]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
h : Bijective ↑f'
n : ℕ
⊢ Bijective ↑(comp (f' ^ n) f')
[PROOFSTEP]
exact (iterate_bijective h n).comp h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
n : ℕ
hn : n ≠ 0
h : Injective ↑(f' ^ n)
⊢ Injective ↑f'
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), iterate_succ, coe_comp] at h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
n : ℕ
hn : n ≠ 0
h : Injective (↑(f' ^ Nat.pred n) ∘ ↑f')
⊢ Injective ↑f'
[PROOFSTEP]
exact h.of_comp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
n : ℕ
hn : n ≠ 0
h : Surjective ↑(f' ^ n)
⊢ Surjective ↑f'
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), Nat.succ_eq_add_one, add_comm, pow_add] at h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
n : ℕ
hn : n ≠ 0
h : Surjective ↑(f' ^ 1 * f' ^ Nat.pred n)
⊢ Surjective ↑f'
[PROOFSTEP]
exact Surjective.of_comp h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
p : Submodule R M
n : ℕ
h : ∀ (x : M), x ∈ p → ↑f' x ∈ p
x : M
hx : x ∈ p
⊢ ↑(f' ^ n) x ∈ p
[PROOFSTEP]
induction' n with n ih generalizing x
[GOAL]
case zero
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
p : Submodule R M
h : ∀ (x : M), x ∈ p → ↑f' x ∈ p
x✝ : M
hx✝ : x✝ ∈ p
x : M
hx : x ∈ p
⊢ ↑(f' ^ Nat.zero) x ∈ p
[PROOFSTEP]
simpa
[GOAL]
case succ
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
p : Submodule R M
h : ∀ (x : M), x ∈ p → ↑f' x ∈ p
x✝ : M
hx✝ : x✝ ∈ p
n : ℕ
ih : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p
x : M
hx : x ∈ p
⊢ ↑(f' ^ Nat.succ n) x ∈ p
[PROOFSTEP]
simpa only [iterate_succ, coe_comp, Function.comp_apply, restrict_apply] using ih _ (h _ hx)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
p : Submodule R M
n : ℕ
h : ∀ (x : M), x ∈ p → ↑f' x ∈ p
h' : optParam (∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) (_ : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p)
⊢ restrict f' h ^ n = restrict (f' ^ n) h'
[PROOFSTEP]
ext x
[GOAL]
case h.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
p : Submodule R M
n : ℕ
h : ∀ (x : M), x ∈ p → ↑f' x ∈ p
h' : optParam (∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) (_ : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p)
x : { x // x ∈ p }
⊢ ↑(↑(restrict f' h ^ n) x) = ↑(↑(restrict (f' ^ n) h') x)
[PROOFSTEP]
have : Semiconj (↑) (f'.restrict h) f' := fun _ ↦ rfl
[GOAL]
case h.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R
inst✝¹⁶ : Semiring R₂
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : Semiring R₄
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₁
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M₄
inst✝⁸ : Module R M
inst✝⁷ : Module R M₁
inst✝⁶ : Module R₂ M₂
inst✝⁵ : Module R₃ M₃
inst✝⁴ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
f' : M →ₗ[R] M
p : Submodule R M
n : ℕ
h : ∀ (x : M), x ∈ p → ↑f' x ∈ p
h' : optParam (∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) (_ : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p)
x : { x // x ∈ p }
this : Semiconj Subtype.val ↑(restrict f' h) ↑f'
⊢ ↑(↑(restrict f' h ^ n) x) = ↑(↑(restrict (f' ^ n) h') x)
[PROOFSTEP]
simp [coe_pow, this.iterate_right _ _]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁹ : Semiring R
inst✝¹⁸ : Semiring R₂
inst✝¹⁷ : Semiring R₃
inst✝¹⁶ : Semiring R₄
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : AddCommMonoid M₄
inst✝¹⁰ : Module R M
inst✝⁹ : Module R M₁
inst✝⁸ : Module R₂ M₂
inst✝⁷ : Module R₃ M₃
inst✝⁶ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → R) →ₗ[R] M
x : ι → R
⊢ ↑f x = ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0
[PROOFSTEP]
conv_lhs => rw [pi_eq_sum_univ x, f.map_sum]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁹ : Semiring R
inst✝¹⁸ : Semiring R₂
inst✝¹⁷ : Semiring R₃
inst✝¹⁶ : Semiring R₄
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : AddCommMonoid M₄
inst✝¹⁰ : Module R M
inst✝⁹ : Module R M₁
inst✝⁸ : Module R₂ M₂
inst✝⁷ : Module R₃ M₃
inst✝⁶ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → R) →ₗ[R] M
x : ι → R
| ↑f x
[PROOFSTEP]
rw [pi_eq_sum_univ x, f.map_sum]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁹ : Semiring R
inst✝¹⁸ : Semiring R₂
inst✝¹⁷ : Semiring R₃
inst✝¹⁶ : Semiring R₄
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : AddCommMonoid M₄
inst✝¹⁰ : Module R M
inst✝⁹ : Module R M₁
inst✝⁸ : Module R₂ M₂
inst✝⁷ : Module R₃ M₃
inst✝⁶ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → R) →ₗ[R] M
x : ι → R
| ↑f x
[PROOFSTEP]
rw [pi_eq_sum_univ x, f.map_sum]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁹ : Semiring R
inst✝¹⁸ : Semiring R₂
inst✝¹⁷ : Semiring R₃
inst✝¹⁶ : Semiring R₄
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : AddCommMonoid M₄
inst✝¹⁰ : Module R M
inst✝⁹ : Module R M₁
inst✝⁸ : Module R₂ M₂
inst✝⁷ : Module R₃ M₃
inst✝⁶ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → R) →ₗ[R] M
x : ι → R
| ↑f x
[PROOFSTEP]
rw [pi_eq_sum_univ x, f.map_sum]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁹ : Semiring R
inst✝¹⁸ : Semiring R₂
inst✝¹⁷ : Semiring R₃
inst✝¹⁶ : Semiring R₄
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : AddCommMonoid M₄
inst✝¹⁰ : Module R M
inst✝⁹ : Module R M₁
inst✝⁸ : Module R₂ M₂
inst✝⁷ : Module R₃ M₃
inst✝⁶ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → R) →ₗ[R] M
x : ι → R
⊢ ∑ i : ι, ↑f (x i • fun j => if i = j then 1 else 0) = ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0
[PROOFSTEP]
refine Finset.sum_congr rfl (fun _ _ => ?_)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁹ : Semiring R
inst✝¹⁸ : Semiring R₂
inst✝¹⁷ : Semiring R₃
inst✝¹⁶ : Semiring R₄
inst✝¹⁵ : AddCommMonoid M
inst✝¹⁴ : AddCommMonoid M₁
inst✝¹³ : AddCommMonoid M₂
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : AddCommMonoid M₄
inst✝¹⁰ : Module R M
inst✝⁹ : Module R M₁
inst✝⁸ : Module R₂ M₂
inst✝⁷ : Module R₃ M₃
inst✝⁶ : Module R₄ M₄
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₃₄ : R₃ →+* R₄
σ₁₃ : R →+* R₃
σ₂₄ : R₂ →+* R₄
σ₁₄ : R →+* R₄
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄
inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄
inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
f : (ι → R) →ₗ[R] M
x : ι → R
x✝¹ : ι
x✝ : x✝¹ ∈ Finset.univ
⊢ ↑f (x x✝¹ • fun j => if x✝¹ = j then 1 else 0) = x x✝¹ • ↑f fun j => if x✝¹ = j then 1 else 0
[PROOFSTEP]
rw [map_smul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module S M₂
inst✝⁴ : Module S M₃
inst✝³ : SMulCommClass R S M₂
inst✝² : SMulCommClass R S M₃
f✝ : M →ₗ[R] M₂
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (fun x => (R →ₗ[R] M) →ₗ[S] M) 1 := ↑(applyₗ' S) 1
f : R →ₗ[R] M
⊢ smulRight 1
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f 1,
map_add' :=
(_ :
∀ (x y : R →ₗ[R] M),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : S) (x : R →ₗ[R] M),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id S) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module S M₂
inst✝⁴ : Module S M₃
inst✝³ : SMulCommClass R S M₂
inst✝² : SMulCommClass R S M₃
f✝ : M →ₗ[R] M₂
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (fun x => (R →ₗ[R] M) →ₗ[S] M) 1 := ↑(applyₗ' S) 1
f : R →ₗ[R] M
⊢ ↑(smulRight 1
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f 1,
map_add' :=
(_ :
∀ (x y : R →ₗ[R] M),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : S) (x : R →ₗ[R] M),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id S) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
f))
1 =
↑f 1
[PROOFSTEP]
simp only [coe_smulRight, one_apply, smul_eq_mul, ← map_smul f, mul_one]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring S
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module S M₂
inst✝⁴ : Module S M₃
inst✝³ : SMulCommClass R S M₂
inst✝² : SMulCommClass R S M₃
f : M →ₗ[R] M₂
inst✝¹ : Module S M
inst✝ : SMulCommClass R S M
src✝ : (fun x => (R →ₗ[R] M) →ₗ[S] M) 1 := ↑(applyₗ' S) 1
x : M
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => ↑f 1,
map_add' :=
(_ :
∀ (x y : R →ₗ[R] M),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : S) (x : R →ₗ[R] M),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id S) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(smulRight 1 x) =
x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f g : M →ₗ[R] M₂
p : Submodule R M
⊢ ∀ (x y : M →ₗ[R] M₂), (fun φ => domRestrict φ p) (x + y) = (fun φ => domRestrict φ p) x + (fun φ => domRestrict φ p) y
[PROOFSTEP]
simp [LinearMap.ext_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f g : M →ₗ[R] M₂
p : Submodule R M
⊢ ∀ (r : R) (x : M →ₗ[R] M₂),
AddHom.toFun
{ toFun := fun φ => domRestrict φ p,
map_add' := (_ : ∀ (a a_1 : M →ₗ[R] M₂), domRestrict (a + a_1) p = domRestrict a p + domRestrict a_1 p) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun φ => domRestrict φ p,
map_add' := (_ : ∀ (a a_1 : M →ₗ[R] M₂), domRestrict (a + a_1) p = domRestrict a p + domRestrict a_1 p) }
x
[PROOFSTEP]
simp [LinearMap.ext_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
f : M₂ →ₗ[R] R
m m' : M
⊢ smulRight f (m + m') = smulRight f m + smulRight f m'
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
f : M₂ →ₗ[R] R
m m' : M
x✝ : M₂
⊢ ↑(smulRight f (m + m')) x✝ = ↑(smulRight f m + smulRight f m') x✝
[PROOFSTEP]
apply smul_add
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
f : M₂ →ₗ[R] R
c : R
m : M
⊢ AddHom.toFun
{ toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
f : M₂ →ₗ[R] R
c : R
m : M
x✝ : M₂
⊢ ↑(AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m))
x✝ =
↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m)
x✝
[PROOFSTEP]
apply smul_comm
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
f f' : M₂ →ₗ[R] R
⊢ (fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
(f + f') =
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f +
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f'
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
f f' : M₂ →ₗ[R] R
x✝¹ : M
x✝ : M₂
⊢ ↑(↑((fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
(f + f'))
x✝¹)
x✝ =
↑(↑((fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f +
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f')
x✝¹)
x✝
[PROOFSTEP]
apply add_smul
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
c : R
f : M₂ →ₗ[R] R
⊢ AddHom.toFun
{
toFun := fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) },
map_add' :=
(_ :
∀ (f f' : M₂ →ₗ[R] R),
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
(f + f') =
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f +
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f') }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) },
map_add' :=
(_ :
∀ (f f' : M₂ →ₗ[R] R),
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
(f + f') =
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f +
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f') }
f
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
f✝ g : M →ₗ[R] M₂
c : R
f : M₂ →ₗ[R] R
x✝¹ : M
x✝ : M₂
⊢ ↑(↑(AddHom.toFun
{
toFun := fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) },
map_add' :=
(_ :
∀ (f f' : M₂ →ₗ[R] R),
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
(f + f') =
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f +
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f') }
(c • f))
x✝¹)
x✝ =
↑(↑(↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) },
map_add' :=
(_ :
∀ (f f' : M₂ →ₗ[R] R),
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
(f + f') =
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M),
smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f +
(fun f =>
{
toAddHom :=
{ toFun := smulRight f,
map_add' :=
(_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') },
map_smul' :=
(_ :
∀ (c : R) (m : M),
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }
(c • m) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := smulRight f,
map_add' :=
(_ :
∀ (m m' : M),
smulRight f (m + m') = smulRight f m + smulRight f m') }
m) })
f') }
f)
x✝¹)
x✝
[PROOFSTEP]
apply mul_smul
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
⊢ ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y
[PROOFSTEP]
intros
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
x✝ y✝ : A →+ B
⊢ AddMonoidHom.toNatLinearMap (x✝ + y✝) = AddMonoidHom.toNatLinearMap x✝ + AddMonoidHom.toNatLinearMap y✝
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
x✝¹ y✝ : A →+ B
x✝ : A
⊢ ↑(AddMonoidHom.toNatLinearMap (x✝¹ + y✝)) x✝ = ↑(AddMonoidHom.toNatLinearMap x✝¹ + AddMonoidHom.toNatLinearMap y✝) x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
⊢ ∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x
[PROOFSTEP]
intros
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
r✝ : R
x✝ : A →+ B
⊢ AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r✝ • x✝) =
↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x✝
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
r✝ : R
x✝¹ : A →+ B
x✝ : A
⊢ ↑(AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r✝ • x✝¹))
x✝ =
↑(↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x✝¹)
x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
⊢ LeftInverse LinearMap.toAddMonoidHom
{
toAddHom :=
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x) }.toAddHom.toFun
[PROOFSTEP]
intro f
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
f : A →+ B
⊢ LinearMap.toAddMonoidHom
(AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x) }.toAddHom
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
f : A →+ B
x✝ : A
⊢ ↑(LinearMap.toAddMonoidHom
(AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x) }.toAddHom
f))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
⊢ Function.RightInverse LinearMap.toAddMonoidHom
{
toAddHom :=
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x) }.toAddHom.toFun
[PROOFSTEP]
intro f
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
f : A →ₗ[ℕ] B
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x) }.toAddHom
(LinearMap.toAddMonoidHom f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : Module R B
f : A →ₗ[ℕ] B
x✝ : A
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toNatLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toNatLinearMap (x + y) =
AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }
x) }.toAddHom
(LinearMap.toAddMonoidHom f))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
⊢ ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y
[PROOFSTEP]
intros
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
x✝ y✝ : A →+ B
⊢ AddMonoidHom.toIntLinearMap (x✝ + y✝) = AddMonoidHom.toIntLinearMap x✝ + AddMonoidHom.toIntLinearMap y✝
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
x✝¹ y✝ : A →+ B
x✝ : A
⊢ ↑(AddMonoidHom.toIntLinearMap (x✝¹ + y✝)) x✝ = ↑(AddMonoidHom.toIntLinearMap x✝¹ + AddMonoidHom.toIntLinearMap y✝) x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
⊢ ∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x
[PROOFSTEP]
intros
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
r✝ : R
x✝ : A →+ B
⊢ AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r✝ • x✝) =
↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x✝
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
r✝ : R
x✝¹ : A →+ B
x✝ : A
⊢ ↑(AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r✝ • x✝¹))
x✝ =
↑(↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x✝¹)
x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
⊢ LeftInverse LinearMap.toAddMonoidHom
{
toAddHom :=
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x) }.toAddHom.toFun
[PROOFSTEP]
intro f
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
f : A →+ B
⊢ LinearMap.toAddMonoidHom
(AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x) }.toAddHom
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
f : A →+ B
x✝ : A
⊢ ↑(LinearMap.toAddMonoidHom
(AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x) }.toAddHom
f))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
⊢ Function.RightInverse LinearMap.toAddMonoidHom
{
toAddHom :=
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x) }.toAddHom.toFun
[PROOFSTEP]
intro f
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
f : A →ₗ[ℤ] B
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x) }.toAddHom
(LinearMap.toAddMonoidHom f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
A : Type u_20
B : Type u_21
R : Type u_22
inst✝³ : Semiring R
inst✝² : AddCommGroup A
inst✝¹ : AddCommGroup B
inst✝ : Module R B
f : A →ₗ[ℤ] B
x✝ : A
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) },
map_smul' :=
(_ :
∀ (r : R) (x : A →+ B),
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := AddMonoidHom.toIntLinearMap,
map_add' :=
(_ :
∀ (x y : A →+ B),
AddMonoidHom.toIntLinearMap (x + y) =
AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }
x) }.toAddHom
(LinearMap.toAddMonoidHom f))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q✝ q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
p q : Submodule R M
h : p ≤ q
⊢ LinearMap.comp (Submodule.subtype q) (ofLe h) = Submodule.subtype p
[PROOFSTEP]
ext ⟨b, hb⟩
[GOAL]
case h.mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q✝ q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
p q : Submodule R M
h : p ≤ q
b : M
hb : b ∈ p
⊢ ↑(LinearMap.comp (Submodule.subtype q) (ofLe h)) { val := b, property := hb } =
↑(Submodule.subtype p) { val := b, property := hb }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
⊢ Subsingleton (Submodule R M) ↔ Subsingleton (AddSubmonoid M)
[PROOFSTEP]
rw [← subsingleton_iff_bot_eq_top, ← subsingleton_iff_bot_eq_top, ← toAddSubmonoid_eq]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
⊢ ⊥.toAddSubmonoid = ⊤.toAddSubmonoid ↔ ⊥ = ⊤
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : Subsingleton R
⊢ Unique (Submodule R M)
[PROOFSTEP]
haveI := Module.subsingleton R M
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : Subsingleton R
this : Subsingleton M
⊢ Unique (Submodule R M)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
p : Submodule R M
src✝ : AddSubmonoid M₂ := AddSubmonoid.map f p.toAddSubmonoid
⊢ ∀ (c : R₂) {x : M₂},
x ∈
{
toAddSubsemigroup :=
{ carrier := ↑f '' ↑p,
add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier →
c • x ∈
{
toAddSubsemigroup :=
{ carrier := ↑f '' ↑p,
add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
rintro c x ⟨y, hy, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y✝ : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
p : Submodule R M
src✝ : AddSubmonoid M₂ := AddSubmonoid.map f p.toAddSubmonoid
c : R₂
y : M
hy : y ∈ ↑p
⊢ c • ↑f y ∈
{
toAddSubsemigroup :=
{ carrier := ↑f '' ↑p,
add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
obtain ⟨a, rfl⟩ := σ₁₂.surjective c
[GOAL]
case intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y✝ : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
p : Submodule R M
src✝ : AddSubmonoid M₂ := AddSubmonoid.map f p.toAddSubmonoid
y : M
hy : y ∈ ↑p
a : R
⊢ ↑σ₁₂ a • ↑f y ∈
{
toAddSubsemigroup :=
{ carrier := ↑f '' ↑p,
add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
exact ⟨_, p.smul_mem a hy, map_smulₛₗ f _ _⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
a : M
⊢ a ∈ map LinearMap.id p ↔ a ∈ p
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁶ : Semiring R
inst✝¹⁵ : Semiring R₂
inst✝¹⁴ : Semiring R₃
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M'
inst✝⁹ : Module R M
inst✝⁸ : Module R M'
inst✝⁷ : Module R₂ M₂
inst✝⁶ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝⁵ : RingHomInvPair σ₁₂ σ₂₁
inst✝⁴ : RingHomInvPair σ₂₁ σ₁₂
inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝² : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝¹ : RingHomSurjective σ₂₃
inst✝ : RingHomSurjective σ₁₃
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₃] M₃
p : Submodule R M
⊢ ↑(map (LinearMap.comp g f) p) = ↑(map g (map f p))
[PROOFSTEP]
simp only [← image_comp, map_coe, LinearMap.coe_comp, comp_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
this : ∃ x, x ∈ p
⊢ ∀ (x : M₂), x ∈ map 0 p ↔ x ∈ ⊥
[PROOFSTEP]
simp [this, eq_comm]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f g : M →ₛₗ[σ₁₂] M₂
⊢ map (f + g) p ≤ map f p ⊔ map g p
[PROOFSTEP]
rintro x ⟨m, hm, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
inst✝ : RingHomSurjective σ₁₂
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f g : M →ₛₗ[σ₁₂] M₂
m : M
hm : m ∈ ↑p
⊢ ↑(f + g) m ∈ map f p ⊔ map g p
[PROOFSTEP]
exact add_mem_sup (mem_map_of_mem hm) (mem_map_of_mem hm)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
i : Injective ↑f
p : Submodule R M
src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i
⊢ ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
i : Injective ↑f
p : Submodule R M
src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i
x✝ y✝ : { x // x ∈ p }
⊢ Equiv.toFun src✝ (x✝ + y✝) = Equiv.toFun src✝ x✝ + Equiv.toFun src✝ y✝
[PROOFSTEP]
simp only [coe_add, map_add, Equiv.toFun_as_coe, Equiv.Set.image_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
i : Injective ↑f
p : Submodule R M
src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i
x✝ y✝ : { x // x ∈ p }
⊢ { val := ↑f ↑x✝ + ↑f ↑y✝, property := (_ : (fun x => x ∈ ↑f '' ↑p) (↑f ↑x✝ + ↑f ↑y✝)) } =
{ val := ↑f ↑x✝, property := (_ : ↑f ↑x✝ ∈ ↑f '' ↑p) } + { val := ↑f ↑y✝, property := (_ : ↑f ↑y✝ ∈ ↑f '' ↑p) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
i : Injective ↑f
p : Submodule R M
src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i
⊢ ∀ (r : R) (x : { x // x ∈ p }),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
(r • x) =
↑σ₁₂ r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
x
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
i : Injective ↑f
p : Submodule R M
src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i
r✝ : R
x✝ : { x // x ∈ p }
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
(r✝ • x✝) =
↑σ₁₂ r✝ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) }
x✝
[PROOFSTEP]
simp only [coe_smul_of_tower, map_smulₛₗ, Equiv.toFun_as_coe, Equiv.Set.image_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
i : Injective ↑f
p : Submodule R M
src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i
r✝ : R
x✝ : { x // x ∈ p }
⊢ { val := ↑σ₁₂ r✝ • ↑f ↑x✝, property := (_ : (fun x => x ∈ ↑f '' ↑p) (↑σ₁₂ r✝ • ↑f ↑x✝)) } =
↑σ₁₂ r✝ • { val := ↑f ↑x✝, property := (_ : ↑f ↑x✝ ∈ ↑f '' ↑p) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
p : Submodule R₂ M₂
src✝ : AddSubmonoid M := AddSubmonoid.comap f p.toAddSubmonoid
a : R
x : M
h :
x ∈
{
toAddSubsemigroup :=
{ carrier := ↑f ⁻¹' ↑p,
add_mem' := (_ : ∀ {a b : M}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
⊢ a • x ∈
{
toAddSubsemigroup :=
{ carrier := ↑f ⁻¹' ↑p,
add_mem' := (_ : ∀ {a b : M}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
simp [p.smul_mem (σ₁₂ a) h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
p : Submodule R M
f : M →ₗ[R] M
h : p ≤ comap f p
k : ℕ
⊢ p ≤ comap (f ^ k) p
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
p : Submodule R M
f : M →ₗ[R] M
h : p ≤ comap f p
⊢ p ≤ comap (f ^ Nat.zero) p
[PROOFSTEP]
simp [LinearMap.one_eq_id]
[GOAL]
case succ
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
p : Submodule R M
f : M →ₗ[R] M
h : p ≤ comap f p
k : ℕ
ih : p ≤ comap (f ^ k) p
⊢ p ≤ comap (f ^ Nat.succ k) p
[PROOFSTEP]
simp [LinearMap.iterate_succ, comap_comp, h.trans (comap_mono ih)]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
⊢ ∀ (x : M), x ∈ comap 0 q ↔ x ∈ ⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
hf : Surjective ↑f
inst✝ : RingHomSurjective σ₁₂
S : Submodule R₂ M₂
x : M₂
hx : x ∈ S
⊢ x ∈ map f (comap f S)
[PROOFSTEP]
rcases hf x with ⟨y, rfl⟩
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y✝ : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
hf : Surjective ↑f
inst✝ : RingHomSurjective σ₁₂
S : Submodule R₂ M₂
y : M
hx : ↑f y ∈ S
⊢ ↑f y ∈ map f (comap f S)
[PROOFSTEP]
simp only [mem_map, mem_comap]
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y✝ : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
f : F
hf : Surjective ↑f
inst✝ : RingHomSurjective σ₁₂
S : Submodule R₂ M₂
y : M
hx : ↑f y ∈ S
⊢ ∃ y_1, ↑f y_1 ∈ S ∧ ↑f y_1 = ↑f y
[PROOFSTEP]
exact ⟨y, hx, rfl⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝ : RingHomSurjective σ₁₂
f : F
hf : Injective ↑f
S : Submodule R M
x : M
⊢ x ∈ comap f (map f S) → x ∈ S
[PROOFSTEP]
simp [mem_comap, mem_map, forall_exists_index, and_imp]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝ : RingHomSurjective σ₁₂
f : F
hf : Injective ↑f
S : Submodule R M
x : M
⊢ ∀ (x_1 : M), x_1 ∈ S → ↑f x_1 = ↑f x → x ∈ S
[PROOFSTEP]
intro y hy hxy
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y✝ : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝ : RingHomSurjective σ₁₂
f : F
hf : Injective ↑f
S : Submodule R M
x y : M
hy : y ∈ S
hxy : ↑f y = ↑f x
⊢ x ∈ S
[PROOFSTEP]
rw [hf.eq_iff] at hxy
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y✝ : M
F : Type u_20
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝ : RingHomSurjective σ₁₂
f : F
hf : Injective ↑f
S : Submodule R M
x y : M
hy : y ∈ S
hxy : y = x
⊢ x ∈ S
[PROOFSTEP]
rwa [← hxy]
[GOAL]
F : Type u_20
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p'✝ : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝ : RingHomSurjective σ₁₂
f : F
p : Submodule R M
p' : Submodule R₂ M₂
⊢ map f p ⊓ p' ≤ map f (p ⊓ comap f p')
[PROOFSTEP]
rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩
[GOAL]
case intro.intro.intro
F : Type u_20
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p'✝ : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y : M
sc : SemilinearMapClass F σ₁₂ M M₂
inst✝ : RingHomSurjective σ₁₂
f : F
p : Submodule R M
p' : Submodule R₂ M₂
x : M
h₁ : x ∈ ↑p
h₂ : ↑f x ∈ ↑p'
⊢ ↑f x ∈ map f (p ⊓ comap f p')
[PROOFSTEP]
exact ⟨_, ⟨h₁, h₂⟩, rfl⟩
[GOAL]
F : Type ?u.972060
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x✝ y : M
sc : SemilinearMapClass F σ₁₂ M M₂
x : M
⊢ x ∈ map (Submodule.subtype p) (comap (Submodule.subtype p) p') → x ∈ p ⊓ p'
[PROOFSTEP]
rintro ⟨⟨_, h₁⟩, h₂, rfl⟩
[GOAL]
case intro.mk.intro
F : Type ?u.972060
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹³ : Semiring R
inst✝¹² : Semiring R₂
inst✝¹¹ : Semiring R₃
inst✝¹⁰ : AddCommMonoid M
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : Module R M
inst✝⁵ : Module R M'
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝² : RingHomInvPair σ₁₂ σ₂₁
inst✝¹ : RingHomInvPair σ₂₁ σ₁₂
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
val✝ : M
h₁ : val✝ ∈ p
h₂ : { val := val✝, property := h₁ } ∈ ↑(comap (Submodule.subtype p) p')
⊢ ↑(Submodule.subtype p) { val := val✝, property := h₁ } ∈ p ⊓ p'
[PROOFSTEP]
exact ⟨h₁, h₂⟩
[GOAL]
F : Type ?u.976655
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
σ : R →+* R
inst✝ : RingHomSurjective σ
ι : Sort u_20
f : M →ₛₗ[σ] M
p : ι → Submodule R M
hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i
⊢ ∀ (v : M), v ∈ iInf p → ↑f v ∈ iInf p
[PROOFSTEP]
have : ∀ i, (p i).map f ≤ p i := by
rintro i - ⟨v, hv, rfl⟩
exact hf i v hv
[GOAL]
F : Type ?u.976655
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
σ : R →+* R
inst✝ : RingHomSurjective σ
ι : Sort u_20
f : M →ₛₗ[σ] M
p : ι → Submodule R M
hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i
⊢ ∀ (i : ι), map f (p i) ≤ p i
[PROOFSTEP]
rintro i - ⟨v, hv, rfl⟩
[GOAL]
case intro.intro
F : Type ?u.976655
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
σ : R →+* R
inst✝ : RingHomSurjective σ
ι : Sort u_20
f : M →ₛₗ[σ] M
p : ι → Submodule R M
hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i
i : ι
v : M
hv : v ∈ ↑(p i)
⊢ ↑f v ∈ p i
[PROOFSTEP]
exact hf i v hv
[GOAL]
F : Type ?u.976655
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
σ : R →+* R
inst✝ : RingHomSurjective σ
ι : Sort u_20
f : M →ₛₗ[σ] M
p : ι → Submodule R M
hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i
this : ∀ (i : ι), map f (p i) ≤ p i
⊢ ∀ (v : M), v ∈ iInf p → ↑f v ∈ iInf p
[PROOFSTEP]
suffices (iInf p).map f ≤ iInf p by exact fun v hv => this ⟨v, hv, rfl⟩
[GOAL]
F : Type ?u.976655
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
σ : R →+* R
inst✝ : RingHomSurjective σ
ι : Sort u_20
f : M →ₛₗ[σ] M
p : ι → Submodule R M
hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i
this✝ : ∀ (i : ι), map f (p i) ≤ p i
this : map f (iInf p) ≤ iInf p
⊢ ∀ (v : M), v ∈ iInf p → ↑f v ∈ iInf p
[PROOFSTEP]
exact fun v hv => this ⟨v, hv, rfl⟩
[GOAL]
F : Type ?u.976655
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι✝ : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁴ : Semiring R
inst✝¹³ : Semiring R₂
inst✝¹² : Semiring R₃
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : AddCommMonoid M'
inst✝⁷ : Module R M
inst✝⁶ : Module R M'
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
p✝ p' : Submodule R M
q q' : Submodule R₂ M₂
q₁ q₁' : Submodule R M'
r : R
x y : M
sc : SemilinearMapClass F σ₁₂ M M₂
σ : R →+* R
inst✝ : RingHomSurjective σ
ι : Sort u_20
f : M →ₛₗ[σ] M
p : ι → Submodule R M
hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i
this : ∀ (i : ι), map f (p i) ≤ p i
⊢ map f (iInf p) ≤ iInf p
[PROOFSTEP]
exact le_iInf fun i => (Submodule.map_mono (iInf_le p i)).trans (this i)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V₂
a : K
h : a ≠ 0
⊢ comap (a • f) p = comap f p
[PROOFSTEP]
ext b
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V₂
a : K
h : a ≠ 0
b : V
⊢ b ∈ comap (a • f) p ↔ b ∈ comap f p
[PROOFSTEP]
simp only [Submodule.mem_comap, p.smul_mem_iff h, LinearMap.smul_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V
a : K
h : a ≠ 0
⊢ map (a • f) p ≤ map f p
[PROOFSTEP]
rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V
a : K
h : a ≠ 0
⊢ map f p ≤ map (a • f) p
[PROOFSTEP]
rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V₂
a : K
⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p
[PROOFSTEP]
classical by_cases h : a = 0 <;> simp [h, comap_smul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V₂
a : K
⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p
[PROOFSTEP]
by_cases h : a = 0
[GOAL]
case pos
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V₂
a : K
h : a = 0
⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p
[PROOFSTEP]
simp [h, comap_smul]
[GOAL]
case neg
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V₂
a : K
h : ¬a = 0
⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p
[PROOFSTEP]
simp [h, comap_smul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V
a : K
⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p
[PROOFSTEP]
classical by_cases h : a = 0 <;> simp [h, Submodule.map_smul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V
a : K
⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p
[PROOFSTEP]
by_cases h : a = 0
[GOAL]
case pos
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V
a : K
h : a = 0
⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p
[PROOFSTEP]
simp [h, Submodule.map_smul]
[GOAL]
case neg
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semifield K
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
p : Submodule K V
a : K
h : ¬a = 0
⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p
[PROOFSTEP]
simp [h, Submodule.map_smul]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝ : RingHomSurjective σ₂₁
p : Submodule R M
f : M₂ →ₛₗ[σ₂₁] M
h : ∀ (c : M₂), ↑f c ∈ p
p' : Submodule R₂ M₂
x✝ : { x // x ∈ p }
x : M
hx : x ∈ p
⊢ { val := x, property := hx } ∈ map (codRestrict p f h) p' ↔
{ val := x, property := hx } ∈ comap (Submodule.subtype p) (map f p')
[PROOFSTEP]
simp [Subtype.ext_iff_val]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
p : Submodule R M
f : M₂ →ₛₗ[σ₂₁] M
hf : ∀ (c : M₂), ↑f c ∈ p
p' : Submodule R { x // x ∈ p }
x : M₂
⊢ x ∈ comap f (map (Submodule.subtype p) p') → x ∈ comap (codRestrict p f hf) p'
[PROOFSTEP]
rintro ⟨⟨_, _⟩, h, ⟨⟩⟩
[GOAL]
case intro.mk.intro.refl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
p : Submodule R M
f : M₂ →ₛₗ[σ₂₁] M
hf : ∀ (c : M₂), ↑f c ∈ p
p' : Submodule R { x // x ∈ p }
x : M₂
property✝ : f.toAddHom.1 x ∈ p
h : { val := f.toAddHom.1 x, property := property✝ } ∈ ↑p'
⊢ x ∈ comap (codRestrict p f hf) p'
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
⊢ range f = map f ⊤
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
x✝ : M₂
⊢ x✝ ∈ range f ↔ x✝ ∈ map f ⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
⊢ range f = ⊤ ↔ Surjective ↑f
[PROOFSTEP]
rw [SetLike.ext'_iff, range_coe, top_coe, Set.range_iff_surjective]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
p : Submodule R₂ M₂
⊢ range f ≤ p ↔ comap f p = ⊤
[PROOFSTEP]
rw [range_eq_map, map_le_iff_le_comap, eq_top_iff]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂✝ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R✝
inst✝¹⁶ : Semiring R₂✝
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : AddCommMonoid M✝
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
σ₁₂ : R✝ →+* R₂✝
σ₂₃ : R₂✝ →+* R₃
σ₁₃ : R✝ →+* R₃
inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝¹⁰ : Module R✝ M✝
inst✝⁹ : Module R₂✝ M₂✝
inst✝⁸ : Module R₃ M₃
σ₂₁ : R₂✝ →+* R✝
τ₁₂✝ : R✝ →+* R₂✝
τ₂₃ : R₂✝ →+* R₃
τ₁₃ : R✝ →+* R₃
inst✝⁷ : RingHomCompTriple τ₁₂✝ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂✝ M✝ M₂✝
R : Type u_21
R₂ : Type u_22
M : Type u_23
M₂ : Type u_24
inst✝⁶ : Semiring R
inst✝⁵ : Ring R₂
inst✝⁴ : AddCommMonoid M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
⊢ range (-f) = range f
[PROOFSTEP]
change range ((-LinearMap.id : M₂ →ₗ[R₂] M₂).comp f) = _
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂✝ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁷ : Semiring R✝
inst✝¹⁶ : Semiring R₂✝
inst✝¹⁵ : Semiring R₃
inst✝¹⁴ : AddCommMonoid M✝
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
σ₁₂ : R✝ →+* R₂✝
σ₂₃ : R₂✝ →+* R₃
σ₁₃ : R✝ →+* R₃
inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝¹⁰ : Module R✝ M✝
inst✝⁹ : Module R₂✝ M₂✝
inst✝⁸ : Module R₃ M₃
σ₂₁ : R₂✝ →+* R✝
τ₁₂✝ : R✝ →+* R₂✝
τ₂₃ : R₂✝ →+* R₃
τ₁₃ : R✝ →+* R₃
inst✝⁷ : RingHomCompTriple τ₁₂✝ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂✝ M✝ M₂✝
R : Type u_21
R₂ : Type u_22
M : Type u_23
M₂ : Type u_24
inst✝⁶ : Semiring R
inst✝⁵ : Ring R₂
inst✝⁴ : AddCommMonoid M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M
inst✝¹ : Module R₂ M₂
τ₁₂ : R →+* R₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
⊢ range (comp (-id) f) = range f
[PROOFSTEP]
rw [range_comp, Submodule.map_neg, Submodule.map_id]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f g : F
src✝ : AddSubmonoid M := AddMonoidHom.eqLocusM ↑f ↑g
r : R
x : M
hx : ↑f x = ↑g x
⊢ ↑f (r • x) = ↑g (r • x)
[PROOFSTEP]
simpa only [map_smulₛₗ] using congr_arg ((· • ·) (τ₁₂ r)) hx
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f g : F
⊢ eqLocus f g = ⊤ ↔ f = g
[PROOFSTEP]
simp [SetLike.ext_iff, FunLike.ext_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f g : F
S T : Submodule R M
hS : Set.EqOn ↑f ↑g ↑S
hT : Set.EqOn ↑f ↑g ↑T
⊢ Set.EqOn ↑f ↑g ↑(S ⊔ T)
[PROOFSTEP]
rw [← le_eqLocus] at hS hT ⊢
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S✝ : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f g : F
S T : Submodule R M
hS : S ≤ eqLocus f g
hT : T ≤ eqLocus f g
⊢ S ⊔ T ≤ eqLocus f g
[PROOFSTEP]
exact sup_le hS hT
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₗ[R] M
n m : ℕ
w : n ≤ m
x : M
h : x ∈ (fun n => range (f ^ n)) m
⊢ x ∈ (fun n => range (f ^ n)) n
[PROOFSTEP]
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₗ[R] M
n : ℕ
x : M
c : ℕ
w : n ≤ n + c
h : x ∈ (fun n => range (f ^ n)) (n + c)
⊢ x ∈ (fun n => range (f ^ n)) n
[PROOFSTEP]
rw [LinearMap.mem_range] at h
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₗ[R] M
n : ℕ
x : M
c : ℕ
w : n ≤ n + c
h : ∃ y, ↑(f ^ (n + c)) y = x
⊢ x ∈ (fun n => range (f ^ n)) n
[PROOFSTEP]
obtain ⟨m, rfl⟩ := h
[GOAL]
case intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₗ[R] M
n c : ℕ
w : n ≤ n + c
m : M
⊢ ↑(f ^ (n + c)) m ∈ (fun n => range (f ^ n)) n
[PROOFSTEP]
rw [LinearMap.mem_range]
[GOAL]
case intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₗ[R] M
n c : ℕ
w : n ≤ n + c
m : M
⊢ ∃ y, ↑(f ^ n) y = ↑(f ^ (n + c)) m
[PROOFSTEP]
use(f ^ c) m
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₗ[R] M
n c : ℕ
w : n ≤ n + c
m : M
⊢ ↑(f ^ n) (↑(f ^ c) m) = ↑(f ^ (n + c)) m
[PROOFSTEP]
rw [pow_add, LinearMap.mul_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
⊢ ker f ≤ ker (comp g f)
[PROOFSTEP]
rw [ker_comp]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
⊢ ker f ≤ comap f (ker g)
[PROOFSTEP]
exact comap_mono bot_le
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
⊢ Disjoint p (ker f) ↔ ∀ (x : M), x ∈ p → ↑f x = 0 → x = 0
[PROOFSTEP]
simp [disjoint_def]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
⊢ ker f = ⊥ ↔ ∀ (m : M), ↑f m = 0 → m = 0
[PROOFSTEP]
simpa [disjoint_iff_inf_le] using @disjoint_ker _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
τ₂₁ : R₂ →+* R
inst✝ : RingHomInvPair τ₁₂ τ₂₁
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₁] M
h : comp g f = id
m : M
hm : ↑f m = 0
⊢ m = 0
[PROOFSTEP]
rw [← id_apply (R := R) m, ← h, comp_apply, hm, g.map_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
p : Submodule R M
⊢ p ≤ ker f ↔ map f p = ⊥
[PROOFSTEP]
rw [ker, eq_bot_iff, map_le_iff_le_comap]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
τ₂₁ : R₂ →+* R
p : Submodule R M
f : M₂ →ₛₗ[τ₂₁] M
hf : ∀ (c : M₂), ↑f c ∈ p
⊢ ker (codRestrict p f hf) = ker f
[PROOFSTEP]
rw [ker, comap_codRestrict, Submodule.map_bot]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
τ₂₁ : R₂ →+* R
p : Submodule R M
f : M₂ →ₛₗ[τ₂₁] M
hf : ∀ (c : M₂), ↑f c ∈ p
⊢ comap f ⊥ = ker f
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
τ₂₁ : R₂ →+* R
inst✝ : RingHomSurjective τ₂₁
p : Submodule R M
f : M₂ →ₛₗ[τ₂₁] M
hf : ∀ (c : M₂), ↑f c ∈ p
⊢ range (codRestrict p f hf) = comap (Submodule.subtype p) (range f)
[PROOFSTEP]
simpa only [range_eq_map] using map_codRestrict _ _ _ _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹² : Semiring R
inst✝¹¹ : Semiring R₂
inst✝¹⁰ : Semiring R₃
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁶ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R M₁
p : Submodule R M
q : Submodule R M₁
f : M →ₗ[R] M₁
hf : ∀ (x : M), x ∈ p → ↑f x ∈ q
⊢ ker (restrict f hf) = ker (domRestrict f p)
[PROOFSTEP]
rw [restrict_eq_codRestrict_domRestrict, ker_codRestrict]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
q : Submodule R₂ M₂
⊢ range f ⊓ q ≤ map f (comap f q)
[PROOFSTEP]
rintro _ ⟨⟨x, _, rfl⟩, hx⟩
[GOAL]
case intro.intro.refl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
q : Submodule R₂ M₂
x : M
hx : ↑f x ∈ ↑q
⊢ ↑f x ∈ map f (comap f q)
[PROOFSTEP]
exact ⟨x, hx, rfl⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
q : Submodule R₂ M₂
h : q ≤ range f
⊢ map f (comap f q) = q
[PROOFSTEP]
rwa [Submodule.map_comap_eq, inf_eq_right]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
x : M
⊢ x ∈ ker 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
⊢ range 0 = ⊥
[PROOFSTEP]
simpa only [range_eq_map] using Submodule.map_zero _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
⊢ range f ≤ ⊥ ↔ f = 0
[PROOFSTEP]
rw [range_le_iff_comap]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
⊢ comap f ⊥ = ⊤ ↔ f = 0
[PROOFSTEP]
exact ker_eq_top
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
⊢ range f = ⊥ ↔ f = 0
[PROOFSTEP]
rw [← range_le_bot_iff, le_bot_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
h : comp g f = 0
x : M₂
hx : x ∈ range f
y : M
hy : ↑f y = x
⊢ ↑g x = 0
[PROOFSTEP]
rw [← hy, ← comp_apply, h, zero_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
hf : range f = ⊤
p p' : Submodule R₂ M₂
H : comap f p ≤ comap f p'
x : M₂
hx : x ∈ p
⊢ x ∈ p'
[PROOFSTEP]
rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩
[GOAL]
case intro.refl
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
hf : range f = ⊤
p p' : Submodule R₂ M₂
H : comap f p ≤ comap f p'
y : M
hx : ↑f y ∈ p
⊢ ↑f y ∈ p'
[PROOFSTEP]
exact H hx
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
⊢ ker f = ⊥
[PROOFSTEP]
have : Disjoint ⊤ (ker f) := by
-- Porting note: `← map_zero f` should work here, but it needs to be directly applied to H.
rw [disjoint_ker]
intros _ _ H
rw [← map_zero f] at H
exact hf H
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
⊢ Disjoint ⊤ (ker f)
[PROOFSTEP]
rw [disjoint_ker]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
⊢ ∀ (x : M), x ∈ ⊤ → ↑f x = 0 → x = 0
[PROOFSTEP]
intros _ _ H
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
x✝ : M
a✝ : x✝ ∈ ⊤
H : ↑f x✝ = 0
⊢ x✝ = 0
[PROOFSTEP]
rw [← map_zero f] at H
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
x✝ : M
a✝ : x✝ ∈ ⊤
H : ↑f x✝ = ↑f 0
⊢ x✝ = 0
[PROOFSTEP]
exact hf H
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
this : Disjoint ⊤ (ker f)
⊢ ker f = ⊥
[PROOFSTEP]
rw [disjoint_iff_inf_le, top_inf_eq, le_bot_iff] at this
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
hf : Injective ↑f
this : ker f = ⊥
⊢ ker f = ⊥
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : M →ₗ[R] M
n m : ℕ
w : n ≤ m
x : M
h : x ∈ (fun n => ker (f ^ n)) n
⊢ x ∈ (fun n => ker (f ^ n)) m
[PROOFSTEP]
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : M →ₗ[R] M
n : ℕ
x : M
h : x ∈ (fun n => ker (f ^ n)) n
c : ℕ
w : n ≤ n + c
⊢ x ∈ (fun n => ker (f ^ n)) (n + c)
[PROOFSTEP]
rw [LinearMap.mem_ker] at h
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
σ₁₂ : R →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
σ₂₁ : R₂ →+* R
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : M →ₗ[R] M
n : ℕ
x : M
h : ↑(f ^ n) x = 0
c : ℕ
w : n ≤ n + c
⊢ x ∈ (fun n => ker (f ^ n)) (n + c)
[PROOFSTEP]
rw [LinearMap.mem_ker, add_comm, pow_add, LinearMap.mul_apply, h, LinearMap.map_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Ring R
inst✝⁸ : Ring R₂
inst✝⁷ : Ring R₃
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
x y : M
⊢ x - y ∈ ker f ↔ ↑f x = ↑f y
[PROOFSTEP]
rw [mem_ker, map_sub, sub_eq_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Ring R
inst✝⁸ : Ring R₂
inst✝⁷ : Ring R₃
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
H : ∀ (x : M), x ∈ p → ↑f x = 0 → x = 0
x : M
hx : x ∈ p
y : M
hy : y ∈ p
h : ↑f x = ↑f y
⊢ ↑f (x - y) = 0
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Ring R
inst✝⁸ : Ring R₂
inst✝⁷ : Ring R₃
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
p : Submodule R M
H : ∀ (x : M), x ∈ p → ∀ (y : M), y ∈ p → ↑f x = ↑f y → x = y
x : M
h₁ : x ∈ p
h₂ : ↑f x = 0
⊢ ↑f x = ↑f 0
[PROOFSTEP]
simpa using h₂
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Ring R
inst✝⁸ : Ring R₂
inst✝⁷ : Ring R₃
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : AddCommGroup M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
⊢ ker f = ⊥ ↔ Injective ↑f
[PROOFSTEP]
simpa [disjoint_iff_inf_le] using @disjoint_ker' _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
⊢ ker f ≤ p ↔ ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
⊢ ker f ≤ p → ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
h : ker f ≤ p
⊢ ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p
[PROOFSTEP]
use 0
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
h : ker f ≤ p
⊢ 0 ∈ range f ∧ ↑f ⁻¹' {0} ⊆ ↑p
[PROOFSTEP]
rw [← SetLike.mem_coe, range_coe]
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
h : ker f ≤ p
⊢ 0 ∈ Set.range ↑f ∧ ↑f ⁻¹' {0} ⊆ ↑p
[PROOFSTEP]
exact ⟨⟨0, map_zero f⟩, h⟩
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
⊢ (∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p) → ker f ≤ p
[PROOFSTEP]
rintro ⟨y, h₁, h₂⟩
[GOAL]
case mpr.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₁ : y ∈ range f
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
⊢ ker f ≤ p
[PROOFSTEP]
rw [SetLike.le_def]
[GOAL]
case mpr.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₁ : y ∈ range f
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
⊢ ∀ ⦃x : M⦄, x ∈ ker f → x ∈ p
[PROOFSTEP]
intro z hz
[GOAL]
case mpr.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₁ : y ∈ range f
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : z ∈ ker f
⊢ z ∈ p
[PROOFSTEP]
simp only [mem_ker, SetLike.mem_coe] at hz
[GOAL]
case mpr.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₁ : y ∈ range f
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
⊢ z ∈ p
[PROOFSTEP]
rw [← SetLike.mem_coe, range_coe, Set.mem_range] at h₁
[GOAL]
case mpr.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₁ : ∃ y_1, ↑f y_1 = y
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
⊢ z ∈ p
[PROOFSTEP]
obtain ⟨x, hx⟩ := h₁
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
⊢ z ∈ p
[PROOFSTEP]
have hx' : x ∈ p := h₂ hx
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
hx' : x ∈ p
⊢ z ∈ p
[PROOFSTEP]
have hxz : z + x ∈ p := by
apply h₂
simp [hx, hz]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
hx' : x ∈ p
⊢ z + x ∈ p
[PROOFSTEP]
apply h₂
[GOAL]
case a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
hx' : x ∈ p
⊢ z + x ∈ ↑f ⁻¹' {y}
[PROOFSTEP]
simp [hx, hz]
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
hx' : x ∈ p
hxz : z + x ∈ p
⊢ z ∈ p
[PROOFSTEP]
suffices z + x - x ∈ p by simpa only [this, add_sub_cancel]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
hx' : x ∈ p
hxz : z + x ∈ p
this : z + x - x ∈ p
⊢ z ∈ p
[PROOFSTEP]
simpa only [this, add_sub_cancel]
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Ring R
inst✝⁹ : Ring R₂
inst✝⁸ : Ring R₃
inst✝⁷ : AddCommGroup M
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : AddCommGroup M₃
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
inst✝² : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
y : M₂
h₂ : ↑f ⁻¹' {y} ⊆ ↑p
z : M
hz : ↑f z = 0
x : M
hx : ↑f x = y
hx' : x ∈ p
hxz : z + x ∈ p
⊢ z + x - x ∈ p
[PROOFSTEP]
exact p.sub_mem hxz hx'
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semifield K
inst✝⁴ : Semifield K₂
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
a : K
h : a ≠ 0
⊢ range (a • f) = range f
[PROOFSTEP]
simpa only [range_eq_map] using Submodule.map_smul f _ a h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semifield K
inst✝⁴ : Semifield K₂
inst✝³ : AddCommMonoid V
inst✝² : Module K V
inst✝¹ : AddCommMonoid V₂
inst✝ : Module K V₂
f : V →ₗ[K] V₂
a : K
⊢ range (a • f) = ⨆ (_ : a ≠ 0), range f
[PROOFSTEP]
simpa only [range_eq_map] using Submodule.map_smul' f _ a
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ IsLinearMap R fun x => x.fst + x.snd
[PROOFSTEP]
apply IsLinearMap.mk
[GOAL]
case map_add
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ ∀ (x y : M × M), (x + y).fst + (x + y).snd = x.fst + x.snd + (y.fst + y.snd)
[PROOFSTEP]
intro x y
[GOAL]
case map_add
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : M × M
⊢ (x + y).fst + (x + y).snd = x.fst + x.snd + (y.fst + y.snd)
[PROOFSTEP]
simp only [Prod.fst_add, Prod.snd_add]
[GOAL]
case map_add
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : M × M
⊢ x.fst + y.fst + (x.snd + y.snd) = x.fst + x.snd + (y.fst + y.snd)
[PROOFSTEP]
abel
-- Porting Note: was cc
[GOAL]
case map_add
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x y : M × M
⊢ x.fst + y.fst + (x.snd + y.snd) = x.fst + x.snd + (y.fst + y.snd)
[PROOFSTEP]
abel
-- Porting Note: was cc
[GOAL]
case map_smul
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ ∀ (c : R) (x : M × M), (c • x).fst + (c • x).snd = c • (x.fst + x.snd)
[PROOFSTEP]
intro x y
[GOAL]
case map_smul
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x : R
y : M × M
⊢ (x • y).fst + (x • y).snd = x • (y.fst + y.snd)
[PROOFSTEP]
simp [smul_add]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ IsLinearMap R fun x => x.fst - x.snd
[PROOFSTEP]
apply IsLinearMap.mk
[GOAL]
case map_add
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ ∀ (x y : M × M), (x + y).fst - (x + y).snd = x.fst - x.snd + (y.fst - y.snd)
[PROOFSTEP]
intro x y
[GOAL]
case map_add
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M × M
⊢ (x + y).fst - (x + y).snd = x.fst - x.snd + (y.fst - y.snd)
[PROOFSTEP]
rw [Prod.fst_add, Prod.snd_add]
[GOAL]
case map_add
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M × M
⊢ x.fst + y.fst - (x.snd + y.snd) = x.fst - x.snd + (y.fst - y.snd)
[PROOFSTEP]
abel
[GOAL]
case map_add
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M × M
⊢ x.fst + y.fst - (x.snd + y.snd) = x.fst - x.snd + (y.fst - y.snd)
[PROOFSTEP]
abel
[GOAL]
case map_smul
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ ∀ (c : R) (x : M × M), (c • x).fst - (c • x).snd = c • (x.fst - x.snd)
[PROOFSTEP]
intro x y
[GOAL]
case map_smul
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M✝ : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
R : Type u_20
M : Type u_21
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x : R
y : M × M
⊢ (x • y).fst - (x • y).snd = x • (y.fst - y.snd)
[PROOFSTEP]
simp [smul_sub]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p' : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
⊢ range (Submodule.subtype p) = p
[PROOFSTEP]
simpa using map_comap_subtype p ⊤
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p'✝ : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p' : Submodule R { x // x ∈ p }
⊢ map (Submodule.subtype p) p' ≤ p
[PROOFSTEP]
simpa using (map_le_range : map p.subtype p' ≤ range p.subtype)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p' : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
⊢ map (Submodule.subtype p) ⊤ = p
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p✝ p'✝ : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p p' : Submodule R M
⊢ map (Submodule.subtype p) ⊤ ≤ p' ↔ p ≤ p'
[PROOFSTEP]
rw [map_subtype_top]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p✝ p'✝ : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p p' : Submodule R M
h : p ≤ p'
⊢ ker (ofLe h) = ⊥
[PROOFSTEP]
rw [ofLe, ker_codRestrict, ker_subtype]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p✝ p' : Submodule R M
q✝ : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p q : Submodule R M
h : p ≤ q
⊢ range (ofLe h) = comap (Submodule.subtype q) p
[PROOFSTEP]
rw [← map_top, ofLe, LinearMap.map_codRestrict, map_top, range_subtype]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p✝ p'✝ : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p p' : Submodule R M
h : p ≤ p'
⊢ map (Submodule.subtype p') (range (ofLe h)) = p
[PROOFSTEP]
simp [range_ofLe, map_comap_eq, h]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p✝ p' : Submodule R M
q✝ : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p q : Submodule R M
⊢ Disjoint p q ↔ comap (Submodule.subtype p) q = ⊥
[PROOFSTEP]
rw [← (map_injective_of_injective (show Injective p.subtype from Subtype.coe_injective)).eq_iff, map_comap_subtype,
map_bot, disjoint_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p'✝ : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p' : Submodule R { x // x ∈ p }
⊢ Injective ↑(Submodule.subtype p)
[PROOFSTEP]
exact Subtype.val_injective
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p' : Submodule R M
q✝ : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
x✝ : { p' // p' ≤ p }
q : Submodule R M
hq : q ≤ p
⊢ ↑((fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) })
((fun q => comap (Submodule.subtype p) ↑q) { val := q, property := hq })) =
↑{ val := q, property := hq }
[PROOFSTEP]
simp [map_comap_subtype p, inf_of_le_right hq]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p' : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p₁ p₂ : Submodule R { x // x ∈ p }
⊢ ↑(↑{ toFun := fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) },
invFun := fun q => comap (Submodule.subtype p) ↑q,
left_inv :=
(_ :
∀ (p' : Submodule R { x // x ∈ p }), comap (Submodule.subtype p) (map (Submodule.subtype p) p') = p'),
right_inv :=
(_ :
∀ (x : { p' // p' ≤ p }),
(fun p' =>
{ val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) })
((fun q => comap (Submodule.subtype p) ↑q) x) =
x) }
p₁) ≤
↑(↑{
toFun := fun p' =>
{ val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) },
invFun := fun q => comap (Submodule.subtype p) ↑q,
left_inv :=
(_ :
∀ (p' : Submodule R { x // x ∈ p }), comap (Submodule.subtype p) (map (Submodule.subtype p) p') = p'),
right_inv :=
(_ :
∀ (x : { p' // p' ≤ p }),
(fun p' =>
{ val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) })
((fun q => comap (Submodule.subtype p) ↑q) x) =
x) }
p₂) ↔
p₁ ≤ p₂
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁵ : Semiring R
inst✝⁴ : Semiring R₂
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
p p' : Submodule R M
q : Submodule R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_20
sc : SemilinearMapClass F τ₁₂ M M₂
p₁ p₂ : Submodule R { x // x ∈ p }
⊢ map (Submodule.subtype p) p₁ ≤ map (Submodule.subtype p) p₂ ↔ p₁ ≤ p₂
[PROOFSTEP]
rw [map_le_iff_le_comap, comap_map_eq_of_injective (show Injective p.subtype from Subtype.coe_injective) p₂]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₛₗ[τ₁₂] M₂
h : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v
⊢ ker f = ⊥
[PROOFSTEP]
have h₁ : f.comp (0 : ker f →ₗ[R] M) = 0 := comp_zero _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₛₗ[τ₁₂] M₂
h : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v
h₁ : comp f 0 = 0
⊢ ker f = ⊥
[PROOFSTEP]
rw [← Submodule.range_subtype (ker f), ← h 0 f.ker.subtype (Eq.trans h₁ (comp_ker_subtype f).symm)]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₛₗ[τ₁₂] M₂
h : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v
h₁ : comp f 0 = 0
⊢ range 0 = ⊥
[PROOFSTEP]
exact range_zero
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹² : Semiring R
inst✝¹¹ : Semiring R₂
inst✝¹⁰ : Semiring R₃
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : Module R M
inst✝⁵ : Module R₂ M₂
inst✝⁴ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝³ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
inst✝² : RingHomSurjective τ₁₂
inst✝¹ : RingHomSurjective τ₂₃
inst✝ : RingHomSurjective τ₁₃
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
hf : range f = ⊤
⊢ range (comp g f) = range g
[PROOFSTEP]
rw [range_comp, hf, Submodule.map_top]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R M
inst✝² : Module R₂ M₂
inst✝¹ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
f : M →ₛₗ[τ₁₂] M₂
g : M₂ →ₛₗ[τ₂₃] M₃
hg : ker g = ⊥
⊢ ker (comp g f) = ker f
[PROOFSTEP]
rw [ker_comp, hg, Submodule.comap_bot]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
⊢ x ∈ submoduleImage ϕ N ↔ ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x
[PROOFSTEP]
refine' Submodule.mem_map.trans ⟨_, _⟩
[GOAL]
case refine'_1
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
⊢ (∃ y, y ∈ Submodule.comap (Submodule.subtype O) N ∧ ↑ϕ y = x) → ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x
[PROOFSTEP]
simp_rw [Submodule.mem_comap]
[GOAL]
case refine'_2
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
⊢ (∃ y yO x_1, ↑ϕ { val := y, property := yO } = x) → ∃ y, y ∈ Submodule.comap (Submodule.subtype O) N ∧ ↑ϕ y = x
[PROOFSTEP]
simp_rw [Submodule.mem_comap]
[GOAL]
case refine'_1
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
⊢ (∃ y, ↑(Submodule.subtype O) y ∈ N ∧ ↑ϕ y = x) → ∃ y h h_1, ↑ϕ { val := y, property := (_ : y ∈ O) } = x
[PROOFSTEP]
rintro ⟨⟨y, yO⟩, yN : y ∈ N, h⟩
[GOAL]
case refine'_1.intro.mk.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
y : M
yO : y ∈ O
yN : y ∈ N
h : ↑ϕ { val := y, property := yO } = x
⊢ ∃ y h h_1, ↑ϕ { val := y, property := (_ : y ∈ O) } = x
[PROOFSTEP]
exact ⟨y, yO, yN, h⟩
[GOAL]
case refine'_2
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
⊢ (∃ y h h_1, ↑ϕ { val := y, property := (_ : y ∈ O) } = x) → ∃ y, ↑(Submodule.subtype O) y ∈ N ∧ ↑ϕ y = x
[PROOFSTEP]
rintro ⟨y, yO, yN, h⟩
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
x : M'
y : M
yO : y ∈ O
yN : y ∈ N
h : ↑ϕ { val := y, property := (_ : y ∈ O) } = x
⊢ ∃ y, ↑(Submodule.subtype O) y ∈ N ∧ ↑ϕ y = x
[PROOFSTEP]
exact ⟨⟨y, yO⟩, yN, h⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
hNO : N ≤ O
x : M'
⊢ x ∈ submoduleImage ϕ N ↔ ∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x
[PROOFSTEP]
refine' mem_submoduleImage.trans ⟨_, _⟩
[GOAL]
case refine'_1
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
hNO : N ≤ O
x : M'
⊢ (∃ y yO x_1, ↑ϕ { val := y, property := yO } = x) → ∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x
[PROOFSTEP]
rintro ⟨y, yO, yN, h⟩
[GOAL]
case refine'_1.intro.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
hNO : N ≤ O
x : M'
y : M
yO : y ∈ O
yN : y ∈ N
h : ↑ϕ { val := y, property := yO } = x
⊢ ∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x
[PROOFSTEP]
exact ⟨y, yN, h⟩
[GOAL]
case refine'_2
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
hNO : N ≤ O
x : M'
⊢ (∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x) → ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x
[PROOFSTEP]
rintro ⟨y, yN, h⟩
[GOAL]
case refine'_2.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
hNO : N ≤ O
x : M'
y : M
yN : y ∈ N
h : ↑ϕ { val := y, property := (_ : y ∈ O) } = x
⊢ ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x
[PROOFSTEP]
exact ⟨y, hNO yN, yN, h⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M'✝ : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : Semiring R
inst✝¹⁰ : Semiring R₂
inst✝⁹ : Semiring R₃
inst✝⁸ : AddCommMonoid M
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
inst✝³ : Module R₃ M₃
τ₁₂ : R →+* R₂
τ₂₃ : R₂ →+* R₃
τ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃
M' : Type u_20
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
O : Submodule R M
ϕ : { x // x ∈ O } →ₗ[R] M'
N : Submodule R M
hNO : N ≤ O
⊢ submoduleImage ϕ N = range (comp ϕ (Submodule.ofLe hNO))
[PROOFSTEP]
rw [submoduleImage, range_comp, Submodule.range_ofLe]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : Module R M
inst✝ : Module R M₂
f : M →ₗ[R] M₂
⊢ range (rangeRestrict f) = ⊤
[PROOFSTEP]
simp [f.range_codRestrict _]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : Subsingleton R
inst✝ : Subsingleton R₂
⊢ Unique (M ≃ₛₗ[σ₁₂] M₂)
[PROOFSTEP]
haveI := Module.subsingleton R M
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : Subsingleton R
inst✝ : Subsingleton R₂
this : Subsingleton M
⊢ Unique (M ≃ₛₗ[σ₁₂] M₂)
[PROOFSTEP]
haveI := Module.subsingleton R₂ M₂
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : AddCommMonoid M
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : Module R M
inst✝⁴ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
inst✝³ : RingHomInvPair σ₁₂ σ₂₁
inst✝² : RingHomInvPair σ₂₁ σ₁₂
inst✝¹ : Subsingleton R
inst✝ : Subsingleton R₂
this✝ : Subsingleton M
this : Subsingleton M₂
⊢ Unique (M ≃ₛₗ[σ₁₂] M₂)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
⊢ ↑(Submodule.map (↑e) p) = ↑(Submodule.comap (↑(symm e)) p)
[PROOFSTEP]
simp [e.image_eq_preimage]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
x : { x // x ∈ p }
⊢ ↑x ∈ ↑p ∧ ↑↑e ↑x = ↑(LinearMap.domRestrict (↑e) p) x
[PROOFSTEP]
simp only [LinearMap.domRestrict_apply, eq_self_iff_true, and_true_iff, SetLike.coe_mem, SetLike.mem_coe]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
y : { x // x ∈ Submodule.map (↑e) p }
⊢ ↑↑(symm e) ↑y ∈ p
[PROOFSTEP]
rcases y with ⟨y', hy⟩
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
y' : M₂
hy : y' ∈ Submodule.map (↑e) p
⊢ ↑↑(symm e) ↑{ val := y', property := hy } ∈ p
[PROOFSTEP]
rw [Submodule.mem_map] at hy
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
y' : M₂
hy✝ : y' ∈ Submodule.map (↑e) p
hy : ∃ y, y ∈ p ∧ ↑↑e y = y'
⊢ ↑↑(symm e) ↑{ val := y', property := hy✝ } ∈ p
[PROOFSTEP]
rcases hy with ⟨x, hx, hxy⟩
[GOAL]
case mk.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
y' : M₂
hy : y' ∈ Submodule.map (↑e) p
x : M
hx : x ∈ p
hxy : ↑↑e x = y'
⊢ ↑↑(symm e) ↑{ val := y', property := hy } ∈ p
[PROOFSTEP]
subst hxy
[GOAL]
case mk.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
x : M
hx : x ∈ p
hy : ↑↑e x ∈ Submodule.map (↑e) p
⊢ ↑↑(symm e) ↑{ val := ↑↑e x, property := hy } ∈ p
[PROOFSTEP]
simp only [symm_apply_apply, Submodule.coe_mk, coe_coe, hx]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
x : { x // x ∈ p }
⊢ (fun y => { val := ↑↑(symm e) ↑y, property := (_ : ↑↑(symm e) ↑y ∈ p) })
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ p }),
AddHom.toFun src✝.toAddHom (r • x) = ↑σ₁₂ r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x) =
x
[PROOFSTEP]
simp only [LinearMap.domRestrict_apply, LinearMap.codRestrict_apply, LinearMap.toFun_eq_coe, LinearEquiv.coe_coe,
LinearEquiv.symm_apply_apply, SetLike.eta]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
y : { x // x ∈ Submodule.map (↑e) p }
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ p }),
AddHom.toFun src✝.toAddHom (r • x) = ↑σ₁₂ r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun y => { val := ↑↑(symm e) ↑y, property := (_ : ↑↑(symm e) ↑y ∈ p) }) y) =
y
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
e e' : M ≃ₛₗ[σ₁₂] M₂
p : Submodule R M
src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } :=
LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p)
(_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x)
y : { x // x ∈ Submodule.map (↑e) p }
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ p }),
AddHom.toFun src✝.toAddHom (r • x) = ↑σ₁₂ r • AddHom.toFun src✝.toAddHom x) }.toAddHom
((fun y => { val := ↑↑(symm e) ↑y, property := (_ : ↑↑(symm e) ↑y ∈ p) }) y)) =
↑y
[PROOFSTEP]
simp only [LinearMap.domRestrict_apply, LinearMap.codRestrict_apply, LinearMap.toFun_eq_coe, LinearEquiv.coe_coe,
LinearEquiv.apply_symm_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R
x✝¹ x✝ : V × V₂ → R
⊢ Equiv.toFun src✝ (x✝¹ + x✝) = Equiv.toFun src✝ x✝¹ + Equiv.toFun src✝ x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R
x✝³ x✝² : V × V₂ → R
x✝¹ : V
x✝ : V₂
⊢ Equiv.toFun src✝ (x✝³ + x✝²) x✝¹ x✝ = (Equiv.toFun src✝ x✝³ + Equiv.toFun src✝ x✝²) x✝¹ x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R
x✝¹ : R
x✝ : V × V₂ → R
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) }
(x✝¹ • x✝) =
↑(RingHom.id R) x✝¹ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) }
x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁷ : Semiring R
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
inst✝⁴ : Semiring R₄
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M₂
inst✝¹ : AddCommMonoid M₃
inst✝ : AddCommMonoid M₄
src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R
x✝³ : R
x✝² : V × V₂ → R
x✝¹ : V
x✝ : V₂
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) }
(x✝³ • x✝²) x✝¹ x✝ =
(↑(RingHom.id R) x✝³ •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) }
x✝²)
x✝¹ x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁸ : Semiring R
inst✝⁷ : Semiring R₂
inst✝⁶ : Semiring R₃
inst✝⁵ : Semiring R₄
inst✝⁴ : AddCommMonoid M
inst✝³ : AddCommMonoid M₂
inst✝² : AddCommMonoid M₃
inst✝¹ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
⊢ ofEq p p (_ : p = p) = refl R { x // x ∈ p }
[PROOFSTEP]
ext
[GOAL]
case h.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁸ : Semiring R
inst✝⁷ : Semiring R₂
inst✝⁶ : Semiring R₃
inst✝⁵ : Semiring R₄
inst✝⁴ : AddCommMonoid M
inst✝³ : AddCommMonoid M₂
inst✝² : AddCommMonoid M₃
inst✝¹ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
x✝ : { x // x ∈ p }
⊢ ↑(↑(ofEq p p (_ : p = p)) x✝) = ↑(↑(refl R { x // x ∈ p }) x✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : Semiring R₄
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
f : M ≃ₛₗ[σ₁₂] M₂
U : Submodule R₂ M₂
⊢ ↑(ofSubmodule' f U) =
LinearMap.codRestrict U (LinearMap.domRestrict (↑f) (Submodule.comap (↑f) U))
(_ : ∀ (x : { x // x ∈ Submodule.comap (↑f) U }), ↑x ∈ Submodule.comap (↑f) U)
[PROOFSTEP]
ext
[GOAL]
case h.a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : Semiring R₄
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f✝ : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
inst✝¹ : Module R M
inst✝ : Module R₂ M₂
f : M ≃ₛₗ[σ₁₂] M₂
U : Submodule R₂ M₂
x✝ : { x // x ∈ Submodule.comap (↑f) U }
⊢ ↑(↑↑(ofSubmodule' f U) x✝) =
↑(↑(LinearMap.codRestrict U (LinearMap.domRestrict (↑f) (Submodule.comap (↑f) U))
(_ : ∀ (x : { x // x ∈ Submodule.comap (↑f) U }), ↑x ∈ Submodule.comap (↑f) U))
x✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : Semiring R₄
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e✝ : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
inst✝ : Module R₂ M₂
e : { x // x ∈ p } ≃ₛₗ[σ₁₂] { x // x ∈ ⊥ }
⊢ p = ⊥
[PROOFSTEP]
refine' bot_unique (SetLike.le_def.2 fun b hb => (Submodule.mem_bot R).2 _)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : Semiring R₄
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e✝ : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
inst✝ : Module R₂ M₂
e : { x // x ∈ p } ≃ₛₗ[σ₁₂] { x // x ∈ ⊥ }
b : M
hb : b ∈ p
⊢ b = 0
[PROOFSTEP]
rw [← p.mk_eq_zero hb, ← e.map_eq_zero_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁹ : Semiring R
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
inst✝⁶ : Semiring R₄
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f : M →ₛₗ[σ₁₂] M₂
g : M₂ →ₛₗ[σ₂₁] M
e✝ : M ≃ₛₗ[σ₁₂] M₂
h : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
inst✝ : Module R₂ M₂
e : { x // x ∈ p } ≃ₛₗ[σ₁₂] { x // x ∈ ⊥ }
b : M
hb : b ∈ p
⊢ ↑e { val := b, property := hb } = 0
[PROOFSTEP]
apply Submodule.eq_zero_of_bot_submodule
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁰ : Semiring R
inst✝⁹ : Semiring R₂
inst✝⁸ : Semiring R₃
inst✝⁷ : Semiring R₄
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : AddCommMonoid M₄
module_M : Module R M
module_M₂ : Module R₂ M₂
module_M₃ : Module R₃ M₃
σ₁₂ : R →+* R₂
σ₂₁ : R₂ →+* R
σ₂₃ : R₂ →+* R₃
σ₁₃ : R →+* R₃
inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
σ₃₂ : R₃ →+* R₂
re₁₂ : RingHomInvPair σ₁₂ σ₂₁
re₂₁ : RingHomInvPair σ₂₁ σ₁₂
re₂₃ : RingHomInvPair σ₂₃ σ₃₂
re₃₂ : RingHomInvPair σ₃₂ σ₂₃
f : M →ₛₗ[σ₁₂] M₂
g✝ : M₂ →ₛₗ[σ₂₁] M
e : M ≃ₛₗ[σ₁₂] M₂
h✝ : M₂ →ₛₗ[σ₂₃] M₃
e'' : M₂ ≃ₛₗ[σ₂₃] M₃
p q : Submodule R M
inst✝¹ : RingHomInvPair σ₁₂ σ₂₁
inst✝ : RingHomInvPair σ₂₁ σ₁₂
g : M₂ → M
h : LeftInverse g ↑f
src✝ : M →ₛₗ[σ₁₂] { x // x ∈ LinearMap.range f } := LinearMap.rangeRestrict f
x : { x // x ∈ LinearMap.range f }
x' : M
hx' : ↑f x' = ↑x
⊢ ↑f (g ↑x) = ↑x
[PROOFSTEP]
rw [← hx', h x']
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x : M
⊢ ↑(neg R) x = -x
[PROOFSTEP]
simp
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
f g : M₁ →ₗ[R] M₂₁
⊢ (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g
[PROOFSTEP]
ext x
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
f g : M₁ →ₗ[R] M₂₁
x : M₂
⊢ ↑((fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g)) x =
↑((fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g)
x
[PROOFSTEP]
simp only [map_add, add_apply, Function.comp_apply, coe_comp, coe_coe]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
c : R
f : M₁ →ₗ[R] M₂₁
⊢ AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
f
[PROOFSTEP]
ext x
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
c : R
f : M₁ →ₗ[R] M₂₁
x : M₂
⊢ ↑(AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
(c • f))
x =
↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
f)
x
[PROOFSTEP]
simp only [smul_apply, Function.comp_apply, coe_comp, map_smulₛₗ e₂, coe_coe]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
f : M₁ →ₗ[R] M₂₁
⊢ (fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) },
map_smul' :=
(_ :
∀ (c : R) (f : M₁ →ₗ[R] M₂₁),
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
f) }.toAddHom
f) =
f
[PROOFSTEP]
ext x
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
f : M₁ →ₗ[R] M₂₁
x : M₁
⊢ ↑((fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) },
map_smul' :=
(_ :
∀ (c : R) (f : M₁ →ₗ[R] M₂₁),
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
f) }.toAddHom
f))
x =
↑f x
[PROOFSTEP]
simp only [symm_apply_apply, Function.comp_apply, coe_comp, coe_coe]
[GOAL]
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
f : M₂ →ₗ[R] M₂₂
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) },
map_smul' :=
(_ :
∀ (c : R) (f : M₁ →ₗ[R] M₂₁),
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
f) }.toAddHom
((fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁)) f) =
f
[PROOFSTEP]
ext x
[GOAL]
case h
R✝ : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁✝ : Type u_11
M₂✝ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹⁵ : CommSemiring R✝
inst✝¹⁴ : AddCommMonoid M
inst✝¹³ : AddCommMonoid M₂✝
inst✝¹² : AddCommMonoid M₃
inst✝¹¹ : Module R✝ M
inst✝¹⁰ : Module R✝ M₂✝
inst✝⁹ : Module R✝ M₃
R : Type ?u.2478657
M₁ : Type ?u.2478660
M₂ : Type ?u.2478663
M₂₁ : Type ?u.2478666
M₂₂ : Type ?u.2478669
inst✝⁸ : CommSemiring R
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₂₁
inst✝⁴ : AddCommMonoid M₂₂
inst✝³ : Module R M₁
inst✝² : Module R M₂
inst✝¹ : Module R M₂₁
inst✝ : Module R M₂₂
e₁ : M₁ ≃ₗ[R] M₂
e₂ : M₂₁ ≃ₗ[R] M₂₂
f : M₂ →ₗ[R] M₂₂
x : M₂
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) },
map_smul' :=
(_ :
∀ (c : R) (f : M₁ →ₗ[R] M₂₁),
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)),
map_add' :=
(_ :
∀ (f g : M₁ →ₗ[R] M₂₁),
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) =
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f +
(fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }
f) }.toAddHom
((fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁)) f))
x =
↑f x
[PROOFSTEP]
simp only [Function.comp_apply, apply_symm_apply, coe_comp, coe_coe]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂✝ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹² : CommSemiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
N : Type u_20
N₂ : Type u_21
N₃ : Type u_22
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : AddCommMonoid N₃
inst✝² : Module R N
inst✝¹ : Module R N₂
inst✝ : Module R N₃
e₁ : M ≃ₗ[R] N
e₂ : M₂ ≃ₗ[R] N₂
e₃ : M₃ ≃ₗ[R] N₃
f : M →ₗ[R] M₂
g : M₂ →ₗ[R] M₃
⊢ ↑(arrowCongr e₁ e₃) (LinearMap.comp g f) = LinearMap.comp (↑(arrowCongr e₂ e₃) g) (↑(arrowCongr e₁ e₂) f)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N✝ : Type u_15
N₂✝ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹² : CommSemiring R
inst✝¹¹ : AddCommMonoid M
inst✝¹⁰ : AddCommMonoid M₂
inst✝⁹ : AddCommMonoid M₃
inst✝⁸ : Module R M
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
N : Type u_20
N₂ : Type u_21
N₃ : Type u_22
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : AddCommMonoid N₃
inst✝² : Module R N
inst✝¹ : Module R N₂
inst✝ : Module R N₃
e₁ : M ≃ₗ[R] N
e₂ : M₂ ≃ₗ[R] N₂
e₃ : M₃ ≃ₗ[R] N₃
f : M →ₗ[R] M₂
g : M₂ →ₗ[R] M₃
x✝ : N
⊢ ↑(↑(arrowCongr e₁ e₃) (LinearMap.comp g f)) x✝ = ↑(LinearMap.comp (↑(arrowCongr e₂ e₃) g) (↑(arrowCongr e₁ e₂) f)) x✝
[PROOFSTEP]
simp only [symm_apply_apply, arrowCongr_apply, LinearMap.comp_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
e₁ : M ≃ₗ[R] M₂
e₂ : M₂ ≃ₗ[R] M₃
⊢ trans (conj e₁) (conj e₂) = conj (trans e₁ e₂)
[PROOFSTEP]
ext f x
[GOAL]
case h.h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
e₁ : M ≃ₗ[R] M₂
e₂ : M₂ ≃ₗ[R] M₃
f : Module.End R M
x : M₃
⊢ ↑(↑(trans (conj e₁) (conj e₂)) f) x = ↑(↑(conj (trans e₁ e₂)) f) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
e : M ≃ₗ[R] M₂
⊢ ↑(conj e) LinearMap.id = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝⁶ : CommSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R M
inst✝¹ : Module R M₂
inst✝ : Module R M₃
e : M ≃ₗ[R] M₂
x✝ : M₂
⊢ ↑(↑(conj e) LinearMap.id) x✝ = ↑LinearMap.id x✝
[PROOFSTEP]
simp [conj_apply]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
⊢ ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
x : { x // x ∈ p }
hx : x ∈ q
⊢ ↑(LinearMap.domRestrict (Submodule.subtype p) q) { val := x, property := hx } ∈ map (Submodule.subtype p) q
[PROOFSTEP]
exact ⟨x, hx, rfl⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
⊢ { x // x ∈ map (Submodule.subtype p) q } → { x // x ∈ q }
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
x : M
hx : x ∈ map (Submodule.subtype p) q
⊢ { x // x ∈ q }
[PROOFSTEP]
refine' ⟨⟨x, _⟩, _⟩
[GOAL]
case mk.refine'_1
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
x : M
hx : x ∈ map (Submodule.subtype p) q
⊢ x ∈ p
[PROOFSTEP]
rcases hx with ⟨⟨_, h⟩, _, rfl⟩
[GOAL]
case mk.refine'_2
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
x : M
hx : x ∈ map (Submodule.subtype p) q
⊢ { val := x, property := (_ : x ∈ p) } ∈ q
[PROOFSTEP]
rcases hx with ⟨⟨_, h⟩, _, rfl⟩
[GOAL]
case mk.refine'_1.intro.mk.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
val✝ : M
h : val✝ ∈ p
left✝ : { val := val✝, property := h } ∈ ↑q
⊢ ↑(Submodule.subtype p) { val := val✝, property := h } ∈ p
[PROOFSTEP]
assumption
[GOAL]
case mk.refine'_2.intro.mk.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
val✝ : M
h : val✝ ∈ p
left✝ : { val := val✝, property := h } ∈ ↑q
⊢ { val := ↑(Submodule.subtype p) { val := val✝, property := h },
property := (_ : ↑(Submodule.subtype p) { val := val✝, property := h } ∈ p) } ∈
q
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
x✝ : { x // x ∈ map (Submodule.subtype p) q }
x : M
h : x ∈ p
left✝ : { val := x, property := h } ∈ ↑q
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ q }),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Subtype.casesOn { val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) } fun x hx =>
{ val := { val := x, property := (_ : x ∈ p) }, property := (_ : { val := x, property := (_ : x ∈ p) } ∈ q) }) =
{ val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) }
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } :=
LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q)
(_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q)
x✝ : { x // x ∈ map (Submodule.subtype p) q }
x : M
h : x ∈ p
left✝ : { val := x, property := h } ∈ ↑q
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ q }),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Subtype.casesOn { val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) } fun x hx =>
{ val := { val := x, property := (_ : x ∈ p) },
property := (_ : { val := x, property := (_ : x ∈ p) } ∈ q) })) =
↑{ val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
x : { x // x ∈ map (Submodule.subtype p) q }
⊢ ↑↑(↑(LinearEquiv.symm (equivSubtypeMap p q)) x) = ↑x
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p : Submodule R M
q : Submodule R { x // x ∈ p }
val✝ : M
property✝ : val✝ ∈ map (Submodule.subtype p) q
⊢ ↑↑(↑(LinearEquiv.symm (equivSubtypeMap p q)) { val := val✝, property := property✝ }) =
↑{ val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p q : Submodule R M
hpq : p ≤ q
x : { x // x ∈ comap (Submodule.subtype q) p }
⊢ (fun x => { val := { val := ↑x, property := (_ : ↑x ∈ q) }, property := (_ : ↑x ∈ p) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) },
map_add' :=
(_ :
∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }),
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) =
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) },
map_smul' :=
(_ :
∀ (c : R) (x : { x // x ∈ comap (Submodule.subtype q) p }),
AddHom.toFun
{ toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) },
map_add' :=
(_ :
∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }),
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) =
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) })
(x + y)) }
(c • x) =
AddHom.toFun
{ toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) },
map_add' :=
(_ :
∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }),
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) =
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) })
(x + y)) }
(c • x)) }.toAddHom
x) =
x
[PROOFSTEP]
simp only [coe_mk, SetLike.eta, LinearEquiv.coe_coe]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
p q : Submodule R M
hpq : p ≤ q
x : { x // x ∈ p }
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) },
map_add' :=
(_ :
∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }),
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) =
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) },
map_smul' :=
(_ :
∀ (c : R) (x : { x // x ∈ comap (Submodule.subtype q) p }),
AddHom.toFun
{ toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) },
map_add' :=
(_ :
∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }),
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) =
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) }
(c • x) =
AddHom.toFun
{ toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) },
map_add' :=
(_ :
∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }),
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) =
(fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) }
(c • x)) }.toAddHom
((fun x => { val := { val := ↑x, property := (_ : ↑x ∈ q) }, property := (_ : ↑x ∈ p) }) x) =
x
[PROOFSTEP]
simp only [Subtype.coe_mk, SetLike.eta, LinearEquiv.coe_coe]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
⊢ x ∈ map (↑e) p ↔ ↑(LinearEquiv.symm e) x ∈ p
[PROOFSTEP]
rw [Submodule.mem_map]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
⊢ (∃ y, y ∈ p ∧ ↑↑e y = x) ↔ ↑(LinearEquiv.symm e) x ∈ p
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
⊢ (∃ y, y ∈ p ∧ ↑↑e y = x) → ↑(LinearEquiv.symm e) x ∈ p
[PROOFSTEP]
rintro ⟨y, hy, hx⟩
[GOAL]
case mp.intro.intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
y : M
hy : y ∈ p
hx : ↑↑e y = x
⊢ ↑(LinearEquiv.symm e) x ∈ p
[PROOFSTEP]
simp [← hx, hy]
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
⊢ ↑(LinearEquiv.symm e) x ∈ p → ∃ y, y ∈ p ∧ ↑↑e y = x
[PROOFSTEP]
intro hx
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
hx : ↑(LinearEquiv.symm e) x ∈ p
⊢ ∃ y, y ∈ p ∧ ↑↑e y = x
[PROOFSTEP]
refine' ⟨e.symm x, hx, by simp⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
x : M₂
hx : ↑(LinearEquiv.symm e) x ∈ p
⊢ ↑↑e (↑(LinearEquiv.symm e) x) = x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K✝ : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
K : Submodule R M
x✝ : M₂
⊢ x✝ ∈ map (↑e) K ↔ x✝ ∈ comap (↑(LinearEquiv.symm e)) K
[PROOFSTEP]
rw [mem_map_equiv, mem_comap, LinearEquiv.coe_coe]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K✝ : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
K : Submodule R₂ M₂
⊢ map (LinearEquiv.symm e) K = p ↔ map e p = K
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K✝ : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
K : Submodule R₂ M₂
⊢ map (LinearEquiv.symm e) K = p → map e p = K
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K✝ : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
K : Submodule R₂ M₂
⊢ map e p = K → map (LinearEquiv.symm e) K = p
[PROOFSTEP]
rintro rfl
[GOAL]
case mp
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K✝ : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
K : Submodule R₂ M₂
⊢ map e (map (LinearEquiv.symm e) K) = K
[PROOFSTEP]
calc
map e (map e.symm K) = comap e.symm (map e.symm K) := map_equiv_eq_comap_symm _ _
_ = K := comap_map_eq_of_injective e.symm.injective _
[GOAL]
case mpr
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
e : M ≃ₛₗ[τ₁₂] M₂
⊢ map (LinearEquiv.symm e) (map e p) = p
[PROOFSTEP]
calc
map e.symm (map e p) = comap e (map e p) := (comap_equiv_eq_map_symm _ _).symm
_ = p := comap_map_eq_of_injective e.injective _
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
fₗ : N →ₗ[R] N₂
c : R
⊢ comap fₗ qₗ ≤ comap (c • fₗ) qₗ
[PROOFSTEP]
rw [SetLike.le_def]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
fₗ : N →ₗ[R] N₂
c : R
⊢ ∀ ⦃x : N⦄, x ∈ comap fₗ qₗ → x ∈ comap (c • fₗ) qₗ
[PROOFSTEP]
intro m h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
fₗ : N →ₗ[R] N₂
c : R
m : N
h : m ∈ comap fₗ qₗ
⊢ m ∈ comap (c • fₗ) qₗ
[PROOFSTEP]
change c • fₗ m ∈ qₗ
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
fₗ : N →ₗ[R] N₂
c : R
m : N
h : m ∈ comap fₗ qₗ
⊢ c • ↑fₗ m ∈ qₗ
[PROOFSTEP]
replace h : fₗ m ∈ qₗ := h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
fₗ : N →ₗ[R] N₂
c : R
m : N
h : ↑fₗ m ∈ qₗ
⊢ c • ↑fₗ m ∈ qₗ
[PROOFSTEP]
apply qₗ.smul_mem _ h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : M →ₛₗ[τ₁₂] M₂
⊢ comap f₁ q ⊓ comap f₂ q ≤ comap (f₁ + f₂) q
[PROOFSTEP]
rw [SetLike.le_def]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : M →ₛₗ[τ₁₂] M₂
⊢ ∀ ⦃x : M⦄, x ∈ comap f₁ q ⊓ comap f₂ q → x ∈ comap (f₁ + f₂) q
[PROOFSTEP]
intro m h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : M →ₛₗ[τ₁₂] M₂
m : M
h : m ∈ comap f₁ q ⊓ comap f₂ q
⊢ m ∈ comap (f₁ + f₂) q
[PROOFSTEP]
change f₁ m + f₂ m ∈ q
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : M →ₛₗ[τ₁₂] M₂
m : M
h : m ∈ comap f₁ q ⊓ comap f₂ q
⊢ ↑f₁ m + ↑f₂ m ∈ q
[PROOFSTEP]
replace h : f₁ m ∈ q ∧ f₂ m ∈ q := h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : M →ₛₗ[τ₁₂] M₂
m : M
h : ↑f₁ m ∈ q ∧ ↑f₂ m ∈ q
⊢ ↑f₁ m + ↑f₂ m ∈ q
[PROOFSTEP]
apply q.add_mem h.1 h.2
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : N →ₗ[R] N₂
h₁ : f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
h₂ : f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
⊢ f₁ + f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
[PROOFSTEP]
apply le_trans _ (inf_comap_le_comap_add qₗ f₁ f₂)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : N →ₗ[R] N₂
h₁ : f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
h₂ : f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
⊢ pₗ ≤ comap f₁ qₗ ⊓ comap f₂ qₗ
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
f₁ f₂ : N →ₗ[R] N₂
h₁ : f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
h₂ : f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ}
⊢ pₗ ≤ comap f₁ qₗ ∧ pₗ ≤ comap f₂ qₗ
[PROOFSTEP]
exact ⟨h₁, h₂⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
⊢ 0 ∈
{ carrier := {fₗ | pₗ ≤ comap fₗ qₗ},
add_mem' :=
(_ :
∀ {f₁ f₂ : N →ₗ[R] N₂},
f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) }.carrier
[PROOFSTEP]
change pₗ ≤ comap (0 : N →ₗ[R] N₂) qₗ
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
⊢ pₗ ≤ comap 0 qₗ
[PROOFSTEP]
rw [comap_zero]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
⊢ pₗ ≤ ⊤
[PROOFSTEP]
refine' le_top
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
c : R
fₗ : N →ₗ[R] N₂
h :
fₗ ∈
{
toAddSubsemigroup :=
{ carrier := {fₗ | pₗ ≤ comap fₗ qₗ},
add_mem' :=
(_ :
∀ {f₁ f₂ : N →ₗ[R] N₂},
f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) },
zero_mem' := (_ : pₗ ≤ comap 0 qₗ) }.toAddSubsemigroup.carrier
⊢ c • fₗ ∈
{
toAddSubsemigroup :=
{ carrier := {fₗ | pₗ ≤ comap fₗ qₗ},
add_mem' :=
(_ :
∀ {f₁ f₂ : N →ₗ[R] N₂},
f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) },
zero_mem' := (_ : pₗ ≤ comap 0 qₗ) }.toAddSubsemigroup.carrier
[PROOFSTEP]
dsimp at h
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝¹¹ : CommSemiring R
inst✝¹⁰ : CommSemiring R₂
inst✝⁹ : AddCommMonoid M
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : Module R M
inst✝⁶ : Module R₂ M₂
inst✝⁵ : AddCommMonoid N
inst✝⁴ : AddCommMonoid N₂
inst✝³ : Module R N
inst✝² : Module R N₂
τ₁₂ : R →+* R₂
τ₂₁ : R₂ →+* R
inst✝¹ : RingHomInvPair τ₁₂ τ₂₁
inst✝ : RingHomInvPair τ₂₁ τ₁₂
p : Submodule R M
q : Submodule R₂ M₂
pₗ : Submodule R N
qₗ : Submodule R N₂
c : R
fₗ : N →ₗ[R] N₂
h : pₗ ≤ comap fₗ qₗ
⊢ c • fₗ ∈
{
toAddSubsemigroup :=
{ carrier := {fₗ | pₗ ≤ comap fₗ qₗ},
add_mem' :=
(_ :
∀ {f₁ f₂ : N →ₗ[R] N₂},
f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) },
zero_mem' := (_ : pₗ ≤ comap 0 qₗ) }.toAddSubsemigroup.carrier
[PROOFSTEP]
exact le_trans h (comap_le_comap_smul qₗ fₗ c)
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
⊢ Surjective ↑(funLeft R M f)
[PROOFSTEP]
classical
intro g
refine' ⟨fun x => if h : ∃ y, f y = x then g h.choose else 0, _⟩
· ext
dsimp only [funLeft_apply]
split_ifs with w
· congr
exact hf w.choose_spec
· simp only [not_true, exists_apply_eq_apply] at w
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
⊢ Surjective ↑(funLeft R M f)
[PROOFSTEP]
intro g
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
⊢ ∃ a, ↑(funLeft R M f) a = g
[PROOFSTEP]
refine' ⟨fun x => if h : ∃ y, f y = x then g h.choose else 0, _⟩
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
⊢ (↑(funLeft R M f) fun x => if h : ∃ y, f y = x then g (Exists.choose h) else 0) = g
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
x✝ : m
⊢ ↑(funLeft R M f) (fun x => if h : ∃ y, f y = x then g (Exists.choose h) else 0) x✝ = g x✝
[PROOFSTEP]
dsimp only [funLeft_apply]
[GOAL]
case h
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
x✝ : m
⊢ (if h : ∃ y, f y = f x✝ then g (Exists.choose h) else 0) = g x✝
[PROOFSTEP]
split_ifs with w
[GOAL]
case pos
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
x✝ : m
w : ∃ y, f y = f x✝
⊢ g (Exists.choose w) = g x✝
[PROOFSTEP]
congr
[GOAL]
case pos.e_a
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
x✝ : m
w : ∃ y, f y = f x✝
⊢ Exists.choose w = x✝
[PROOFSTEP]
exact hf w.choose_spec
[GOAL]
case neg
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Injective f
g : m → M
x✝ : m
w : ¬∃ y, f y = f x✝
⊢ 0 = g x✝
[PROOFSTEP]
simp only [not_true, exists_apply_eq_apply] at w
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Surjective f
⊢ Injective ↑(funLeft R M f)
[PROOFSTEP]
obtain ⟨g, hg⟩ := hf.hasRightInverse
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Surjective f
g : n → m
hg : Function.RightInverse g f
⊢ Injective ↑(funLeft R M f)
[PROOFSTEP]
suffices LeftInverse (funLeft R M g) (funLeft R M f) by exact this.injective
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Surjective f
g : n → m
hg : Function.RightInverse g f
this : LeftInverse ↑(funLeft R M g) ↑(funLeft R M f)
⊢ Injective ↑(funLeft R M f)
[PROOFSTEP]
exact this.injective
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Surjective f
g : n → m
hg : Function.RightInverse g f
⊢ LeftInverse ↑(funLeft R M g) ↑(funLeft R M f)
[PROOFSTEP]
intro x
[GOAL]
case intro
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
f : m → n
hf : Surjective f
g : n → m
hg : Function.RightInverse g f
x : n → M
⊢ ↑(funLeft R M g) (↑(funLeft R M f) x) = x
[PROOFSTEP]
rw [← LinearMap.comp_apply, ← funLeft_comp, hg.id, funLeft_id]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
e : m ≃ n
x : m → M
i : m
⊢ ↑(LinearMap.comp (funLeft R M ↑e) (funLeft R M ↑e.symm)) x i = ↑LinearMap.id x i
[PROOFSTEP]
rw [id_apply, ← funLeft_comp, Equiv.symm_comp_self, LinearMap.funLeft_id]
[GOAL]
R : Type u_1
R₁ : Type u_2
R₂ : Type u_3
R₃ : Type u_4
R₄ : Type u_5
S : Type u_6
K : Type u_7
K₂ : Type u_8
M : Type u_9
M' : Type u_10
M₁ : Type u_11
M₂ : Type u_12
M₃ : Type u_13
M₄ : Type u_14
N : Type u_15
N₂ : Type u_16
ι : Type u_17
V : Type u_18
V₂ : Type u_19
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : Type u_20
n : Type u_21
p : Type u_22
e : m ≃ n
x : n → M
i : n
⊢ ↑(LinearMap.comp (funLeft R M ↑e.symm) (funLeft R M ↑e)) x i = ↑LinearMap.id x i
[PROOFSTEP]
rw [id_apply, ← funLeft_comp, Equiv.self_comp_symm, LinearMap.funLeft_id]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Basic", "llama_tokens": 192002} |
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
l : List M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
⊢ ↑(↑(foldr Q f hf) n) (List.prod (List.map (↑(ι Q)) l)) = List.foldr (fun m n => ↑(↑f m) n) n l
[PROOFSTEP]
induction' l with hd tl ih
[GOAL]
case nil
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
⊢ ↑(↑(foldr Q f hf) n) (List.prod (List.map ↑(ι Q) [])) = List.foldr (fun m n => ↑(↑f m) n) n []
[PROOFSTEP]
rw [List.map_nil, List.prod_nil, List.foldr_nil, foldr_one]
[GOAL]
case cons
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
hd : M
tl : List M
ih : ↑(↑(foldr Q f hf) n) (List.prod (List.map (↑(ι Q)) tl)) = List.foldr (fun m n => ↑(↑f m) n) n tl
⊢ ↑(↑(foldr Q f hf) n) (List.prod (List.map (↑(ι Q)) (hd :: tl))) = List.foldr (fun m n => ↑(↑f m) n) n (hd :: tl)
[PROOFSTEP]
rw [List.map_cons, List.prod_cons, List.foldr_cons, foldr_mul, foldr_ι, ih]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
m : M
⊢ ↑(↑(foldl Q f hf) n) (↑(ι Q) m) = ↑(↑f m) n
[PROOFSTEP]
rw [← foldr_reverse, reverse_ι, foldr_ι]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
r : R
⊢ ↑(↑(foldl Q f hf) n) (↑(algebraMap R (CliffordAlgebra Q)) r) = r • n
[PROOFSTEP]
rw [← foldr_reverse, reverse.commutes, foldr_algebraMap]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
⊢ ↑(↑(foldl Q f hf) n) 1 = n
[PROOFSTEP]
rw [← foldr_reverse, reverse.map_one, foldr_one]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
a b : CliffordAlgebra Q
⊢ ↑(↑(foldl Q f hf) n) (a * b) = ↑(↑(foldl Q f hf) (↑(↑(foldl Q f hf) n) a)) b
[PROOFSTEP]
rw [← foldr_reverse, ← foldr_reverse, ← foldr_reverse, reverse.map_mul, foldr_mul]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
l : List M
f : M →ₗ[R] N →ₗ[R] N
hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x
n : N
⊢ ↑(↑(foldl Q f hf) n) (List.prod (List.map (↑(ι Q)) l)) = List.foldl (fun m n => ↑(↑f n) m) n l
[PROOFSTEP]
rw [← foldr_reverse, reverse_prod_map_ι, ← List.map_reverse, foldr_prod_map_ι, List.foldr_reverse]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
⊢ ∀ (x : CliffordAlgebra Q), P x
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x : CliffordAlgebra Q
⊢ P x
[PROOFSTEP]
have : x ∈ ⊤ := Submodule.mem_top (R := R)
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x : CliffordAlgebra Q
this : x ∈ ⊤
⊢ P x
[PROOFSTEP]
rw [← iSup_ι_range_eq_top] at this
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x : CliffordAlgebra Q
this : x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i
⊢ P x
[PROOFSTEP]
induction this using Submodule.iSup_induction' with
-- _ this (fun i x hx => ?_) _ h_add
| hp i x hx =>
induction hx using Submodule.pow_induction_on_right' with
| hr r => exact hr r
| hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy
| hmul _i x _hx px m hm =>
obtain ⟨m, rfl⟩ := hm
exact h_ι_mul _ _ px
| h0 => simpa only [map_zero] using hr 0
| hadd _x _y _ _ ihx ihy => exact h_add _ _ ihx ihy
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x : CliffordAlgebra Q
this : x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i
⊢ P x
[PROOFSTEP]
induction this using Submodule.iSup_induction' with
-- _ this (fun i x hx => ?_) _ h_add
| hp i x hx =>
induction hx using Submodule.pow_induction_on_right' with
| hr r => exact hr r
| hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy
| hmul _i x _hx px m hm =>
obtain ⟨m, rfl⟩ := hm
exact h_ι_mul _ _ px
| h0 => simpa only [map_zero] using hr 0
| hadd _x _y _ _ ihx ihy => exact h_add _ _ ihx ihy
[GOAL]
case hp
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x : CliffordAlgebra Q
hx : x ∈ LinearMap.range (ι Q) ^ i
⊢ P x
[PROOFSTEP]
| hp i x hx =>
induction hx using Submodule.pow_induction_on_right' with
| hr r => exact hr r
| hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy
| hmul _i x _hx px m hm =>
obtain ⟨m, rfl⟩ := hm
exact h_ι_mul _ _ px
[GOAL]
case hp
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x : CliffordAlgebra Q
hx : x ∈ LinearMap.range (ι Q) ^ i
⊢ P x
[PROOFSTEP]
induction hx using Submodule.pow_induction_on_right' with
| hr r => exact hr r
| hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy
| hmul _i x _hx px m hm =>
obtain ⟨m, rfl⟩ := hm
exact h_ι_mul _ _ px
[GOAL]
case hp
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x : CliffordAlgebra Q
hx : x ∈ LinearMap.range (ι Q) ^ i
⊢ P x
[PROOFSTEP]
induction hx using Submodule.pow_induction_on_right' with
| hr r => exact hr r
| hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy
| hmul _i x _hx px m hm =>
obtain ⟨m, rfl⟩ := hm
exact h_ι_mul _ _ px
[GOAL]
case hp.hr
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x : CliffordAlgebra Q
r : R
⊢ P (↑(algebraMap R (CliffordAlgebra Q)) r)
[PROOFSTEP]
| hr r => exact hr r
[GOAL]
case hp.hr
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x : CliffordAlgebra Q
r : R
⊢ P (↑(algebraMap R (CliffordAlgebra Q)) r)
[PROOFSTEP]
exact hr r
[GOAL]
case hp.hadd
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x _x _y : CliffordAlgebra Q
_i : ℕ
hx✝ : _x ∈ LinearMap.range (ι Q) ^ _i
hy✝ : _y ∈ LinearMap.range (ι Q) ^ _i
ihx : P _x
ihy : P _y
⊢ P (_x + _y)
[PROOFSTEP]
| hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy
[GOAL]
case hp.hadd
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝ : CliffordAlgebra Q
i : ℕ
x _x _y : CliffordAlgebra Q
_i : ℕ
hx✝ : _x ∈ LinearMap.range (ι Q) ^ _i
hy✝ : _y ∈ LinearMap.range (ι Q) ^ _i
ihx : P _x
ihy : P _y
⊢ P (_x + _y)
[PROOFSTEP]
exact h_add _ _ ihx ihy
[GOAL]
case hp.hmul
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝¹ : CliffordAlgebra Q
i : ℕ
x✝ : CliffordAlgebra Q
_i : ℕ
x : CliffordAlgebra Q
_hx : x ∈ LinearMap.range (ι Q) ^ _i
px : P x
m : CliffordAlgebra Q
hm : m ∈ LinearMap.range (ι Q)
⊢ P (x * m)
[PROOFSTEP]
| hmul _i x _hx px m hm =>
obtain ⟨m, rfl⟩ := hm
exact h_ι_mul _ _ px
[GOAL]
case hp.hmul
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝¹ : CliffordAlgebra Q
i : ℕ
x✝ : CliffordAlgebra Q
_i : ℕ
x : CliffordAlgebra Q
_hx : x ∈ LinearMap.range (ι Q) ^ _i
px : P x
m : CliffordAlgebra Q
hm : m ∈ LinearMap.range (ι Q)
⊢ P (x * m)
[PROOFSTEP]
obtain ⟨m, rfl⟩ := hm
[GOAL]
case hp.hmul.intro
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x✝¹ : CliffordAlgebra Q
i : ℕ
x✝ : CliffordAlgebra Q
_i : ℕ
x : CliffordAlgebra Q
_hx : x ∈ LinearMap.range (ι Q) ^ _i
px : P x
m : M
⊢ P (x * ↑(ι Q) m)
[PROOFSTEP]
exact h_ι_mul _ _ px
[GOAL]
case h0
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x : CliffordAlgebra Q
⊢ P 0
[PROOFSTEP]
| h0 => simpa only [map_zero] using hr 0
[GOAL]
case h0
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x : CliffordAlgebra Q
⊢ P 0
[PROOFSTEP]
simpa only [map_zero] using hr 0
[GOAL]
case hadd
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x _x _y : CliffordAlgebra Q
hx✝ : _x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i
hy✝ : _y ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i
ihx : P _x
ihy : P _y
⊢ P (_x + _y)
[PROOFSTEP]
| hadd _x _y _ _ ihx ihy => exact h_add _ _ ihx ihy
[GOAL]
case hadd
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m)
x _x _y : CliffordAlgebra Q
hx✝ : _x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i
hy✝ : _y ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i
ihx : P _x
ihy : P _y
⊢ P (_x + _y)
[PROOFSTEP]
exact h_add _ _ ihx ihy
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x)
⊢ ∀ (x : CliffordAlgebra Q), P x
[PROOFSTEP]
refine' reverse_involutive.surjective.forall.2 _
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x)
⊢ ∀ (x : CliffordAlgebra Q), P (↑reverse x)
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x)
x : CliffordAlgebra Q
⊢ P (↑reverse x)
[PROOFSTEP]
induction' x using CliffordAlgebra.right_induction with r x y hx hy m x hx
[GOAL]
case hr
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x)
r : R
⊢ P (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r))
[PROOFSTEP]
simpa only [reverse.commutes] using hr r
[GOAL]
case h_add
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x)
x y : CliffordAlgebra Q
hx : P (↑reverse x)
hy : P (↑reverse y)
⊢ P (↑reverse (x + y))
[PROOFSTEP]
simpa only [map_add] using h_add _ _ hx hy
[GOAL]
case h_ι_mul
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
P : CliffordAlgebra Q → Prop
hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r)
h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y)
h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x)
m : M
x : CliffordAlgebra Q
hx : P (↑reverse x)
⊢ P (↑reverse (x * ↑(ι Q) m))
[PROOFSTEP]
simpa only [reverse.map_mul, reverse_ι] using h_mul_ι _ _ hx
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
⊢ M →ₗ[R] Module.End R (CliffordAlgebra Q × N)
[PROOFSTEP]
have v_mul := (Algebra.lmul R (CliffordAlgebra Q)).toLinearMap ∘ₗ ι Q
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
v_mul : M →ₗ[R] Module.End R (CliffordAlgebra Q)
⊢ M →ₗ[R] Module.End R (CliffordAlgebra Q × N)
[PROOFSTEP]
have l := v_mul.compl₂ (LinearMap.fst _ _ N)
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
v_mul : M →ₗ[R] Module.End R (CliffordAlgebra Q)
l : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] CliffordAlgebra Q
⊢ M →ₗ[R] Module.End R (CliffordAlgebra Q × N)
[PROOFSTEP]
exact
{ toFun := fun m => (l m).prod (f m)
map_add' := fun v₂ v₂ =>
LinearMap.ext fun x => Prod.ext (LinearMap.congr_fun (l.map_add _ _) x) (LinearMap.congr_fun (f.map_add _ _) x)
map_smul' := fun c v =>
LinearMap.ext fun x =>
Prod.ext (LinearMap.congr_fun (l.map_smul _ _) x) (LinearMap.congr_fun (f.map_smul _ _) x) }
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
v : M
x_fx : CliffordAlgebra Q × N
⊢ ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx
[PROOFSTEP]
cases' x_fx with x fx
[GOAL]
case mk
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
v : M
x : CliffordAlgebra Q
fx : N
⊢ ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) (x, fx)) = ↑Q v • (x, fx)
[PROOFSTEP]
simp only [foldr'Aux_apply_apply]
[GOAL]
case mk
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
v : M
x : CliffordAlgebra Q
fx : N
⊢ (↑(ι Q) v * (↑(ι Q) v * x), ↑(↑f v) (↑(ι Q) v * x, ↑(↑f v) (x, fx))) = ↑Q v • (x, fx)
[PROOFSTEP]
rw [← mul_assoc, ι_sq_scalar, ← Algebra.smul_def, hf, Prod.smul_mk]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
x : CliffordAlgebra Q
⊢ ↑(foldr' Q f hf n) (↑(ι Q) m * x) = ↑(↑f m) (x, ↑(foldr' Q f hf n) x)
[PROOFSTEP]
dsimp [foldr']
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
x : CliffordAlgebra Q
⊢ (↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
(↑(ι Q) m * x)).snd =
↑(↑f m)
(x,
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).snd)
[PROOFSTEP]
rw [foldr_mul, foldr_ι, foldr'Aux_apply_apply]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
x : CliffordAlgebra Q
⊢ (↑(ι Q) m *
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).fst,
↑(↑f m)
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x)).snd =
↑(↑f m)
(x,
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).snd)
[PROOFSTEP]
refine' congr_arg (f m) (Prod.mk.eta.symm.trans _)
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
x : CliffordAlgebra Q
⊢ ((↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).fst,
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).snd) =
(x,
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).snd)
[PROOFSTEP]
congr 1
[GOAL]
case e_fst
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
x : CliffordAlgebra Q
⊢ (↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).fst =
x
[PROOFSTEP]
induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx
[GOAL]
case e_fst.hr
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
r : R
⊢ (↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
(↑(algebraMap R (CliffordAlgebra Q)) r)).fst =
↑(algebraMap R (CliffordAlgebra Q)) r
[PROOFSTEP]
simp_rw [foldr_algebraMap, Prod.smul_mk, Algebra.algebraMap_eq_smul_one]
[GOAL]
case e_fst.h_add
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m : M
x y : CliffordAlgebra Q
hx :
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
x).fst =
x
hy :
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
y).fst =
y
⊢ (↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
(x + y)).fst =
x + y
[PROOFSTEP]
rw [map_add, Prod.fst_add, hx, hy]
[GOAL]
case e_fst.h_mul_ι
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
Q : QuadraticForm R M
f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N
hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx
n : N
m✝ : M
m : CliffordAlgebra Q
x : M
hx :
(↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
m).fst =
m
⊢ (↑(↑(foldr Q (foldr'Aux Q f)
(_ :
∀ (v : M) (x_fx : CliffordAlgebra Q × N),
↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx))
(1, n))
(↑(ι Q) x * m)).fst =
↑(ι Q) x * m
[PROOFSTEP]
rw [foldr_mul, foldr_ι, foldr'Aux_apply_apply, hx]
| {"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Fold", "llama_tokens": 14319} |
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
ha : a ≤ a'
hr : r ≤ 1
⊢ ↑(lineMap a b) r ≤ ↑(lineMap a' b) r
[PROOFSTEP]
simp only [lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
ha : a ≤ a'
hr : r ≤ 1
⊢ (1 - r) • a + r • b ≤ (1 - r) • a' + r • b
[PROOFSTEP]
exact add_le_add_right (smul_le_smul_of_nonneg ha (sub_nonneg.2 hr)) _
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
ha : a < a'
hr : r < 1
⊢ ↑(lineMap a b) r < ↑(lineMap a' b) r
[PROOFSTEP]
simp only [lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
ha : a < a'
hr : r < 1
⊢ (1 - r) • a + r • b < (1 - r) • a' + r • b
[PROOFSTEP]
exact add_lt_add_right (smul_lt_smul_of_pos ha (sub_pos.2 hr)) _
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
hb : b ≤ b'
hr : 0 ≤ r
⊢ ↑(lineMap a b) r ≤ ↑(lineMap a b') r
[PROOFSTEP]
simp only [lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
hb : b ≤ b'
hr : 0 ≤ r
⊢ (1 - r) • a + r • b ≤ (1 - r) • a + r • b'
[PROOFSTEP]
exact add_le_add_left (smul_le_smul_of_nonneg hb hr) _
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
hb : b < b'
hr : 0 < r
⊢ ↑(lineMap a b) r < ↑(lineMap a b') r
[PROOFSTEP]
simp only [lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
hb : b < b'
hr : 0 < r
⊢ (1 - r) • a + r • b < (1 - r) • a + r • b'
[PROOFSTEP]
exact add_lt_add_left (smul_lt_smul_of_pos hb hr) _
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
ha : a < a'
hb : b < b'
h₀ : 0 ≤ r
h₁ : r ≤ 1
⊢ ↑(lineMap a b) r < ↑(lineMap a' b') r
[PROOFSTEP]
rcases h₀.eq_or_lt with (rfl | h₀)
[GOAL]
case inl
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r' : k
ha : a < a'
hb : b < b'
h₀ : 0 ≤ 0
h₁ : 0 ≤ 1
⊢ ↑(lineMap a b) 0 < ↑(lineMap a' b') 0
[PROOFSTEP]
simpa
[GOAL]
case inr
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
ha : a < a'
hb : b < b'
h₀✝ : 0 ≤ r
h₁ : r ≤ 1
h₀ : 0 < r
⊢ ↑(lineMap a b) r < ↑(lineMap a' b') r
[PROOFSTEP]
exact (lineMap_mono_left ha.le h₁).trans_lt (lineMap_strict_mono_right hb h₀)
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
h : r < r'
⊢ ↑(lineMap a b) r < ↑(lineMap a b) r' ↔ a < b
[PROOFSTEP]
simp only [lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
h : r < r'
⊢ (1 - r) • a + r • b < (1 - r') • a + r' • b ↔ a < b
[PROOFSTEP]
rw [← lt_sub_iff_add_lt, add_sub_assoc, ← sub_lt_iff_lt_add', ← sub_smul, ← sub_smul, sub_sub_sub_cancel_left,
smul_lt_smul_iff_of_pos (sub_pos.2 h)]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
h : 0 < r
⊢ a < ↑(lineMap a b) r ↔ ↑(lineMap a b) 0 < ↑(lineMap a b) r
[PROOFSTEP]
rw [lineMap_apply_zero]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b b' : E
r r' : k
h : r < 1
⊢ ↑(lineMap a b) r < b ↔ ↑(lineMap a b) r < ↑(lineMap a b) 1
[PROOFSTEP]
rw [lineMap_apply_one]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a b : E
r r' : k
h : r < r'
⊢ ↑(lineMap a b) r ≤ ↑(lineMap a b) r' ↔ a ≤ b
[PROOFSTEP]
simp only [lineMap_apply_module]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a b : E
r r' : k
h : r < r'
⊢ (1 - r) • a + r • b ≤ (1 - r') • a + r' • b ↔ a ≤ b
[PROOFSTEP]
rw [← le_sub_iff_add_le, add_sub_assoc, ← sub_le_iff_le_add', ← sub_smul, ← sub_smul, sub_sub_sub_cancel_left,
smul_le_smul_iff_of_pos (sub_pos.2 h)]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a b : E
r r' : k
h : 0 < r
⊢ a ≤ ↑(lineMap a b) r ↔ ↑(lineMap a b) 0 ≤ ↑(lineMap a b) r
[PROOFSTEP]
rw [lineMap_apply_zero]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a b : E
r r' : k
h : r < 1
⊢ ↑(lineMap a b) r ≤ b ↔ ↑(lineMap a b) r ≤ ↑(lineMap a b) 1
[PROOFSTEP]
rw [lineMap_apply_one]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r : k
h : 0 < r * (b - a)
⊢ f (↑(lineMap a b) r) ≤ ↑(lineMap (f a) (f b)) r ↔ slope f a (↑(lineMap a b) r) ≤ slope f a b
[PROOFSTEP]
rw [lineMap_apply, lineMap_apply, slope, slope, vsub_eq_sub, vsub_eq_sub, vsub_eq_sub, vadd_eq_add, vadd_eq_add,
smul_eq_mul, add_sub_cancel, smul_sub, smul_sub, smul_sub, sub_le_iff_le_add, mul_inv_rev, mul_smul, mul_smul, ←
smul_sub, ← smul_sub, ← smul_add, smul_smul, ← mul_inv_rev, inv_smul_le_iff h, smul_smul,
mul_inv_cancel_right₀ (right_ne_zero_of_mul h.ne'), smul_add, smul_inv_smul₀ (left_ne_zero_of_mul h.ne')]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r : k
h : 0 < (1 - r) * (b - a)
⊢ f (↑(lineMap a b) r) ≤ ↑(lineMap (f a) (f b)) r ↔ slope f a b ≤ slope f (↑(lineMap a b) r) b
[PROOFSTEP]
rw [← lineMap_apply_one_sub, ← lineMap_apply_one_sub _ _ r]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r : k
h : 0 < (1 - r) * (b - a)
⊢ f (↑(lineMap b a) (1 - r)) ≤ ↑(lineMap (f b) (f a)) (1 - r) ↔ slope f a b ≤ slope f (↑(lineMap b a) (1 - r)) b
[PROOFSTEP]
revert h
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r : k
⊢ 0 < (1 - r) * (b - a) →
(f (↑(lineMap b a) (1 - r)) ≤ ↑(lineMap (f b) (f a)) (1 - r) ↔ slope f a b ≤ slope f (↑(lineMap b a) (1 - r)) b)
[PROOFSTEP]
generalize 1 - r = r'
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r r' : k
⊢ 0 < r' * (b - a) → (f (↑(lineMap b a) r') ≤ ↑(lineMap (f b) (f a)) r' ↔ slope f a b ≤ slope f (↑(lineMap b a) r') b)
[PROOFSTEP]
clear! r
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r' : k
⊢ 0 < r' * (b - a) → (f (↑(lineMap b a) r') ≤ ↑(lineMap (f b) (f a)) r' ↔ slope f a b ≤ slope f (↑(lineMap b a) r') b)
[PROOFSTEP]
intro h
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r' : k
h : 0 < r' * (b - a)
⊢ f (↑(lineMap b a) r') ≤ ↑(lineMap (f b) (f a)) r' ↔ slope f a b ≤ slope f (↑(lineMap b a) r') b
[PROOFSTEP]
simp_rw [lineMap_apply, slope, vsub_eq_sub, vadd_eq_add, smul_eq_mul]
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r' : k
h : 0 < r' * (b - a)
⊢ f (r' * (a - b) + b) ≤ r' • (f a - f b) + f b ↔
(b - a)⁻¹ • (f b - f a) ≤ (b - (r' * (a - b) + b))⁻¹ • (f b - f (r' * (a - b) + b))
[PROOFSTEP]
rw [sub_add_eq_sub_sub_swap, sub_self, zero_sub, neg_mul_eq_mul_neg, neg_sub, le_inv_smul_iff h, smul_smul,
mul_inv_cancel_right₀, le_sub_comm, ← neg_sub (f b), smul_neg, neg_add_eq_sub]
[GOAL]
case h
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r' : k
h : 0 < r' * (b - a)
⊢ b - a ≠ 0
[PROOFSTEP]
exact right_ne_zero_of_mul h.ne'
[GOAL]
k : Type u_1
E : Type u_2
PE : Type u_3
inst✝³ : LinearOrderedField k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
f : k → E
a b r : k
hab : a < b
h₀ : 0 < r
h₁ : r < 1
⊢ f (↑(lineMap a b) r) ≤ ↑(lineMap (f a) (f b)) r ↔ slope f a (↑(lineMap a b) r) ≤ slope f (↑(lineMap a b) r) b
[PROOFSTEP]
rw [map_le_lineMap_iff_slope_le_slope_left (mul_pos h₀ (sub_pos.2 hab)), ← lineMap_slope_lineMap_slope_lineMap f a b r,
right_le_lineMap_iff_le h₁]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Ordered", "llama_tokens": 5152} |
[GOAL]
K : Type v
V : Type w
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : IsAlgClosed K
inst✝¹ : FiniteDimensional K V
inst✝ : Nontrivial V
f : End K V
⊢ ∃ c, HasEigenvalue f c
[PROOFSTEP]
simp_rw [hasEigenvalue_iff_mem_spectrum]
[GOAL]
K : Type v
V : Type w
inst✝⁵ : Field K
inst✝⁴ : AddCommGroup V
inst✝³ : Module K V
inst✝² : IsAlgClosed K
inst✝¹ : FiniteDimensional K V
inst✝ : Nontrivial V
f : End K V
⊢ ∃ c, c ∈ spectrum K f
[PROOFSTEP]
exact spectrum.nonempty_of_isAlgClosed_of_finiteDimensional K f
[GOAL]
K : Type v
V : Type w
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
inst✝¹ : IsAlgClosed K
inst✝ : FiniteDimensional K V
f : End K V
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
induction' h_dim : finrank K V using Nat.strong_induction_on with n ih generalizing V
[GOAL]
case h
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
n : ℕ
ih :
∀ (m : ℕ),
m < n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
h_dim : finrank K V = n
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
cases' n with n
[GOAL]
case h.zero
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
ih :
∀ (m : ℕ),
m < Nat.zero →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.zero
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
rw [← top_le_iff]
[GOAL]
case h.zero
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
ih :
∀ (m : ℕ),
m < Nat.zero →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.zero
⊢ ⊤ ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
[PROOFSTEP]
simp only [finrank_eq_zero.1 (Eq.trans (finrank_top _ _) h_dim), bot_le]
-- Otherwise the vector space is nontrivial.
[GOAL]
case h.succ
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
haveI : Nontrivial V :=
finrank_pos_iff.1
(by rw [h_dim]; apply Nat.zero_lt_succ)
-- Hence, `f` has an eigenvalue `μ₀`.
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
⊢ 0 < finrank ?m.10065 V
[PROOFSTEP]
rw [h_dim]
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
⊢ 0 < Nat.succ n
[PROOFSTEP]
apply Nat.zero_lt_succ
[GOAL]
case h.succ
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
obtain ⟨μ₀, hμ₀⟩ : ∃ μ₀, f.HasEigenvalue μ₀ := exists_eigenvalue f
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
let ES :=
f.generalizedEigenspace μ₀
(finrank K V)
-- and `ER` to be the generalized eigenrange.
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
let ER :=
f.generalizedEigenrange μ₀
(finrank K V)
-- `f` maps `ER` into itself.
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have h_f_ER : ∀ x : V, x ∈ ER → f x ∈ ER := fun x hx =>
map_generalizedEigenrange_le
(Submodule.mem_map_of_mem hx)
-- Therefore, we can define the restriction `f'` of `f` to `ER`.
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
let f' : End K ER := f.restrict h_f_ER
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have h_dim_ES_pos : 0 < finrank K ES := by
dsimp only
rw [h_dim]
apply
pos_finrank_generalizedEigenspace_of_hasEigenvalue hμ₀
(Nat.zero_lt_succ n)
-- and the dimensions of `ES` and `ER` add up to `finrank K V`.
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
⊢ 0 < finrank K { x // x ∈ ES }
[PROOFSTEP]
dsimp only
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
⊢ 0 < finrank K { x // x ∈ ↑(generalizedEigenspace f μ₀) (finrank K V) }
[PROOFSTEP]
rw [h_dim]
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
⊢ 0 < finrank K { x // x ∈ ↑(generalizedEigenspace f μ₀) (Nat.succ n) }
[PROOFSTEP]
apply
pos_finrank_generalizedEigenspace_of_hasEigenvalue hμ₀
(Nat.zero_lt_succ n)
-- and the dimensions of `ES` and `ER` add up to `finrank K V`.
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have h_dim_add : finrank K ER + finrank K ES = finrank K V := by apply LinearMap.finrank_range_add_finrank_ker
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
⊢ finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
[PROOFSTEP]
apply LinearMap.finrank_range_add_finrank_ker
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have h_dim_ER : finrank K ER < n.succ := by
linarith
-- This allows us to apply the induction hypothesis on `ER`:
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
⊢ finrank K { x // x ∈ ER } < Nat.succ n
[PROOFSTEP]
linarith
-- This allows us to apply the induction hypothesis on `ER`:
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have ih_ER : ⨆ (μ : K) (k : ℕ), f'.generalizedEigenspace μ k = ⊤ := ih (finrank K ER) h_dim_ER f' rfl
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have ih_ER' : ⨆ (μ : K) (k : ℕ), (f'.generalizedEigenspace μ k).map ER.subtype = ER := by
simp only [(Submodule.map_iSup _ _).symm, ih_ER, Submodule.map_subtype_top ER]
-- Moreover, every generalized eigenspace of `f'` is contained in the corresponding generalized
-- eigenspace of `f`.
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
⊢ ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
[PROOFSTEP]
simp only [(Submodule.map_iSup _ _).symm, ih_ER, Submodule.map_subtype_top ER]
-- Moreover, every generalized eigenspace of `f'` is contained in the corresponding generalized
-- eigenspace of `f`.
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have hff' : ∀ μ k, (f'.generalizedEigenspace μ k).map ER.subtype ≤ f.generalizedEigenspace μ k :=
by
intros
rw [generalizedEigenspace_restrict]
apply Submodule.map_comap_le
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
⊢ ∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
[PROOFSTEP]
intros
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
μ✝ : K
k✝ : ℕ
⊢ Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ✝) k✝) ≤ ↑(generalizedEigenspace f μ✝) k✝
[PROOFSTEP]
rw [generalizedEigenspace_restrict]
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
μ✝ : K
k✝ : ℕ
⊢ Submodule.map (Submodule.subtype ER) (Submodule.comap (Submodule.subtype ER) (↑(generalizedEigenspace f μ✝) k✝)) ≤
↑(generalizedEigenspace f μ✝) k✝
[PROOFSTEP]
apply Submodule.map_comap_le
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have hER : ER ≤ ⨆ (μ : K) (k : ℕ), f.generalizedEigenspace μ k :=
by
rw [← ih_ER']
exact iSup₂_mono hff'
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
⊢ ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
[PROOFSTEP]
rw [← ih_ER']
[GOAL]
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
⊢ ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤
⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
[PROOFSTEP]
exact iSup₂_mono hff'
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have hES : ES ≤ ⨆ (μ : K) (k : ℕ), f.generalizedEigenspace μ k :=
le_trans (le_iSup (fun k => f.generalizedEigenspace μ₀ k) (finrank K V))
(le_iSup (fun μ : K => ⨆ k : ℕ, f.generalizedEigenspace μ k) μ₀)
-- Moreover, we know that `ER` and `ES` are disjoint.
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
have h_disjoint : Disjoint ER ES := generalized_eigenvec_disjoint_range_ker f μ₀
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
h_disjoint : Disjoint ER ES
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
show ⨆ (μ : K) (k : ℕ), f.generalizedEigenspace μ k = ⊤
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
h_disjoint : Disjoint ER ES
⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
[PROOFSTEP]
rw [← top_le_iff, ← Submodule.eq_top_of_disjoint ER ES h_dim_add h_disjoint]
[GOAL]
case h.succ.intro
K : Type v
V✝ : Type w
inst✝⁷ : Field K
inst✝⁶ : AddCommGroup V✝
inst✝⁵ : Module K V✝
inst✝⁴ : IsAlgClosed K
inst✝³ : FiniteDimensional K V✝
f✝ : End K V✝
x✝ : ℕ
h_dim✝ : finrank K V✝ = x✝
V : Type w
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
n : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ n →
∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V),
finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤
h_dim : finrank K V = Nat.succ n
this : Nontrivial V
μ₀ : K
hμ₀ : HasEigenvalue f μ₀
ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V)
ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V)
h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER
f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER
h_dim_ES_pos : 0 < finrank K { x // x ∈ ES }
h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V
h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n
ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤
ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER
hff' :
∀ (μ : K) (k : ℕ),
Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k
hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
h_disjoint : Disjoint ER ES
⊢ ER ⊔ ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k
[PROOFSTEP]
apply sup_le hER hES
| {"mathlib_filename": "Mathlib.LinearAlgebra.Eigenspace.IsAlgClosed", "llama_tokens": 19866} |
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1
[PROOFSTEP]
simpa only [pow_one] using LinearMap.mem_range_self _ m
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1
[PROOFSTEP]
simpa only [pow_one] using LinearMap.mem_range_self _ m
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑(GradedAlgebra.ι R M) m * ↑(GradedAlgebra.ι R M) m = 0
[PROOFSTEP]
rw [GradedAlgebra.ι_apply, DirectSum.of_mul_of]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (1 + 1))
(GradedMonoid.GMul.mul { val := ↑(ι R) m, property := (_ : ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1) }
{ val := ↑(ι R) m, property := (_ : ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1) }) =
0
[PROOFSTEP]
refine DFinsupp.single_eq_zero.mpr (Subtype.ext <| ExteriorAlgebra.ι_sq_zero _)
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ M →ₗ[R] ⨁ (i : ℕ), { x // x ∈ LinearMap.range (ι R) ^ i }
[PROOFSTEP]
apply GradedAlgebra.ι R M
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : { x // x ∈ LinearMap.range (ι R) ^ i }
⊢ ↑(liftι R M) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) x
[PROOFSTEP]
cases' x with x hx
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
hx : x ∈ LinearMap.range (ι R) ^ i
⊢ ↑(liftι R M) ↑{ val := x, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) { val := x, property := hx }
[PROOFSTEP]
dsimp only [Subtype.coe_mk, DirectSum.lof_eq_of]
-- Porting note: original statement was
-- refine Submodule.pow_induction_on_left' _ (fun r => ?_) (fun x y i hx hy ihx ihy => ?_)
-- (fun m hm i x hx ih => ?_) hx
-- but it created invalid goals
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
hx : x ∈ LinearMap.range (ι R) ^ i
⊢ ↑(liftι R M) x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) { val := x, property := hx }
[PROOFSTEP]
induction hx using Submodule.pow_induction_on_left' with
| hr => simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]; rfl
| hadd _ _ _ _ _ ihx ihy => simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]; rfl
| hmul _ hm _ _ _ ih =>
obtain ⟨_, rfl⟩ := hm
simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of]
exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl)
[GOAL]
case mk
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
hx : x ∈ LinearMap.range (ι R) ^ i
⊢ ↑(liftι R M) x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) { val := x, property := hx }
[PROOFSTEP]
induction hx using Submodule.pow_induction_on_left' with
| hr => simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]; rfl
| hadd _ _ _ _ _ ihx ihy => simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]; rfl
| hmul _ hm _ _ _ ih =>
obtain ⟨_, rfl⟩ := hm
simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of]
exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl)
[GOAL]
case mk.hr
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
r✝ : R
⊢ ↑(liftι R M) (↑(algebraMap R (ExteriorAlgebra R M)) r✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0)
{ val := ↑(algebraMap R (ExteriorAlgebra R M)) r✝,
property := (_ : ↑(algebraMap R (ExteriorAlgebra R M)) r✝ ∈ 1) }
[PROOFSTEP]
| hr => simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]; rfl
[GOAL]
case mk.hr
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
r✝ : R
⊢ ↑(liftι R M) (↑(algebraMap R (ExteriorAlgebra R M)) r✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0)
{ val := ↑(algebraMap R (ExteriorAlgebra R M)) r✝,
property := (_ : ↑(algebraMap R (ExteriorAlgebra R M)) r✝ ∈ 1) }
[PROOFSTEP]
simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]
[GOAL]
case mk.hr
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
r✝ : R
⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0) (↑DirectSum.GAlgebra.toFun r✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0)
{ val := ↑(algebraMap R (ExteriorAlgebra R M)) r✝,
property := (_ : ↑(algebraMap R (ExteriorAlgebra R M)) r✝ ∈ 1) }
[PROOFSTEP]
rfl
[GOAL]
case mk.hadd
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x x✝ y✝ : ExteriorAlgebra R M
i✝ : ℕ
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
hy✝ : y✝ ∈ LinearMap.range (ι R) ^ i✝
ihx :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
ihy :
↑(liftι R M) y✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := y✝, property := hy✝ }
⊢ ↑(liftι R M) (x✝ + y✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝)
{ val := x✝ + y✝, property := (_ : x✝ + y✝ ∈ LinearMap.range (ι R) ^ i✝) }
[PROOFSTEP]
| hadd _ _ _ _ _ ihx ihy => simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]; rfl
[GOAL]
case mk.hadd
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x x✝ y✝ : ExteriorAlgebra R M
i✝ : ℕ
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
hy✝ : y✝ ∈ LinearMap.range (ι R) ^ i✝
ihx :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
ihy :
↑(liftι R M) y✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := y✝, property := hy✝ }
⊢ ↑(liftι R M) (x✝ + y✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝)
{ val := x✝ + y✝, property := (_ : x✝ + y✝ ∈ LinearMap.range (ι R) ^ i✝) }
[PROOFSTEP]
simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]
[GOAL]
case mk.hadd
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x x✝ y✝ : ExteriorAlgebra R M
i✝ : ℕ
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
hy✝ : y✝ ∈ LinearMap.range (ι R) ^ i✝
ihx :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
ihy :
↑(liftι R M) y✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := y✝, property := hy✝ }
⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝)
({ val := x✝, property := hx✝ } + { val := y✝, property := hy✝ }) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝)
{ val := x✝ + y✝, property := (_ : x✝ + y✝ ∈ LinearMap.range (ι R) ^ i✝) }
[PROOFSTEP]
rfl
[GOAL]
case mk.hmul
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x m✝ : ExteriorAlgebra R M
hm : m✝ ∈ LinearMap.range (ι R)
i✝ : ℕ
x✝ : ExteriorAlgebra R M
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
ih :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
⊢ ↑(liftι R M) (m✝ * x✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝))
{ val := m✝ * x✝, property := (_ : m✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) }
[PROOFSTEP]
| hmul _ hm _ _ _ ih =>
obtain ⟨_, rfl⟩ := hm
simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of]
exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl)
[GOAL]
case mk.hmul
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x m✝ : ExteriorAlgebra R M
hm : m✝ ∈ LinearMap.range (ι R)
i✝ : ℕ
x✝ : ExteriorAlgebra R M
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
ih :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
⊢ ↑(liftι R M) (m✝ * x✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝))
{ val := m✝ * x✝, property := (_ : m✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) }
[PROOFSTEP]
obtain ⟨_, rfl⟩ := hm
[GOAL]
case mk.hmul.intro
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
i✝ : ℕ
x✝ : ExteriorAlgebra R M
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
ih :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
w✝ : M
⊢ ↑(liftι R M) (↑(ι R) w✝ * x✝) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝))
{ val := ↑(ι R) w✝ * x✝,
property := (_ : ↑(ι R) w✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) }
[PROOFSTEP]
simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of]
[GOAL]
case mk.hmul.intro
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
i : ℕ
x : ExteriorAlgebra R M
i✝ : ℕ
x✝ : ExteriorAlgebra R M
hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝
ih :
↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ }
w✝ : M
⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (1 + i✝))
(GradedMonoid.GMul.mul { val := ↑(ι R) w✝, property := (_ : ↑(ι R) w✝ ∈ LinearMap.range (ι R) ^ 1) }
{ val := x✝, property := hx✝ }) =
↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝))
{ val := ↑(ι R) w✝ * x✝,
property := (_ : ↑(ι R) w✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) }
[PROOFSTEP]
exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl)
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ ExteriorAlgebra R M →ₐ[R] ⨁ (i : ℕ), { x // x ∈ LinearMap.range (ι R) ^ i }
[PROOFSTEP]
apply GradedAlgebra.liftι R M
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ AlgHom.comp (DirectSum.coeAlgHom fun x => LinearMap.range (ι R) ^ x) (GradedAlgebra.liftι R M) =
AlgHom.id R (ExteriorAlgebra R M)
[PROOFSTEP]
ext m
[GOAL]
case a.h
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑(LinearMap.comp
(AlgHom.toLinearMap
(AlgHom.comp (DirectSum.coeAlgHom fun x => LinearMap.range (ι R) ^ x) (GradedAlgebra.liftι R M)))
(CliffordAlgebra.ι 0))
m =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (ExteriorAlgebra R M))) (CliffordAlgebra.ι 0)) m
[PROOFSTEP]
dsimp only [LinearMap.comp_apply, AlgHom.toLinearMap_apply, AlgHom.comp_apply, AlgHom.id_apply, GradedAlgebra.liftι]
[GOAL]
case a.h
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
m : M
⊢ ↑(DirectSum.coeAlgHom fun x => LinearMap.range (ι R) ^ x)
(↑(↑(lift R)
{ val := GradedAlgebra.ι R M,
property := (_ : ∀ (m : M), ↑(GradedAlgebra.ι R M) m * ↑(GradedAlgebra.ι R M) m = 0) })
(↑(CliffordAlgebra.ι 0) m)) =
↑(CliffordAlgebra.ι 0) m
[PROOFSTEP]
rw [lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.coeAlgHom_of, Subtype.coe_mk]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ ∀ (i : ℕ) (x : { x // x ∈ LinearMap.range (ι R) ^ i }),
↑(GradedAlgebra.liftι R M) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) x
[PROOFSTEP]
apply GradedAlgebra.liftι_eq R M
| {"mathlib_filename": "Mathlib.LinearAlgebra.ExteriorAlgebra.Grading", "llama_tokens": 6096} |
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' f g : MultilinearMap R M₁ M₂
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' g : MultilinearMap R M₁ M₂
toFun✝ : ((i : ι) → M₁ i) → M₂
map_add'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
h : (fun f => f.toFun) { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = (fun f => f.toFun) g
⊢ { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
toFun✝¹ : ((i : ι) → M₁ i) → M₂
map_add'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝¹ (update m i (x + y)) = toFun✝¹ (update m i x) + toFun✝¹ (update m i y)
map_smul'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝¹ (update m i (c • x)) = c • toFun✝¹ (update m i x)
toFun✝ : ((i : ι) → M₁ i) → M₂
map_add'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
h :
(fun f => f.toFun) { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } =
(fun f => f.toFun) { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }
⊢ { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } =
{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }
[PROOFSTEP]
cases h
[GOAL]
case mk.mk.refl
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
toFun✝ : ((i : ι) → M₁ i) → M₂
map_add'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
map_add'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
⊢ { toFun := toFun✝, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } =
{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
⊢ Injective FunLike.coe
[PROOFSTEP]
intro f g h
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' f g : MultilinearMap R M₁ M₂
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' g : MultilinearMap R M₁ M₂
toFun✝ : ((i : ι) → M₁ i) → M₂
map_add'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
h : ↑{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = ↑g
⊢ { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
toFun✝¹ : ((i : ι) → M₁ i) → M₂
map_add'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝¹ (update m i (x + y)) = toFun✝¹ (update m i x) + toFun✝¹ (update m i y)
map_smul'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝¹ (update m i (c • x)) = c • toFun✝¹ (update m i x)
toFun✝ : ((i : ι) → M₁ i) → M₂
map_add'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
h :
↑{ toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } =
↑{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }
⊢ { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } =
{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }
[PROOFSTEP]
cases h
[GOAL]
case mk.mk.refl
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
toFun✝ : ((i : ι) → M₁ i) → M₂
map_add'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝¹ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
map_add'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y)
map_smul'✝ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x)
⊢ { toFun := toFun✝, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } =
{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' f : MultilinearMap R M₁ M₂
h₁ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y)
h₂ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
↑f (update m i (c • x)) = c • ↑f (update m i x)
⊢ { toFun := ↑f, map_add' := h₁, map_smul' := h₂ } = f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' f : MultilinearMap R M₁ M₂
h₁ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y)
h₂ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
↑f (update m i (c • x)) = c • ↑f (update m i x)
x✝ : (i : ι) → M₁ i
⊢ ↑{ toFun := ↑f, map_add' := h₁, map_smul' := h₂ } x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
i : ι
h : m i = 0
⊢ ↑f m = 0
[PROOFSTEP]
classical
have : (0 : R) • (0 : M₁ i) = 0 := by simp
rw [← update_eq_self i m, h, ← this, f.map_smul, zero_smul R (M := M₂)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
i : ι
h : m i = 0
⊢ ↑f m = 0
[PROOFSTEP]
have : (0 : R) • (0 : M₁ i) = 0 := by simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
i : ι
h : m i = 0
⊢ 0 • 0 = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
i : ι
h : m i = 0
this : 0 • 0 = 0
⊢ ↑f m = 0
[PROOFSTEP]
rw [← update_eq_self i m, h, ← this, f.map_smul, zero_smul R (M := M₂)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : Nonempty ι
⊢ ↑f 0 = 0
[PROOFSTEP]
obtain ⟨i, _⟩ : ∃ i : ι, i ∈ Set.univ := Set.exists_mem_of_nonempty ι
[GOAL]
case intro
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : Nonempty ι
i : ι
h✝ : i ∈ univ
⊢ ↑f 0 = 0
[PROOFSTEP]
exact map_coord_zero f i rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f'✝ f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun x => ↑f x + ↑f' x) (update m i (x + y)) =
(fun x => ↑f x + ↑f' x) (update m i x) + (fun x => ↑f x + ↑f' x) (update m i y)
[PROOFSTEP]
simp [add_left_comm, add_assoc]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f'✝ f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ (fun x => ↑f x + ↑f' x) (update m i (c • x)) = c • (fun x => ↑f x + ↑f' x) (update m i x)
[PROOFSTEP]
simp [smul_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
x✝² : (i : ι) → M₁ i
i : ι
x✝¹ x✝ : M₁ i
⊢ (fun x => 0) (update x✝² i (x✝¹ + x✝)) = (fun x => 0) (update x✝² i x✝¹) + (fun x => 0) (update x✝² i x✝)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
x✝¹ : (i : ι) → M₁ i
i : ι
c : R
x✝ : M₁ i
⊢ (fun x => 0) (update x✝¹ i (c • x✝)) = c • (fun x => 0) (update x✝¹ i x✝)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁷ : Semiring R
inst✝¹⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M'
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
inst✝⁸ : Module R M₃
inst✝⁷ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁶ : Monoid R'
inst✝⁵ : Semiring A
inst✝⁴ : (i : ι) → Module A (M₁ i)
inst✝³ : DistribMulAction R' M₂
inst✝² : Module A M₂
inst✝¹ : SMulCommClass A R' M₂
c : R'
f : MultilinearMap A M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun m => c • ↑f m) (update m i (x + y)) = (fun m => c • ↑f m) (update m i x) + (fun m => c • ↑f m) (update m i y)
[PROOFSTEP]
simp [smul_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁷ : Semiring R
inst✝¹⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹⁴ : AddCommMonoid M₂
inst✝¹³ : AddCommMonoid M₃
inst✝¹² : AddCommMonoid M'
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
inst✝⁸ : Module R M₃
inst✝⁷ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁶ : Monoid R'
inst✝⁵ : Semiring A
inst✝⁴ : (i : ι) → Module A (M₁ i)
inst✝³ : DistribMulAction R' M₂
inst✝² : Module A M₂
inst✝¹ : SMulCommClass A R' M₂
c : R'
f : MultilinearMap A M₁ M₂
inst✝ : DecidableEq ι
l : (i : ι) → M₁ i
i : ι
x : A
d : M₁ i
⊢ (fun m => c • ↑f m) (update l i (x • d)) = x • (fun m => c • ↑f m) (update l i d)
[PROOFSTEP]
simp [← smul_comm x c (_ : M₂)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
⊢ ∀ {s : Finset α}, ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m
[PROOFSTEP]
classical
apply Finset.induction
· rw [Finset.sum_empty]
simp
· intro a s has H
rw [Finset.sum_insert has]
simp [H, has]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
⊢ ∀ {s : Finset α}, ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m
[PROOFSTEP]
apply Finset.induction
[GOAL]
case empty
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
⊢ ↑(∑ a in ∅, f a) m = ∑ a in ∅, ↑(f a) m
[PROOFSTEP]
rw [Finset.sum_empty]
[GOAL]
case empty
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
⊢ ↑0 m = ∑ a in ∅, ↑(f a) m
[PROOFSTEP]
simp
[GOAL]
case insert
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
⊢ ∀ ⦃a : α⦄ {s : Finset α},
¬a ∈ s → ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m → ↑(∑ a in insert a s, f a) m = ∑ a in insert a s, ↑(f a) m
[PROOFSTEP]
intro a s has H
[GOAL]
case insert
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
a : α
s : Finset α
has : ¬a ∈ s
H : ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m
⊢ ↑(∑ a in insert a s, f a) m = ∑ a in insert a s, ↑(f a) m
[PROOFSTEP]
rw [Finset.sum_insert has]
[GOAL]
case insert
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
α : Type u_1
f : α → MultilinearMap R M₁ M₂
m : (i : ι) → M₁ i
a : α
s : Finset α
has : ¬a ∈ s
H : ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m
⊢ ↑(f a + ∑ x in s, f x) m = ∑ a in insert a s, ↑(f a) m
[PROOFSTEP]
simp [H, has]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun x => ↑f (update m i x)) (x + y) = (fun x => ↑f (update m i x)) x + (fun x => ↑f (update m i x)) y
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ AddHom.toFun
{ toFun := fun x => ↑f (update m i x),
map_add' := (_ : ∀ (x y : M₁ i), ↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y)) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun x => ↑f (update m i x),
map_add' := (_ : ∀ (x y : M₁ i), ↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y)) }
x
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' f : MultilinearMap R M₁ M₂
g : MultilinearMap R M₁ M₃
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun m => (↑f m, ↑g m)) (update m i (x + y)) =
(fun m => (↑f m, ↑g m)) (update m i x) + (fun m => (↑f m, ↑g m)) (update m i y)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' f : MultilinearMap R M₁ M₂
g : MultilinearMap R M₁ M₃
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ (fun m => (↑f m, ↑g m)) (update m i (c • x)) = c • (fun m => (↑f m, ↑g m)) (update m i x)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝¹ : Subsingleton ι
i' : ι
inst✝ : DecidableEq ι
m : ι → M₂
i : ι
x y : M₂
⊢ eval i' (update m i (x + y)) = eval i' (update m i x) + eval i' (update m i y)
[PROOFSTEP]
rw [Subsingleton.elim i i']
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝¹ : Subsingleton ι
i' : ι
inst✝ : DecidableEq ι
m : ι → M₂
i : ι
x y : M₂
⊢ eval i' (update m i' (x + y)) = eval i' (update m i' x) + eval i' (update m i' y)
[PROOFSTEP]
simp only [Function.eval, Function.update_same]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝¹ : Subsingleton ι
i' : ι
inst✝ : DecidableEq ι
m : ι → M₂
i : ι
r : R
x : M₂
⊢ eval i' (update m i (r • x)) = r • eval i' (update m i x)
[PROOFSTEP]
rw [Subsingleton.elim i i']
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝¹ : Subsingleton ι
i' : ι
inst✝ : DecidableEq ι
m : ι → M₂
i : ι
r : R
x : M₂
⊢ eval i' (update m i' (r • x)) = r • eval i' (update m i' x)
[PROOFSTEP]
simp only [Function.eval, Function.update_same]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
x y : M'
⊢ (fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i (x + y)) =
(fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i x) +
(fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i y)
[PROOFSTEP]
have : FunLike.coe (s.orderIsoOfFin hk).symm = (s.orderIsoOfFin hk).toEquiv.symm := rfl
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
x y : M'
this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm
⊢ (fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i (x + y)) =
(fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i x) +
(fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i y)
[PROOFSTEP]
simp only [this]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
x y : M'
this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm
⊢ (↑f fun j =>
if h : j ∈ s then update v i (x + y) (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h })
else z) =
(↑f fun j =>
if h : j ∈ s then update v i x (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h })
else z) +
↑f fun j =>
if h : j ∈ s then update v i y (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z
[PROOFSTEP]
erw [dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv, dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv,
dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
x y : M'
this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm
⊢ ↑f
(update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z)
(↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) (x + y)) =
↑f
(update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z)
(↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) x) +
↑f
(update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z)
(↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) y)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
c : R
x : M'
⊢ (fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i (c • x)) =
c •
(fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i x)
[PROOFSTEP]
have : FunLike.coe (s.orderIsoOfFin hk).symm = (s.orderIsoOfFin hk).toEquiv.symm := rfl
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
c : R
x : M'
this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm
⊢ (fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i (c • x)) =
c •
(fun v =>
↑f fun j =>
if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z)
(update v i x)
[PROOFSTEP]
simp only [this]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
c : R
x : M'
this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm
⊢ (↑f fun j =>
if h : j ∈ s then update v i (c • x) (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h })
else z) =
c •
↑f fun j =>
if h : j ∈ s then update v i x (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z
[PROOFSTEP]
erw [dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv, dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
k n : ℕ
f : MultilinearMap R (fun x => M') M₂
s : Finset (Fin n)
hk : Finset.card s = k
z : M'
inst✝ : DecidableEq (Fin k)
v : Fin k → M'
i : Fin k
c : R
x : M'
this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm
⊢ ↑f
(update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z)
(↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) (c • x)) =
c •
↑f
(update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z)
(↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) x)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (succ i)
x y : M 0
⊢ ↑f (cons (x + y) m) = ↑f (cons x m) + ↑f (cons y m)
[PROOFSTEP]
simp_rw [← update_cons_zero x m (x + y), f.map_add, update_cons_zero]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (succ i)
c : R
x : M 0
⊢ ↑f (cons (c • x) m) = c • ↑f (cons x m)
[PROOFSTEP]
simp_rw [← update_cons_zero x m (c • x), f.map_smul, update_cons_zero]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
x y : M (last n)
⊢ ↑f (snoc m (x + y)) = ↑f (snoc m x) + ↑f (snoc m y)
[PROOFSTEP]
simp_rw [← update_snoc_last x m (x + y), f.map_add, update_snoc_last]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
c : R
x : M (last n)
⊢ ↑f (snoc m (c • x)) = c • ↑f (snoc m x)
[PROOFSTEP]
simp_rw [← update_snoc_last x m (c • x), f.map_smul, update_snoc_last]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : Semiring R
inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M'
inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁸ : (i : ι) → Module R (M₁ i)
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i)
inst✝³ : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (M₁'' i)
inst✝¹ : (i : ι) → Module R (M₁'' i)
g : MultilinearMap R M₁' M₂
f : (i : ι) → M₁ i →ₗ[R] M₁' i
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (x + y)) =
(fun m => ↑g fun i => ↑(f i) (m i)) (update m i x) + (fun m => ↑g fun i => ↑(f i) (m i)) (update m i y)
[PROOFSTEP]
have : ∀ j z, f j (update m i z j) = update (fun k => f k (m k)) i (f i z) j := fun j z =>
Function.apply_update (fun k => f k) _ _ _ _
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : Semiring R
inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M'
inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁸ : (i : ι) → Module R (M₁ i)
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i)
inst✝³ : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (M₁'' i)
inst✝¹ : (i : ι) → Module R (M₁'' i)
g : MultilinearMap R M₁' M₂
f : (i : ι) → M₁ i →ₗ[R] M₁' i
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
this : ∀ (j : ι) (z : M₁ i), ↑(f j) (update m i z j) = update (fun k => ↑(f k) (m k)) i (↑(f i) z) j
⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (x + y)) =
(fun m => ↑g fun i => ↑(f i) (m i)) (update m i x) + (fun m => ↑g fun i => ↑(f i) (m i)) (update m i y)
[PROOFSTEP]
simp [this]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : Semiring R
inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M'
inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁸ : (i : ι) → Module R (M₁ i)
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i)
inst✝³ : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (M₁'' i)
inst✝¹ : (i : ι) → Module R (M₁'' i)
g : MultilinearMap R M₁' M₂
f : (i : ι) → M₁ i →ₗ[R] M₁' i
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (c • x)) = c • (fun m => ↑g fun i => ↑(f i) (m i)) (update m i x)
[PROOFSTEP]
have : ∀ j z, f j (update m i z j) = update (fun k => f k (m k)) i (f i z) j := fun j z =>
Function.apply_update (fun k => f k) _ _ _ _
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : Semiring R
inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : AddCommMonoid M₃
inst✝¹⁰ : AddCommMonoid M'
inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁸ : (i : ι) → Module R (M₁ i)
inst✝⁷ : Module R M₂
inst✝⁶ : Module R M₃
inst✝⁵ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i)
inst✝³ : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (M₁'' i)
inst✝¹ : (i : ι) → Module R (M₁'' i)
g : MultilinearMap R M₁' M₂
f : (i : ι) → M₁ i →ₗ[R] M₁' i
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
this : ∀ (j : ι) (z : M₁ i), ↑(f j) (update m i z j) = update (fun k => ↑(f k) (m k)) i (↑(f i) z) j
⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (c • x)) = c • (fun m => ↑g fun i => ↑(f i) (m i)) (update m i x)
[PROOFSTEP]
simp [this]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : Semiring R
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M'
inst✝⁸ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁷ : (i : ι) → Module R (M₁ i)
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (M₁' i)
inst✝² : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝¹ : (i : ι) → AddCommMonoid (M₁'' i)
inst✝ : (i : ι) → Module R (M₁'' i)
f : (i : ι) → M₁ i →ₗ[R] M₁' i
hf : ∀ (i : ι), Surjective ↑(f i)
g₁ g₂ : MultilinearMap R M₁' M₂
h : (fun g => compLinearMap g f) g₁ = (fun g => compLinearMap g f) g₂
x : (i : ι) → M₁' i
⊢ ↑g₁ x = ↑g₂ x
[PROOFSTEP]
simpa [fun i => surjInv_eq (hf i)] using ext_iff.mp h fun i => surjInv (hf i) (x i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : Semiring R
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M'
inst✝⁸ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁷ : (i : ι) → Module R (M₁ i)
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M'
f✝ f' : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (M₁' i)
inst✝² : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝¹ : (i : ι) → AddCommMonoid (M₁'' i)
inst✝ : (i : ι) → Module R (M₁'' i)
g : MultilinearMap R M₁' M₂
f : (i : ι) → M₁ i ≃ₗ[R] M₁' i
⊢ (compLinearMap g fun i => ↑(f i)) = 0 ↔ g = 0
[PROOFSTEP]
set f' := fun i => (f i : M₁ i →ₗ[R] M₁' i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : Semiring R
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : AddCommMonoid M₃
inst✝⁹ : AddCommMonoid M'
inst✝⁸ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁷ : (i : ι) → Module R (M₁ i)
inst✝⁶ : Module R M₂
inst✝⁵ : Module R M₃
inst✝⁴ : Module R M'
f✝ f'✝ : MultilinearMap R M₁ M₂
M₁' : ι → Type u_1
inst✝³ : (i : ι) → AddCommMonoid (M₁' i)
inst✝² : (i : ι) → Module R (M₁' i)
M₁'' : ι → Type u_2
inst✝¹ : (i : ι) → AddCommMonoid (M₁'' i)
inst✝ : (i : ι) → Module R (M₁'' i)
g : MultilinearMap R M₁' M₂
f : (i : ι) → M₁ i ≃ₗ[R] M₁' i
f' : (i : ι) → M₁ i →ₗ[R] M₁' i := fun i => ↑(f i)
⊢ compLinearMap g f' = 0 ↔ g = 0
[PROOFSTEP]
rw [← zero_compLinearMap f', compLinearMap_inj f' fun i => (f i).surjective]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m m' : (i : ι) → M₁ i
t : Finset ι
⊢ ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
[PROOFSTEP]
revert m'
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t : Finset ι
⊢ ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
[PROOFSTEP]
refine' Finset.induction_on t (by simp) _
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t : Finset ι
⊢ ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise ∅ (m + m') m') = ∑ s in Finset.powerset ∅, ↑f (Finset.piecewise s m m')
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t : Finset ι
⊢ ∀ ⦃a : ι⦄ {s : Finset ι},
¬a ∈ s →
(∀ (m' : (i : ι) → M₁ i),
↑f (Finset.piecewise s (m + m') m') = ∑ s in Finset.powerset s, ↑f (Finset.piecewise s m m')) →
∀ (m' : (i : ι) → M₁ i),
↑f (Finset.piecewise (insert a s) (m + m') m') =
∑ s in Finset.powerset (insert a s), ↑f (Finset.piecewise s m m')
[PROOFSTEP]
intro i t hit Hrec m'
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m')
[PROOFSTEP]
have A : (insert i t).piecewise (m + m') m' = update (t.piecewise (m + m') m') i (m i + m' i) :=
t.piecewise_insert _ _ _
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m')
[PROOFSTEP]
have B : update (t.piecewise (m + m') m') i (m' i) = t.piecewise (m + m') m' :=
by
ext j
by_cases h : j = i
· rw [h]
simp [hit]
· simp [h]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
⊢ update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
[PROOFSTEP]
ext j
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
j : ι
⊢ update (Finset.piecewise t (m + m') m') i (m' i) j = Finset.piecewise t (m + m') m' j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
j : ι
h : j = i
⊢ update (Finset.piecewise t (m + m') m') i (m' i) j = Finset.piecewise t (m + m') m' j
[PROOFSTEP]
rw [h]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
j : ι
h : j = i
⊢ update (Finset.piecewise t (m + m') m') i (m' i) i = Finset.piecewise t (m + m') m' i
[PROOFSTEP]
simp [hit]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
j : ι
h : ¬j = i
⊢ update (Finset.piecewise t (m + m') m') i (m' i) j = Finset.piecewise t (m + m') m' j
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m')
[PROOFSTEP]
let m'' := update m' i (m i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m')
[PROOFSTEP]
have C : update (t.piecewise (m + m') m') i (m i) = t.piecewise (m + m'') m'' :=
by
ext j
by_cases h : j = i
· rw [h]
simp [hit]
· by_cases h' : j ∈ t <;> simp [h, hit, h']
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
⊢ update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
[PROOFSTEP]
ext j
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
j : ι
⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
j : ι
h : j = i
⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j
[PROOFSTEP]
rw [h]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
j : ι
h : j = i
⊢ update (Finset.piecewise t (m + m') m') i (m i) i = Finset.piecewise t (m + m'') m'' i
[PROOFSTEP]
simp [hit]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
j : ι
h : ¬j = i
⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j
[PROOFSTEP]
by_cases h' : j ∈ t
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
j : ι
h : ¬j = i
h' : j ∈ t
⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j
[PROOFSTEP]
simp [h, hit, h']
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
j : ι
h : ¬j = i
h' : ¬j ∈ t
⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j
[PROOFSTEP]
simp [h, hit, h']
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m')
[PROOFSTEP]
rw [A, f.map_add, B, C, Finset.sum_powerset_insert hit, Hrec, Hrec, add_comm (_ : M₂)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
⊢ ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') + ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m'') =
∑ a in Finset.powerset t, ↑f (Finset.piecewise a m m') +
∑ t in Finset.powerset t, ↑f (Finset.piecewise (insert i t) m m')
[PROOFSTEP]
congr 1
[GOAL]
case e_a
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
⊢ ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m'') =
∑ t in Finset.powerset t, ↑f (Finset.piecewise (insert i t) m m')
[PROOFSTEP]
refine Finset.sum_congr rfl fun s hs => ?_
[GOAL]
case e_a
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
⊢ ↑f (Finset.piecewise s m m'') = ↑f (Finset.piecewise (insert i s) m m')
[PROOFSTEP]
have : (insert i s).piecewise m m' = s.piecewise m m'' :=
by
ext j
by_cases h : j = i
· rw [h]
simp [Finset.not_mem_of_mem_powerset_of_not_mem hs hit]
· by_cases h' : j ∈ s <;> simp [h, h']
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
⊢ Finset.piecewise (insert i s) m m' = Finset.piecewise s m m''
[PROOFSTEP]
ext j
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
j : ι
⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
j : ι
h : j = i
⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j
[PROOFSTEP]
rw [h]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
j : ι
h : j = i
⊢ Finset.piecewise (insert i s) m m' i = Finset.piecewise s m m'' i
[PROOFSTEP]
simp [Finset.not_mem_of_mem_powerset_of_not_mem hs hit]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
j : ι
h : ¬j = i
⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j
[PROOFSTEP]
by_cases h' : j ∈ s
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
j : ι
h : ¬j = i
h' : j ∈ s
⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j
[PROOFSTEP]
simp [h, h']
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
j : ι
h : ¬j = i
h' : ¬j ∈ s
⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j
[PROOFSTEP]
simp [h, h']
[GOAL]
case e_a
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
t✝ : Finset ι
i : ι
t : Finset ι
hit : ¬i ∈ t
Hrec :
∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m')
m' : (i : ι) → M₁ i
A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i)
B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m'
m'' : (a : ι) → M₁ a := update m' i (m i)
C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m''
s : Finset ι
hs : s ∈ Finset.powerset t
this : Finset.piecewise (insert i s) m m' = Finset.piecewise s m m''
⊢ ↑f (Finset.piecewise s m m'') = ↑f (Finset.piecewise (insert i s) m m')
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
m m' : (i : ι) → M₁ i
⊢ ↑f (m + m') = ∑ s : Finset ι, ↑f (Finset.piecewise s m m')
[PROOFSTEP]
simpa using f.map_piecewise_add m m' Finset.univ
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n : ℕ
h : ∑ i : ι, Finset.card (A i) = n
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
letI := fun i => Classical.decEq (α i)
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n : ℕ
h : ∑ i : ι, Finset.card (A i) = n
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
induction' n using Nat.strong_induction_on with n IH generalizing A
[GOAL]
case h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
by_cases Ai_empty : ∃ i, A i = ∅
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∃ i, A i = ∅
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
rcases Ai_empty with ⟨i, hi⟩
[GOAL]
case pos.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have : ∑ j in A i, g i j = 0 := by rw [hi, Finset.sum_empty]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
⊢ ∑ j in A i, g i j = 0
[PROOFSTEP]
rw [hi, Finset.sum_empty]
[GOAL]
case pos.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
this : ∑ j in A i, g i j = 0
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
rw [f.map_coord_zero i this]
[GOAL]
case pos.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
this : ∑ j in A i, g i j = 0
⊢ 0 = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have : piFinset A = ∅ := by
refine Finset.eq_empty_of_forall_not_mem fun r hr => ?_
have : r i ∈ A i := mem_piFinset.mp hr i
simp [hi] at this
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
this : ∑ j in A i, g i j = 0
⊢ piFinset A = ∅
[PROOFSTEP]
refine Finset.eq_empty_of_forall_not_mem fun r hr => ?_
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
this : ∑ j in A i, g i j = 0
r : (a : ι) → α a
hr : r ∈ piFinset A
⊢ False
[PROOFSTEP]
have : r i ∈ A i := mem_piFinset.mp hr i
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
this✝ : ∑ j in A i, g i j = 0
r : (a : ι) → α a
hr : r ∈ piFinset A
this : r i ∈ A i
⊢ False
[PROOFSTEP]
simp [hi] at this
[GOAL]
case pos.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
i : ι
hi : A i = ∅
this✝ : ∑ j in A i, g i j = 0
this : piFinset A = ∅
⊢ 0 = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
rw [this, Finset.sum_empty]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ¬∃ i, A i = ∅
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
push_neg at Ai_empty
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
by_cases Ai_singleton : ∀ i, (A i).card ≤ 1
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have Ai_card : ∀ i, (A i).card = 1 := by
intro i
have pos : Finset.card (A i) ≠ 0 := by simp [Finset.card_eq_zero, Ai_empty i]
have : Finset.card (A i) ≤ 1 := Ai_singleton i
exact le_antisymm this (Nat.succ_le_of_lt (_root_.pos_iff_ne_zero.mpr pos))
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
⊢ ∀ (i : ι), Finset.card (A i) = 1
[PROOFSTEP]
intro i
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
i : ι
⊢ Finset.card (A i) = 1
[PROOFSTEP]
have pos : Finset.card (A i) ≠ 0 := by simp [Finset.card_eq_zero, Ai_empty i]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
i : ι
⊢ Finset.card (A i) ≠ 0
[PROOFSTEP]
simp [Finset.card_eq_zero, Ai_empty i]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
i : ι
pos : Finset.card (A i) ≠ 0
⊢ Finset.card (A i) = 1
[PROOFSTEP]
have : Finset.card (A i) ≤ 1 := Ai_singleton i
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
i : ι
pos : Finset.card (A i) ≠ 0
this : Finset.card (A i) ≤ 1
⊢ Finset.card (A i) = 1
[PROOFSTEP]
exact le_antisymm this (Nat.succ_le_of_lt (_root_.pos_iff_ne_zero.mpr pos))
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have : ∀ r : ∀ i, α i, r ∈ piFinset A → (f fun i => g i (r i)) = f fun i => ∑ j in A i, g i j :=
by
intro r hr
congr with i
have : ∀ j ∈ A i, g i j = g i (r i) := by
intro j hj
congr
apply Finset.card_le_one_iff.1 (Ai_singleton i) hj
exact mem_piFinset.mp hr i
simp only [Finset.sum_congr rfl this, Finset.mem_univ, Finset.sum_const, Ai_card i, one_nsmul]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
⊢ ∀ (r : (i : ι) → α i), r ∈ piFinset A → (↑f fun i => g i (r i)) = ↑f fun i => ∑ j in A i, g i j
[PROOFSTEP]
intro r hr
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
⊢ (↑f fun i => g i (r i)) = ↑f fun i => ∑ j in A i, g i j
[PROOFSTEP]
congr with i
[GOAL]
case h.e_6.h.h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
i : ι
⊢ g i (r i) = ∑ j in A i, g i j
[PROOFSTEP]
have : ∀ j ∈ A i, g i j = g i (r i) := by
intro j hj
congr
apply Finset.card_le_one_iff.1 (Ai_singleton i) hj
exact mem_piFinset.mp hr i
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
i : ι
⊢ ∀ (j : α i), j ∈ A i → g i j = g i (r i)
[PROOFSTEP]
intro j hj
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
i : ι
j : α i
hj : j ∈ A i
⊢ g i j = g i (r i)
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
i : ι
j : α i
hj : j ∈ A i
⊢ j = r i
[PROOFSTEP]
apply Finset.card_le_one_iff.1 (Ai_singleton i) hj
[GOAL]
case e_a
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
i : ι
j : α i
hj : j ∈ A i
⊢ r i ∈ A i
[PROOFSTEP]
exact mem_piFinset.mp hr i
[GOAL]
case h.e_6.h.h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
r : (i : ι) → α i
hr : r ∈ piFinset A
i : ι
this : ∀ (j : α i), j ∈ A i → g i j = g i (r i)
⊢ g i (r i) = ∑ j in A i, g i j
[PROOFSTEP]
simp only [Finset.sum_congr rfl this, Finset.mem_univ, Finset.sum_const, Ai_card i, one_nsmul]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1
Ai_card : ∀ (i : ι), Finset.card (A i) = 1
this : ∀ (r : (i : ι) → α i), r ∈ piFinset A → (↑f fun i => g i (r i)) = ↑f fun i => ∑ j in A i, g i j
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
simp only [Finset.sum_congr rfl this, Ai_card, card_piFinset, prod_const_one, one_nsmul, Finset.sum_const]
-- Remains the interesting case where one of the `A i`, say `A i₀`, has cardinality at least 2.
-- We will split into two parts `B i₀` and `C i₀` of smaller cardinality, let `B i = C i = A i`
-- for `i ≠ i₀`, apply the inductive assumption to `B` and `C`, and add up the corresponding
-- parts to get the sum for `A`.
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ¬∀ (i : ι), Finset.card (A i) ≤ 1
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
push_neg at Ai_singleton
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
Ai_singleton : ∃ i, 1 < Finset.card (A i)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
obtain ⟨i₀, hi₀⟩ : ∃ i, 1 < (A i).card := Ai_singleton
[GOAL]
case neg.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
obtain ⟨j₁, j₂, _, hj₂, _⟩ : ∃ j₁ j₂, j₁ ∈ A i₀ ∧ j₂ ∈ A i₀ ∧ j₁ ≠ j₂ := Finset.one_lt_card_iff.1 hi₀
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
let B := Function.update A i₀ (A i₀ \ { j₂ })
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
let C := Function.update A i₀ { j₂ }
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have B_subset_A : ∀ i, B i ⊆ A i := by
intro i
by_cases hi : i = i₀
· rw [hi]
simp only [sdiff_subset, update_same]
· simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
⊢ ∀ (i : ι), B i ⊆ A i
[PROOFSTEP]
intro i
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
i : ι
⊢ B i ⊆ A i
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
i : ι
hi : i = i₀
⊢ B i ⊆ A i
[PROOFSTEP]
rw [hi]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
i : ι
hi : i = i₀
⊢ B i₀ ⊆ A i₀
[PROOFSTEP]
simp only [sdiff_subset, update_same]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
i : ι
hi : ¬i = i₀
⊢ B i ⊆ A i
[PROOFSTEP]
simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl]
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have C_subset_A : ∀ i, C i ⊆ A i := by
intro i
by_cases hi : i = i₀
· rw [hi]
simp only [hj₂, Finset.singleton_subset_iff, update_same]
·
simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl]
-- split the sum at `i₀` as the sum over `B i₀` plus the sum over `C i₀`, to use additivity.
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
⊢ ∀ (i : ι), C i ⊆ A i
[PROOFSTEP]
intro i
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
i : ι
⊢ C i ⊆ A i
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
i : ι
hi : i = i₀
⊢ C i ⊆ A i
[PROOFSTEP]
rw [hi]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
i : ι
hi : i = i₀
⊢ C i₀ ⊆ A i₀
[PROOFSTEP]
simp only [hj₂, Finset.singleton_subset_iff, update_same]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
i : ι
hi : ¬i = i₀
⊢ C i ⊆ A i
[PROOFSTEP]
simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl]
-- split the sum at `i₀` as the sum over `B i₀` plus the sum over `C i₀`, to use additivity.
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have A_eq_BC :
(fun i => ∑ j in A i, g i j) =
Function.update (fun i => ∑ j in A i, g i j) i₀ ((∑ j in B i₀, g i₀ j) + ∑ j in C i₀, g i₀ j) :=
by
ext i
by_cases hi : i = i₀
· rw [hi, update_same]
have : A i₀ = B i₀ ∪ C i₀ :=
by
simp only [Function.update_same, Finset.sdiff_union_self_eq_union]
symm
simp only [hj₂, Finset.singleton_subset_iff, Finset.union_eq_left_iff_subset]
rw [this]
refine Finset.sum_union <| Finset.disjoint_right.2 fun j hj => ?_
have : j = j₂ := by simpa using hj
rw [this]
simp only [mem_sdiff, eq_self_iff_true, not_true, not_false_iff, Finset.mem_singleton, update_same, and_false_iff]
· simp [hi]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
⊢ (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
⊢ ∑ j in A i, g i j = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
⊢ ∑ j in A i, g i j = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i
[PROOFSTEP]
rw [hi, update_same]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
⊢ ∑ j in A i₀, g i₀ j = ∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j
[PROOFSTEP]
have : A i₀ = B i₀ ∪ C i₀ :=
by
simp only [Function.update_same, Finset.sdiff_union_self_eq_union]
symm
simp only [hj₂, Finset.singleton_subset_iff, Finset.union_eq_left_iff_subset]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
⊢ A i₀ = B i₀ ∪ C i₀
[PROOFSTEP]
simp only [Function.update_same, Finset.sdiff_union_self_eq_union]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
⊢ A i₀ = A i₀ ∪ {j₂}
[PROOFSTEP]
symm
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
⊢ A i₀ ∪ {j₂} = A i₀
[PROOFSTEP]
simp only [hj₂, Finset.singleton_subset_iff, Finset.union_eq_left_iff_subset]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
this : A i₀ = B i₀ ∪ C i₀
⊢ ∑ j in A i₀, g i₀ j = ∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j
[PROOFSTEP]
rw [this]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
this : A i₀ = B i₀ ∪ C i₀
⊢ ∑ j in B i₀ ∪ C i₀, g i₀ j = ∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j
[PROOFSTEP]
refine Finset.sum_union <| Finset.disjoint_right.2 fun j hj => ?_
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
this : A i₀ = B i₀ ∪ C i₀
j : α i₀
hj : j ∈ C i₀
⊢ ¬j ∈ B i₀
[PROOFSTEP]
have : j = j₂ := by simpa using hj
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
this : A i₀ = B i₀ ∪ C i₀
j : α i₀
hj : j ∈ C i₀
⊢ j = j₂
[PROOFSTEP]
simpa using hj
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
this✝ : A i₀ = B i₀ ∪ C i₀
j : α i₀
hj : j ∈ C i₀
this : j = j₂
⊢ ¬j ∈ B i₀
[PROOFSTEP]
rw [this]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : i = i₀
this✝ : A i₀ = B i₀ ∪ C i₀
j : α i₀
hj : j ∈ C i₀
this : j = j₂
⊢ ¬j₂ ∈ B i₀
[PROOFSTEP]
simp only [mem_sdiff, eq_self_iff_true, not_true, not_false_iff, Finset.mem_singleton, update_same, and_false_iff]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
i : ι
hi : ¬i = i₀
⊢ ∑ j in A i, g i j = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i
[PROOFSTEP]
simp [hi]
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have Beq : Function.update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j :=
by
ext i
by_cases hi : i = i₀
· rw [hi]
simp only [update_same]
· simp only [hi, update_noteq, Ne.def, not_false_iff]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
i : ι
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i = ∑ j in B i, g i j
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
i : ι
hi : i = i₀
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i = ∑ j in B i, g i j
[PROOFSTEP]
rw [hi]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
i : ι
hi : i = i₀
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i₀ = ∑ j in B i₀, g i₀ j
[PROOFSTEP]
simp only [update_same]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
i : ι
hi : ¬i = i₀
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i = ∑ j in B i, g i j
[PROOFSTEP]
simp only [hi, update_noteq, Ne.def, not_false_iff]
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have Ceq : Function.update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j :=
by
ext i
by_cases hi : i = i₀
· rw [hi]
simp only [update_same]
·
simp only [hi, update_noteq, Ne.def, not_false_iff]
-- Express the inductive assumption for `B`
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
i : ι
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i = ∑ j in C i, g i j
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
i : ι
hi : i = i₀
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i = ∑ j in C i, g i j
[PROOFSTEP]
rw [hi]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
i : ι
hi : i = i₀
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i₀ = ∑ j in C i₀, g i₀ j
[PROOFSTEP]
simp only [update_same]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
i : ι
hi : ¬i = i₀
⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i = ∑ j in C i, g i j
[PROOFSTEP]
simp only [hi, update_noteq, Ne.def, not_false_iff]
-- Express the inductive assumption for `B`
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have Brec : (f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, f fun i => g i (r i) :=
by
have : (∑ i, Finset.card (B i)) < ∑ i, Finset.card (A i) :=
by
refine' Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (B_subset_A i)) ⟨i₀, Finset.mem_univ _, _⟩
have : { j₂ } ⊆ A i₀ := by simp [hj₂]
simp only [Finset.card_sdiff this, Function.update_same, Finset.card_singleton]
exact Nat.pred_lt (ne_of_gt (lt_trans Nat.zero_lt_one hi₀))
rw [h] at this
exact IH _ this B rfl
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
⊢ (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
[PROOFSTEP]
have : (∑ i, Finset.card (B i)) < ∑ i, Finset.card (A i) :=
by
refine' Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (B_subset_A i)) ⟨i₀, Finset.mem_univ _, _⟩
have : { j₂ } ⊆ A i₀ := by simp [hj₂]
simp only [Finset.card_sdiff this, Function.update_same, Finset.card_singleton]
exact Nat.pred_lt (ne_of_gt (lt_trans Nat.zero_lt_one hi₀))
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
⊢ ∑ i : ι, Finset.card (B i) < ∑ i : ι, Finset.card (A i)
[PROOFSTEP]
refine' Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (B_subset_A i)) ⟨i₀, Finset.mem_univ _, _⟩
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
⊢ Finset.card (B i₀) < Finset.card (A i₀)
[PROOFSTEP]
have : { j₂ } ⊆ A i₀ := by simp [hj₂]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
⊢ {j₂} ⊆ A i₀
[PROOFSTEP]
simp [hj₂]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
this : {j₂} ⊆ A i₀
⊢ Finset.card (B i₀) < Finset.card (A i₀)
[PROOFSTEP]
simp only [Finset.card_sdiff this, Function.update_same, Finset.card_singleton]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
this : {j₂} ⊆ A i₀
⊢ Finset.card (A i₀) - 1 < Finset.card (A i₀)
[PROOFSTEP]
exact Nat.pred_lt (ne_of_gt (lt_trans Nat.zero_lt_one hi₀))
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
this : ∑ i : ι, Finset.card (B i) < ∑ i : ι, Finset.card (A i)
⊢ (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
[PROOFSTEP]
rw [h] at this
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
this : ∑ i : ι, Finset.card (B i) < n
⊢ (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
[PROOFSTEP]
exact IH _ this B rfl
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have Crec : (f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, f fun i => g i (r i) :=
by
have : (∑ i, Finset.card (C i)) < ∑ i, Finset.card (A i) :=
Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (C_subset_A i)) ⟨i₀, Finset.mem_univ _, by simp [hi₀]⟩
rw [h] at this
exact IH _ this C rfl
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
⊢ (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
[PROOFSTEP]
have : (∑ i, Finset.card (C i)) < ∑ i, Finset.card (A i) :=
Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (C_subset_A i)) ⟨i₀, Finset.mem_univ _, by simp [hi₀]⟩
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
⊢ Finset.card (C i₀) < Finset.card (A i₀)
[PROOFSTEP]
simp [hi₀]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
this : ∑ i : ι, Finset.card (C i) < ∑ i : ι, Finset.card (A i)
⊢ (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
[PROOFSTEP]
rw [h] at this
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
this : ∑ i : ι, Finset.card (C i) < n
⊢ (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
[PROOFSTEP]
exact IH _ this C rfl
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have D : Disjoint (piFinset B) (piFinset C) :=
haveI : Disjoint (B i₀) (C i₀) := by simp
piFinset_disjoint_of_disjoint B C this
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
⊢ Disjoint (B i₀) (C i₀)
[PROOFSTEP]
simp
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
have pi_BC : piFinset A = piFinset B ∪ piFinset C :=
by
apply Finset.Subset.antisymm
· intro r hr
by_cases hri₀ : r i₀ = j₂
· apply Finset.mem_union_right
refine mem_piFinset.2 fun i => ?_
by_cases hi : i = i₀
· have : r i₀ ∈ C i₀ := by simp [hri₀]
rwa [hi]
· simp [hi, mem_piFinset.1 hr i]
· apply Finset.mem_union_left
refine mem_piFinset.2 fun i => ?_
by_cases hi : i = i₀
· have : r i₀ ∈ B i₀ := by simp [hri₀, mem_piFinset.1 hr i₀]
rwa [hi]
· simp [hi, mem_piFinset.1 hr i]
· exact Finset.union_subset (piFinset_subset _ _ fun i => B_subset_A i) (piFinset_subset _ _ fun i => C_subset_A i)
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
⊢ piFinset A = piFinset B ∪ piFinset C
[PROOFSTEP]
apply Finset.Subset.antisymm
[GOAL]
case H₁
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
⊢ piFinset A ⊆ piFinset B ∪ piFinset C
[PROOFSTEP]
intro r hr
[GOAL]
case H₁
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
⊢ r ∈ piFinset B ∪ piFinset C
[PROOFSTEP]
by_cases hri₀ : r i₀ = j₂
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
⊢ r ∈ piFinset B ∪ piFinset C
[PROOFSTEP]
apply Finset.mem_union_right
[GOAL]
case pos.h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
⊢ r ∈ piFinset C
[PROOFSTEP]
refine mem_piFinset.2 fun i => ?_
[GOAL]
case pos.h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
i : ι
⊢ r i ∈ C i
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
i : ι
hi : i = i₀
⊢ r i ∈ C i
[PROOFSTEP]
have : r i₀ ∈ C i₀ := by simp [hri₀]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
i : ι
hi : i = i₀
⊢ r i₀ ∈ C i₀
[PROOFSTEP]
simp [hri₀]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
i : ι
hi : i = i₀
this : r i₀ ∈ C i₀
⊢ r i ∈ C i
[PROOFSTEP]
rwa [hi]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : r i₀ = j₂
i : ι
hi : ¬i = i₀
⊢ r i ∈ C i
[PROOFSTEP]
simp [hi, mem_piFinset.1 hr i]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
⊢ r ∈ piFinset B ∪ piFinset C
[PROOFSTEP]
apply Finset.mem_union_left
[GOAL]
case neg.h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
⊢ r ∈ piFinset B
[PROOFSTEP]
refine mem_piFinset.2 fun i => ?_
[GOAL]
case neg.h
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
i : ι
⊢ r i ∈ B i
[PROOFSTEP]
by_cases hi : i = i₀
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
i : ι
hi : i = i₀
⊢ r i ∈ B i
[PROOFSTEP]
have : r i₀ ∈ B i₀ := by simp [hri₀, mem_piFinset.1 hr i₀]
[GOAL]
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
i : ι
hi : i = i₀
⊢ r i₀ ∈ B i₀
[PROOFSTEP]
simp [hri₀, mem_piFinset.1 hr i₀]
[GOAL]
case pos
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
i : ι
hi : i = i₀
this : r i₀ ∈ B i₀
⊢ r i ∈ B i
[PROOFSTEP]
rwa [hi]
[GOAL]
case neg
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
r : (a : ι) → α a
hr : r ∈ piFinset A
hri₀ : ¬r i₀ = j₂
i : ι
hi : ¬i = i₀
⊢ r i ∈ B i
[PROOFSTEP]
simp [hi, mem_piFinset.1 hr i]
[GOAL]
case H₂
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
⊢ piFinset B ∪ piFinset C ⊆ piFinset A
[PROOFSTEP]
exact Finset.union_subset (piFinset_subset _ _ fun i => B_subset_A i) (piFinset_subset _ _ fun i => C_subset_A i)
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
pi_BC : piFinset A = piFinset B ∪ piFinset C
⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
rw [A_eq_BC]
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
pi_BC : piFinset A = piFinset B ∪ piFinset C
⊢ ↑f (update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)) =
∑ r in piFinset A, ↑f fun i => g i (r i)
[PROOFSTEP]
simp only [MultilinearMap.map_add, Beq, Ceq, Brec, Crec, pi_BC]
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
ι : Type u'
n✝¹ : ℕ
M : Fin (Nat.succ n✝¹) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹² : Semiring R
inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i)
inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁹ : AddCommMonoid M₂
inst✝⁸ : AddCommMonoid M₃
inst✝⁷ : AddCommMonoid M'
inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
inst✝³ : Module R M₃
inst✝² : Module R M'
f f' : MultilinearMap R M₁ M₂
α : ι → Type u_1
g : (i : ι) → α i → M₁ i
A✝ : (i : ι) → Finset (α i)
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
n✝ : ℕ
h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝
this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i)
n : ℕ
IH :
∀ (m : ℕ),
m < n →
∀ (A : (i : ι) → Finset (α i)),
∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i)
A : (i : ι) → Finset (α i)
h : ∑ i : ι, Finset.card (A i) = n
Ai_empty : ∀ (i : ι), A i ≠ ∅
i₀ : ι
hi₀ : 1 < Finset.card (A i₀)
j₁ j₂ : α i₀
left✝ : j₁ ∈ A i₀
hj₂ : j₂ ∈ A i₀
right✝ : j₁ ≠ j₂
B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂})
C : (a : ι) → Finset (α a) := update A i₀ {j₂}
B_subset_A : ∀ (i : ι), B i ⊆ A i
C_subset_A : ∀ (i : ι), C i ⊆ A i
A_eq_BC :
(fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)
Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j
Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j
Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i)
Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i)
D : Disjoint (piFinset B) (piFinset C)
pi_BC : piFinset A = piFinset B ∪ piFinset C
⊢ ((∑ x in piFinset (update A i₀ (A i₀ \ {j₂})), ↑f fun i => g i (x i)) +
∑ x in piFinset (update A i₀ {j₂}), ↑f fun i => g i (x i)) =
∑ x in piFinset (update A i₀ (A i₀ \ {j₂})) ∪ piFinset (update A i₀ {j₂}), ↑f fun i => g i (x i)
[PROOFSTEP]
rw [← Finset.sum_union D]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
α✝ : ι → Type u_1
g✝ : (i : ι) → α✝ i → M₁ i
A : (i : ι) → Finset (α✝ i)
α : Type u_2
inst✝ : DecidableEq ι
t : Finset α
i : ι
g : α → M₁ i
m : (i : ι) → M₁ i
⊢ ↑f (update m i (∑ a in t, g a)) = ∑ a in t, ↑f (update m i (g a))
[PROOFSTEP]
classical
induction' t using Finset.induction with a t has ih h
· simp
· simp [Finset.sum_insert has, ih]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
α✝ : ι → Type u_1
g✝ : (i : ι) → α✝ i → M₁ i
A : (i : ι) → Finset (α✝ i)
α : Type u_2
inst✝ : DecidableEq ι
t : Finset α
i : ι
g : α → M₁ i
m : (i : ι) → M₁ i
⊢ ↑f (update m i (∑ a in t, g a)) = ∑ a in t, ↑f (update m i (g a))
[PROOFSTEP]
induction' t using Finset.induction with a t has ih h
[GOAL]
case empty
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
α✝ : ι → Type u_1
g✝ : (i : ι) → α✝ i → M₁ i
A : (i : ι) → Finset (α✝ i)
α : Type u_2
inst✝ : DecidableEq ι
i : ι
g : α → M₁ i
m : (i : ι) → M₁ i
⊢ ↑f (update m i (∑ a in ∅, g a)) = ∑ a in ∅, ↑f (update m i (g a))
[PROOFSTEP]
simp
[GOAL]
case insert
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
α✝ : ι → Type u_1
g✝ : (i : ι) → α✝ i → M₁ i
A : (i : ι) → Finset (α✝ i)
α : Type u_2
inst✝ : DecidableEq ι
i : ι
g : α → M₁ i
m : (i : ι) → M₁ i
a : α
t : Finset α
has : ¬a ∈ t
ih : ↑f (update m i (∑ a in t, g a)) = ∑ a in t, ↑f (update m i (g a))
⊢ ↑f (update m i (∑ a in insert a t, g a)) = ∑ a in insert a t, ↑f (update m i (g a))
[PROOFSTEP]
simp [Finset.sum_insert has, ih]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
inst✝ : DecidableEq ι₂
v : ι₂ → M₂
i : ι₂
a b : M₂
⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a + b)) =
(fun v => ↑m fun i => v (↑σ i)) (update v i a) + (fun v => ↑m fun i => v (↑σ i)) (update v i b)
[PROOFSTEP]
letI := σ.injective.decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
inst✝ : DecidableEq ι₂
v : ι₂ → M₂
i : ι₂
a b : M₂
this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ)
⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a + b)) =
(fun v => ↑m fun i => v (↑σ i)) (update v i a) + (fun v => ↑m fun i => v (↑σ i)) (update v i b)
[PROOFSTEP]
simp_rw [Function.update_apply_equiv_apply v]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
inst✝ : DecidableEq ι₂
v : ι₂ → M₂
i : ι₂
a b : M₂
this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ)
⊢ (↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) (a + b) i_1) =
(↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) a i_1) + ↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) b i_1
[PROOFSTEP]
rw [m.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
inst✝ : DecidableEq ι₂
v : ι₂ → M₂
i : ι₂
a : R
b : M₂
⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a • b)) = a • (fun v => ↑m fun i => v (↑σ i)) (update v i b)
[PROOFSTEP]
letI := σ.injective.decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
inst✝ : DecidableEq ι₂
v : ι₂ → M₂
i : ι₂
a : R
b : M₂
this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ)
⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a • b)) = a • (fun v => ↑m fun i => v (↑σ i)) (update v i b)
[PROOFSTEP]
simp_rw [Function.update_apply_equiv_apply v]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹¹ : Semiring R
inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : AddCommMonoid M₂
inst✝⁷ : AddCommMonoid M₃
inst✝⁶ : AddCommMonoid M'
inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
inst✝ : DecidableEq ι₂
v : ι₂ → M₂
i : ι₂
a : R
b : M₂
this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ)
⊢ (↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) (a • b) i_1) = a • ↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) b i_1
[PROOFSTEP]
rw [m.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
⊢ domDomCongr σ.symm (domDomCongr σ m) = m
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
x✝ : ι₁ → M₂
⊢ ↑(domDomCongr σ.symm (domDomCongr σ m)) x✝ = ↑m x✝
[PROOFSTEP]
simp [domDomCongr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
⊢ domDomCongr σ (domDomCongr σ.symm m) = m
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
m : MultilinearMap R (fun x => M₂) M₃
x✝ : ι₂ → M₂
⊢ ↑(domDomCongr σ (domDomCongr σ.symm m)) x✝ = ↑m x✝
[PROOFSTEP]
simp [domDomCongr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
a b : MultilinearMap R (fun x => M₂) M₃
⊢ Equiv.toFun
{ toFun := domDomCongr σ, invFun := domDomCongr σ.symm,
left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m),
right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) }
(a + b) =
Equiv.toFun
{ toFun := domDomCongr σ, invFun := domDomCongr σ.symm,
left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m),
right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) }
a +
Equiv.toFun
{ toFun := domDomCongr σ, invFun := domDomCongr σ.symm,
left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m),
right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) }
b
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : Semiring R
inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
f f' : MultilinearMap R M₁ M₂
ι₁ : Type u_1
ι₂ : Type u_2
ι₃ : Type u_3
σ : ι₁ ≃ ι₂
a b : MultilinearMap R (fun x => M₂) M₃
x✝ : ι₂ → M₂
⊢ ↑(Equiv.toFun
{ toFun := domDomCongr σ, invFun := domDomCongr σ.symm,
left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m),
right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) }
(a + b))
x✝ =
↑(Equiv.toFun
{ toFun := domDomCongr σ, invFun := domDomCongr σ.symm,
left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m),
right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) }
a +
Equiv.toFun
{ toFun := domDomCongr σ, invFun := domDomCongr σ.symm,
left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m),
right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) }
b)
x✝
[PROOFSTEP]
simp [domDomCongr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁹ : Semiring R
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
g : M₂ →ₗ[R] M₃
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (↑g ∘ ↑f) (update m i (x + y)) = (↑g ∘ ↑f) (update m i x) + (↑g ∘ ↑f) (update m i y)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁹ : Semiring R
inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : AddCommMonoid M₃
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : (i : ι) → Module R (M₁ i)
inst✝³ : Module R M₂
inst✝² : Module R M₃
inst✝¹ : Module R M'
g : M₂ →ₗ[R] M₃
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ (↑g ∘ ↑f) (update m i (c • x)) = c • (↑g ∘ ↑f) (update m i x)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : Semiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M'
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
ι₁ : Type u_1
ι₂ : Type u_2
σ : ι₁ ≃ ι₂
g : M₂ →ₗ[R] M₃
f : MultilinearMap R (fun x => M') M₂
⊢ MultilinearMap.domDomCongr σ (compMultilinearMap g f) = compMultilinearMap g (MultilinearMap.domDomCongr σ f)
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : Semiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : AddCommMonoid M₂
inst✝⁵ : AddCommMonoid M₃
inst✝⁴ : AddCommMonoid M'
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
inst✝¹ : Module R M₃
inst✝ : Module R M'
ι₁ : Type u_1
ι₂ : Type u_2
σ : ι₁ ≃ ι₂
g : M₂ →ₗ[R] M₃
f : MultilinearMap R (fun x => M') M₂
x✝ : ι₂ → M'
⊢ ↑(MultilinearMap.domDomCongr σ (compMultilinearMap g f)) x✝ =
↑(compMultilinearMap g (MultilinearMap.domDomCongr σ f)) x✝
[PROOFSTEP]
simp [MultilinearMap.domDomCongr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s : Finset ι
⊢ ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
[PROOFSTEP]
refine' s.induction_on (by simp) _
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s : Finset ι
⊢ ↑f (Finset.piecewise ∅ (fun i => c i • m i) m) = (∏ i in ∅, c i) • ↑f m
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s : Finset ι
⊢ ∀ ⦃a : ι⦄ {s : Finset ι},
¬a ∈ s →
↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m →
↑f (Finset.piecewise (insert a s) (fun i => c i • m i) m) = (∏ i in insert a s, c i) • ↑f m
[PROOFSTEP]
intro j s j_not_mem_s Hrec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
⊢ ↑f (Finset.piecewise (insert j s) (fun i => c i • m i) m) = (∏ i in insert j s, c i) • ↑f m
[PROOFSTEP]
have A : Function.update (s.piecewise (fun i => c i • m i) m) j (m j) = s.piecewise (fun i => c i • m i) m :=
by
ext i
by_cases h : i = j
· rw [h]
simp [j_not_mem_s]
· simp [h]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) = Finset.piecewise s (fun i => c i • m i) m
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
i : ι
⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) i = Finset.piecewise s (fun i => c i • m i) m i
[PROOFSTEP]
by_cases h : i = j
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
i : ι
h : i = j
⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) i = Finset.piecewise s (fun i => c i • m i) m i
[PROOFSTEP]
rw [h]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
i : ι
h : i = j
⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) j = Finset.piecewise s (fun i => c i • m i) m j
[PROOFSTEP]
simp [j_not_mem_s]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
i : ι
h : ¬i = j
⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) i = Finset.piecewise s (fun i => c i • m i) m i
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
A : update (Finset.piecewise s (fun i => c i • m i) m) j (m j) = Finset.piecewise s (fun i => c i • m i) m
⊢ ↑f (Finset.piecewise (insert j s) (fun i => c i • m i) m) = (∏ i in insert j s, c i) • ↑f m
[PROOFSTEP]
rw [s.piecewise_insert, f.map_smul, A, Hrec]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
c : ι → R
m : (i : ι) → M₁ i
s✝ : Finset ι
j : ι
s : Finset ι
j_not_mem_s : ¬j ∈ s
Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m
A : update (Finset.piecewise s (fun i => c i • m i) m) j (m j) = Finset.piecewise s (fun i => c i • m i) m
⊢ c j • (∏ i in s, c i) • ↑f m = (∏ i in insert j s, c i) • ↑f m
[PROOFSTEP]
simp [j_not_mem_s, mul_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
c : ι → R
m : (i : ι) → M₁ i
⊢ (↑f fun i => c i • m i) = (∏ i : ι, c i) • ↑f m
[PROOFSTEP]
classical simpa using map_piecewise_smul f c m Finset.univ
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
c : ι → R
m : (i : ι) → M₁ i
⊢ (↑f fun i => c i • m i) = (∏ i : ι, c i) • ↑f m
[PROOFSTEP]
simpa using map_piecewise_smul f c m Finset.univ
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ ↑f (update (c • m) i x) = c ^ (Fintype.card ι - 1) • ↑f (update m i x)
[PROOFSTEP]
have :
f ((Finset.univ.erase i).piecewise (c • update m i x) (update m i x)) =
(∏ _i in Finset.univ.erase i, c) • f (update m i x) :=
map_piecewise_smul f _ _ _
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
this :
↑f (Finset.piecewise (Finset.erase Finset.univ i) (c • update m i x) (update m i x)) =
(∏ _i in Finset.erase Finset.univ i, c) • ↑f (update m i x)
⊢ ↑f (update (c • m) i x) = c ^ (Fintype.card ι - 1) • ↑f (update m i x)
[PROOFSTEP]
simpa [← Function.update_smul c m] using this
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι₁ : Type ?u.427401
ι₂ : Type ?u.427507
σ : ι₁ ≃ ι₂
src✝ : MultilinearMap A (fun x => M₂) M₃ ≃+ MultilinearMap A (fun x => M₂) M₃ := domDomCongrEquiv σ
c : R'
f : MultilinearMap A (fun x => M₂) M₃
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : MultilinearMap A (fun x => M₂) M₃),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(c • f) =
↑(RingHom.id R') c •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : MultilinearMap A (fun x => M₂) M₃),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι₁ : Type ?u.427401
ι₂ : Type ?u.427507
σ : ι₁ ≃ ι₂
src✝ : MultilinearMap A (fun x => M₂) M₃ ≃+ MultilinearMap A (fun x => M₂) M₃ := domDomCongrEquiv σ
c : R'
f : MultilinearMap A (fun x => M₂) M₃
x✝ : ι₂ → M₂
⊢ ↑(AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : MultilinearMap A (fun x => M₂) M₃),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(c • f))
x✝ =
↑(↑(RingHom.id R') c •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : MultilinearMap A (fun x => M₂) M₃),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
f)
x✝
[PROOFSTEP]
simp [MultilinearMap.domDomCongr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
⊢ ∀ (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)
[PROOFSTEP]
letI := σ.decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
this : DecidableEq ι := Equiv.decidableEq σ
⊢ ∀ (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)
[PROOFSTEP]
rw [← σ.apply_symm_apply i]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
this : DecidableEq ι := Equiv.decidableEq σ
⊢ ∀ (x y : M₁ (↑σ.symm (↑σ (↑σ.symm i)))),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) y)
[PROOFSTEP]
intro x y
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
this : DecidableEq ι := Equiv.decidableEq σ
x y : M₁ (↑σ.symm (↑σ (↑σ.symm i)))
⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) y)
[PROOFSTEP]
simp only [comp_apply, piCongrLeft'_symm_update, f.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
c : R
⊢ ∀ (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)
[PROOFSTEP]
letI := σ.decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
c : R
this : DecidableEq ι := Equiv.decidableEq σ
⊢ ∀ (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)
[PROOFSTEP]
rw [← σ.apply_symm_apply i]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
c : R
this : DecidableEq ι := Equiv.decidableEq σ
⊢ ∀ (x : M₁ (↑σ.symm (↑σ (↑σ.symm i)))),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x)
[PROOFSTEP]
intro x
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι'
m : (i : ι') → M₁ (↑σ.symm i)
i : ι'
c : R
this : DecidableEq ι := Equiv.decidableEq σ
x : M₁ (↑σ.symm (↑σ (↑σ.symm i)))
⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x)
[PROOFSTEP]
simp only [Function.comp, piCongrLeft'_symm_update, f.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f₁ f₂ : MultilinearMap R M₁ M₂
⊢ (fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f₁ f₂ : MultilinearMap R M₁ M₂
x✝ : (i : ι') → M₁ (↑σ.symm i)
⊢ ↑((fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂))
x✝ =
↑((fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂)
x✝
[PROOFSTEP]
simp only [Function.comp, coe_mk, add_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
c : R
f : MultilinearMap R M₁ M₂
⊢ AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
c : R
f : MultilinearMap R M₁ M₂
x✝ : (i : ι') → M₁ (↑σ.symm i)
⊢ ↑(AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
(c • f))
x✝ =
↑(↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
f)
x✝
[PROOFSTEP]
simp only [Function.comp, coe_mk, smul_apply, RingHom.id_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
⊢ ∀ (x y : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)
[PROOFSTEP]
letI := σ.symm.decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
this : DecidableEq ι' := Equiv.decidableEq σ.symm
⊢ ∀ (x y : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)
[PROOFSTEP]
rw [← σ.symm_apply_apply i]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
this : DecidableEq ι' := Equiv.decidableEq σ.symm
⊢ ∀ (x y : M₁ (↑σ.symm (↑σ i))),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) y)
[PROOFSTEP]
intro x y
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
this : DecidableEq ι' := Equiv.decidableEq σ.symm
x y : M₁ (↑σ.symm (↑σ i))
⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) y)
[PROOFSTEP]
simp only [comp_apply, piCongrLeft'_update, f.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
⊢ ∀ (x : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)
[PROOFSTEP]
letI := σ.symm.decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
this : DecidableEq ι' := Equiv.decidableEq σ.symm
⊢ ∀ (x : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)
[PROOFSTEP]
rw [← σ.symm_apply_apply i]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
this : DecidableEq ι' := Equiv.decidableEq σ.symm
⊢ ∀ (x : M₁ (↑σ.symm (↑σ i))),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x)
[PROOFSTEP]
intro x
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁵ : CommSemiring R
inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹² : AddCommMonoid M₂
inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹⁰ : (i : ι) → Module R (M₁ i)
inst✝⁹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁸ : Semiring R'
inst✝⁷ : Semiring A
inst✝⁶ : (i : ι) → Module A (M₁ i)
inst✝⁵ : Module A M₂
inst✝⁴ : AddCommMonoid M₃
inst✝³ : Module R' M₃
inst✝² : Module A M₃
inst✝¹ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
this : DecidableEq ι' := Equiv.decidableEq σ.symm
x : M₁ (↑σ.symm (↑σ i))
⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x)
[PROOFSTEP]
simp only [Function.comp, piCongrLeft'_update, f.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
⊢ (fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R M₁ M₂),
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
f) }.toAddHom
f) =
f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R M₁ M₂
x✝ : (i : ι) → M₁ i
⊢ ↑((fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R M₁ M₂),
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
f) }.toAddHom
f))
x✝ =
↑f x✝
[PROOFSTEP]
simp only [coe_mk, comp_apply, Equiv.symm_apply_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R M₁ M₂),
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
f) }.toAddHom
((fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) })
f) =
f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁴ : CommSemiring R
inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i)
inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝¹¹ : AddCommMonoid M₂
inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁹ : (i : ι) → Module R (M₁ i)
inst✝⁸ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
R' : Type u_1
A : Type u_2
inst✝⁷ : Semiring R'
inst✝⁶ : Semiring A
inst✝⁵ : (i : ι) → Module A (M₁ i)
inst✝⁴ : Module A M₂
inst✝³ : AddCommMonoid M₃
inst✝² : Module R' M₃
inst✝¹ : Module A M₃
inst✝ : SMulCommClass A R' M₃
ι' : Type u_3
σ : ι ≃ ι'
f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂
x✝ : (i : ι') → M₁ (↑σ.symm i)
⊢ ↑(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R M₁ M₂),
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) },
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R M₁ M₂),
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R)
(x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
(f₁ + f₂) =
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₁ +
(fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm,
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(x y : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι')
(c : R) (x : M₁ (↑σ.symm i)),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) })
f₂) }
f) }.toAddHom
((fun f =>
{ toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ),
map_add' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) =
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) +
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i),
(↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) =
c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) })
f))
x✝ =
↑f x✝
[PROOFSTEP]
simp only [coe_mk, comp_apply, Equiv.apply_symm_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : CommSemiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝³ : CommSemiring A
inst✝² : Algebra R A
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
m : ι → A
i : ι
x y : A
⊢ (fun m => ∏ i : ι, m i) (update m i (x + y)) =
(fun m => ∏ i : ι, m i) (update m i x) + (fun m => ∏ i : ι, m i) (update m i y)
[PROOFSTEP]
simp [Finset.prod_update_of_mem, add_mul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝¹⁰ : CommSemiring R
inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁸ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁷ : AddCommMonoid M₂
inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝⁵ : (i : ι) → Module R (M₁ i)
inst✝⁴ : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝³ : CommSemiring A
inst✝² : Algebra R A
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
m : ι → A
i : ι
c : R
x : A
⊢ (fun m => ∏ i : ι, m i) (update m i (c • x)) = c • (fun m => ∏ i : ι, m i) (update m i x)
[PROOFSTEP]
simp [Finset.prod_update_of_mem]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
x y : A
⊢ (fun m => List.prod (List.ofFn m)) (update m i (x + y)) =
(fun m => List.prod (List.ofFn m)) (update m i x) + (fun m => List.prod (List.ofFn m)) (update m i y)
[PROOFSTEP]
rw [Subsingleton.elim dec (by infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
x y : A
⊢ DecidableEq (Fin n)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
x y : A
⊢ (fun m => List.prod (List.ofFn m)) (update m i (x + y)) =
(fun m => List.prod (List.ofFn m)) (update m i x) + (fun m => List.prod (List.ofFn m)) (update m i y)
[PROOFSTEP]
have : (List.finRange n).indexOf i < n := by simpa using List.indexOf_lt_length.2 (List.mem_finRange i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
x y : A
⊢ List.indexOf i (List.finRange n) < n
[PROOFSTEP]
simpa using List.indexOf_lt_length.2 (List.mem_finRange i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
x y : A
this : List.indexOf i (List.finRange n) < n
⊢ (fun m => List.prod (List.ofFn m)) (update m i (x + y)) =
(fun m => List.prod (List.ofFn m)) (update m i x) + (fun m => List.prod (List.ofFn m)) (update m i y)
[PROOFSTEP]
simp [List.ofFn_eq_map, (List.nodup_finRange n).map_update, List.prod_set, add_mul, this, mul_add, add_mul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
c : R
x : A
⊢ (fun m => List.prod (List.ofFn m)) (update m i (c • x)) = c • (fun m => List.prod (List.ofFn m)) (update m i x)
[PROOFSTEP]
rw [Subsingleton.elim dec (by infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
c : R
x : A
⊢ DecidableEq (Fin n)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
c : R
x : A
⊢ (fun m => List.prod (List.ofFn m)) (update m i (c • x)) = c • (fun m => List.prod (List.ofFn m)) (update m i x)
[PROOFSTEP]
have : (List.finRange n).indexOf i < n := by simpa using List.indexOf_lt_length.2 (List.mem_finRange i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
c : R
x : A
⊢ List.indexOf i (List.finRange n) < n
[PROOFSTEP]
simpa using List.indexOf_lt_length.2 (List.mem_finRange i)
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
dec : DecidableEq (Fin n)
m : Fin n → A
i : Fin n
c : R
x : A
this : List.indexOf i (List.finRange n) < n
⊢ (fun m => List.prod (List.ofFn m)) (update m i (c • x)) = c • (fun m => List.prod (List.ofFn m)) (update m i x)
[PROOFSTEP]
simp [List.ofFn_eq_map, (List.nodup_finRange n).map_update, List.prod_set, this]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁸ : CommSemiring R
inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M₂
f f' : MultilinearMap R M₁ M₂
A : Type u_1
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ (↑(MultilinearMap.mkPiAlgebraFin R n A) fun x => a) = a ^ n
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
⊢ MultilinearMap.mkPiRing R ι (↑f fun x => 1) = f
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m
[PROOFSTEP]
have : m = fun i => m i • (1 : R) := by
ext j
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
⊢ m = fun i => m i • 1
[PROOFSTEP]
ext j
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
j : ι
⊢ m j = m j • 1
[PROOFSTEP]
simp
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
this : m = fun i => m i • 1
⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m
[PROOFSTEP]
conv_rhs => rw [this, f.map_smul_univ]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
this : m = fun i => m i • 1
| ↑f m
[PROOFSTEP]
rw [this, f.map_smul_univ]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
this : m = fun i => m i • 1
| ↑f m
[PROOFSTEP]
rw [this, f.map_smul_univ]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
f : MultilinearMap R (fun x => R) M₂
m : ι → R
this : m = fun i => m i • 1
| ↑f m
[PROOFSTEP]
rw [this, f.map_smul_univ]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
⊢ MultilinearMap.mkPiRing R ι z₁ = MultilinearMap.mkPiRing R ι z₂ ↔ z₁ = z₂
[PROOFSTEP]
simp_rw [MultilinearMap.ext_iff, mkPiRing_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
⊢ (∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂) ↔ z₁ = z₂
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
⊢ (∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂) → z₁ = z₂
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
⊢ z₁ = z₂ → ∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
h : ∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂
⊢ z₁ = z₂
[PROOFSTEP]
simpa using h fun _ => 1
[GOAL]
case mpr
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
h : z₁ = z₂
⊢ ∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂
[PROOFSTEP]
intro x
[GOAL]
case mpr
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z₁ z₂ : M₂
h : z₁ = z₂
x : ι → R
⊢ (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
⊢ MultilinearMap.mkPiRing R ι 0 = 0
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
x✝ : ι → R
⊢ ↑(MultilinearMap.mkPiRing R ι 0) x✝ = ↑0 x✝
[PROOFSTEP]
rw [mkPiRing_apply, smul_zero, MultilinearMap.zero_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f f' : MultilinearMap R M₁ M₂
inst✝ : Fintype ι
z : M₂
⊢ MultilinearMap.mkPiRing R ι z = 0 ↔ z = 0
[PROOFSTEP]
rw [← mkPiRing_zero, mkPiRing_eq_iff]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun m => -↑f m) (update m i (x + y)) = (fun m => -↑f m) (update m i x) + (fun m => -↑f m) (update m i y)
[PROOFSTEP]
simp [add_comm]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ (fun m => -↑f m) (update m i (c • x)) = c • (fun m => -↑f m) (update m i x)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g✝ f g : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun m => ↑f m - ↑g m) (update m i (x + y)) =
(fun m => ↑f m - ↑g m) (update m i x) + (fun m => ↑f m - ↑g m) (update m i y)
[PROOFSTEP]
simp only [MultilinearMap.map_add, sub_eq_add_neg, neg_add]
-- Porting note: used to be `cc`
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g✝ f g : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ ↑f (update m i x) + ↑f (update m i y) + (-↑g (update m i x) + -↑g (update m i y)) =
↑f (update m i x) + -↑g (update m i x) + (↑f (update m i y) + -↑g (update m i y))
[PROOFSTEP]
abel
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g✝ f g : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ ↑f (update m i x) + ↑f (update m i y) + (-↑g (update m i x) + -↑g (update m i y)) =
↑f (update m i x) + -↑g (update m i x) + (↑f (update m i y) + -↑g (update m i y))
[PROOFSTEP]
abel
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g✝ f g : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
c : R
x : M₁ i
⊢ (fun m => ↑f m - ↑g m) (update m i (c • x)) = c • (fun m => ↑f m - ↑g m) (update m i x)
[PROOFSTEP]
simp only [MultilinearMap.map_smul, smul_sub]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g : MultilinearMap R M₁ M₂
src✝ : AddCommMonoid (MultilinearMap R M₁ M₂) := addCommMonoid
n : ℤ
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ (fun m => n • ↑f m) (update m i (x + y)) = (fun m => n • ↑f m) (update m i x) + (fun m => n • ↑f m) (update m i y)
[PROOFSTEP]
simp [smul_add]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f✝ g : MultilinearMap R M₁ M₂
src✝ : AddCommMonoid (MultilinearMap R M₁ M₂) := addCommMonoid
n : ℤ
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
l : (i : ι) → M₁ i
i : ι
x : R
d : M₁ i
⊢ (fun m => n • ↑f m) (update l i (x • d)) = x • (fun m => n • ↑f m) (update l i d)
[PROOFSTEP]
simp [← smul_comm x n (_ : M₂)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommGroup (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x : M₁ i
⊢ ↑f (update m i (-x)) + ↑f (update m i x) = 0
[PROOFSTEP]
rw [← MultilinearMap.map_add, add_left_neg, f.map_coord_zero i (update_same i 0 m)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : Semiring R
inst✝⁴ : (i : ι) → AddCommGroup (M₁ i)
inst✝³ : AddCommGroup M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
f : MultilinearMap R M₁ M₂
inst✝ : DecidableEq ι
m : (i : ι) → M₁ i
i : ι
x y : M₁ i
⊢ ↑f (update m i (x - y)) = ↑f (update m i x) - ↑f (update m i y)
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, MultilinearMap.map_add, map_neg]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : CommSemiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommMonoid M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
inst✝ : Fintype ι
z z' : M₂
⊢ (fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z'
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : CommSemiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommMonoid M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
inst✝ : Fintype ι
z z' : M₂
m : ι → R
⊢ ↑((fun z => MultilinearMap.mkPiRing R ι z) (z + z')) m =
↑((fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') m
[PROOFSTEP]
simp [smul_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : CommSemiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommMonoid M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
inst✝ : Fintype ι
c : R
z : M₂
⊢ AddHom.toFun
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') }
(c • z) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') }
z
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : CommSemiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommMonoid M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
inst✝ : Fintype ι
c : R
z : M₂
m : ι → R
⊢ ↑(AddHom.toFun
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') }
(c • z))
m =
↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') }
z)
m
[PROOFSTEP]
simp [smul_smul, mul_comm]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁵ : CommSemiring R
inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i)
inst✝³ : AddCommMonoid M₂
inst✝² : (i : ι) → Module R (M₁ i)
inst✝¹ : Module R M₂
inst✝ : Fintype ι
z : M₂
⊢ (fun f => ↑f fun x => 1)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') },
map_smul' :=
(_ :
∀ (c : R) (z : M₂),
AddHom.toFun
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z +
(fun z => MultilinearMap.mkPiRing R ι z) z') }
(c • z) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun z => MultilinearMap.mkPiRing R ι z,
map_add' :=
(_ :
∀ (z z' : M₂),
(fun z => MultilinearMap.mkPiRing R ι z) (z + z') =
(fun z => MultilinearMap.mkPiRing R ι z) z +
(fun z => MultilinearMap.mkPiRing R ι z) z') }
z) }.toAddHom
z) =
z
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) =
(fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) =
(fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) =
(fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y)
[PROOFSTEP]
by_cases h : i = 0
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : i = 0
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) =
(fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y)
[PROOFSTEP]
subst i
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
x y : M 0
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 (x + y)) =
(fun m => ↑(↑f (m 0)) (tail m)) (update m 0 x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 y)
[PROOFSTEP]
simp only [update_same, map_add, tail_update_zero, MultilinearMap.add_apply]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : ¬i = 0
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) =
(fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y)
[PROOFSTEP]
simp_rw [update_noteq (Ne.symm h)]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : ¬i = 0
⊢ ↑(↑f (m 0)) (tail (update m i (x + y))) = ↑(↑f (m 0)) (tail (update m i x)) + ↑(↑f (m 0)) (tail (update m i y))
[PROOFSTEP]
revert x y
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ¬i = 0
⊢ ∀ (x y : M i),
↑(↑f (m 0)) (tail (update m i (x + y))) = ↑(↑f (m 0)) (tail (update m i x)) + ↑(↑f (m 0)) (tail (update m i y))
[PROOFSTEP]
rw [← succ_pred i h]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ¬i = 0
⊢ ∀ (x y : M (succ (pred i h))),
↑(↑f (m 0)) (tail (update m (succ (pred i h)) (x + y))) =
↑(↑f (m 0)) (tail (update m (succ (pred i h)) x)) + ↑(↑f (m 0)) (tail (update m (succ (pred i h)) y))
[PROOFSTEP]
intro x y
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ¬i = 0
x y : M (succ (pred i h))
⊢ ↑(↑f (m 0)) (tail (update m (succ (pred i h)) (x + y))) =
↑(↑f (m 0)) (tail (update m (succ (pred i h)) x)) + ↑(↑f (m 0)) (tail (update m (succ (pred i h)) y))
[PROOFSTEP]
rw [tail_update_succ, MultilinearMap.map_add, tail_update_succ, tail_update_succ]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x)
[PROOFSTEP]
by_cases h : i = 0
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : i = 0
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x)
[PROOFSTEP]
subst i
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
c : R
x : M 0
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 x)
[PROOFSTEP]
simp only [update_same, map_smul, tail_update_zero, MultilinearMap.smul_apply]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : ¬i = 0
⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x)
[PROOFSTEP]
simp_rw [update_noteq (Ne.symm h)]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : ¬i = 0
⊢ ↑(↑f (m 0)) (tail (update m i (c • x))) = c • ↑(↑f (m 0)) (tail (update m i x))
[PROOFSTEP]
revert x
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ¬i = 0
⊢ ∀ (x : M i), ↑(↑f (m 0)) (tail (update m i (c • x))) = c • ↑(↑f (m 0)) (tail (update m i x))
[PROOFSTEP]
rw [← succ_pred i h]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ¬i = 0
⊢ ∀ (x : M (succ (pred i h))),
↑(↑f (m 0)) (tail (update m (succ (pred i h)) (c • x))) = c • ↑(↑f (m 0)) (tail (update m (succ (pred i h)) x))
[PROOFSTEP]
intro x
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ¬i = 0
x : M (succ (pred i h))
⊢ ↑(↑f (m 0)) (tail (update m (succ (pred i h)) (c • x))) = c • ↑(↑f (m 0)) (tail (update m (succ (pred i h)) x))
[PROOFSTEP]
rw [tail_update_succ, tail_update_succ, MultilinearMap.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (succ i)
i : Fin n
y y' : M (succ i)
⊢ (fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (succ i)
i : Fin n
y y' : M (succ i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
m : (i : Fin n) → M (succ i)
i : Fin n
y y' : M (succ i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (succ i)
i : Fin n
y y' : M (succ i)
⊢ (fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (succ i)
i : Fin n
y : R
c : M (succ i)
⊢ (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (succ i)
i : Fin n
y : R
c : M (succ i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
m : (i : Fin n) → M (succ i)
i : Fin n
y : R
c : M (succ i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x : M 0
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (succ i)
i : Fin n
y : R
c : M (succ i)
⊢ (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x y : M 0
⊢ (fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) })
(x + y) =
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) })
x +
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) })
y
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
x y : M 0
m : (i : Fin n) → M (succ i)
⊢ ↑((fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) })
(x + y))
m =
↑((fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) })
x +
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) })
y)
m
[PROOFSTEP]
exact cons_add f m x y
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
c : R
x : M 0
⊢ AddHom.toFun
{
toFun := fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) },
map_add' :=
(_ :
∀ (x y : M 0),
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
(x + y) =
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
x +
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) },
map_add' :=
(_ :
∀ (x y : M 0),
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
(x + y) =
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
x +
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
y) }
x
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
c : R
x : M 0
m : (i : Fin n) → M (succ i)
⊢ ↑(AddHom.toFun
{
toFun := fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) },
map_add' :=
(_ :
∀ (x y : M 0),
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
(x + y) =
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
x +
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
y) }
(c • x))
m =
↑(↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) },
map_add' :=
(_ :
∀ (x y : M 0),
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
(x + y) =
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) +
(fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
x +
(fun x =>
{ toFun := fun m => ↑f (cons x m),
map_add' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n)
(y y' : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y + y')) =
(fun m => ↑f (cons x m)) (update m i y) +
(fun m => ↑f (cons x m)) (update m i y')),
map_smul' :=
(_ :
∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R)
(c : M (succ i)),
(fun m => ↑f (cons x m)) (update m i (y • c)) =
y • (fun m => ↑f (cons x m)) (update m i c)) })
y) }
x)
m
[PROOFSTEP]
exact cons_smul f m c x
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
⊢ curryLeft (uncurryLeft f) = f
[PROOFSTEP]
ext m x
[GOAL]
case h.H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : M 0
x : (i : Fin n) → M (succ i)
⊢ ↑(↑(curryLeft (uncurryLeft f)) m) x = ↑(↑f m) x
[PROOFSTEP]
simp only [tail_cons, LinearMap.uncurryLeft_apply, MultilinearMap.curryLeft_apply]
[GOAL]
case h.H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : M 0
x : (i : Fin n) → M (succ i)
⊢ ↑(↑f (cons m x 0)) x = ↑(↑f m) x
[PROOFSTEP]
rw [cons_zero]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
⊢ LinearMap.uncurryLeft (curryLeft f) = f
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(LinearMap.uncurryLeft (curryLeft f)) m = ↑f m
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
⊢ LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(LinearMap.uncurryLeft (f₁ + f₂)) m = ↑(LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) m
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
c : R
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
⊢ AddHom.toFun
{ toFun := LinearMap.uncurryLeft,
map_add' :=
(_ :
∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂),
LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := LinearMap.uncurryLeft,
map_add' :=
(_ :
∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂),
LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) }
f
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
c : R
f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(AddHom.toFun
{ toFun := LinearMap.uncurryLeft,
map_add' :=
(_ :
∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂),
LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) }
(c • f))
m =
↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := LinearMap.uncurryLeft,
map_add' :=
(_ :
∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂),
LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) }
f)
m
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
by_cases h : i.val < n
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : ↑i < n
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
have : last n ≠ i := Ne.symm (ne_of_lt h)
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : ↑i < n
this : last n ≠ i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
simp_rw [update_noteq this]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : ↑i < n
this : last n ≠ i
⊢ ↑(↑f (init (update m i (x + y)))) (m (last n)) =
↑(↑f (init (update m i x))) (m (last n)) + ↑(↑f (init (update m i y))) (m (last n))
[PROOFSTEP]
revert x y
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ↑i < n
this : last n ≠ i
⊢ ∀ (x y : M i),
↑(↑f (init (update m i (x + y)))) (m (last n)) =
↑(↑f (init (update m i x))) (m (last n)) + ↑(↑f (init (update m i y))) (m (last n))
[PROOFSTEP]
rw [(castSucc_castLT i h).symm]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ↑i < n
this : last n ≠ i
⊢ ∀ (x y : M (castSucc (castLT i h))),
↑(↑f (init (update m (castSucc (castLT i h)) (x + y)))) (m (last n)) =
↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n)) +
↑(↑f (init (update m (castSucc (castLT i h)) y))) (m (last n))
[PROOFSTEP]
intro x y
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ↑i < n
this : last n ≠ i
x y : M (castSucc (castLT i h))
⊢ ↑(↑f (init (update m (castSucc (castLT i h)) (x + y)))) (m (last n)) =
↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n)) +
↑(↑f (init (update m (castSucc (castLT i h)) y))) (m (last n))
[PROOFSTEP]
rw [init_update_castSucc, MultilinearMap.map_add, init_update_castSucc, init_update_castSucc, LinearMap.add_apply]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
x y : M i
h : ¬↑i < n
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
revert x y
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ¬↑i < n
⊢ ∀ (x y : M i),
(fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y)
[PROOFSTEP]
rw [eq_last_of_not_lt h]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ¬↑i < n
⊢ ∀ (x y : M (last n)),
(fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x) +
(fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) y)
[PROOFSTEP]
intro x y
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
h : ¬↑i < n
x y : M (last n)
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (x + y)) =
(fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x) +
(fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) y)
[PROOFSTEP]
simp_rw [init_update_last, update_same, LinearMap.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ DecidableEq (Fin (Nat.succ n))
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
dec : DecidableEq (Fin (Nat.succ n))
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
by_cases h : i.val < n
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : ↑i < n
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
have : last n ≠ i := Ne.symm (ne_of_lt h)
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : ↑i < n
this : last n ≠ i
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
simp_rw [update_noteq this]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : ↑i < n
this : last n ≠ i
⊢ ↑(↑f (init (update m i (c • x)))) (m (last n)) = c • ↑(↑f (init (update m i x))) (m (last n))
[PROOFSTEP]
revert x
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ↑i < n
this : last n ≠ i
⊢ ∀ (x : M i), ↑(↑f (init (update m i (c • x)))) (m (last n)) = c • ↑(↑f (init (update m i x))) (m (last n))
[PROOFSTEP]
rw [(castSucc_castLT i h).symm]
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ↑i < n
this : last n ≠ i
⊢ ∀ (x : M (castSucc (castLT i h))),
↑(↑f (init (update m (castSucc (castLT i h)) (c • x)))) (m (last n)) =
c • ↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n))
[PROOFSTEP]
intro x
[GOAL]
case pos
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ↑i < n
this : last n ≠ i
x : M (castSucc (castLT i h))
⊢ ↑(↑f (init (update m (castSucc (castLT i h)) (c • x)))) (m (last n)) =
c • ↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n))
[PROOFSTEP]
rw [init_update_castSucc, init_update_castSucc, MultilinearMap.map_smul, LinearMap.smul_apply]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
x : M i
h : ¬↑i < n
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
revert x
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ¬↑i < n
⊢ ∀ (x : M i),
(fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x)
[PROOFSTEP]
rw [eq_last_of_not_lt h]
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ¬↑i < n
⊢ ∀ (x : M (last n)),
(fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x)
[PROOFSTEP]
intro x
[GOAL]
case neg
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
i : Fin (Nat.succ n)
c : R
h : ¬↑i < n
x : M (last n)
⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (c • x)) =
c • (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x)
[PROOFSTEP]
simp_rw [update_same, init_update_last, map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
x y : M (last n)
⊢ (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y
[PROOFSTEP]
simp_rw [f.snoc_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
c : R
x : M (last n)
⊢ AddHom.toFun
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }
x
[PROOFSTEP]
simp only [f.snoc_smul, RingHom.id_apply]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
⊢ (fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (x + y)) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x) +
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i y)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
⊢ (fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (x + y)) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x) +
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i y)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
⊢ (fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (x + y)) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x) +
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i y)
[PROOFSTEP]
ext z
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
z : M (last n)
⊢ ↑((fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (x + y)))
z =
↑((fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x) +
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i y))
z
[PROOFSTEP]
change f (snoc (update m i (x + y)) z) = f (snoc (update m i x) z) + f (snoc (update m i y) z)
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
x y : M (castSucc i)
z : M (last n)
⊢ ↑f (snoc (update m i (x + y)) z) = ↑f (snoc (update m i x) z) + ↑f (snoc (update m i y) z)
[PROOFSTEP]
rw [snoc_update, snoc_update, snoc_update, f.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
⊢ (fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (c • x)) =
c •
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x)
[PROOFSTEP]
rw [Subsingleton.elim dec (by clear dec; infer_instance)]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
⊢ DecidableEq (Fin n)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
dec : DecidableEq (Fin n)
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
⊢ (fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (c • x)) =
c •
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x)
[PROOFSTEP]
clear dec
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
⊢ (fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (c • x)) =
c •
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x)
[PROOFSTEP]
ext z
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
z : M (last n)
⊢ ↑((fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i (c • x)))
z =
↑(c •
(fun m =>
{
toAddHom :=
{ toFun := fun x => ↑f (snoc m x),
map_add' :=
(_ :
∀ (x y : M (last n)),
(fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) },
map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) })
(update m i x))
z
[PROOFSTEP]
change f (snoc (update m i (c • x)) z) = c • f (snoc (update m i x) z)
[GOAL]
case h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin n) → M (castSucc i)
i : Fin n
c : R
x : M (castSucc i)
z : M (last n)
⊢ ↑f (snoc (update m i (c • x)) z) = c • ↑f (snoc (update m i x) z)
[PROOFSTEP]
rw [snoc_update, snoc_update, f.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
⊢ curryRight (uncurryRight f) = f
[PROOFSTEP]
ext m x
[GOAL]
case H.h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin n) → M (castSucc i)
x : M (last n)
⊢ ↑(↑(curryRight (uncurryRight f)) m) x = ↑(↑f m) x
[PROOFSTEP]
simp only [snoc_last, MultilinearMap.curryRight_apply, MultilinearMap.uncurryRight_apply]
[GOAL]
case H.h
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin n) → M (castSucc i)
x : M (last n)
⊢ ↑(↑f (init (snoc m x))) x = ↑(↑f m) x
[PROOFSTEP]
rw [init_snoc]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
⊢ uncurryRight (curryRight f) = f
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f : MultilinearMap R M M₂
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(uncurryRight (curryRight f)) m = ↑f m
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
⊢ uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(uncurryRight (f₁ + f₂)) m = ↑(uncurryRight f₁ + uncurryRight f₂) m
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
c : R
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
⊢ AddHom.toFun
{ toFun := uncurryRight,
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)),
uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := uncurryRight,
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)),
uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) }
f
[PROOFSTEP]
ext m
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
c : R
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(AddHom.toFun
{ toFun := uncurryRight,
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)),
uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) }
(c • f))
m =
↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := uncurryRight,
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)),
uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) }
f)
m
[PROOFSTEP]
rw [smul_apply]
[GOAL]
case H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
c : R
f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)
m : (i : Fin (Nat.succ n)) → M i
⊢ ↑(AddHom.toFun
{ toFun := uncurryRight,
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)),
uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) }
(c • f))
m =
↑(RingHom.id R) c •
↑(AddHom.toFun
{ toFun := uncurryRight,
map_add' :=
(_ :
∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)),
uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) }
f)
m
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
u : ι → M'
inst✝ : DecidableEq ι'
v : ι' → M'
i : ι'
x y : M'
⊢ (fun v => ↑f (Sum.elim u v)) (update v i (x + y)) =
(fun v => ↑f (Sum.elim u v)) (update v i x) + (fun v => ↑f (Sum.elim u v)) (update v i y)
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
u : ι → M'
inst✝ : DecidableEq ι'
v : ι' → M'
i : ι'
x y : M'
this : DecidableEq ι := Classical.decEq ι
⊢ (fun v => ↑f (Sum.elim u v)) (update v i (x + y)) =
(fun v => ↑f (Sum.elim u v)) (update v i x) + (fun v => ↑f (Sum.elim u v)) (update v i y)
[PROOFSTEP]
simp only [← Sum.update_elim_inr, f.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
u : ι → M'
inst✝ : DecidableEq ι'
v : ι' → M'
i : ι'
c : R
x : M'
⊢ (fun v => ↑f (Sum.elim u v)) (update v i (c • x)) = c • (fun v => ↑f (Sum.elim u v)) (update v i x)
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
u : ι → M'
inst✝ : DecidableEq ι'
v : ι' → M'
i : ι'
c : R
x : M'
this : DecidableEq ι := Classical.decEq ι
⊢ (fun v => ↑f (Sum.elim u v)) (update v i (c • x)) = c • (fun v => ↑f (Sum.elim u v)) (update v i x)
[PROOFSTEP]
simp only [← Sum.update_elim_inr, f.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
inst✝ : DecidableEq ι
u : ι → M'
i : ι
x y : M'
v : ι' → M'
⊢ ↑((fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i (x + y)))
v =
↑((fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i x) +
(fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i y))
v
[PROOFSTEP]
letI := Classical.decEq ι'
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
inst✝ : DecidableEq ι
u : ι → M'
i : ι
x y : M'
v : ι' → M'
this : DecidableEq ι' := Classical.decEq ι'
⊢ ↑((fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i (x + y)))
v =
↑((fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i x) +
(fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i y))
v
[PROOFSTEP]
simp only [MultilinearMap.coe_mk, add_apply, ← Sum.update_elim_inl, f.map_add]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
inst✝ : DecidableEq ι
u : ι → M'
i : ι
c : R
x : M'
v : ι' → M'
⊢ ↑((fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i (c • x)))
v =
↑(c •
(fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i x))
v
[PROOFSTEP]
letI := Classical.decEq ι'
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
inst✝ : DecidableEq ι
u : ι → M'
i : ι
c : R
x : M'
v : ι' → M'
this : DecidableEq ι' := Classical.decEq ι'
⊢ ↑((fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i (c • x)))
v =
↑(c •
(fun u =>
{ toFun := fun v => ↑f (Sum.elim u v),
map_add' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'),
↑f (Sum.elim u (update v i (x + y))) =
↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))),
map_smul' :=
(_ :
∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'),
↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) })
(update u i x))
v
[PROOFSTEP]
simp only [MultilinearMap.coe_mk, smul_apply, ← Sum.update_elim_inl, f.map_smul]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
i : ι ⊕ ι'
x y : M'
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (x + y)) =
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) +
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i y)
[PROOFSTEP]
letI := (@Sum.inl_injective ι ι').decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
i : ι ⊕ ι'
x y : M'
this : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (x + y)) =
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) +
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i y)
[PROOFSTEP]
letI := (@Sum.inr_injective ι ι').decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
i : ι ⊕ ι'
x y : M'
this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr)
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (x + y)) =
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) +
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i y)
[PROOFSTEP]
cases i
[GOAL]
case inl
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
x y : M'
this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr)
val✝ : ι
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) (x + y)) =
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) x) +
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) y)
[PROOFSTEP]
simp only [MultilinearMap.map_add, add_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr, Sum.update_inr_comp_inl,
Sum.update_inr_comp_inr]
[GOAL]
case inr
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
x y : M'
this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr)
val✝ : ι'
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) (x + y)) =
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) x) +
(fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) y)
[PROOFSTEP]
simp only [MultilinearMap.map_add, add_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr, Sum.update_inr_comp_inl,
Sum.update_inr_comp_inr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
i : ι ⊕ ι'
c : R
x : M'
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (c • x)) =
c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x)
[PROOFSTEP]
letI := (@Sum.inl_injective ι ι').decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
i : ι ⊕ ι'
c : R
x : M'
this : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (c • x)) =
c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x)
[PROOFSTEP]
letI := (@Sum.inr_injective ι ι').decidableEq
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
i : ι ⊕ ι'
c : R
x : M'
this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr)
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (c • x)) =
c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x)
[PROOFSTEP]
cases i
[GOAL]
case inl
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
c : R
x : M'
this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr)
val✝ : ι
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) (c • x)) =
c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) x)
[PROOFSTEP]
simp only [MultilinearMap.map_smul, smul_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr,
Sum.update_inr_comp_inl, Sum.update_inr_comp_inr]
[GOAL]
case inr
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : CommSemiring R
inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
inst✝ : DecidableEq (ι ⊕ ι')
u : ι ⊕ ι' → M'
c : R
x : M'
this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl)
this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr)
val✝ : ι'
⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) (c • x)) =
c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) x)
[PROOFSTEP]
simp only [MultilinearMap.map_smul, smul_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr,
Sum.update_inr_comp_inl, Sum.update_inr_comp_inr]
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
f g : MultilinearMap R (fun x => M') M₂
⊢ currySum (f + g) = currySum f + currySum g
[PROOFSTEP]
ext
[GOAL]
case H.H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
f g : MultilinearMap R (fun x => M') M₂
x✝¹ : ι → M'
x✝ : ι' → M'
⊢ ↑(↑(currySum (f + g)) x✝¹) x✝ = ↑(↑(currySum f + currySum g) x✝¹) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
c : R
f : MultilinearMap R (fun x => M') M₂
⊢ AddHom.toFun
{ toFun := currySum,
map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := currySum,
map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }
f
[PROOFSTEP]
ext
[GOAL]
case H.H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
c : R
f : MultilinearMap R (fun x => M') M₂
x✝¹ : ι → M'
x✝ : ι' → M'
⊢ ↑(↑(AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }
(c • f))
x✝¹)
x✝ =
↑(↑(↑(RingHom.id R) c •
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }
f)
x✝¹)
x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') M₂
u : ι ⊕ ι' → M'
⊢ ↑(uncurrySum
(AddHom.toFun
{
toAddHom :=
{ toFun := currySum,
map_add' :=
(_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R (fun x => M') M₂),
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ :
∀ (f g : MultilinearMap R (fun x => M') M₂),
currySum (f + g) = currySum f + currySum g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ :
∀ (f g : MultilinearMap R (fun x => M') M₂),
currySum (f + g) = currySum f + currySum g) }
f) }.toAddHom
f))
u =
↑f u
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := currySum,
map_add' :=
(_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R (fun x => M') M₂),
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ :
∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }
f) }.toAddHom
(uncurrySum f) =
f
[PROOFSTEP]
ext
[GOAL]
case H.H
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x✝¹ : ι → M'
x✝ : ι' → M'
⊢ ↑(↑(AddHom.toFun
{
toAddHom :=
{ toFun := currySum,
map_add' :=
(_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) },
map_smul' :=
(_ :
∀ (c : R) (f : MultilinearMap R (fun x => M') M₂),
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ :
∀ (f g : MultilinearMap R (fun x => M') M₂),
currySum (f + g) = currySum f + currySum g) }
(c • f) =
↑(RingHom.id R) c •
AddHom.toFun
{ toFun := currySum,
map_add' :=
(_ :
∀ (f g : MultilinearMap R (fun x => M') M₂),
currySum (f + g) = currySum f + currySum g) }
f) }.toAddHom
(uncurrySum f))
x✝¹)
x✝ =
↑(↑f x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
⊢ ↑(↑(LinearEquiv.symm (curryFinFinset R M₂ M' hk hl)) f) (Finset.piecewise s (fun x_1 => x) fun x => y) =
↑(↑f fun x_1 => x) fun x => y
[PROOFSTEP]
rw [curryFinFinset_symm_apply]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
⊢ (↑(↑f fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inl i))) fun i =>
Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) =
↑(↑f fun x_1 => x) fun x => y
[PROOFSTEP]
congr
[GOAL]
case h.e_5.h.h.e_6.h
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
⊢ (fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inl i))) = fun x_1 => x
[PROOFSTEP]
ext
[GOAL]
case h.e_5.h.h.e_6.h.h
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
x✝ : Fin k
⊢ Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inl x✝)) = x
[PROOFSTEP]
rw [finSumEquivOfFinset_inl, Finset.piecewise_eq_of_mem]
[GOAL]
case h.e_5.h.h.e_6.h.h.hi
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
x✝ : Fin k
⊢ ↑(Finset.orderEmbOfFin s hk) x✝ ∈ s
[PROOFSTEP]
apply Finset.orderEmbOfFin_mem
[GOAL]
case h.e_6.h
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
⊢ (fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = fun x => y
[PROOFSTEP]
ext
[GOAL]
case h.e_6.h.h
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
x✝ : Fin l
⊢ Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr x✝)) = y
[PROOFSTEP]
rw [finSumEquivOfFinset_inr, Finset.piecewise_eq_of_not_mem]
[GOAL]
case h.e_6.h.h.hi
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
x✝ : Fin l
⊢ ¬↑(Finset.orderEmbOfFin sᶜ hl) x✝ ∈ s
[PROOFSTEP]
exact Finset.mem_compl.1 (Finset.orderEmbOfFin_mem _ _ _)
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
⊢ (↑(↑f fun x_1 => x) fun i =>
Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) =
↑(↑f fun x_1 => x) fun x => y
[PROOFSTEP]
have := curryFinFinset_symm_apply_piecewise_const hk hl f x y
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
this :
↑(↑(LinearEquiv.symm (curryFinFinset R M₂ M' hk hl)) f) (Finset.piecewise s (fun x_1 => x) fun x => y) =
↑(↑f fun x_1 => x) fun x => y
⊢ (↑(↑f fun x_1 => x) fun i =>
Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) =
↑(↑f fun x_1 => x) fun x => y
[PROOFSTEP]
simp only [curryFinFinset_symm_apply, finSumEquivOfFinset_inl, Finset.orderEmbOfFin_mem, Finset.piecewise_eq_of_mem,
finSumEquivOfFinset_inr] at this
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂)
x y : M'
this :
(↑(↑f fun i => x) fun i =>
Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) =
↑(↑f fun i => x) fun x => y
⊢ (↑(↑f fun x_1 => x) fun i =>
Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) =
↑(↑f fun x_1 => x) fun x => y
[PROOFSTEP]
exact this
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') M₂
x y : M'
⊢ (↑(↑(↑(curryFinFinset R M₂ M' hk hl) f) fun x_1 => x) fun x => y) = ↑f (Finset.piecewise s (fun x_1 => x) fun x => y)
[PROOFSTEP]
refine'
(curryFinFinset_symm_apply_piecewise_const hk hl _ _ _).symm.trans
_
-- `rw` fails
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') M₂
x y : M'
⊢ ↑(↑(LinearEquiv.symm (curryFinFinset R M₂ M' hk hl)) (↑(curryFinFinset R M₂ M' hk hl) f))
(Finset.piecewise s (fun x_1 => x) fun x => y) =
↑f (Finset.piecewise s (fun x_1 => x) fun x => y)
[PROOFSTEP]
rw [LinearEquiv.symm_apply_apply]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') M₂
x y : M'
⊢ (↑f fun i => Sum.elim (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl).symm i)) =
↑f (Finset.piecewise s (fun x_1 => x) fun x => y)
[PROOFSTEP]
rw [← curryFinFinset_apply]
[GOAL]
R : Type u
ι : Type u'
n✝ : ℕ
M : Fin (Nat.succ n✝) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁶ : CommSemiring R
inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i)
inst✝⁴ : AddCommMonoid M'
inst✝³ : AddCommMonoid M₂
inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i)
inst✝¹ : Module R M'
inst✝ : Module R M₂
ι' : Type u_1
k l n : ℕ
s : Finset (Fin n)
hk : Finset.card s = k
hl : Finset.card sᶜ = l
f : MultilinearMap R (fun x => M') M₂
x y : M'
⊢ (↑(↑(↑(curryFinFinset R M₂ M' hk hl) f) fun x_1 => x) fun x => y) = ↑f (Finset.piecewise s (fun x_1 => x) fun x => y)
[PROOFSTEP]
apply curryFinFinset_apply_const
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
⊢ c • x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
[PROOFSTEP]
let ⟨i⟩ := ‹Nonempty ι›
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
⊢ c • x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
this : DecidableEq ι := Classical.decEq ι
⊢ c • x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
[PROOFSTEP]
refine' ⟨update x i (c • x i), fun j => if hij : j = i then _ else _, hf ▸ _⟩
[GOAL]
case refine'_1
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
this : DecidableEq ι := Classical.decEq ι
j : ι
hij : j = i
⊢ update x i (c • x i) j ∈ p j
[PROOFSTEP]
rw [hij, update_same]
[GOAL]
case refine'_1
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
this : DecidableEq ι := Classical.decEq ι
j : ι
hij : j = i
⊢ c • x i ∈ p i
[PROOFSTEP]
exact (p i).smul_mem _ (hx i)
[GOAL]
case refine'_2
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
this : DecidableEq ι := Classical.decEq ι
j : ι
hij : ¬j = i
⊢ update x i (c • x i) j ∈ p j
[PROOFSTEP]
rw [update_noteq hij]
[GOAL]
case refine'_2
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
this : DecidableEq ι := Classical.decEq ι
j : ι
hij : ¬j = i
⊢ x j ∈ p j
[PROOFSTEP]
exact hx j
[GOAL]
case refine'_3
R : Type u
ι : Type u'
n : ℕ
M : Fin (Nat.succ n) → Type v
M₁ : ι → Type v₁
M₂ : Type v₂
M₃ : Type v₃
M' : Type v'
inst✝⁷ : Ring R
inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)
inst✝⁵ : AddCommMonoid M'
inst✝⁴ : AddCommMonoid M₂
inst✝³ : (i : ι) → Module R (M₁ i)
inst✝² : Module R M'
inst✝¹ : Module R M₂
inst✝ : Nonempty ι
f : MultilinearMap R M₁ M₂
p : (i : ι) → Submodule R (M₁ i)
c : R
x✝¹ : M₂
x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i}
x : (i : ι) → M₁ i
hx : x ∈ {v | ∀ (i : ι), v i ∈ p i}
hf : ↑f x = x✝¹
i : ι
this : DecidableEq ι := Classical.decEq ι
⊢ ↑f (update x i (c • x i)) = c • ↑f x
[PROOFSTEP]
rw [f.map_smul, update_eq_self]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.Basic", "llama_tokens": 279751} |
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : (n : ℕ) → M ⧸ I ^ n • ⊤
m n : ℕ
h : m ≤ n
⊢ I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤))
[PROOFSTEP]
rw [ker_mkQ]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : (n : ℕ) → M ⧸ I ^ n • ⊤
m n : ℕ
h : m ≤ n
⊢ I ^ n • ⊤ ≤ I ^ m • ⊤
[PROOFSTEP]
exact smul_mono (Ideal.pow_le_pow h) le_rfl
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
a✝ b✝ : (n : ℕ) → M ⧸ I ^ n • ⊤
hf :
a✝ ∈
{f |
∀ {m n : ℕ} (h : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m}
hg :
b✝ ∈
{f |
∀ {m n : ℕ} (h : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m}
m n : ℕ
hmn : m ≤ n
⊢ ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) ((a✝ + b✝) n) = (a✝ + b✝) m
[PROOFSTEP]
rw [Pi.add_apply, Pi.add_apply, LinearMap.map_add, hf hmn, hg hmn]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
m✝ n✝ : ℕ
hmn : m✝ ≤ n✝
⊢ ↑(liftQ (I ^ n✝ • ⊤) (mkQ (I ^ m✝ • ⊤)) (_ : I ^ n✝ • ⊤ ≤ LinearMap.ker (mkQ (I ^ m✝ • ⊤)))) (OfNat.ofNat 0 n✝) =
OfNat.ofNat 0 m✝
[PROOFSTEP]
rw [Pi.zero_apply, Pi.zero_apply, LinearMap.map_zero]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
c : R
f : (n : ℕ) → M ⧸ I ^ n • ⊤
hf :
f ∈
{
toAddSubsemigroup :=
{
carrier :=
{f |
∀ {m n : ℕ} (h : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) =
f m},
add_mem' :=
(_ :
∀ {a b : (n : ℕ) → M ⧸ I ^ n • ⊤},
a ∈
{f |
∀ {m n : ℕ} (h : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤))))
(f n) =
f m} →
b ∈
{f |
∀ {m n : ℕ} (h : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤))))
(f n) =
f m} →
∀ (m n : ℕ) (hmn : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤))))
((a + b) n) =
(a + b) m) },
zero_mem' :=
(_ :
∀ {m n : ℕ} (hmn : m ≤ n),
↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤))))
(OfNat.ofNat 0 n) =
OfNat.ofNat 0 m) }.toAddSubsemigroup.carrier
m n : ℕ
hmn : m ≤ n
⊢ ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) ((c • f) n) = (c • f) m
[PROOFSTEP]
rw [Pi.smul_apply, Pi.smul_apply, LinearMap.map_smul, hf hmn]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
x : M
hx : ∀ (n : ℕ), x ≡ 0 [SMOD ⊥ ^ n • ⊤]
⊢ x = 0
[PROOFSTEP]
simpa only [pow_one ⊥, bot_smul, SModEq.bot] using hx 1
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
h : IsHausdorff ⊤ M
x y : M
n : ℕ
⊢ x - y ≡ 0 [SMOD ⊤ ^ n • ⊤]
[PROOFSTEP]
rw [Ideal.top_pow, top_smul]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
h : IsHausdorff ⊤ M
x y : M
n : ℕ
⊢ x - y ≡ 0 [SMOD ⊤]
[PROOFSTEP]
exact SModEq.top
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
x✝ : Hausdorffification I M
x : M
hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤]
n : ℕ
⊢ x ∈ I ^ n • ⊤
[PROOFSTEP]
have := comap_map_mkQ (⨅ n : ℕ, I ^ n • ⊤ : Submodule R M) (I ^ n • ⊤)
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
x✝ : Hausdorffification I M
x : M
hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤]
n : ℕ
this :
comap (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (map (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (I ^ n • ⊤)) = (⨅ (n : ℕ), I ^ n • ⊤) ⊔ I ^ n • ⊤
⊢ x ∈ I ^ n • ⊤
[PROOFSTEP]
simp only [sup_of_le_right (iInf_le (fun n => (I ^ n • ⊤ : Submodule R M)) n)] at this
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
x✝ : Hausdorffification I M
x : M
hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤]
n : ℕ
this : comap (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (map (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (I ^ n • ⊤)) = I ^ n • ⊤
⊢ x ∈ I ^ n • ⊤
[PROOFSTEP]
rw [← this, map_smul'', mem_comap, Submodule.map_top, range_mkQ, ← SModEq.zero]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
x✝ : Hausdorffification I M
x : M
hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤]
n : ℕ
this : comap (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (map (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (I ^ n • ⊤)) = I ^ n • ⊤
⊢ ↑(mkQ (⨅ (n : ℕ), I ^ n • ⊤)) x ≡ 0 [SMOD I ^ n • ⊤]
[PROOFSTEP]
exact hx n
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
h : IsHausdorff I N
f : M →ₗ[R] N
n : ℕ
⊢ map f (I ^ n • ⊤) ≤ I ^ n • ⊤
[PROOFSTEP]
rw [map_smul'']
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
h : IsHausdorff I N
f : M →ₗ[R] N
n : ℕ
⊢ I ^ n • map f ⊤ ≤ I ^ n • ⊤
[PROOFSTEP]
exact smul_mono le_rfl le_top
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
h : IsHausdorff I N
f : M →ₗ[R] N
g : Hausdorffification I M →ₗ[R] N
hg : LinearMap.comp g (of I M) = f
x✝ : Hausdorffification I M
x : M
⊢ ↑g (↑(of I M) x) = ↑(lift I f) (↑(of I M) x)
[PROOFSTEP]
rw [lift_of, ← hg, LinearMap.comp_apply]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsPrecomplete ⊥ M
[PROOFSTEP]
refine' ⟨fun f hf => ⟨f 1, fun n => _⟩⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤]
n : ℕ
⊢ f n ≡ f 1 [SMOD ⊥ ^ n • ⊤]
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤]
⊢ f Nat.zero ≡ f 1 [SMOD ⊥ ^ Nat.zero • ⊤]
[PROOFSTEP]
rw [pow_zero, Ideal.one_eq_top, top_smul]
[GOAL]
case zero
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤]
⊢ f Nat.zero ≡ f 1 [SMOD ⊤]
[PROOFSTEP]
exact SModEq.top
[GOAL]
case succ
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤]
n : ℕ
⊢ f (Nat.succ n) ≡ f 1 [SMOD ⊥ ^ Nat.succ n • ⊤]
[PROOFSTEP]
specialize hf (Nat.le_add_left 1 n)
[GOAL]
case succ
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
n : ℕ
hf : f 1 ≡ f (n + 1) [SMOD ⊥ ^ 1 • ⊤]
⊢ f (Nat.succ n) ≡ f 1 [SMOD ⊥ ^ Nat.succ n • ⊤]
[PROOFSTEP]
rw [pow_one, bot_smul, SModEq.bot] at hf
[GOAL]
case succ
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
n : ℕ
hf : f 1 = f (n + 1)
⊢ f (Nat.succ n) ≡ f 1 [SMOD ⊥ ^ Nat.succ n • ⊤]
[PROOFSTEP]
rw [hf]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
x✝ : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊤ ^ m • ⊤]
n : ℕ
⊢ f n ≡ 0 [SMOD ⊤ ^ n • ⊤]
[PROOFSTEP]
rw [Ideal.top_pow, top_smul]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
f : ℕ → M
x✝ : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊤ ^ m • ⊤]
n : ℕ
⊢ f n ≡ 0 [SMOD ⊤]
[PROOFSTEP]
exact SModEq.top
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : Subsingleton M
f : ℕ → M
x✝ : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
n : ℕ
⊢ f n ≡ 0 [SMOD I ^ n • ⊤]
[PROOFSTEP]
rw [Subsingleton.elim (f n) 0]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
I : Ideal R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
x : { x // x ∈ adicCompletion I M }
hx : ∀ (n : ℕ), x ≡ 0 [SMOD I ^ n • ⊤]
n : ℕ
x✝¹ x✝ : { x // x ∈ adicCompletion I M }
ih1 : ↑(eval I M n) x✝¹ = ↑(eval I M n) 0
ih2 : ↑(eval I M n) x✝ = ↑(eval I M n) 0
⊢ ↑(eval I M n) (x✝¹ + x✝) = ↑(eval I M n) 0
[PROOFSTEP]
rw [LinearMap.map_add, ih1, ih2, LinearMap.map_zero, add_zero]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
⊢ I ≤ Ideal.jacobson ⊥
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
⊢ x ∈ Ideal.jacobson ⊥
[PROOFSTEP]
rw [← Ideal.neg_mem_iff, Ideal.mem_jacobson_bot]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
⊢ ∀ (y : R), IsUnit (-x * y + 1)
[PROOFSTEP]
intro y
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
⊢ IsUnit (-x * y + 1)
[PROOFSTEP]
rw [add_comm]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
⊢ IsUnit (1 + -x * y)
[PROOFSTEP]
let f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
⊢ IsUnit (1 + -x * y)
[PROOFSTEP]
have hf : ∀ m n, m ≤ n → f m ≡ f n [SMOD I ^ m • (⊤ : Submodule R R)] :=
by
intro m n h
simp only [Algebra.id.smul_eq_mul, Ideal.mul_top, SModEq.sub_mem]
rw [← add_tsub_cancel_of_le h, Finset.sum_range_add, ← sub_sub, sub_self, zero_sub, @neg_mem_iff]
apply Submodule.sum_mem
intro n _
rw [mul_pow, pow_add, mul_assoc]
exact Ideal.mul_mem_right _ (I ^ m) (Ideal.pow_mem_pow hx m)
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
⊢ ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
[PROOFSTEP]
intro m n h
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
m n : ℕ
h : m ≤ n
⊢ f m ≡ f n [SMOD I ^ m • ⊤]
[PROOFSTEP]
simp only [Algebra.id.smul_eq_mul, Ideal.mul_top, SModEq.sub_mem]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
m n : ℕ
h : m ≤ n
⊢ ∑ i in range m, (x * y) ^ i - ∑ i in range n, (x * y) ^ i ∈ I ^ m
[PROOFSTEP]
rw [← add_tsub_cancel_of_le h, Finset.sum_range_add, ← sub_sub, sub_self, zero_sub, @neg_mem_iff]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
m n : ℕ
h : m ≤ n
⊢ ∑ x_1 in range (n - m), (x * y) ^ (m + x_1) ∈ I ^ m
[PROOFSTEP]
apply Submodule.sum_mem
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
m n : ℕ
h : m ≤ n
⊢ ∀ (c : ℕ), c ∈ range (n - m) → (x * y) ^ (m + c) ∈ I ^ m
[PROOFSTEP]
intro n _
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
m n✝ : ℕ
h : m ≤ n✝
n : ℕ
a✝ : n ∈ range (n✝ - m)
⊢ (x * y) ^ (m + n) ∈ I ^ m
[PROOFSTEP]
rw [mul_pow, pow_add, mul_assoc]
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
m n✝ : ℕ
h : m ≤ n✝
n : ℕ
a✝ : n ∈ range (n✝ - m)
⊢ x ^ m * (x ^ n * y ^ (m + n)) ∈ I ^ m
[PROOFSTEP]
exact Ideal.mul_mem_right _ (I ^ m) (Ideal.pow_mem_pow hx m)
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
⊢ IsUnit (1 + -x * y)
[PROOFSTEP]
obtain ⟨L, hL⟩ := IsPrecomplete.prec toIsPrecomplete @hf
[GOAL]
case intro
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤]
⊢ IsUnit (1 + -x * y)
[PROOFSTEP]
rw [isUnit_iff_exists_inv]
[GOAL]
case intro
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤]
⊢ ∃ b, (1 + -x * y) * b = 1
[PROOFSTEP]
use L
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤]
⊢ (1 + -x * y) * L = 1
[PROOFSTEP]
rw [← sub_eq_zero, neg_mul]
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤]
⊢ (1 + -(x * y)) * L - 1 = 0
[PROOFSTEP]
apply IsHausdorff.haus (toIsHausdorff : IsHausdorff I R)
[GOAL]
case h.a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤]
⊢ ∀ (n : ℕ), (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤]
[PROOFSTEP]
intro n
[GOAL]
case h.a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤]
n : ℕ
⊢ (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤]
[PROOFSTEP]
specialize hL n
[GOAL]
case h.a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n : ℕ
hL : f n ≡ L [SMOD I ^ n • ⊤]
⊢ (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤]
[PROOFSTEP]
rw [SModEq.sub_mem, Algebra.id.smul_eq_mul, Ideal.mul_top] at hL ⊢
[GOAL]
case h.a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n : ℕ
hL : f n - L ∈ I ^ n
⊢ (1 + -(x * y)) * L - 1 - 0 ∈ I ^ n
[PROOFSTEP]
rw [sub_zero]
[GOAL]
case h.a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n : ℕ
hL : f n - L ∈ I ^ n
⊢ (1 + -(x * y)) * L - 1 ∈ I ^ n
[PROOFSTEP]
suffices (1 - x * y) * f n - 1 ∈ I ^ n
by
convert Ideal.sub_mem _ this (Ideal.mul_mem_left _ (1 + -(x * y)) hL) using 1
ring
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n : ℕ
hL : f n - L ∈ I ^ n
this : (1 - x * y) * f n - 1 ∈ I ^ n
⊢ (1 + -(x * y)) * L - 1 ∈ I ^ n
[PROOFSTEP]
convert Ideal.sub_mem _ this (Ideal.mul_mem_left _ (1 + -(x * y)) hL) using 1
[GOAL]
case h.e'_4
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n : ℕ
hL : f n - L ∈ I ^ n
this : (1 - x * y) * f n - 1 ∈ I ^ n
⊢ (1 + -(x * y)) * L - 1 = (1 - x * y) * f n - 1 - (1 + -(x * y)) * (f n - L)
[PROOFSTEP]
ring
[GOAL]
case h.a
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n : ℕ
hL : f n - L ∈ I ^ n
⊢ (1 - x * y) * f n - 1 ∈ I ^ n
[PROOFSTEP]
cases n
[GOAL]
case h.a.zero
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
hL : f Nat.zero - L ∈ I ^ Nat.zero
⊢ (1 - x * y) * f Nat.zero - 1 ∈ I ^ Nat.zero
[PROOFSTEP]
simp only [Ideal.one_eq_top, pow_zero, Nat.zero_eq, mem_top]
[GOAL]
case h.a.succ
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n✝ : ℕ
hL : f (Nat.succ n✝) - L ∈ I ^ Nat.succ n✝
⊢ (1 - x * y) * f (Nat.succ n✝) - 1 ∈ I ^ Nat.succ n✝
[PROOFSTEP]
rw [← neg_sub _ (1 : R), neg_mul, mul_geom_sum, neg_sub, sub_sub, add_comm, ← sub_sub, sub_self, zero_sub, @neg_mem_iff,
mul_pow]
[GOAL]
case h.a.succ
R : Type u_1
inst✝⁵ : CommRing R
I : Ideal R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsAdicComplete I R
x : R
hx : x ∈ I
y : R
f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i
hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤]
L : R
n✝ : ℕ
hL : f (Nat.succ n✝) - L ∈ I ^ Nat.succ n✝
⊢ x ^ Nat.succ n✝ * y ^ Nat.succ n✝ ∈ I ^ Nat.succ n✝
[PROOFSTEP]
exact Ideal.mul_mem_right _ (I ^ _) (Ideal.pow_mem_pow hx _)
| {"mathlib_filename": "Mathlib.LinearAlgebra.AdicCompletion", "llama_tokens": 12432} |
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : AddGroup n
⊢ Injective circulant
[PROOFSTEP]
intro v w h
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : AddGroup n
v w : n → α
h : circulant v = circulant w
⊢ v = w
[PROOFSTEP]
ext k
[GOAL]
case h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : AddGroup n
v w : n → α
h : circulant v = circulant w
k : n
⊢ v k = w k
[PROOFSTEP]
rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
⊢ Injective fun v => circulant v
[PROOFSTEP]
simp [Injective]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : AddGroup n
v : n → α
⊢ (circulant v)ᵀ = circulant fun i => v (-i)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : AddGroup n
v : n → α
i✝ x✝ : n
⊢ (circulant v)ᵀ i✝ x✝ = circulant (fun i => v (-i)) i✝ x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝¹ : Star α
inst✝ : AddGroup n
v : n → α
⊢ (circulant v)ᴴ = circulant (star fun i => v (-i))
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝¹ : Star α
inst✝ : AddGroup n
v : n → α
i✝ x✝ : n
⊢ (circulant v)ᴴ i✝ x✝ = circulant (star fun i => v (-i)) i✝ x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
⊢ ∀ (v : Fin 0 → α), (circulant v)ᵀ = circulant fun i => v (-i)
[PROOFSTEP]
simp [Injective]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : Star α
⊢ ∀ (v : Fin 0 → α), (circulant v)ᴴ = circulant (star fun i => v (-i))
[PROOFSTEP]
simp [Injective]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝² : Semiring α
inst✝¹ : Fintype n
inst✝ : AddGroup n
v w : n → α
⊢ circulant v * circulant w = circulant (mulVec (circulant v) w)
[PROOFSTEP]
ext i j
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝² : Semiring α
inst✝¹ : Fintype n
inst✝ : AddGroup n
v w : n → α
i j : n
⊢ (circulant v * circulant w) i j = circulant (mulVec (circulant v) w) i j
[PROOFSTEP]
simp only [mul_apply, mulVec, circulant_apply, dotProduct]
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝² : Semiring α
inst✝¹ : Fintype n
inst✝ : AddGroup n
v w : n → α
i j : n
⊢ ∑ x : n, v (i - x) * w (x - j) = ∑ x : n, v (i - j - x) * w x
[PROOFSTEP]
refine' Fintype.sum_equiv (Equiv.subRight j) _ _ _
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝² : Semiring α
inst✝¹ : Fintype n
inst✝ : AddGroup n
v w : n → α
i j : n
⊢ ∀ (x : n), v (i - x) * w (x - j) = v (i - j - ↑(Equiv.subRight j) x) * w (↑(Equiv.subRight j) x)
[PROOFSTEP]
intro x
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝² : Semiring α
inst✝¹ : Fintype n
inst✝ : AddGroup n
v w : n → α
i j x : n
⊢ v (i - x) * w (x - j) = v (i - j - ↑(Equiv.subRight j) x) * w (↑(Equiv.subRight j) x)
[PROOFSTEP]
simp only [Equiv.subRight_apply, sub_sub_sub_cancel_right]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : Semiring α
⊢ ∀ (v w : Fin 0 → α), circulant v * circulant w = circulant (mulVec (circulant v) w)
[PROOFSTEP]
simp [Injective]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
⊢ circulant v * circulant w = circulant w * circulant v
[PROOFSTEP]
ext i j
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j : n
⊢ (circulant v * circulant w) i j = (circulant w * circulant v) i j
[PROOFSTEP]
simp only [mul_apply, circulant_apply, mul_comm]
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j : n
⊢ ∑ x : n, v (i - x) * w (x - j) = ∑ x : n, w (i - x) * v (x - j)
[PROOFSTEP]
refine' Fintype.sum_equiv ((Equiv.subLeft i).trans (Equiv.addRight j)) _ _ _
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j : n
⊢ ∀ (x : n),
v (i - x) * w (x - j) =
w (i - ↑((Equiv.subLeft i).trans (Equiv.addRight j)) x) * v (↑((Equiv.subLeft i).trans (Equiv.addRight j)) x - j)
[PROOFSTEP]
intro x
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j x : n
⊢ v (i - x) * w (x - j) =
w (i - ↑((Equiv.subLeft i).trans (Equiv.addRight j)) x) * v (↑((Equiv.subLeft i).trans (Equiv.addRight j)) x - j)
[PROOFSTEP]
simp [mul_comm]
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j x : n
⊢ v (i - x) * w (x - j) = v (i - x) * w (i - (i - x + j))
[PROOFSTEP]
congr 2
[GOAL]
case a.h.e_a.e_a
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j x : n
⊢ x - j = i - (i - x + j)
[PROOFSTEP]
abel
[GOAL]
case a.h.e_a.e_a
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝³ : CommSemigroup α
inst✝² : AddCommMonoid α
inst✝¹ : Fintype n
inst✝ : AddCommGroup n
v w : n → α
i j x : n
⊢ x - j = i - (i - x + j)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝¹ : CommSemigroup α
inst✝ : AddCommMonoid α
⊢ ∀ (v w : Fin 0 → α), circulant v * circulant w = circulant w * circulant v
[PROOFSTEP]
simp [Injective]
[GOAL]
α✝ : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
α : Type u_6
n : Type u_7
inst✝³ : Zero α
inst✝² : One α
inst✝¹ : DecidableEq n
inst✝ : AddGroup n
⊢ circulant (Pi.single 0 1) = 1
[PROOFSTEP]
ext i j
[GOAL]
case a.h
α✝ : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
α : Type u_6
n : Type u_7
inst✝³ : Zero α
inst✝² : One α
inst✝¹ : DecidableEq n
inst✝ : AddGroup n
i j : n
⊢ circulant (Pi.single 0 1) i j = OfNat.ofNat 1 i j
[PROOFSTEP]
simp [one_apply, Pi.single_apply, sub_eq_zero]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
n : Type u_6
inst✝³ : Semiring α
inst✝² : DecidableEq n
inst✝¹ : AddGroup n
inst✝ : Fintype n
a : α
⊢ circulant (Pi.single 0 a) = ↑(scalar n) a
[PROOFSTEP]
ext i j
[GOAL]
case a.h
α : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
n : Type u_6
inst✝³ : Semiring α
inst✝² : DecidableEq n
inst✝¹ : AddGroup n
inst✝ : Fintype n
a : α
i j : n
⊢ circulant (Pi.single 0 a) i j = ↑(scalar n) a i j
[PROOFSTEP]
simp [Pi.single_apply, one_apply, sub_eq_zero]
[GOAL]
α✝ : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
α : Type u_6
inst✝¹ : Zero α
inst✝ : One α
⊢ (circulant fun i => if ↑i = 0 then 1 else 0) = 1
[PROOFSTEP]
simp [Injective]
[GOAL]
α✝ : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
α : Type u_6
inst✝¹ : Zero α
inst✝ : One α
n : ℕ
⊢ (circulant fun i => if ↑i = 0 then 1 else 0) = 1
[PROOFSTEP]
rw [← circulant_single_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
α : Type u_6
inst✝¹ : Zero α
inst✝ : One α
n : ℕ
⊢ (circulant fun i => if ↑i = 0 then 1 else 0) = circulant (Pi.single 0 1)
[PROOFSTEP]
congr with j
[GOAL]
case a.h
α✝ : Type u_1
β : Type u_2
m : Type u_3
n✝ : Type u_4
R : Type u_5
α : Type u_6
inst✝¹ : Zero α
inst✝ : One α
n : ℕ
j x✝ : Fin (n + 1)
⊢ circulant (fun i => if ↑i = 0 then 1 else 0) j x✝ = circulant (Pi.single 0 1) j x✝
[PROOFSTEP]
simp [Pi.single_apply, Fin.ext_iff]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
inst✝ : AddGroup n
v : n → α
⊢ IsSymm (circulant v) ↔ ∀ (i : n), v (-i) = v i
[PROOFSTEP]
rw [IsSymm, transpose_circulant, circulant_inj, funext_iff]
[GOAL]
α : Type u_1
β : Type u_2
m : Type u_3
n : Type u_4
R : Type u_5
v✝ : Fin 0 → α
⊢ IsSymm (circulant v✝) ↔ ∀ (i : Fin 0), v✝ (-i) = v✝ i
[PROOFSTEP]
simp [IsSymm.ext_iff, IsEmpty.forall_iff]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.Circulant", "llama_tokens": 4425} |
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : degree q = 1
⊢ eigenspace f (-coeff q 0 / leadingCoeff q) =
LinearMap.ker (leadingCoeff q • f - ↑(algebraMap K (End K V)) (-coeff q 0))
[PROOFSTEP]
rw [eigenspace_div]
[GOAL]
case hb
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : degree q = 1
⊢ leadingCoeff q ≠ 0
[PROOFSTEP]
intro h
[GOAL]
case hb
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : degree q = 1
h : leadingCoeff q = 0
⊢ False
[PROOFSTEP]
rw [leadingCoeff_eq_zero_iff_deg_eq_bot.1 h] at hq
[GOAL]
case hb
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : ⊥ = 1
h : leadingCoeff q = 0
⊢ False
[PROOFSTEP]
cases hq
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : degree q = 1
⊢ LinearMap.ker (leadingCoeff q • f - ↑(algebraMap K (End K V)) (-coeff q 0)) =
LinearMap.ker (↑(aeval f) (↑C (leadingCoeff q) * X + ↑C (coeff q 0)))
[PROOFSTEP]
rw [C_mul', aeval_def]
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : degree q = 1
⊢ LinearMap.ker (leadingCoeff q • f - ↑(algebraMap K (End K V)) (-coeff q 0)) =
LinearMap.ker (eval₂ (algebraMap K (End K V)) f (leadingCoeff q • X + ↑C (coeff q 0)))
[PROOFSTEP]
simp [algebraMap, Algebra.toRingHom]
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
q : K[X]
hq : degree q = 1
⊢ LinearMap.ker (↑(aeval f) (↑C (leadingCoeff q) * X + ↑C (coeff q 0))) = LinearMap.ker (↑(aeval f) q)
[PROOFSTEP]
rwa [← eq_X_add_C_of_degree_eq_one]
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
c : K[X]ˣ
⊢ LinearMap.ker (↑(aeval f) ↑c) = ⊥
[PROOFSTEP]
rw [Polynomial.eq_C_of_degree_eq_zero (degree_coe_units c)]
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
c : K[X]ˣ
⊢ LinearMap.ker (↑(aeval f) (↑C (coeff (↑c) 0))) = ⊥
[PROOFSTEP]
simp only [aeval_def, eval₂_C]
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
c : K[X]ˣ
⊢ LinearMap.ker (↑(algebraMap K (End K V)) (coeff (↑c) 0)) = ⊥
[PROOFSTEP]
apply ker_algebraMap_end
[GOAL]
case ha
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
c : K[X]ˣ
⊢ coeff (↑c) 0 ≠ 0
[PROOFSTEP]
apply coeff_coe_units_zero_ne_zero c
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
⊢ ↑(↑(aeval f) p) x = eval μ p • x
[PROOFSTEP]
refine' p.induction_on _ _ _
[GOAL]
case refine'_1
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
⊢ ∀ (a : K), ↑(↑(aeval f) (↑C a)) x = eval μ (↑C a) • x
[PROOFSTEP]
intro a
[GOAL]
case refine'_1
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
a : K
⊢ ↑(↑(aeval f) (↑C a)) x = eval μ (↑C a) • x
[PROOFSTEP]
simp [Module.algebraMap_end_apply]
[GOAL]
case refine'_2
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
⊢ ∀ (p q : K[X]),
↑(↑(aeval f) p) x = eval μ p • x → ↑(↑(aeval f) q) x = eval μ q • x → ↑(↑(aeval f) (p + q)) x = eval μ (p + q) • x
[PROOFSTEP]
intro p q hp hq
[GOAL]
case refine'_2
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p✝ : K[X]
μ : K
x : V
h : HasEigenvector f μ x
p q : K[X]
hp : ↑(↑(aeval f) p) x = eval μ p • x
hq : ↑(↑(aeval f) q) x = eval μ q • x
⊢ ↑(↑(aeval f) (p + q)) x = eval μ (p + q) • x
[PROOFSTEP]
simp [hp, hq, add_smul]
[GOAL]
case refine'_3
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
⊢ ∀ (n : ℕ) (a : K),
↑(↑(aeval f) (↑C a * X ^ n)) x = eval μ (↑C a * X ^ n) • x →
↑(↑(aeval f) (↑C a * X ^ (n + 1))) x = eval μ (↑C a * X ^ (n + 1)) • x
[PROOFSTEP]
intro n a hna
[GOAL]
case refine'_3
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
n : ℕ
a : K
hna : ↑(↑(aeval f) (↑C a * X ^ n)) x = eval μ (↑C a * X ^ n) • x
⊢ ↑(↑(aeval f) (↑C a * X ^ (n + 1))) x = eval μ (↑C a * X ^ (n + 1)) • x
[PROOFSTEP]
rw [mul_comm, pow_succ, mul_assoc, AlgHom.map_mul, LinearMap.mul_apply, mul_comm, hna]
[GOAL]
case refine'_3
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
p : K[X]
μ : K
x : V
h : HasEigenvector f μ x
n : ℕ
a : K
hna : ↑(↑(aeval f) (↑C a * X ^ n)) x = eval μ (↑C a * X ^ n) • x
⊢ ↑(↑(aeval f) X) (eval μ (↑C a * X ^ n) • x) = eval μ (X * (↑C a * X ^ n)) • x
[PROOFSTEP]
simp only [mem_eigenspace_iff.1 h.1, smul_smul, aeval_X, eval_mul, eval_C, eval_pow, eval_X, LinearMap.map_smulₛₗ,
RingHom.id_apply, mul_comm]
[GOAL]
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
μ : K
h : HasEigenvalue f μ
⊢ IsRoot (minpoly K f) μ
[PROOFSTEP]
rcases(Submodule.ne_bot_iff _).1 h with ⟨w, ⟨H, ne0⟩⟩
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
μ : K
h : HasEigenvalue f μ
w : V
H : w ∈ eigenspace f μ
ne0 : w ≠ 0
⊢ IsRoot (minpoly K f) μ
[PROOFSTEP]
refine' Or.resolve_right (smul_eq_zero.1 _) ne0
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f : End K V
μ : K
h : HasEigenvalue f μ
w : V
H : w ∈ eigenspace f μ
ne0 : w ≠ 0
⊢ eval μ (minpoly K f) • w = 0
[PROOFSTEP]
simp [← aeval_apply_of_hasEigenvector ⟨H, ne0⟩, minpoly.aeval K f]
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
⊢ HasEigenvalue f μ
[PROOFSTEP]
cases' dvd_iff_isRoot.2 h with p hp
[GOAL]
case intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
⊢ HasEigenvalue f μ
[PROOFSTEP]
rw [HasEigenvalue, eigenspace]
[GOAL]
case intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
⊢ LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) ≠ ⊥
[PROOFSTEP]
intro con
[GOAL]
case intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
⊢ False
[PROOFSTEP]
cases' (LinearMap.isUnit_iff_ker_eq_bot _).2 con with u hu
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
⊢ False
[PROOFSTEP]
have p_ne_0 : p ≠ 0 := by
intro con
apply minpoly.ne_zero f.isIntegral
rw [hp, con, mul_zero]
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
⊢ p ≠ 0
[PROOFSTEP]
intro con
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con✝ : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
con : p = 0
⊢ False
[PROOFSTEP]
apply minpoly.ne_zero f.isIntegral
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con✝ : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
con : p = 0
⊢ minpoly K f = 0
[PROOFSTEP]
rw [hp, con, mul_zero]
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
⊢ False
[PROOFSTEP]
have : (aeval f) p = 0 := by
have h_aeval := minpoly.aeval K f
revert h_aeval
simp [hp, ← hu]
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
⊢ ↑(aeval f) p = 0
[PROOFSTEP]
have h_aeval := minpoly.aeval K f
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
h_aeval : ↑(aeval f) (minpoly K f) = 0
⊢ ↑(aeval f) p = 0
[PROOFSTEP]
revert h_aeval
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
⊢ ↑(aeval f) (minpoly K f) = 0 → ↑(aeval f) p = 0
[PROOFSTEP]
simp [hp, ← hu]
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
this : ↑(aeval f) p = 0
⊢ False
[PROOFSTEP]
have h_deg := minpoly.degree_le_of_ne_zero K f p_ne_0 this
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
this : ↑(aeval f) p = 0
h_deg : degree (minpoly K f) ≤ degree p
⊢ False
[PROOFSTEP]
rw [hp, degree_mul, degree_X_sub_C, Polynomial.degree_eq_natDegree p_ne_0] at h_deg
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
this : ↑(aeval f) p = 0
h_deg : 1 + ↑(natDegree p) ≤ ↑(natDegree p)
⊢ False
[PROOFSTEP]
norm_cast at h_deg
[GOAL]
case intro.intro
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f : End K V
μ : K
h : IsRoot (minpoly K f) μ
p : K[X]
hp : minpoly K f = (X - ↑C μ) * p
con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥
u : (V →ₗ[K] V)ˣ
hu : ↑u = f - ↑(algebraMap K (End K V)) μ
p_ne_0 : p ≠ 0
this : ↑(aeval f) p = 0
h_deg : 1 + natDegree p ≤ natDegree p
⊢ False
[PROOFSTEP]
linarith
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f✝ : End K V
μ : K
f : End K V
⊢ Set.Finite {μ | eigenspace f μ ≠ ⊥}
[PROOFSTEP]
have h : minpoly K f ≠ 0 := minpoly.ne_zero f.isIntegral
[GOAL]
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f✝ : End K V
μ : K
f : End K V
h : minpoly K f ≠ 0
⊢ Set.Finite {μ | eigenspace f μ ≠ ⊥}
[PROOFSTEP]
convert (minpoly K f).rootSet_finite K
[GOAL]
case h.e'_2
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f✝ : End K V
μ : K
f : End K V
h : minpoly K f ≠ 0
⊢ {μ | eigenspace f μ ≠ ⊥} = rootSet (minpoly K f) K
[PROOFSTEP]
ext μ
[GOAL]
case h.e'_2.h
K : Type v
V : Type w
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : FiniteDimensional K V
f✝ : End K V
μ✝ : K
f : End K V
h : minpoly K f ≠ 0
μ : K
⊢ μ ∈ {μ | eigenspace f μ ≠ ⊥} ↔ μ ∈ rootSet (minpoly K f) K
[PROOFSTEP]
rw [Set.mem_setOf_eq, ← HasEigenvalue, hasEigenvalue_iff_isRoot, mem_rootSet_of_ne h, IsRoot, coe_aeval_eq_eval]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Eigenspace.Minpoly", "llama_tokens": 6988} |
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
⊢ PosSemidef M
[PROOFSTEP]
refine' ⟨hM.1, _⟩
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
⊢ ∀ (x : n → R), 0 ≤ star x ⬝ᵥ mulVec M x
[PROOFSTEP]
intro x
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
x : n → R
⊢ 0 ≤ star x ⬝ᵥ mulVec M x
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
x : n → R
hx : x = 0
⊢ 0 ≤ star x ⬝ᵥ mulVec M x
[PROOFSTEP]
simp only [hx, zero_dotProduct, star_zero, IsROrC.zero_re']
[GOAL]
case pos
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
x : n → R
hx : x = 0
⊢ 0 ≤ 0
[PROOFSTEP]
exact le_rfl
[GOAL]
case neg
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
x : n → R
hx : ¬x = 0
⊢ 0 ≤ star x ⬝ᵥ mulVec M x
[PROOFSTEP]
exact le_of_lt (hM.2 x hx)
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
⊢ PosSemidef (Matrix.submatrix M ↑e ↑e)
[PROOFSTEP]
refine' ⟨hM.1.submatrix e, fun x => _⟩
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
⊢ 0 ≤ star x ⬝ᵥ mulVec (Matrix.submatrix M ↑e ↑e) x
[PROOFSTEP]
have : (M.submatrix (⇑e) e).mulVec x = (M.mulVec fun i : n => x (e.symm i)) ∘ e :=
by
ext i
dsimp only [(· ∘ ·), mulVec, dotProduct]
rw [Finset.sum_bij' (fun i _ => e i) _ _ fun i _ => e.symm i] <;>
simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply,
Equiv.apply_symm_apply]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
⊢ mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
[PROOFSTEP]
ext i
[GOAL]
case h
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ mulVec (Matrix.submatrix M ↑e ↑e) x i = ((mulVec M fun i => x (↑e.symm i)) ∘ ↑e) i
[PROOFSTEP]
dsimp only [(· ∘ ·), mulVec, dotProduct]
[GOAL]
case h
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ (Finset.sum Finset.univ fun i_1 => Matrix.submatrix M (↑e) (↑e) i i_1 * x i_1) =
Finset.sum Finset.univ fun i_1 => M (↑e i) i_1 * x (↑e.symm i_1)
[PROOFSTEP]
rw [Finset.sum_bij' (fun i _ => e i) _ _ fun i _ => e.symm i]
[GOAL]
case h.hj
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ ∀ (a : n), a ∈ Finset.univ → ↑e.symm a ∈ Finset.univ
[PROOFSTEP]
simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply,
Equiv.apply_symm_apply]
[GOAL]
case h.left_inv
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ ∀ (a : m), a ∈ Finset.univ → ↑e.symm (↑e a) = a
[PROOFSTEP]
simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply,
Equiv.apply_symm_apply]
[GOAL]
case h.right_inv
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ ∀ (a : n), a ∈ Finset.univ → ↑e (↑e.symm a) = a
[PROOFSTEP]
simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply,
Equiv.apply_symm_apply]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ ∀ (a : m) (ha : a ∈ Finset.univ), (fun i x => ↑e i) a ha ∈ Finset.univ
[PROOFSTEP]
simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply,
Equiv.apply_symm_apply]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
i : m
⊢ ∀ (a : m) (ha : a ∈ Finset.univ),
Matrix.submatrix M (↑e) (↑e) i a * x a = M (↑e i) ((fun i x => ↑e i) a ha) * x (↑e.symm ((fun i x => ↑e i) a ha))
[PROOFSTEP]
simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply,
Equiv.apply_symm_apply]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ 0 ≤ star x ⬝ᵥ mulVec (Matrix.submatrix M ↑e ↑e) x
[PROOFSTEP]
rw [this]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ 0 ≤ star x ⬝ᵥ (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
[PROOFSTEP]
convert hM.2 fun i => x (e.symm i) using 3
[GOAL]
case h.e'_4
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ star x ⬝ᵥ (mulVec M fun i => x (↑e.symm i)) ∘ ↑e = (star fun i => x (↑e.symm i)) ⬝ᵥ mulVec M fun i => x (↑e.symm i)
[PROOFSTEP]
unfold dotProduct
[GOAL]
case h.e'_4
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ (Finset.sum Finset.univ fun i => star x i * ((mulVec M fun i => x (↑e.symm i)) ∘ ↑e) i) =
Finset.sum Finset.univ fun i => star (fun i => x (↑e.symm i)) i * mulVec M (fun i => x (↑e.symm i)) i
[PROOFSTEP]
rw [Finset.sum_bij' (fun i _ => e i) _ _ fun i _ => e.symm i]
[GOAL]
case h.e'_4.hj
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ ∀ (a : n), a ∈ Finset.univ → ↑e.symm a ∈ Finset.univ
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.left_inv
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ ∀ (a : m), a ∈ Finset.univ → ↑e.symm (↑e a) = a
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.right_inv
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ ∀ (a : n), a ∈ Finset.univ → ↑e (↑e.symm a) = a
[PROOFSTEP]
simp
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ ∀ (a : m) (ha : a ∈ Finset.univ), (fun i x => ↑e i) a ha ∈ Finset.univ
[PROOFSTEP]
simp
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosSemidef M
e : m ≃ n
x : m → R
this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e
⊢ ∀ (a : m) (ha : a ∈ Finset.univ),
star x a * ((mulVec M fun i => x (↑e.symm i)) ∘ ↑e) a =
star (fun i => x (↑e.symm i)) ((fun i x => ↑e i) a ha) *
mulVec M (fun i => x (↑e.symm i)) ((fun i x => ↑e i) a ha)
[PROOFSTEP]
simp
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
e : m ≃ n
h : PosSemidef (submatrix M ↑e ↑e)
⊢ PosSemidef M
[PROOFSTEP]
simpa using h.submatrix e.symm
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
⊢ PosDef Mᵀ
[PROOFSTEP]
refine ⟨IsHermitian.transpose hM.1, fun x hx => ?_⟩
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
x : n → R
hx : x ≠ 0
⊢ 0 < star x ⬝ᵥ mulVec Mᵀ x
[PROOFSTEP]
convert hM.2 (star x) (star_ne_zero.2 hx) using 1
[GOAL]
case h.e'_4
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
M : Matrix n n R
hM : PosDef M
x : n → R
hx : x ≠ 0
⊢ star x ⬝ᵥ mulVec Mᵀ x = star (star x) ⬝ᵥ mulVec M (star x)
[PROOFSTEP]
rw [mulVec_transpose, Matrix.dotProduct_mulVec, star_star, dotProduct_comm]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
inst✝ : DecidableEq n
M : Matrix n n ℝ
hM : IsSymm M
hMq : QuadraticForm.PosDef (toQuadraticForm' M)
⊢ PosDef M
[PROOFSTEP]
refine' ⟨hM, fun x hx => _⟩
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
inst✝ : DecidableEq n
M : Matrix n n ℝ
hM : IsSymm M
hMq : QuadraticForm.PosDef (toQuadraticForm' M)
x : n → ℝ
hx : x ≠ 0
⊢ 0 < star x ⬝ᵥ mulVec M x
[PROOFSTEP]
simp only [toQuadraticForm', QuadraticForm.PosDef, BilinForm.toQuadraticForm_apply, Matrix.toBilin'_apply'] at hMq
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
inst✝ : DecidableEq n
M : Matrix n n ℝ
hM : IsSymm M
x : n → ℝ
hx : x ≠ 0
hMq : ∀ (x : n → ℝ), x ≠ 0 → 0 < x ⬝ᵥ mulVec M x
⊢ 0 < star x ⬝ᵥ mulVec M x
[PROOFSTEP]
apply hMq x hx
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
inst✝ : DecidableEq n
M : Matrix n n ℝ
hM : PosDef M
⊢ QuadraticForm.PosDef (toQuadraticForm' M)
[PROOFSTEP]
intro x hx
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
inst✝ : DecidableEq n
M : Matrix n n ℝ
hM : PosDef M
x : n → ℝ
hx : x ≠ 0
⊢ 0 < ↑(toQuadraticForm' M) x
[PROOFSTEP]
simp only [toQuadraticForm', BilinForm.toQuadraticForm_apply, Matrix.toBilin'_apply']
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
inst✝ : DecidableEq n
M : Matrix n n ℝ
hM : PosDef M
x : n → ℝ
hx : x ≠ 0
⊢ 0 < x ⬝ᵥ mulVec M x
[PROOFSTEP]
apply hM.2 x hx
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
A : Matrix m n R
⊢ PosSemidef (Aᴴ * A)
[PROOFSTEP]
refine ⟨isHermitian_transpose_mul_self _, fun x => ?_⟩
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
A : Matrix m n R
x : n → R
⊢ 0 ≤ star x ⬝ᵥ mulVec (Aᴴ * A) x
[PROOFSTEP]
rw [← mulVec_mulVec, dotProduct_mulVec, vecMul_conjTranspose, star_star]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
A : Matrix m n R
x : n → R
⊢ 0 ≤ star (mulVec A x) ⬝ᵥ mulVec A x
[PROOFSTEP]
exact Finset.sum_nonneg fun i _ => star_mul_self_nonneg _
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁵ : Fintype m
inst✝⁴ : Fintype n
inst✝³ : CommRing R
inst✝² : PartialOrder R
inst✝¹ : StarOrderedRing R
inst✝ : IsROrC 𝕜
A : Matrix m n R
⊢ PosSemidef (A * Aᴴ)
[PROOFSTEP]
simpa only [conjTranspose_conjTranspose] using posSemidef_conjTranspose_mul_self Aᴴ
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁷ : Fintype m
inst✝⁶ : Fintype n
inst✝⁵ : CommRing R
inst✝⁴ : PartialOrder R
inst✝³ : StarOrderedRing R
inst✝² : IsROrC 𝕜
inst✝¹ : DecidableEq n
inst✝ : DecidableEq 𝕜
A : Matrix n n 𝕜
hA : PosDef A
i : n
⊢ 0 < IsHermitian.eigenvalues (_ : IsHermitian A) i
[PROOFSTEP]
rw [hA.1.eigenvalues_eq, hA.1.transpose_eigenvectorMatrix_apply]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁷ : Fintype m
inst✝⁶ : Fintype n
inst✝⁵ : CommRing R
inst✝⁴ : PartialOrder R
inst✝³ : StarOrderedRing R
inst✝² : IsROrC 𝕜
inst✝¹ : DecidableEq n
inst✝ : DecidableEq 𝕜
A : Matrix n n 𝕜
hA : PosDef A
i : n
⊢ 0 <
↑IsROrC.re
(star (↑(IsHermitian.eigenvectorBasis (_ : IsHermitian A)) i) ⬝ᵥ
mulVec A (↑(IsHermitian.eigenvectorBasis (_ : IsHermitian A)) i))
[PROOFSTEP]
exact hA.re_dotProduct_pos <| hA.1.eigenvectorBasis.orthonormal.ne_zero i
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
⊢ 0 < det M
[PROOFSTEP]
rw [hM.isHermitian.det_eq_prod_eigenvalues]
[GOAL]
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
⊢ 0 < Finset.prod Finset.univ fun i => ↑(IsHermitian.eigenvalues (_ : IsHermitian M) i)
[PROOFSTEP]
apply Finset.prod_pos
[GOAL]
case h0
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
⊢ ∀ (i : n), i ∈ Finset.univ → 0 < ↑(IsHermitian.eigenvalues (_ : IsHermitian M) i)
[PROOFSTEP]
intro i _
[GOAL]
case h0
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
i : n
a✝ : i ∈ Finset.univ
⊢ 0 < ↑(IsHermitian.eigenvalues (_ : IsHermitian M) i)
[PROOFSTEP]
rw [hM.isHermitian.eigenvalues_eq]
[GOAL]
case h0
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
i : n
a✝ : i ∈ Finset.univ
⊢ 0 <
↑(↑IsROrC.re
(star ((IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i) ⬝ᵥ
mulVec M ((IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i)))
[PROOFSTEP]
refine hM.2 _ fun h => ?_
[GOAL]
case h0
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
i : n
a✝ : i ∈ Finset.univ
h : (IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i = 0
⊢ False
[PROOFSTEP]
have h_det : hM.isHermitian.eigenvectorMatrixᵀ.det = 0 := Matrix.det_eq_zero_of_row_eq_zero i fun j => congr_fun h j
[GOAL]
case h0
m : Type u_1
n : Type u_2
R : Type u_3
𝕜 : Type u_4
inst✝⁶ : Fintype m
inst✝⁵ : Fintype n
inst✝⁴ : CommRing R
inst✝³ : PartialOrder R
inst✝² : StarOrderedRing R
inst✝¹ : IsROrC 𝕜
M : Matrix n n ℝ
hM : PosDef M
inst✝ : DecidableEq n
i : n
a✝ : i ∈ Finset.univ
h : (IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i = 0
h_det : det (IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ = 0
⊢ False
[PROOFSTEP]
simpa only [h_det, not_isUnit_zero] using isUnit_det_of_invertible hM.isHermitian.eigenvectorMatrixᵀ
[GOAL]
n : Type u_1
inst✝¹ : Fintype n
inst✝ : DecidableEq n
Q : QuadraticForm ℝ (n → ℝ)
hQ : Matrix.PosDef (toMatrix' Q)
⊢ PosDef Q
[PROOFSTEP]
rw [← toQuadraticForm_associated ℝ Q, ← BilinForm.toMatrix'.left_inv ((associatedHom ℝ) Q)]
[GOAL]
n : Type u_1
inst✝¹ : Fintype n
inst✝ : DecidableEq n
Q : QuadraticForm ℝ (n → ℝ)
hQ : Matrix.PosDef (toMatrix' Q)
⊢ PosDef
(BilinForm.toQuadraticForm
(LinearEquiv.invFun BilinForm.toMatrix' (AddHom.toFun (↑BilinForm.toMatrix').toAddHom (↑(associatedHom ℝ) Q))))
[PROOFSTEP]
apply Matrix.posDef_toQuadraticForm' hQ
[GOAL]
n : Type u_1
inst✝¹ : Fintype n
inst✝ : DecidableEq n
Q : QuadraticForm ℝ (n → ℝ)
hQ : PosDef Q
⊢ Matrix.PosDef (toMatrix' Q)
[PROOFSTEP]
rw [← toQuadraticForm_associated ℝ Q, ← BilinForm.toMatrix'.left_inv ((associatedHom ℝ) Q)] at hQ
[GOAL]
n : Type u_1
inst✝¹ : Fintype n
inst✝ : DecidableEq n
Q : QuadraticForm ℝ (n → ℝ)
hQ :
PosDef
(BilinForm.toQuadraticForm
(LinearEquiv.invFun BilinForm.toMatrix' (AddHom.toFun (↑BilinForm.toMatrix').toAddHom (↑(associatedHom ℝ) Q))))
⊢ Matrix.PosDef (toMatrix' Q)
[PROOFSTEP]
apply Matrix.posDef_of_toQuadraticForm' (isSymm_toMatrix' Q) hQ
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x y : n → 𝕜
⊢ ↑(starRingEnd 𝕜) (inner y x) = inner x y
[PROOFSTEP]
dsimp only [Inner.inner]
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x y : n → 𝕜
⊢ ↑(starRingEnd 𝕜) (star y ⬝ᵥ mulVec M x) = star x ⬝ᵥ mulVec M y
[PROOFSTEP]
rw [star_dotProduct, starRingEnd_apply, star_star, star_mulVec, dotProduct_mulVec, hM.isHermitian.eq]
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x : n → 𝕜
⊢ 0 ≤ ↑IsROrC.re (inner x x)
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x : n → 𝕜
h : x = 0
⊢ 0 ≤ ↑IsROrC.re (inner x x)
[PROOFSTEP]
simp [h]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x : n → 𝕜
h : ¬x = 0
⊢ 0 ≤ ↑IsROrC.re (inner x x)
[PROOFSTEP]
exact le_of_lt (hM.re_dotProduct_pos h)
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x : n → 𝕜
hx : star x ⬝ᵥ mulVec M x = 0
⊢ x = 0
[PROOFSTEP]
by_contra' h
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x : n → 𝕜
hx : star x ⬝ᵥ mulVec M x = 0
h : x ≠ 0
⊢ False
[PROOFSTEP]
simpa [hx, lt_irrefl] using hM.re_dotProduct_pos h
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
⊢ ∀ (x y z : n → 𝕜), inner (x + y) z = inner x z + inner y z
[PROOFSTEP]
simp only [star_add, add_dotProduct, eq_self_iff_true, forall_const]
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x y : n → 𝕜
r : 𝕜
⊢ inner (r • x) y = ↑(starRingEnd 𝕜) r * inner x y
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
n : Type u_2
inst✝ : Fintype n
M : Matrix n n 𝕜
hM : PosDef M
x y : n → 𝕜
r : 𝕜
⊢ star (r • x) ⬝ᵥ mulVec M y = ↑(starRingEnd 𝕜) r * star x ⬝ᵥ mulVec M y
[PROOFSTEP]
rw [← smul_eq_mul, ← smul_dotProduct, starRingEnd_apply, ← star_smul]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.PosDef", "llama_tokens": 11763} |
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
x y : CliffordAlgebra 0
⊢ x * y = y * x
[PROOFSTEP]
induction x using CliffordAlgebra.induction
[GOAL]
case h_grade0
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
r✝ : R
⊢ ↑(algebraMap R (CliffordAlgebra 0)) r✝ * y = y * ↑(algebraMap R (CliffordAlgebra 0)) r✝
case h_grade1
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
x✝ : Unit
⊢ ↑(ι 0) x✝ * y = y * ↑(ι 0) x✝
case h_mul
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ a✝² * b✝ * y = y * (a✝² * b✝)
case h_add
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ (a✝² + b✝) * y = y * (a✝² + b✝)
[PROOFSTEP]
case h_grade0 r => apply Algebra.commutes
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
r : R
⊢ ↑(algebraMap R (CliffordAlgebra 0)) r * y = y * ↑(algebraMap R (CliffordAlgebra 0)) r
[PROOFSTEP]
case h_grade0 r => apply Algebra.commutes
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
r : R
⊢ ↑(algebraMap R (CliffordAlgebra 0)) r * y = y * ↑(algebraMap R (CliffordAlgebra 0)) r
[PROOFSTEP]
apply Algebra.commutes
[GOAL]
case h_grade1
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
x✝ : Unit
⊢ ↑(ι 0) x✝ * y = y * ↑(ι 0) x✝
case h_mul
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ a✝² * b✝ * y = y * (a✝² * b✝)
case h_add
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ (a✝² + b✝) * y = y * (a✝² + b✝)
[PROOFSTEP]
case h_grade1 x => simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
x : Unit
⊢ ↑(ι 0) x * y = y * ↑(ι 0) x
[PROOFSTEP]
case h_grade1 x => simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y : CliffordAlgebra 0
x : Unit
⊢ ↑(ι 0) x * y = y * ↑(ι 0) x
[PROOFSTEP]
simp
[GOAL]
case h_mul
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ a✝² * b✝ * y = y * (a✝² * b✝)
case h_add
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ (a✝² + b✝) * y = y * (a✝² + b✝)
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => rw [mul_add, add_mul, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y x₁ x₂ : CliffordAlgebra 0
hx₁ : x₁ * y = y * x₁
hx₂ : x₂ * y = y * x₂
⊢ (x₁ + x₂) * y = y * (x₁ + x₂)
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => rw [mul_add, add_mul, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y x₁ x₂ : CliffordAlgebra 0
hx₁ : x₁ * y = y * x₁
hx₂ : x₂ * y = y * x₂
⊢ (x₁ + x₂) * y = y * (x₁ + x₂)
[PROOFSTEP]
rw [mul_add, add_mul, hx₁, hx₂]
[GOAL]
case h_mul
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y a✝² b✝ : CliffordAlgebra 0
a✝¹ : a✝² * y = y * a✝²
a✝ : b✝ * y = y * b✝
⊢ a✝² * b✝ * y = y * (a✝² * b✝)
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => rw [mul_assoc, hx₂, ← mul_assoc, hx₁, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y x₁ x₂ : CliffordAlgebra 0
hx₁ : x₁ * y = y * x₁
hx₂ : x₂ * y = y * x₂
⊢ x₁ * x₂ * y = y * (x₁ * x₂)
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => rw [mul_assoc, hx₂, ← mul_assoc, hx₁, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝ : CommRing R
src✝ : Ring (CliffordAlgebra 0) := instRing 0
y x₁ x₂ : CliffordAlgebra 0
hx₁ : x₁ * y = y * x₁
hx₂ : x₂ * y = y * x₂
⊢ x₁ * x₂ * y = y * (x₁ * x₂)
[PROOFSTEP]
rw [mul_assoc, hx₂, ← mul_assoc, hx₁, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x : CliffordAlgebra 0
⊢ ↑reverse x = x
[PROOFSTEP]
induction x using CliffordAlgebra.induction
[GOAL]
case h_grade0
R : Type u_1
inst✝ : CommRing R
r✝ : R
⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra 0)) r✝) = ↑(algebraMap R (CliffordAlgebra 0)) r✝
case h_grade1
R : Type u_1
inst✝ : CommRing R
x✝ : Unit
⊢ ↑reverse (↑(ι 0) x✝) = ↑(ι 0) x✝
case h_mul
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² * b✝) = a✝² * b✝
case h_add
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_grade0 r => exact reverse.commutes _
[GOAL]
R : Type u_1
inst✝ : CommRing R
r : R
⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑(algebraMap R (CliffordAlgebra 0)) r
[PROOFSTEP]
case h_grade0 r => exact reverse.commutes _
[GOAL]
R : Type u_1
inst✝ : CommRing R
r : R
⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑(algebraMap R (CliffordAlgebra 0)) r
[PROOFSTEP]
exact reverse.commutes _
[GOAL]
case h_grade1
R : Type u_1
inst✝ : CommRing R
x✝ : Unit
⊢ ↑reverse (↑(ι 0) x✝) = ↑(ι 0) x✝
case h_mul
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² * b✝) = a✝² * b✝
case h_add
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_grade1 x => rw [ι_eq_zero, LinearMap.zero_apply, reverse.map_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x : Unit
⊢ ↑reverse (↑(ι 0) x) = ↑(ι 0) x
[PROOFSTEP]
case h_grade1 x => rw [ι_eq_zero, LinearMap.zero_apply, reverse.map_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x : Unit
⊢ ↑reverse (↑(ι 0) x) = ↑(ι 0) x
[PROOFSTEP]
rw [ι_eq_zero, LinearMap.zero_apply, reverse.map_zero]
[GOAL]
case h_mul
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² * b✝) = a✝² * b✝
case h_add
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x₁ x₂ : CliffordAlgebra 0
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ * x₂) = x₁ * x₂
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x₁ x₂ : CliffordAlgebra 0
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ * x₂) = x₁ * x₂
[PROOFSTEP]
rw [reverse.map_mul, mul_comm, hx₁, hx₂]
[GOAL]
case h_add
R : Type u_1
inst✝ : CommRing R
a✝² b✝ : CliffordAlgebra 0
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x₁ x₂ : CliffordAlgebra 0
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ + x₂) = x₁ + x₂
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
x₁ x₂ : CliffordAlgebra 0
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ + x₂) = x₁ + x₂
[PROOFSTEP]
rw [reverse.map_add, hx₁, hx₂]
[GOAL]
R : Type u_1
inst✝ : CommRing R
⊢ involute = AlgHom.id R (CliffordAlgebra 0)
[PROOFSTEP]
ext
[GOAL]
case a.h
R : Type u_1
inst✝ : CommRing R
x✝ : Unit
⊢ ↑(LinearMap.comp (AlgHom.toLinearMap involute) (ι 0)) x✝ =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra 0))) (ι 0)) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
⊢ AlgHom.comp (↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) })
(Algebra.ofId R (CliffordAlgebra 0)) =
AlgHom.id R R
[PROOFSTEP]
ext x
[GOAL]
case H
R : Type u_1
inst✝ : CommRing R
x : R
⊢ ↑(AlgHom.comp (↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) })
(Algebra.ofId R (CliffordAlgebra 0)))
x =
↑(AlgHom.id R R) x
[PROOFSTEP]
exact AlgHom.commutes _ x
[GOAL]
R : Type u_1
inst✝ : CommRing R
⊢ AlgHom.comp (Algebra.ofId R (CliffordAlgebra 0))
(↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) }) =
AlgHom.id R (CliffordAlgebra 0)
[PROOFSTEP]
ext : 1
[GOAL]
case a
R : Type u_1
inst✝ : CommRing R
⊢ LinearMap.comp
(AlgHom.toLinearMap
(AlgHom.comp (Algebra.ofId R (CliffordAlgebra 0))
(↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) })))
(ι 0) =
LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra 0))) (ι 0)
[PROOFSTEP]
rw [ι_eq_zero, LinearMap.comp_zero, LinearMap.comp_zero]
[GOAL]
r : ℝ
⊢ ↑(LinearMap.toSpanSingleton ℝ ℂ Complex.I) r * ↑(LinearMap.toSpanSingleton ℝ ℂ Complex.I) r = ↑(algebraMap ℝ ℂ) (↑Q r)
[PROOFSTEP]
dsimp [LinearMap.toSpanSingleton, LinearMap.id]
[GOAL]
r : ℝ
⊢ ↑r * Complex.I * (↑r * Complex.I) = ↑(-(r * r))
[PROOFSTEP]
rw [mul_mul_mul_comm]
[GOAL]
r : ℝ
⊢ ↑r * ↑r * (Complex.I * Complex.I) = ↑(-(r * r))
[PROOFSTEP]
simp
[GOAL]
c : CliffordAlgebra Q
⊢ ↑toComplex (↑involute c) = ↑(starRingEnd ((fun x => ℂ) c)) (↑toComplex c)
[PROOFSTEP]
have : toComplex (involute (ι Q 1)) = conj (toComplex (ι Q 1)) := by
simp only [involute_ι, toComplex_ι, AlgHom.map_neg, one_smul, Complex.conj_I]
[GOAL]
c : CliffordAlgebra Q
⊢ ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1))
[PROOFSTEP]
simp only [involute_ι, toComplex_ι, AlgHom.map_neg, one_smul, Complex.conj_I]
[GOAL]
c : CliffordAlgebra Q
this : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1))
⊢ ↑toComplex (↑involute c) = ↑(starRingEnd ((fun x => ℂ) c)) (↑toComplex c)
[PROOFSTEP]
suffices toComplex.comp involute = Complex.conjAe.toAlgHom.comp toComplex by exact AlgHom.congr_fun this c
[GOAL]
c : CliffordAlgebra Q
this✝ : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1))
this : AlgHom.comp toComplex involute = AlgHom.comp (↑Complex.conjAe) toComplex
⊢ ↑toComplex (↑involute c) = ↑(starRingEnd ((fun x => ℂ) c)) (↑toComplex c)
[PROOFSTEP]
exact AlgHom.congr_fun this c
[GOAL]
c : CliffordAlgebra Q
this : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1))
⊢ AlgHom.comp toComplex involute = AlgHom.comp (↑Complex.conjAe) toComplex
[PROOFSTEP]
ext : 2
[GOAL]
case a.h
c : CliffordAlgebra Q
this : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1))
⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp toComplex involute)) (ι Q)) 1 =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp (↑Complex.conjAe) toComplex)) (ι Q)) 1
[PROOFSTEP]
exact this
[GOAL]
⊢ ↑(ι Q) 1 * ↑(ι Q) 1 = -1
[PROOFSTEP]
rw [CliffordAlgebra.ι_sq_scalar, Q_apply, one_mul, RingHom.map_neg, RingHom.map_one]
[GOAL]
⊢ ↑{ val := ↑(ι Q) 1, property := ofComplex.proof_1 } * ↑{ val := ↑(ι Q) 1, property := ofComplex.proof_1 } = -1
[PROOFSTEP]
simp
[GOAL]
⊢ AlgHom.comp toComplex ofComplex = AlgHom.id ℝ ℂ
[PROOFSTEP]
ext1
[GOAL]
case h
⊢ ↑(AlgHom.comp toComplex ofComplex) Complex.I = ↑(AlgHom.id ℝ ℂ) Complex.I
[PROOFSTEP]
dsimp only [AlgHom.comp_apply, Subtype.coe_mk, AlgHom.id_apply]
[GOAL]
case h
⊢ ↑toComplex (↑ofComplex Complex.I) = Complex.I
[PROOFSTEP]
rw [ofComplex_I, toComplex_ι, one_smul]
[GOAL]
⊢ AlgHom.comp ofComplex toComplex = AlgHom.id ℝ (CliffordAlgebra Q)
[PROOFSTEP]
ext
[GOAL]
case a.h
⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp ofComplex toComplex)) (ι Q)) 1 =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id ℝ (CliffordAlgebra Q))) (ι Q)) 1
[PROOFSTEP]
dsimp only [LinearMap.comp_apply, Subtype.coe_mk, AlgHom.id_apply, AlgHom.toLinearMap_apply, AlgHom.comp_apply]
[GOAL]
case a.h
⊢ ↑ofComplex (↑toComplex (↑(ι Q) 1)) = ↑(ι Q) 1
[PROOFSTEP]
rw [toComplex_ι, one_smul, ofComplex_I]
[GOAL]
src✝ : Ring (CliffordAlgebra Q) := instRing Q
x y : CliffordAlgebra Q
⊢ ↑CliffordAlgebraComplex.equiv (x * y) = ↑CliffordAlgebraComplex.equiv (y * x)
[PROOFSTEP]
rw [AlgEquiv.map_mul, mul_comm, AlgEquiv.map_mul]
[GOAL]
x : CliffordAlgebra Q
⊢ ↑reverse x = x
[PROOFSTEP]
induction x using CliffordAlgebra.induction
[GOAL]
case h_grade0
r✝ : ℝ
⊢ ↑reverse (↑(algebraMap ℝ (CliffordAlgebra Q)) r✝) = ↑(algebraMap ℝ (CliffordAlgebra Q)) r✝
case h_grade1
x✝ : ℝ
⊢ ↑reverse (↑(ι Q) x✝) = ↑(ι Q) x✝
case h_mul
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² * b✝) = a✝² * b✝
case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_grade0 r => exact reverse.commutes _
[GOAL]
r : ℝ
⊢ ↑reverse (↑(algebraMap ℝ (CliffordAlgebra Q)) r) = ↑(algebraMap ℝ (CliffordAlgebra Q)) r
[PROOFSTEP]
case h_grade0 r => exact reverse.commutes _
[GOAL]
r : ℝ
⊢ ↑reverse (↑(algebraMap ℝ (CliffordAlgebra Q)) r) = ↑(algebraMap ℝ (CliffordAlgebra Q)) r
[PROOFSTEP]
exact reverse.commutes _
[GOAL]
case h_grade1
x✝ : ℝ
⊢ ↑reverse (↑(ι Q) x✝) = ↑(ι Q) x✝
case h_mul
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² * b✝) = a✝² * b✝
case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_grade1 x => rw [reverse_ι]
[GOAL]
x : ℝ
⊢ ↑reverse (↑(ι Q) x) = ↑(ι Q) x
[PROOFSTEP]
case h_grade1 x => rw [reverse_ι]
[GOAL]
x : ℝ
⊢ ↑reverse (↑(ι Q) x) = ↑(ι Q) x
[PROOFSTEP]
rw [reverse_ι]
[GOAL]
case h_mul
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² * b✝) = a✝² * b✝
case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂]
[GOAL]
x₁ x₂ : CliffordAlgebra Q
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ * x₂) = x₁ * x₂
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂]
[GOAL]
x₁ x₂ : CliffordAlgebra Q
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ * x₂) = x₁ * x₂
[PROOFSTEP]
rw [reverse.map_mul, mul_comm, hx₁, hx₂]
[GOAL]
case h_add
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse a✝² = a✝²
a✝ : ↑reverse b✝ = b✝
⊢ ↑reverse (a✝² + b✝) = a✝² + b✝
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂]
[GOAL]
x₁ x₂ : CliffordAlgebra Q
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ + x₂) = x₁ + x₂
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂]
[GOAL]
x₁ x₂ : CliffordAlgebra Q
hx₁ : ↑reverse x₁ = x₁
hx₂ : ↑reverse x₂ = x₂
⊢ ↑reverse (x₁ + x₂) = x₁ + x₂
[PROOFSTEP]
rw [reverse.map_add, hx₁, hx₂]
[GOAL]
c : ℂ
⊢ ↑CliffordAlgebraComplex.equiv (↑ofComplex (↑(starRingEnd ℂ) c)) =
↑CliffordAlgebraComplex.equiv (↑involute (↑ofComplex c))
[PROOFSTEP]
rw [equiv_apply, equiv_apply, toComplex_involute, toComplex_ofComplex, toComplex_ofComplex]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (1, 0) = c₁ • 1
[PROOFSTEP]
rw [ι_sq_scalar, Q_apply, ← Algebra.algebraMap_eq_smul_one]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) (c₁ * ((1, 0).fst * (1, 0).fst) + c₂ * ((1, 0).snd * (1, 0).snd)) =
↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) c₁
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(ι (Q c₁ c₂)) (0, 1) * ↑(ι (Q c₁ c₂)) (0, 1) = c₂ • 1
[PROOFSTEP]
rw [ι_sq_scalar, Q_apply, ← Algebra.algebraMap_eq_smul_one]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) (c₁ * ((0, 1).fst * (0, 1).fst) + c₂ * ((0, 1).snd * (0, 1).snd)) =
↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) c₂
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(ι (Q c₁ c₂)) (0, 1) * ↑(ι (Q c₁ c₂)) (1, 0) = -(↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1))
[PROOFSTEP]
rw [eq_neg_iff_add_eq_zero, ι_mul_ι_add_swap, QuadraticForm.polar]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) (↑(Q c₁ c₂) ((0, 1) + (1, 0)) - ↑(Q c₁ c₂) (0, 1) - ↑(Q c₁ c₂) (1, 0)) = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v₁ v₂ : R × R
⊢ (fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }) (v₁ + v₂) =
(fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }) v₁ +
(fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }) v₂
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ r : R
v : R × R
⊢ AddHom.toFun
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }
(r • v) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }
v
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ r : R
v : R × R
⊢ { re := 0, imI := (r • v).fst, imJ := (r • v).snd, imK := 0 } =
{ re := r * 0, imI := r * v.fst, imJ := r * v.snd, imK := r * 0 }
[PROOFSTEP]
rw [mul_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ r : R
v : R × R
⊢ { re := 0, imI := (r • v).fst, imJ := (r • v).snd, imK := 0 } =
{ re := 0, imI := r * v.fst, imJ := r * v.snd, imK := 0 }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ ↑{
toAddHom :=
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) },
map_smul' :=
(_ :
∀ (r : R) (v : R × R),
AddHom.toFun
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }
(r • v) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }
v) }
v *
↑{
toAddHom :=
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) },
map_smul' :=
(_ :
∀ (r : R) (v : R × R),
AddHom.toFun
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }
(r • v) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 },
map_add' :=
(_ :
∀ (v₁ v₂ : R × R),
{ re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } =
{ re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }
v) }
v =
↑(algebraMap R ℍ[R,c₁,c₂]) (↑(Q c₁ c₂) v)
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 } =
↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))
[PROOFSTEP]
ext
[GOAL]
case re
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.re =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).re
case imI
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imI =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imI
case imJ
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imJ =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imJ
case imK
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imK =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imK
[PROOFSTEP]
all_goals dsimp; ring
[GOAL]
case re
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.re =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).re
[PROOFSTEP]
dsimp
[GOAL]
case re
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0 = c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd)
[PROOFSTEP]
ring
[GOAL]
case imI
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imI =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imI
[PROOFSTEP]
dsimp
[GOAL]
case imI
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd = 0
[PROOFSTEP]
ring
[GOAL]
case imJ
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imJ =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imJ
[PROOFSTEP]
dsimp
[GOAL]
case imJ
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst = 0
[PROOFSTEP]
ring
[GOAL]
case imK
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0,
imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd,
imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst,
imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imK =
(↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imK
[PROOFSTEP]
dsimp
[GOAL]
case imK
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
v : R × R
⊢ 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 = 0
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
c : CliffordAlgebra (Q c₁ c₂)
⊢ ↑toQuaternion (star c) = star (↑toQuaternion c)
[PROOFSTEP]
simp only [CliffordAlgebra.star_def']
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
c : CliffordAlgebra (Q c₁ c₂)
⊢ ↑toQuaternion (↑involute (↑reverse c)) = star (↑toQuaternion c)
[PROOFSTEP]
induction c using CliffordAlgebra.induction
[GOAL]
case h_grade0
R : Type u_1
inst✝ : CommRing R
c₁ c₂ r✝ : R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r✝))) =
star (↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r✝))
case h_grade1
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x✝ : R × R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x✝))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x✝))
case h_mul
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² * b✝))) = star (↑toQuaternion (a✝² * b✝))
case h_add
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝))
[PROOFSTEP]
case h_grade0 r =>
simp only [reverse.commutes, AlgHom.commutes, QuaternionAlgebra.coe_algebraMap, QuaternionAlgebra.star_coe]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ r : R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r))) =
star (↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r))
[PROOFSTEP]
case h_grade0 r =>
simp only [reverse.commutes, AlgHom.commutes, QuaternionAlgebra.coe_algebraMap, QuaternionAlgebra.star_coe]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ r : R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r))) =
star (↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r))
[PROOFSTEP]
simp only [reverse.commutes, AlgHom.commutes, QuaternionAlgebra.coe_algebraMap, QuaternionAlgebra.star_coe]
[GOAL]
case h_grade1
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x✝ : R × R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x✝))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x✝))
case h_mul
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² * b✝))) = star (↑toQuaternion (a✝² * b✝))
case h_add
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝))
[PROOFSTEP]
case h_grade1 x =>
rw [reverse_ι, involute_ι, toQuaternion_ι, AlgHom.map_neg, toQuaternion_ι, QuaternionAlgebra.neg_mk, star_mk,
neg_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x : R × R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x))
[PROOFSTEP]
case h_grade1 x =>
rw [reverse_ι, involute_ι, toQuaternion_ι, AlgHom.map_neg, toQuaternion_ι, QuaternionAlgebra.neg_mk, star_mk,
neg_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x : R × R
⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x))
[PROOFSTEP]
rw [reverse_ι, involute_ι, toQuaternion_ι, AlgHom.map_neg, toQuaternion_ι, QuaternionAlgebra.neg_mk, star_mk, neg_zero]
[GOAL]
case h_mul
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² * b✝))) = star (↑toQuaternion (a✝² * b✝))
case h_add
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝))
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => simp only [reverse.map_mul, AlgHom.map_mul, hx₁, hx₂, star_mul]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x₁ x₂ : CliffordAlgebra (Q c₁ c₂)
hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁)
hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂)
⊢ ↑toQuaternion (↑involute (↑reverse (x₁ * x₂))) = star (↑toQuaternion (x₁ * x₂))
[PROOFSTEP]
case h_mul x₁ x₂ hx₁ hx₂ => simp only [reverse.map_mul, AlgHom.map_mul, hx₁, hx₂, star_mul]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x₁ x₂ : CliffordAlgebra (Q c₁ c₂)
hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁)
hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂)
⊢ ↑toQuaternion (↑involute (↑reverse (x₁ * x₂))) = star (↑toQuaternion (x₁ * x₂))
[PROOFSTEP]
simp only [reverse.map_mul, AlgHom.map_mul, hx₁, hx₂, star_mul]
[GOAL]
case h_add
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
a✝² b✝ : CliffordAlgebra (Q c₁ c₂)
a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²)
a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝)
⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝))
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => simp only [reverse.map_add, AlgHom.map_add, hx₁, hx₂, star_add]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x₁ x₂ : CliffordAlgebra (Q c₁ c₂)
hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁)
hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂)
⊢ ↑toQuaternion (↑involute (↑reverse (x₁ + x₂))) = star (↑toQuaternion (x₁ + x₂))
[PROOFSTEP]
case h_add x₁ x₂ hx₁ hx₂ => simp only [reverse.map_add, AlgHom.map_add, hx₁, hx₂, star_add]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
x₁ x₂ : CliffordAlgebra (Q c₁ c₂)
hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁)
hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂)
⊢ ↑toQuaternion (↑involute (↑reverse (x₁ + x₂))) = star (↑toQuaternion (x₁ + x₂))
[PROOFSTEP]
simp only [reverse.map_add, AlgHom.map_add, hx₁, hx₂, star_add]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ AlgHom.comp ofQuaternion toQuaternion = AlgHom.id R (CliffordAlgebra (Q c₁ c₂))
[PROOFSTEP]
ext : 1
[GOAL]
case a
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp ofQuaternion toQuaternion)) (ι (Q c₁ c₂)) =
LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂))
[PROOFSTEP]
dsimp
-- before we end up with two goals and have to do this twice
[GOAL]
case a
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion)) (ι (Q c₁ c₂)) =
LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂))
[PROOFSTEP]
ext
[GOAL]
case a.hl.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(LinearMap.comp
(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion))
(ι (Q c₁ c₂)))
(LinearMap.inl R R R))
1 =
↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂)))
(LinearMap.inl R R R))
1
case a.hr.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(LinearMap.comp
(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion))
(ι (Q c₁ c₂)))
(LinearMap.inr R R R))
1 =
↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂)))
(LinearMap.inr R R R))
1
[PROOFSTEP]
all_goals
dsimp
rw [toQuaternion_ι]
dsimp
simp only [toQuaternion_ι, zero_smul, one_smul, zero_add, add_zero, RingHom.map_zero]
[GOAL]
case a.hl.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(LinearMap.comp
(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion))
(ι (Q c₁ c₂)))
(LinearMap.inl R R R))
1 =
↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂)))
(LinearMap.inl R R R))
1
[PROOFSTEP]
dsimp
[GOAL]
case a.hl.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑ofQuaternion (↑toQuaternion (↑(ι (Q c₁ c₂)) (1, 0))) = ↑(ι (Q c₁ c₂)) (1, 0)
[PROOFSTEP]
rw [toQuaternion_ι]
[GOAL]
case a.hl.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑ofQuaternion { re := 0, imI := (1, 0).fst, imJ := (1, 0).snd, imK := 0 } = ↑(ι (Q c₁ c₂)) (1, 0)
[PROOFSTEP]
dsimp
[GOAL]
case a.hl.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 1 • ↑(ι (Q c₁ c₂)) (1, 0) + 0 • ↑(ι (Q c₁ c₂)) (0, 1) +
0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1)) =
↑(ι (Q c₁ c₂)) (1, 0)
[PROOFSTEP]
simp only [toQuaternion_ι, zero_smul, one_smul, zero_add, add_zero, RingHom.map_zero]
[GOAL]
case a.hr.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(LinearMap.comp
(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion))
(ι (Q c₁ c₂)))
(LinearMap.inr R R R))
1 =
↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂)))
(LinearMap.inr R R R))
1
[PROOFSTEP]
dsimp
[GOAL]
case a.hr.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑ofQuaternion (↑toQuaternion (↑(ι (Q c₁ c₂)) (0, 1))) = ↑(ι (Q c₁ c₂)) (0, 1)
[PROOFSTEP]
rw [toQuaternion_ι]
[GOAL]
case a.hr.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑ofQuaternion { re := 0, imI := (0, 1).fst, imJ := (0, 1).snd, imK := 0 } = ↑(ι (Q c₁ c₂)) (0, 1)
[PROOFSTEP]
dsimp
[GOAL]
case a.hr.h
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 0 • ↑(ι (Q c₁ c₂)) (1, 0) + 1 • ↑(ι (Q c₁ c₂)) (0, 1) +
0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1)) =
↑(ι (Q c₁ c₂)) (0, 1)
[PROOFSTEP]
simp only [toQuaternion_ι, zero_smul, one_smul, zero_add, add_zero, RingHom.map_zero]
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ AlgHom.comp toQuaternion ofQuaternion = AlgHom.id R ℍ[R,c₁,c₂]
[PROOFSTEP]
apply QuaternionAlgebra.lift.symm.injective
[GOAL]
case a
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑QuaternionAlgebra.lift.symm (AlgHom.comp toQuaternion ofQuaternion) =
↑QuaternionAlgebra.lift.symm (AlgHom.id R ℍ[R,c₁,c₂])
[PROOFSTEP]
ext1
[GOAL]
case a.hi
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ (↑QuaternionAlgebra.lift.symm (AlgHom.comp toQuaternion ofQuaternion)).i =
(↑QuaternionAlgebra.lift.symm (AlgHom.id R ℍ[R,c₁,c₂])).i
[PROOFSTEP]
dsimp [QuaternionAlgebra.Basis.lift]
[GOAL]
case a.hj
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ (↑QuaternionAlgebra.lift.symm (AlgHom.comp toQuaternion ofQuaternion)).j =
(↑QuaternionAlgebra.lift.symm (AlgHom.id R ℍ[R,c₁,c₂])).j
[PROOFSTEP]
dsimp [QuaternionAlgebra.Basis.lift]
[GOAL]
case a.hi
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑toQuaternion
(↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 1 • ↑(ι (Q c₁ c₂)) (1, 0) + 0 • ↑(ι (Q c₁ c₂)) (0, 1) +
0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1))) =
{ re := 0, imI := 1, imJ := 0, imK := 0 }
[PROOFSTEP]
simp
[GOAL]
case a.hj
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
⊢ ↑toQuaternion
(↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 0 • ↑(ι (Q c₁ c₂)) (1, 0) + 1 • ↑(ι (Q c₁ c₂)) (0, 1) +
0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1))) =
{ re := 0, imI := 0, imJ := 1, imK := 0 }
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommRing R
c₁ c₂ : R
q : ℍ[R,c₁,c₂]
⊢ ↑CliffordAlgebraQuaternion.equiv (↑ofQuaternion (star q)) = ↑CliffordAlgebraQuaternion.equiv (star (↑ofQuaternion q))
[PROOFSTEP]
rw [equiv_apply, equiv_apply, toQuaternion_star, toQuaternion_ofQuaternion, toQuaternion_ofQuaternion]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
r₁ r₂ : R
⊢ ↑(ι 0) r₁ * ↑(ι 0) r₂ = 0
[PROOFSTEP]
rw [← mul_one r₁, ← mul_one r₂, ← smul_eq_mul R, ← smul_eq_mul R, LinearMap.map_smul, LinearMap.map_smul, smul_mul_smul,
ι_sq_scalar, QuadraticForm.zero_apply, RingHom.map_zero, smul_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ AlgHom.comp (↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) })
(↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) }) =
AlgHom.id R R[ε]
[PROOFSTEP]
ext : 1
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ ↑(AlgHom.comp (↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) })
(↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) }))
ε =
↑(AlgHom.id R R[ε]) ε
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ AlgHom.comp (↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) })
(↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) }) =
AlgHom.id R (CliffordAlgebra 0)
[PROOFSTEP]
ext : 2
[GOAL]
case a.h
R : Type u_1
M : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ ↑(LinearMap.comp
(AlgHom.toLinearMap
(AlgHom.comp (↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) })
(↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) })))
(ι 0))
1 =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra 0))) (ι 0)) 1
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Equivs", "llama_tokens": 21075} |
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : FiniteDimensional k V
p : ι → P
hi : AffineIndependent k p
⊢ _root_.Finite ι
[PROOFSTEP]
nontriviality ι
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : FiniteDimensional k V
p : ι → P
hi : AffineIndependent k p
✝ : Nontrivial ι
⊢ _root_.Finite ι
[PROOFSTEP]
inhabit ι
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : FiniteDimensional k V
p : ι → P
hi : AffineIndependent k p
✝ : Nontrivial ι
inhabited_h : Inhabited ι
⊢ _root_.Finite ι
[PROOFSTEP]
rw [affineIndependent_iff_linearIndependent_vsub k p default] at hi
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : FiniteDimensional k V
p : ι → P
✝ : Nontrivial ι
inhabited_h : Inhabited ι
hi : LinearIndependent k fun i => p ↑i -ᵥ p default
⊢ _root_.Finite ι
[PROOFSTEP]
letI : IsNoetherian k V := IsNoetherian.iff_fg.2 inferInstance
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : FiniteDimensional k V
p : ι → P
✝ : Nontrivial ι
inhabited_h : Inhabited ι
hi : LinearIndependent k fun i => p ↑i -ᵥ p default
this : IsNoetherian k V := Iff.mpr IsNoetherian.iff_fg inferInstance
⊢ _root_.Finite ι
[PROOFSTEP]
exact (Set.finite_singleton default).finite_of_compl (Set.finite_coe_iff.1 hi.finite_of_isNoetherian)
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
classical
have hi' := hi.range.mono (Set.image_subset_range p ↑s)
have hc' : (s.image p).card = n + 1 := by rwa [s.card_image_of_injective hi.injective]
have hn : (s.image p).Nonempty := by simp [hc', ← Finset.card_pos]
rcases hn with ⟨p₁, hp₁⟩
have hp₁' : p₁ ∈ p '' s := by simpa using hp₁
rw [affineIndependent_set_iff_linearIndependent_vsub k hp₁', ← Finset.coe_singleton, ← Finset.coe_image, ←
Finset.coe_sdiff, Finset.sdiff_singleton_eq_erase, ← Finset.coe_image] at hi'
have hc : (Finset.image (fun p : P => p -ᵥ p₁) ((Finset.image p s).erase p₁)).card = n :=
by
rw [Finset.card_image_of_injective _ (vsub_left_injective _), Finset.card_erase_of_mem hp₁]
exact Nat.pred_eq_of_eq_succ hc'
rwa [vectorSpan_eq_span_vsub_finset_right_ne k hp₁, finrank_span_finset_eq_card, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
have hi' := hi.range.mono (Set.image_subset_range p ↑s)
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
have hc' : (s.image p).card = n + 1 := by rwa [s.card_image_of_injective hi.injective]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
⊢ Finset.card (Finset.image p s) = n + 1
[PROOFSTEP]
rwa [s.card_image_of_injective hi.injective]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
hc' : Finset.card (Finset.image p s) = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
have hn : (s.image p).Nonempty := by simp [hc', ← Finset.card_pos]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
hc' : Finset.card (Finset.image p s) = n + 1
⊢ Finset.Nonempty (Finset.image p s)
[PROOFSTEP]
simp [hc', ← Finset.card_pos]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
hc' : Finset.card (Finset.image p s) = n + 1
hn : Finset.Nonempty (Finset.image p s)
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
rcases hn with ⟨p₁, hp₁⟩
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
have hp₁' : p₁ ∈ p '' s := by simpa using hp₁
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
⊢ p₁ ∈ p '' ↑s
[PROOFSTEP]
simpa using hp₁
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hi' : AffineIndependent k fun x => ↑x
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
hp₁' : p₁ ∈ p '' ↑s
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
rw [affineIndependent_set_iff_linearIndependent_vsub k hp₁', ← Finset.coe_singleton, ← Finset.coe_image, ←
Finset.coe_sdiff, Finset.sdiff_singleton_eq_erase, ← Finset.coe_image] at hi'
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hi'✝² : LinearIndependent k fun v => ↑v
hi'✝¹ : LinearIndependent k fun v => ↑v
hi'✝ : LinearIndependent k fun v => ↑v
hi' : LinearIndependent k fun v => ↑v
hp₁ : p₁ ∈ Finset.image p s
hp₁' : p₁ ∈ p '' ↑s
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
have hc : (Finset.image (fun p : P => p -ᵥ p₁) ((Finset.image p s).erase p₁)).card = n :=
by
rw [Finset.card_image_of_injective _ (vsub_left_injective _), Finset.card_erase_of_mem hp₁]
exact Nat.pred_eq_of_eq_succ hc'
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hi'✝² : LinearIndependent k fun v => ↑v
hi'✝¹ : LinearIndependent k fun v => ↑v
hi'✝ : LinearIndependent k fun v => ↑v
hi' : LinearIndependent k fun v => ↑v
hp₁ : p₁ ∈ Finset.image p s
hp₁' : p₁ ∈ p '' ↑s
⊢ Finset.card (Finset.image (fun p => p -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) = n
[PROOFSTEP]
rw [Finset.card_image_of_injective _ (vsub_left_injective _), Finset.card_erase_of_mem hp₁]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hi'✝² : LinearIndependent k fun v => ↑v
hi'✝¹ : LinearIndependent k fun v => ↑v
hi'✝ : LinearIndependent k fun v => ↑v
hi' : LinearIndependent k fun v => ↑v
hp₁ : p₁ ∈ Finset.image p s
hp₁' : p₁ ∈ p '' ↑s
⊢ Finset.card (Finset.image p s) - 1 = n
[PROOFSTEP]
exact Nat.pred_eq_of_eq_succ hc'
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
n : ℕ
hc✝ : Finset.card s = n + 1
hc' : Finset.card (Finset.image p s) = n + 1
p₁ : P
hi'✝² : LinearIndependent k fun v => ↑v
hi'✝¹ : LinearIndependent k fun v => ↑v
hi'✝ : LinearIndependent k fun v => ↑v
hi' : LinearIndependent k fun v => ↑v
hp₁ : p₁ ∈ Finset.image p s
hp₁' : p₁ ∈ p '' ↑s
hc : Finset.card (Finset.image (fun p => p -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) = n
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n
[PROOFSTEP]
rwa [vectorSpan_eq_span_vsub_finset_right_ne k hp₁, finrank_span_finset_eq_card, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
classical
rw [← Finset.card_univ] at hc
rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image]
exact hi.finrank_vectorSpan_image_finset hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
rw [← Finset.card_univ] at hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
n : ℕ
hc : Finset.card Finset.univ = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
n : ℕ
hc : Finset.card Finset.univ = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } = n
[PROOFSTEP]
exact hi.finrank_vectorSpan_image_finset hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n
[PROOFSTEP]
classical
have hn : (s.image p).Nonempty :=
by
rw [Finset.Nonempty.image_iff, ← Finset.card_pos, hc]
apply Nat.succ_pos
rcases hn with ⟨p₁, hp₁⟩
rw [vectorSpan_eq_span_vsub_finset_right_ne k hp₁]
refine' le_trans (finrank_span_finset_le_card (((s.image p).erase p₁).image fun p => p -ᵥ p₁)) _
rw [Finset.card_image_of_injective _ (vsub_left_injective p₁), Finset.card_erase_of_mem hp₁, tsub_le_iff_right, ← hc]
apply Finset.card_image_le
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n
[PROOFSTEP]
have hn : (s.image p).Nonempty :=
by
rw [Finset.Nonempty.image_iff, ← Finset.card_pos, hc]
apply Nat.succ_pos
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
⊢ Finset.Nonempty (Finset.image p s)
[PROOFSTEP]
rw [Finset.Nonempty.image_iff, ← Finset.card_pos, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
⊢ 0 < n + 1
[PROOFSTEP]
apply Nat.succ_pos
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
hn : Finset.Nonempty (Finset.image p s)
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n
[PROOFSTEP]
rcases hn with ⟨p₁, hp₁⟩
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n
[PROOFSTEP]
rw [vectorSpan_eq_span_vsub_finset_right_ne k hp₁]
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
⊢ finrank k { x // x ∈ Submodule.span k ↑(Finset.image (fun x => x -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) } ≤ n
[PROOFSTEP]
refine' le_trans (finrank_span_finset_le_card (((s.image p).erase p₁).image fun p => p -ᵥ p₁)) _
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
⊢ Finset.card (Finset.image (fun p => p -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) ≤ n
[PROOFSTEP]
rw [Finset.card_image_of_injective _ (vsub_left_injective p₁), Finset.card_erase_of_mem hp₁, tsub_le_iff_right, ← hc]
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : DecidableEq P
p : ι → P
s : Finset ι
n : ℕ
hc : Finset.card s = n + 1
p₁ : P
hp₁ : p₁ ∈ Finset.image p s
⊢ Finset.card (Finset.image p s) ≤ Finset.card s
[PROOFSTEP]
apply Finset.card_image_le
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n
[PROOFSTEP]
classical
rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image]
rw [← Finset.card_univ] at hc
exact finrank_vectorSpan_image_finset_le _ _ _ hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n
[PROOFSTEP]
rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n
[PROOFSTEP]
rw [← Finset.card_univ] at hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Finset.card Finset.univ = n + 1
⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n
[PROOFSTEP]
exact finrank_vectorSpan_image_finset_le _ _ _ hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
classical
have hn : Nonempty ι := by simp [← Fintype.card_pos_iff, hc]
cases' hn with i₁
rw [affineIndependent_iff_linearIndependent_vsub _ _ i₁, linearIndependent_iff_card_eq_finrank_span, eq_comm,
vectorSpan_range_eq_span_range_vsub_right_ne k p i₁, Set.finrank]
congr
rw [← Finset.card_univ] at hc
rw [Fintype.subtype_card]
simp [Finset.filter_ne', Finset.card_erase_of_mem, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
have hn : Nonempty ι := by simp [← Fintype.card_pos_iff, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ Nonempty ι
[PROOFSTEP]
simp [← Fintype.card_pos_iff, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
hn : Nonempty ι
⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
cases' hn with i₁
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
i₁ : ι
⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
rw [affineIndependent_iff_linearIndependent_vsub _ _ i₁, linearIndependent_iff_card_eq_finrank_span, eq_comm,
vectorSpan_range_eq_span_range_vsub_right_ne k p i₁, Set.finrank]
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
i₁ : ι
⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Fintype.card { x // x ≠ i₁ } ↔
finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n
[PROOFSTEP]
congr
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
i₁ : ι
⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Fintype.card { x // x ≠ i₁ } ↔
finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n
[PROOFSTEP]
rw [← Finset.card_univ] at hc
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Finset.card Finset.univ = n + 1
i₁ : ι
⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Fintype.card { x // x ≠ i₁ } ↔
finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n
[PROOFSTEP]
rw [Fintype.subtype_card]
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Finset.card Finset.univ = n + 1
i₁ : ι
⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } =
Finset.card (Finset.filter (fun x => x ≠ i₁) Finset.univ) ↔
finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n
[PROOFSTEP]
simp [Finset.filter_ne', Finset.card_erase_of_mem, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ AffineIndependent k p ↔ n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) }
[PROOFSTEP]
rw [affineIndependent_iff_finrank_vectorSpan_eq k p hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n ↔ n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) }
[PROOFSTEP]
constructor
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n → n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) }
[PROOFSTEP]
rintro rfl
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
hc : Fintype.card ι = finrank k { x // x ∈ vectorSpan k (Set.range p) } + 1
⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) }
[PROOFSTEP]
rfl
[GOAL]
case mpr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 1
⊢ n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) } → finrank k { x // x ∈ vectorSpan k (Set.range p) } = n
[PROOFSTEP]
exact fun hle => le_antisymm (finrank_vectorSpan_range_le k p hc) hle
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : Fintype ι
p : ι → P
n : ℕ
hc : Fintype.card ι = n + 2
⊢ AffineIndependent k p ↔ ¬finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n
[PROOFSTEP]
rw [affineIndependent_iff_le_finrank_vectorSpan k p hc, ← Nat.lt_iff_add_one_le, lt_iff_not_ge]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
⊢ affineSpan k ↑(Finset.image p s) = sp
[PROOFSTEP]
have hn : s.Nonempty := by
rw [← Finset.card_pos, hc]
apply Nat.succ_pos
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
⊢ Finset.Nonempty s
[PROOFSTEP]
rw [← Finset.card_pos, hc]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
⊢ 0 < finrank k { x // x ∈ direction sp } + 1
[PROOFSTEP]
apply Nat.succ_pos
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
hn : Finset.Nonempty s
⊢ affineSpan k ↑(Finset.image p s) = sp
[PROOFSTEP]
refine' eq_of_direction_eq_of_nonempty_of_le _ ((hn.image p).to_set.affineSpan k) hle
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
hn : Finset.Nonempty s
⊢ direction (affineSpan k ↑(Finset.image p s)) = direction sp
[PROOFSTEP]
have hd := direction_le hle
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
hn : Finset.Nonempty s
hd : direction (affineSpan k ↑(Finset.image p s)) ≤ direction sp
⊢ direction (affineSpan k ↑(Finset.image p s)) = direction sp
[PROOFSTEP]
rw [direction_affineSpan] at hd ⊢
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : DecidableEq P
p : ι → P
hi : AffineIndependent k p
s : Finset ι
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k ↑(Finset.image p s) ≤ sp
hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1
hn : Finset.Nonempty s
hd : vectorSpan k ↑(Finset.image p s) ≤ direction sp
⊢ vectorSpan k ↑(Finset.image p s) = direction sp
[PROOFSTEP]
exact hi.vectorSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one hd hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : Fintype ι
p : ι → P
hi : AffineIndependent k p
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k (Set.range p) ≤ sp
hc : Fintype.card ι = finrank k { x // x ∈ direction sp } + 1
⊢ affineSpan k (Set.range p) = sp
[PROOFSTEP]
classical
rw [← Finset.card_univ] at hc
rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] at hle ⊢
exact hi.affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one hle hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : Fintype ι
p : ι → P
hi : AffineIndependent k p
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k (Set.range p) ≤ sp
hc : Fintype.card ι = finrank k { x // x ∈ direction sp } + 1
⊢ affineSpan k (Set.range p) = sp
[PROOFSTEP]
rw [← Finset.card_univ] at hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : Fintype ι
p : ι → P
hi : AffineIndependent k p
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle : affineSpan k (Set.range p) ≤ sp
hc : Finset.card Finset.univ = finrank k { x // x ∈ direction sp } + 1
⊢ affineSpan k (Set.range p) = sp
[PROOFSTEP]
rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] at hle ⊢
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : Fintype ι
p : ι → P
hi : AffineIndependent k p
sp : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction sp }
hle✝¹ : affineSpan k (p '' Set.univ) ≤ sp
hle✝ : affineSpan k (p '' ↑Finset.univ) ≤ sp
hle : affineSpan k ↑(Finset.image p Finset.univ) ≤ sp
hc : Finset.card Finset.univ = finrank k { x // x ∈ direction sp } + 1
⊢ affineSpan k ↑(Finset.image p Finset.univ) = sp
[PROOFSTEP]
exact hi.affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one hle hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
⊢ affineSpan k (Set.range p) = ⊤ ↔ Fintype.card ι = finrank k V + 1
[PROOFSTEP]
constructor
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
⊢ affineSpan k (Set.range p) = ⊤ → Fintype.card ι = finrank k V + 1
[PROOFSTEP]
intro h_tot
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
h_tot : affineSpan k (Set.range p) = ⊤
⊢ Fintype.card ι = finrank k V + 1
[PROOFSTEP]
let n := Fintype.card ι - 1
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
h_tot : affineSpan k (Set.range p) = ⊤
n : ℕ := Fintype.card ι - 1
⊢ Fintype.card ι = finrank k V + 1
[PROOFSTEP]
have hn : Fintype.card ι = n + 1 := (Nat.succ_pred_eq_of_pos (card_pos_of_affineSpan_eq_top k V P h_tot)).symm
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
h_tot : affineSpan k (Set.range p) = ⊤
n : ℕ := Fintype.card ι - 1
hn : Fintype.card ι = n + 1
⊢ Fintype.card ι = finrank k V + 1
[PROOFSTEP]
rw [hn, ← finrank_top, ← (vectorSpan_eq_top_of_affineSpan_eq_top k V P) h_tot, ← hi.finrank_vectorSpan hn]
[GOAL]
case mpr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
⊢ Fintype.card ι = finrank k V + 1 → affineSpan k (Set.range p) = ⊤
[PROOFSTEP]
intro hc
[GOAL]
case mpr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
hc : Fintype.card ι = finrank k V + 1
⊢ affineSpan k (Set.range p) = ⊤
[PROOFSTEP]
rw [← finrank_top, ← direction_top k V P] at hc
[GOAL]
case mpr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁵ : DivisionRing k
inst✝⁴ : AddCommGroup V
inst✝³ : Module k V
inst✝² : AffineSpace V P
inst✝¹ : FiniteDimensional k V
inst✝ : Fintype ι
p : ι → P
hi : AffineIndependent k p
hc : Fintype.card ι = finrank k { x // x ∈ direction ⊤ } + 1
⊢ affineSpan k (Set.range p) = ⊤
[PROOFSTEP]
exact hi.affineSpan_eq_of_le_of_card_eq_finrank_add_one le_top hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
inst✝ : FiniteDimensional k V
n : ℕ
T : Simplex k V n
hrank : finrank k V = n
⊢ affineSpan k (Set.range T.points) = ⊤
[PROOFSTEP]
rw [AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one T.Independent, Fintype.card_fin, hrank]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
[PROOFSTEP]
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) }
[PROOFSTEP]
rcases(s : Set P).eq_empty_or_nonempty with (hs | ⟨p₀, hp₀⟩)
[GOAL]
case inl
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
hs : ↑s = ∅
⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) }
[PROOFSTEP]
rw [coe_eq_bot_iff] at hs
[GOAL]
case inl
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
hs : s = ⊥
⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) }
[PROOFSTEP]
rw [hs, bot_coe, span_empty, bot_coe, direction_affineSpan]
[GOAL]
case inl
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
hs : s = ⊥
⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p ∅) }
[PROOFSTEP]
convert finiteDimensional_bot _ _
[GOAL]
case h.e'_2.h.e'_2.h.h.e'_5
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
hs : s = ⊥
x✝ : V
⊢ vectorSpan k (insert p ∅) = ⊥
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.e'_6
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
hs : s = ⊥
e_2✝ : { x // x ∈ vectorSpan k (insert p ∅) } = { x // x ∈ ⊥ }
⊢ vectorSpan k (insert p ∅) = ⊥
[PROOFSTEP]
simp
[GOAL]
case h.e'_5.e'_6.h.h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p : P
hs : s = ⊥
e_2✝ : { x // x ∈ vectorSpan k (insert p ∅) } = { x // x ∈ ⊥ }
e_4✝ : HEq (Submodule.addCommGroup (vectorSpan k (insert p ∅))) (Submodule.addCommGroup ⊥)
e_3✝ : Ring.toSemiring = DivisionSemiring.toSemiring
⊢ vectorSpan k (insert p ∅) = ⊥
[PROOFSTEP]
simp
[GOAL]
case inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p p₀ : P
hp₀ : p₀ ∈ ↑s
⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) }
[PROOFSTEP]
rw [affineSpan_coe, direction_affineSpan_insert hp₀]
[GOAL]
case inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : AffineSubspace k P
inst✝ : FiniteDimensional k { x // x ∈ direction s }
p p₀ : P
hp₀ : p₀ ∈ ↑s
⊢ FiniteDimensional k { x // x ∈ Submodule.span k {p -ᵥ p₀} ⊔ direction s }
[PROOFSTEP]
infer_instance
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
p : P
⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p s) }
[PROOFSTEP]
haveI : FiniteDimensional k (affineSpan k s).direction := (direction_affineSpan k s).symm ▸ inferInstance
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
p : P
this : FiniteDimensional k { x // x ∈ direction (affineSpan k s) }
⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p s) }
[PROOFSTEP]
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
p : P
this : FiniteDimensional k { x // x ∈ direction (affineSpan k s) }
⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑(affineSpan k s)) }
[PROOFSTEP]
exact finiteDimensional_vectorSpan_insert (affineSpan k s) p
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
⊢ Collinear k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 1
[PROOFSTEP]
have h := collinear_iff_rank_le_one k s
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
h : Collinear k s ↔ Module.rank k { x // x ∈ vectorSpan k s } ≤ 1
⊢ Collinear k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 1
[PROOFSTEP]
rw [← finrank_eq_rank] at h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
h : Collinear k s ↔ ↑(finrank k { x // x ∈ vectorSpan k s }) ≤ 1
⊢ Collinear k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 1
[PROOFSTEP]
exact_mod_cast h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
⊢ Collinear k ∅
[PROOFSTEP]
rw [collinear_iff_rank_le_one, vectorSpan_empty]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
⊢ Module.rank k { x // x ∈ ⊥ } ≤ 1
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : P
⊢ Collinear k {p}
[PROOFSTEP]
rw [collinear_iff_rank_le_one, vectorSpan_singleton]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : P
⊢ Module.rank k { x // x ∈ ⊥ } ≤ 1
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
⊢ Collinear k s ↔ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
simp_rw [collinear_iff_rank_le_one, rank_submodule_le_one_iff', Submodule.le_span_singleton_iff]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
⊢ (∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v) ↔ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
constructor
[GOAL]
case mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
⊢ (∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v) → ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
rintro ⟨v₀, hv⟩
[GOAL]
case mp.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v₀ : V
hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
⊢ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
use v₀
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v₀ : V
hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
⊢ ∀ (p : P), p ∈ s → ∃ r, p = r • v₀ +ᵥ p₀
[PROOFSTEP]
intro p hp
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v₀ : V
hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
p : P
hp : p ∈ s
⊢ ∃ r, p = r • v₀ +ᵥ p₀
[PROOFSTEP]
obtain ⟨r, hr⟩ := hv (p -ᵥ p₀) (vsub_mem_vectorSpan k hp h)
[GOAL]
case h.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v₀ : V
hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
p : P
hp : p ∈ s
r : k
hr : r • v₀ = p -ᵥ p₀
⊢ ∃ r, p = r • v₀ +ᵥ p₀
[PROOFSTEP]
use r
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v₀ : V
hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
p : P
hp : p ∈ s
r : k
hr : r • v₀ = p -ᵥ p₀
⊢ p = r • v₀ +ᵥ p₀
[PROOFSTEP]
rw [eq_vadd_iff_vsub_eq]
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v₀ : V
hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
p : P
hp : p ∈ s
r : k
hr : r • v₀ = p -ᵥ p₀
⊢ p -ᵥ p₀ = r • v₀
[PROOFSTEP]
exact hr.symm
[GOAL]
case mpr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
⊢ (∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀) → ∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
[PROOFSTEP]
rintro ⟨v, hp₀v⟩
[GOAL]
case mpr.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
⊢ ∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v
[PROOFSTEP]
use v
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
⊢ ∀ (v_1 : V), v_1 ∈ vectorSpan k s → ∃ r, r • v = v_1
[PROOFSTEP]
intro w hw
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
⊢ ∃ r, r • v = w
[PROOFSTEP]
have hs : vectorSpan k s ≤ k ∙ v :=
by
rw [vectorSpan_eq_span_vsub_set_right k h, Submodule.span_le, Set.subset_def]
intro x hx
rw [SetLike.mem_coe, Submodule.mem_span_singleton]
rw [Set.mem_image] at hx
rcases hx with ⟨p, hp, rfl⟩
rcases hp₀v p hp with ⟨r, rfl⟩
use r
simp
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
⊢ vectorSpan k s ≤ Submodule.span k {v}
[PROOFSTEP]
rw [vectorSpan_eq_span_vsub_set_right k h, Submodule.span_le, Set.subset_def]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
⊢ ∀ (x : V), x ∈ (fun x => x -ᵥ p₀) '' s → x ∈ ↑(Submodule.span k {v})
[PROOFSTEP]
intro x hx
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
x : V
hx : x ∈ (fun x => x -ᵥ p₀) '' s
⊢ x ∈ ↑(Submodule.span k {v})
[PROOFSTEP]
rw [SetLike.mem_coe, Submodule.mem_span_singleton]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
x : V
hx : x ∈ (fun x => x -ᵥ p₀) '' s
⊢ ∃ a, a • v = x
[PROOFSTEP]
rw [Set.mem_image] at hx
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
x : V
hx : ∃ x_1, x_1 ∈ s ∧ x_1 -ᵥ p₀ = x
⊢ ∃ a, a • v = x
[PROOFSTEP]
rcases hx with ⟨p, hp, rfl⟩
[GOAL]
case intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
p : P
hp : p ∈ s
⊢ ∃ a, a • v = p -ᵥ p₀
[PROOFSTEP]
rcases hp₀v p hp with ⟨r, rfl⟩
[GOAL]
case intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
r : k
hp : r • v +ᵥ p₀ ∈ s
⊢ ∃ a, a • v = r • v +ᵥ p₀ -ᵥ p₀
[PROOFSTEP]
use r
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
r : k
hp : r • v +ᵥ p₀ ∈ s
⊢ r • v = r • v +ᵥ p₀ -ᵥ p₀
[PROOFSTEP]
simp
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
hs : vectorSpan k s ≤ Submodule.span k {v}
⊢ ∃ r, r • v = w
[PROOFSTEP]
have hw' := SetLike.le_def.1 hs hw
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₀ : P
h : p₀ ∈ s
v : V
hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
w : V
hw : w ∈ vectorSpan k s
hs : vectorSpan k s ≤ Submodule.span k {v}
hw' : w ∈ Submodule.span k {v}
⊢ ∃ r, r • v = w
[PROOFSTEP]
rwa [Submodule.mem_span_singleton] at hw'
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
⊢ Collinear k s ↔ ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
rcases Set.eq_empty_or_nonempty s with (rfl | ⟨⟨p₁, hp₁⟩⟩)
[GOAL]
case inl
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
⊢ Collinear k ∅ ↔ ∃ p₀ v, ∀ (p : P), p ∈ ∅ → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
simp [collinear_empty]
[GOAL]
case inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
⊢ Collinear k s ↔ ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
rw [collinear_iff_of_mem hp₁]
[GOAL]
case inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
⊢ (∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁) ↔ ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
constructor
[GOAL]
case inr.intro.mp
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
⊢ (∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁) → ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
exact fun h => ⟨p₁, h⟩
[GOAL]
case inr.intro.mpr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
⊢ (∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀) → ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
[PROOFSTEP]
rintro ⟨p, v, hv⟩
[GOAL]
case inr.intro.mpr.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
p : P
v : V
hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p
⊢ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
[PROOFSTEP]
use v
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
p : P
v : V
hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p
⊢ ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
[PROOFSTEP]
intro p₂ hp₂
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
p : P
v : V
hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p
p₂ : P
hp₂ : p₂ ∈ s
⊢ ∃ r, p₂ = r • v +ᵥ p₁
[PROOFSTEP]
rcases hv p₂ hp₂ with ⟨r, rfl⟩
[GOAL]
case h.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
p : P
v : V
hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p
r : k
hp₂ : r • v +ᵥ p ∈ s
⊢ ∃ r_1, r • v +ᵥ p = r_1 • v +ᵥ p₁
[PROOFSTEP]
rcases hv p₁ hp₁ with ⟨r₁, rfl⟩
[GOAL]
case h.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
v : V
hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p
r : k
hp₂ : r • v +ᵥ p ∈ s
r₁ : k
hp₁ : r₁ • v +ᵥ p ∈ s
⊢ ∃ r_1, r • v +ᵥ p = r_1 • v +ᵥ (r₁ • v +ᵥ p)
[PROOFSTEP]
use r - r₁
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
v : V
hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p
r : k
hp₂ : r • v +ᵥ p ∈ s
r₁ : k
hp₁ : r₁ • v +ᵥ p ∈ s
⊢ r • v +ᵥ p = (r - r₁) • v +ᵥ (r₁ • v +ᵥ p)
[PROOFSTEP]
simp [vadd_vadd, ← add_smul]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ : P
⊢ Collinear k {p₁, p₂}
[PROOFSTEP]
rw [collinear_iff_exists_forall_eq_smul_vadd]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ : P
⊢ ∃ p₀ v, ∀ (p : P), p ∈ {p₁, p₂} → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
use p₁, p₂ -ᵥ p₁
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ : P
⊢ ∀ (p : P), p ∈ {p₁, p₂} → ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
intro p hp
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p : P
hp : p ∈ {p₁, p₂}
⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
rw [Set.mem_insert_iff, Set.mem_singleton_iff] at hp
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p : P
hp : p = p₁ ∨ p = p₂
⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
cases' hp with hp hp
[GOAL]
case h.inl
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p : P
hp : p = p₁
⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
use 0
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p : P
hp : p = p₁
⊢ p = 0 • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
simp [hp]
[GOAL]
case h.inr
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p : P
hp : p = p₂
⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
use 1
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p : P
hp : p = p₂
⊢ p = 1 • (p₂ -ᵥ p₁) +ᵥ p₁
[PROOFSTEP]
simp [hp]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
⊢ AffineIndependent k p ↔ ¬Collinear k (Set.range p)
[PROOFSTEP]
rw [collinear_iff_finrank_le_one, affineIndependent_iff_not_finrank_vectorSpan_le k p (Fintype.card_fin 3)]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
⊢ Collinear k (Set.range p) ↔ ¬AffineIndependent k p
[PROOFSTEP]
rw [collinear_iff_finrank_le_one, finrank_vectorSpan_le_iff_not_affineIndependent k p (Fintype.card_fin 3)]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
⊢ AffineIndependent k ![p₁, p₂, p₃] ↔ ¬Collinear k {p₁, p₂, p₃}
[PROOFSTEP]
rw [affineIndependent_iff_not_collinear]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
⊢ ¬Collinear k (Set.range ![p₁, p₂, p₃]) ↔ ¬Collinear k {p₁, p₂, p₃}
[PROOFSTEP]
simp_rw [Matrix.range_cons, Matrix.range_empty, Set.singleton_union, insert_emptyc_eq]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃}
[PROOFSTEP]
have hu : (Finset.univ : Finset (Fin 3)) = { i₁, i₂, i₃ } := by
-- Porting note: Originally `by decide!`fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ Finset.univ = {i₁, i₂, i₃}
[PROOFSTEP]
fin_cases i₁
[GOAL]
case head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₂ i₃ : Fin 3
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, i₂, i₃}
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₂ i₃ : Fin 3
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₂, i₃}
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₂ i₃ : Fin 3
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₂, i₃}
[PROOFSTEP]
fin_cases i₂
[GOAL]
case head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₃ : Fin 3
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.tail.head
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
h₁₂ h₁₃ h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp only at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p : Fin 3 → P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃}
[PROOFSTEP]
rw [affineIndependent_iff_not_collinear, ← Set.image_univ, ← Finset.coe_univ, hu, Finset.coe_insert, Finset.coe_insert,
Finset.coe_singleton, Set.image_insert_eq, Set.image_pair]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
h : ¬Collinear k {p₁, p₂, p₃}
⊢ p₁ ≠ p₂
[PROOFSTEP]
rintro rfl
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₃ : P
h : ¬Collinear k {p₁, p₁, p₃}
⊢ False
[PROOFSTEP]
simp [collinear_pair] at h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
h : ¬Collinear k {p₁, p₂, p₃}
⊢ p₁ ≠ p₃
[PROOFSTEP]
rintro rfl
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ : P
h : ¬Collinear k {p₁, p₂, p₁}
⊢ False
[PROOFSTEP]
simp [collinear_pair] at h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
h : ¬Collinear k {p₁, p₂, p₃}
⊢ p₂ ≠ p₃
[PROOFSTEP]
rintro rfl
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ : P
h : ¬Collinear k {p₁, p₂, p₂}
⊢ False
[PROOFSTEP]
simp [collinear_pair] at h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p₁ p₂ p₃ : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₁p₂ : p₁ ≠ p₂
⊢ p₃ ∈ affineSpan k {p₁, p₂}
[PROOFSTEP]
rw [collinear_iff_of_mem hp₁] at h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
h : ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
p₂ p₃ : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₁p₂ : p₁ ≠ p₂
⊢ p₃ ∈ affineSpan k {p₁, p₂}
[PROOFSTEP]
rcases h with ⟨v, h⟩
[GOAL]
case intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ p₂ p₃ : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₁p₂ : p₁ ≠ p₂
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
⊢ p₃ ∈ affineSpan k {p₁, p₂}
[PROOFSTEP]
rcases h p₂ hp₂ with ⟨r₂, rfl⟩
[GOAL]
case intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ p₃ : P
hp₁ : p₁ ∈ s
hp₃ : p₃ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₂ : k
hp₂ : r₂ • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁
⊢ p₃ ∈ affineSpan k {p₁, r₂ • v +ᵥ p₁}
[PROOFSTEP]
rcases h p₃ hp₃ with ⟨r₃, rfl⟩
[GOAL]
case intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₂ : k
hp₂ : r₂ • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁
r₃ : k
hp₃ : r₃ • v +ᵥ p₁ ∈ s
⊢ r₃ • v +ᵥ p₁ ∈ affineSpan k {p₁, r₂ • v +ᵥ p₁}
[PROOFSTEP]
rw [vadd_left_mem_affineSpan_pair]
[GOAL]
case intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₂ : k
hp₂ : r₂ • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁
r₃ : k
hp₃ : r₃ • v +ᵥ p₁ ∈ s
⊢ ∃ r, r • (r₂ • v +ᵥ p₁ -ᵥ p₁) = r₃ • v
[PROOFSTEP]
refine' ⟨r₃ / r₂, _⟩
[GOAL]
case intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₂ : k
hp₂ : r₂ • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁
r₃ : k
hp₃ : r₃ • v +ᵥ p₁ ∈ s
⊢ (r₃ / r₂) • (r₂ • v +ᵥ p₁ -ᵥ p₁) = r₃ • v
[PROOFSTEP]
have h₂ : r₂ ≠ 0 := by
rintro rfl
simp at hp₁p₂
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₂ : k
hp₂ : r₂ • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁
r₃ : k
hp₃ : r₃ • v +ᵥ p₁ ∈ s
⊢ r₂ ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₃ : k
hp₃ : r₃ • v +ᵥ p₁ ∈ s
hp₂ : 0 • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ 0 • v +ᵥ p₁
⊢ False
[PROOFSTEP]
simp at hp₁p₂
[GOAL]
case intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p₁ : P
hp₁ : p₁ ∈ s
v : V
h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁
r₂ : k
hp₂ : r₂ • v +ᵥ p₁ ∈ s
hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁
r₃ : k
hp₃ : r₃ • v +ᵥ p₁ ∈ s
h₂ : r₂ ≠ 0
⊢ (r₃ / r₂) • (r₂ • v +ᵥ p₁ -ᵥ p₁) = r₃ • v
[PROOFSTEP]
simp [smul_smul, h₂]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p₁ p₂ p₃ : P
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₂p₃ : p₂ ≠ p₃
⊢ Collinear k (insert p₁ s) ↔ Collinear k {p₁, p₂, p₃}
[PROOFSTEP]
have hv : vectorSpan k (insert p₁ s) = vectorSpan k ({ p₁, p₂, p₃ } : Set P) := by
-- Porting note: Original proof used `conv_lhs` and `conv_rhs`, but these tactics timed out.
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan]
symm
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, h.affineSpan_eq_of_ne hp₂ hp₃ hp₂p₃]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p₁ p₂ p₃ : P
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₂p₃ : p₂ ≠ p₃
⊢ vectorSpan k (insert p₁ s) = vectorSpan k {p₁, p₂, p₃}
[PROOFSTEP]
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p₁ p₂ p₃ : P
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₂p₃ : p₂ ≠ p₃
⊢ direction (affineSpan k (insert p₁ ↑(affineSpan k s))) = vectorSpan k {p₁, p₂, p₃}
[PROOFSTEP]
symm
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p₁ p₂ p₃ : P
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₂p₃ : p₂ ≠ p₃
⊢ vectorSpan k {p₁, p₂, p₃} = direction (affineSpan k (insert p₁ ↑(affineSpan k s)))
[PROOFSTEP]
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, h.affineSpan_eq_of_ne hp₂ hp₃ hp₂p₃]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p₁ p₂ p₃ : P
hp₂ : p₂ ∈ s
hp₃ : p₃ ∈ s
hp₂p₃ : p₂ ≠ p₃
hv : vectorSpan k (insert p₁ s) = vectorSpan k {p₁, p₂, p₃}
⊢ Collinear k (insert p₁ s) ↔ Collinear k {p₁, p₂, p₃}
[PROOFSTEP]
rw [Collinear, Collinear, hv]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
h : p ∈ affineSpan k s
⊢ Collinear k (insert p s) ↔ Collinear k s
[PROOFSTEP]
rw [Collinear, Collinear, vectorSpan_insert_eq_vectorSpan h]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
h : p₁ ∈ affineSpan k {p₂, p₃}
⊢ Collinear k {p₁, p₂, p₃}
[PROOFSTEP]
rw [collinear_insert_iff_of_mem_affineSpan h]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
h : p₁ ∈ affineSpan k {p₂, p₃}
⊢ Collinear k {p₂, p₃}
[PROOFSTEP]
exact collinear_pair _ _ _
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ : P
h₁ : p₁ ∈ affineSpan k {p₃, p₄}
h₂ : p₂ ∈ affineSpan k {p₃, p₄}
⊢ Collinear k {p₁, p₂, p₃, p₄}
[PROOFSTEP]
rw [collinear_insert_iff_of_mem_affineSpan
((AffineSubspace.le_def' _ _).1 (affineSpan_mono k (Set.subset_insert _ _)) _ h₁),
collinear_insert_iff_of_mem_affineSpan h₂]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ : P
h₁ : p₁ ∈ affineSpan k {p₃, p₄}
h₂ : p₂ ∈ affineSpan k {p₃, p₄}
⊢ Collinear k {p₃, p₄}
[PROOFSTEP]
exact collinear_pair _ _ _
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ Collinear k {p₁, p₂, p₃, p₄, p₅}
[PROOFSTEP]
rw [collinear_insert_iff_of_mem_affineSpan
((AffineSubspace.le_def' _ _).1 (affineSpan_mono k ((Set.subset_insert _ _).trans (Set.subset_insert _ _))) _ h₁),
collinear_insert_iff_of_mem_affineSpan
((AffineSubspace.le_def' _ _).1 (affineSpan_mono k (Set.subset_insert _ _)) _ h₂),
collinear_insert_iff_of_mem_affineSpan h₃]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ Collinear k {p₄, p₅}
[PROOFSTEP]
exact collinear_pair _ _ _
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ Collinear k {p₁, p₂, p₃, p₄}
[PROOFSTEP]
refine' (collinear_insert_insert_insert_of_mem_affineSpan_pair h₁ h₂ h₃).subset _
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₁, p₂, p₃, p₄} ⊆ {p₁, p₂, p₃, p₄, p₅}
[PROOFSTEP]
repeat apply Set.insert_subset_insert
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₁, p₂, p₃, p₄} ⊆ {p₁, p₂, p₃, p₄, p₅}
[PROOFSTEP]
apply Set.insert_subset_insert
[GOAL]
case h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₂, p₃, p₄} ⊆ {p₂, p₃, p₄, p₅}
[PROOFSTEP]
apply Set.insert_subset_insert
[GOAL]
case h.h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₃, p₄} ⊆ {p₃, p₄, p₅}
[PROOFSTEP]
apply Set.insert_subset_insert
[GOAL]
case h.h.h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₄} ⊆ {p₄, p₅}
[PROOFSTEP]
apply Set.insert_subset_insert
[GOAL]
case h.h.h
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₄} ⊆ {p₄, p₅}
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ Collinear k {p₁, p₂, p₃}
[PROOFSTEP]
refine' (collinear_insert_insert_insert_left_of_mem_affineSpan_pair h₁ h₂ h₃).subset _
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ p₄ p₅ : P
h₁ : p₁ ∈ affineSpan k {p₄, p₅}
h₂ : p₂ ∈ affineSpan k {p₄, p₅}
h₃ : p₃ ∈ affineSpan k {p₄, p₅}
⊢ {p₁, p₂, p₃} ⊆ {p₁, p₂, p₃, p₄}
[PROOFSTEP]
simp [Set.insert_subset_insert]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Coplanar k s
⊢ FiniteDimensional k { x // x ∈ vectorSpan k s }
[PROOFSTEP]
refine' IsNoetherian.iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 (lt_of_le_of_lt h _))
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Coplanar k s
⊢ 2 < Cardinal.aleph0
[PROOFSTEP]
exact Cardinal.lt_aleph0.2 ⟨2, rfl⟩
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
⊢ Coplanar k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 2
[PROOFSTEP]
have h : Coplanar k s ↔ Module.rank k (vectorSpan k s) ≤ 2 := Iff.rfl
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
h : Coplanar k s ↔ Module.rank k { x // x ∈ vectorSpan k s } ≤ 2
⊢ Coplanar k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 2
[PROOFSTEP]
rw [← finrank_eq_rank] at h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝⁴ : DivisionRing k
inst✝³ : AddCommGroup V
inst✝² : Module k V
inst✝¹ : AffineSpace V P
s : Set P
inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s }
h : Coplanar k s ↔ ↑(finrank k { x // x ∈ vectorSpan k s }) ≤ 2
⊢ Coplanar k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 2
[PROOFSTEP]
exact_mod_cast h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
h : p ∈ affineSpan k s
⊢ Coplanar k (insert p s) ↔ Coplanar k s
[PROOFSTEP]
rw [Coplanar, Coplanar, vectorSpan_insert_eq_vectorSpan h]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
by_cases hf : FiniteDimensional k s.direction
[GOAL]
case pos
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : FiniteDimensional k { x // x ∈ direction s }
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
case neg
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
swap
[GOAL]
case neg
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
have hf' : ¬FiniteDimensional k (vectorSpan k (insert p (s : Set P))) :=
by
intro h
have h' : s.direction ≤ vectorSpan k (insert p (s : Set P)) :=
by
conv_lhs => rw [← affineSpan_coe s, direction_affineSpan]
exact vectorSpan_mono k (Set.subset_insert _ _)
exact hf (Submodule.finiteDimensional_of_le h')
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
⊢ ¬FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
[PROOFSTEP]
intro h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
⊢ False
[PROOFSTEP]
have h' : s.direction ≤ vectorSpan k (insert p (s : Set P)) :=
by
conv_lhs => rw [← affineSpan_coe s, direction_affineSpan]
exact vectorSpan_mono k (Set.subset_insert _ _)
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
⊢ direction s ≤ vectorSpan k (insert p ↑s)
[PROOFSTEP]
conv_lhs => rw [← affineSpan_coe s, direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
| direction s
[PROOFSTEP]
rw [← affineSpan_coe s, direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
| direction s
[PROOFSTEP]
rw [← affineSpan_coe s, direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
| direction s
[PROOFSTEP]
rw [← affineSpan_coe s, direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
⊢ vectorSpan k ↑s ≤ vectorSpan k (insert p ↑s)
[PROOFSTEP]
exact vectorSpan_mono k (Set.subset_insert _ _)
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
h' : direction s ≤ vectorSpan k (insert p ↑s)
⊢ False
[PROOFSTEP]
exact hf (Submodule.finiteDimensional_of_le h')
[GOAL]
case neg
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
hf' : ¬FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
rw [finrank_of_infinite_dimensional hf, finrank_of_infinite_dimensional hf', zero_add]
[GOAL]
case neg
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : ¬FiniteDimensional k { x // x ∈ direction s }
hf' : ¬FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) }
⊢ 0 ≤ 1
[PROOFSTEP]
exact zero_le_one
[GOAL]
case pos
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf : FiniteDimensional k { x // x ∈ direction s }
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
have : FiniteDimensional k s.direction := hf
[GOAL]
case pos
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan]
[GOAL]
case pos
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
rcases(s : Set P).eq_empty_or_nonempty with (hs | ⟨p₀, hp₀⟩)
[GOAL]
case pos.inl
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : ↑s = ∅
⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
rw [coe_eq_bot_iff] at hs
[GOAL]
case pos.inl
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
rw [hs, bot_coe, span_empty, bot_coe, direction_affineSpan, direction_bot, finrank_bot, zero_add]
[GOAL]
case pos.inl
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
⊢ finrank k { x // x ∈ vectorSpan k (insert p ∅) } ≤ 1
[PROOFSTEP]
convert zero_le_one' ℕ
[GOAL]
case h.e'_3
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
⊢ finrank k { x // x ∈ vectorSpan k (insert p ∅) } = 0
[PROOFSTEP]
rw [← finrank_bot k V]
[GOAL]
case h.e'_3
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
⊢ finrank k { x // x ∈ vectorSpan k (insert p ∅) } = finrank k { x // x ∈ ⊥ }
[PROOFSTEP]
convert rfl
[GOAL]
case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
x✝ : V
⊢ ⊥ = vectorSpan k (insert p ∅)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h.e'_4.e'_6
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
e_2✝ : { x // x ∈ ⊥ } = { x // x ∈ vectorSpan k (insert p ∅) }
⊢ ⊥ = vectorSpan k (insert p ∅)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h.e'_5.e'_6
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
hs : s = ⊥
e_2✝ : { x // x ∈ ⊥ } = { x // x ∈ vectorSpan k (insert p ∅) }
e_3✝ : Ring.toSemiring = DivisionSemiring.toSemiring
e_4✝ : HEq (Submodule.addCommGroup ⊥) (Submodule.addCommGroup (vectorSpan k (insert p ∅)))
⊢ ⊥ = vectorSpan k (insert p ∅)
[PROOFSTEP]
simp
[GOAL]
case pos.inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1
[PROOFSTEP]
rw [affineSpan_coe, direction_affineSpan_insert hp₀, add_comm]
[GOAL]
case pos.inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
⊢ finrank k { x // x ∈ Submodule.span k {p -ᵥ p₀} ⊔ direction s } ≤ 1 + finrank k { x // x ∈ direction s }
[PROOFSTEP]
refine' (Submodule.finrank_add_le_finrank_add_finrank _ _).trans (add_le_add_right _ _)
[GOAL]
case pos.inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
⊢ finrank k { x // x ∈ Submodule.span k {p -ᵥ p₀} } ≤ 1
[PROOFSTEP]
refine' finrank_le_one ⟨p -ᵥ p₀, Submodule.mem_span_singleton_self _⟩ fun v => _
[GOAL]
case pos.inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
v : { x // x ∈ Submodule.span k {p -ᵥ p₀} }
⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v
[PROOFSTEP]
have h := v.property
[GOAL]
case pos.inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
v : { x // x ∈ Submodule.span k {p -ᵥ p₀} }
h : ↑v ∈ Submodule.span k {p -ᵥ p₀}
⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v
[PROOFSTEP]
rw [Submodule.mem_span_singleton] at h
[GOAL]
case pos.inr.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
v : { x // x ∈ Submodule.span k {p -ᵥ p₀} }
h : ∃ a, a • (p -ᵥ p₀) = ↑v
⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v
[PROOFSTEP]
rcases h with ⟨c, hc⟩
[GOAL]
case pos.inr.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
v : { x // x ∈ Submodule.span k {p -ᵥ p₀} }
c : k
hc : c • (p -ᵥ p₀) = ↑v
⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v
[PROOFSTEP]
refine' ⟨c, _⟩
[GOAL]
case pos.inr.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
v : { x // x ∈ Submodule.span k {p -ᵥ p₀} }
c : k
hc : c • (p -ᵥ p₀) = ↑v
⊢ c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v
[PROOFSTEP]
ext
[GOAL]
case pos.inr.intro.intro.a
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hf this : FiniteDimensional k { x // x ∈ direction s }
p₀ : P
hp₀ : p₀ ∈ ↑s
v : { x // x ∈ Submodule.span k {p -ᵥ p₀} }
c : k
hc : c • (p -ᵥ p₀) = ↑v
⊢ ↑(c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) }) = ↑v
[PROOFSTEP]
exact hc
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
⊢ finrank k { x // x ∈ vectorSpan k (insert p s) } ≤ finrank k { x // x ∈ vectorSpan k s } + 1
[PROOFSTEP]
rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑(affineSpan k s)) } ≤ finrank k { x // x ∈ vectorSpan k s } + 1
[PROOFSTEP]
refine' (finrank_vectorSpan_insert_le _ _).trans (add_le_add_right _ _)
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
⊢ finrank k { x // x ∈ direction (affineSpan k s) } ≤ finrank k { x // x ∈ vectorSpan k s }
[PROOFSTEP]
rw [direction_affineSpan]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p : P
⊢ Coplanar k (insert p s)
[PROOFSTEP]
have : FiniteDimensional k { x // x ∈ vectorSpan k s } := h.finiteDimensional_vectorSpan
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p : P
this : FiniteDimensional k { x // x ∈ vectorSpan k s }
⊢ Coplanar k (insert p s)
[PROOFSTEP]
rw [coplanar_iff_finrank_le_two]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : Collinear k s
p : P
this : FiniteDimensional k { x // x ∈ vectorSpan k s }
⊢ finrank k { x // x ∈ vectorSpan k (insert p s) } ≤ 2
[PROOFSTEP]
exact (finrank_vectorSpan_insert_le_set k s p).trans (add_le_add_right h.finrank_le_one _)
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : finrank k V = 2
⊢ Coplanar k s
[PROOFSTEP]
have : FiniteDimensional k V := finiteDimensional_of_finrank_eq_succ h
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : finrank k V = 2
this : FiniteDimensional k V
⊢ Coplanar k s
[PROOFSTEP]
rw [coplanar_iff_finrank_le_two, ← h]
[GOAL]
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
h : finrank k V = 2
this : FiniteDimensional k V
⊢ finrank k { x // x ∈ vectorSpan k s } ≤ finrank k V
[PROOFSTEP]
exact Submodule.finrank_le _
[GOAL]
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : DivisionRing k
inst✝² : Module k V
inst✝¹ : Fintype ι
inst✝ : FiniteDimensional k V
h : Fintype.card ι = FiniteDimensional.finrank k V + 1
⊢ Nonempty (AffineBasis ι k P)
[PROOFSTEP]
obtain ⟨s, b, hb⟩ := AffineBasis.exists_affineBasis k V P
[GOAL]
case intro.intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : DivisionRing k
inst✝² : Module k V
inst✝¹ : Fintype ι
inst✝ : FiniteDimensional k V
h : Fintype.card ι = FiniteDimensional.finrank k V + 1
s : Set P
b : AffineBasis (↑s) k P
hb : ↑b = Subtype.val
⊢ Nonempty (AffineBasis ι k P)
[PROOFSTEP]
lift s to Finset P using b.finite_set
[GOAL]
case intro.intro.intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : DivisionRing k
inst✝² : Module k V
inst✝¹ : Fintype ι
inst✝ : FiniteDimensional k V
h : Fintype.card ι = FiniteDimensional.finrank k V + 1
s : Finset P
b : AffineBasis (↑↑s) k P
hb : ↑b = Subtype.val
⊢ Nonempty (AffineBasis ι k P)
[PROOFSTEP]
refine' ⟨b.reindex <| Fintype.equivOfCardEq _⟩
[GOAL]
case intro.intro.intro
ι : Type u₁
k : Type u₂
V : Type u₃
P : Type u₄
inst✝⁵ : AddCommGroup V
inst✝⁴ : AffineSpace V P
inst✝³ : DivisionRing k
inst✝² : Module k V
inst✝¹ : Fintype ι
inst✝ : FiniteDimensional k V
h : Fintype.card ι = FiniteDimensional.finrank k V + 1
s : Finset P
b : AffineBasis (↑↑s) k P
hb : ↑b = Subtype.val
⊢ Fintype.card ↑↑s = Fintype.card ι
[PROOFSTEP]
rw [h, ← b.card_eq_finrank_add_one]
| {"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional", "llama_tokens": 57598} |
[GOAL]
l : Type u_1
m : Type u_2
n : Type u_3
o : Type u_4
l' : Type u_5
m' : Type u_6
n' : Type u_7
o' : Type u_8
m'' : Type u_9
n'' : Type u_10
R : Type u_11
A : Type u_12
inst✝² : Semiring R
inst✝¹ : AddCommMonoid A
inst✝ : Module R A
e₁ : m ≃ m'
e₂ : n ≃ n'
e₁' : m' ≃ m''
e₂' : n' ≃ n''
⊢ LinearEquiv.trans (reindexLinearEquiv R A e₁ e₂) (reindexLinearEquiv R A e₁' e₂') =
reindexLinearEquiv R A (e₁.trans e₁') (e₂.trans e₂')
[PROOFSTEP]
ext
[GOAL]
case h.a.h
l : Type u_1
m : Type u_2
n : Type u_3
o : Type u_4
l' : Type u_5
m' : Type u_6
n' : Type u_7
o' : Type u_8
m'' : Type u_9
n'' : Type u_10
R : Type u_11
A : Type u_12
inst✝² : Semiring R
inst✝¹ : AddCommMonoid A
inst✝ : Module R A
e₁ : m ≃ m'
e₂ : n ≃ n'
e₁' : m' ≃ m''
e₂' : n' ≃ n''
x✝¹ : Matrix m n A
i✝ : m''
x✝ : n''
⊢ ↑(LinearEquiv.trans (reindexLinearEquiv R A e₁ e₂) (reindexLinearEquiv R A e₁' e₂')) x✝¹ i✝ x✝ =
↑(reindexLinearEquiv R A (e₁.trans e₁') (e₂.trans e₂')) x✝¹ i✝ x✝
[PROOFSTEP]
rfl
[GOAL]
l : Type u_1
m : Type u_2
n : Type u_3
o : Type u_4
l' : Type u_5
m' : Type u_6
n' : Type u_7
o' : Type u_8
m'' : Type u_9
n'' : Type u_10
R : Type u_11
A : Type u_12
inst✝² : Semiring R
inst✝¹ : AddCommMonoid A
inst✝ : Module R A
e₁ : m ≃ m'
e₂ : n ≃ n'
e₁' : m' ≃ m''
e₂' : n' ≃ n''
⊢ ↑(reindexLinearEquiv R A e₁' e₂') ∘ ↑(reindexLinearEquiv R A e₁ e₂) =
↑(reindexLinearEquiv R A (e₁.trans e₁') (e₂.trans e₂'))
[PROOFSTEP]
rw [← reindexLinearEquiv_trans]
[GOAL]
l : Type u_1
m : Type u_2
n : Type u_3
o : Type u_4
l' : Type u_5
m' : Type u_6
n' : Type u_7
o' : Type u_8
m'' : Type u_9
n'' : Type u_10
R : Type u_11
A : Type u_12
inst✝² : Semiring R
inst✝¹ : AddCommMonoid A
inst✝ : Module R A
e₁ : m ≃ m'
e₂ : n ≃ n'
e₁' : m' ≃ m''
e₂' : n' ≃ n''
⊢ ↑(reindexLinearEquiv R A e₁' e₂') ∘ ↑(reindexLinearEquiv R A e₁ e₂) =
↑(LinearEquiv.trans (reindexLinearEquiv R A e₁ e₂) (reindexLinearEquiv R A e₁' e₂'))
[PROOFSTEP]
rfl
[GOAL]
l : Type u_1
m : Type u_2
n : Type u_3
o : Type u_4
l' : Type u_5
m' : Type u_6
n' : Type u_7
o' : Type u_8
m'' : Type u_9
n'' : Type u_10
R : Type u_11
A : Type u_12
inst✝⁴ : CommSemiring R
inst✝³ : Fintype n
inst✝² : Fintype m
inst✝¹ : DecidableEq m
inst✝ : DecidableEq n
e : m ≃ n
src✝ : Matrix m m R ≃ₗ[R] Matrix n n R := reindexLinearEquiv R R e e
r : R
⊢ toFun
{ toFun := ↑(reindex e e), invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(↑(algebraMap R (Matrix m m R)) r) =
↑(algebraMap R (Matrix n n R)) r
[PROOFSTEP]
simp [algebraMap, Algebra.toRingHom, submatrix_smul _ 1]
| {"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.Reindex", "llama_tokens": 1388} |
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
m : M
⊢ ↑(-ι Q) m * ↑(-ι Q) m = ↑(algebraMap R (CliffordAlgebra Q)) (↑Q m)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ AlgHom.comp involute involute = AlgHom.id R (CliffordAlgebra Q)
[PROOFSTEP]
ext
[GOAL]
case a.h
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp involute involute)) (ι Q)) x✝ =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra Q))) (ι Q)) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
m : M
⊢ unop (↑(LinearMap.comp (↑(opLinearEquiv R)) (ι Q)) m * ↑(LinearMap.comp (↑(opLinearEquiv R)) (ι Q)) m) =
unop (↑(algebraMap R (CliffordAlgebra Q)ᵐᵒᵖ) (↑Q m))
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
m : M
⊢ ↑reverse (↑(ι Q) m) = ↑(ι Q) m
[PROOFSTEP]
simp [reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r : R
⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(algebraMap R (CliffordAlgebra Q)) r
[PROOFSTEP]
simp [reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ ↑reverse 1 = 1
[PROOFSTEP]
convert reverse.commutes (Q := Q) (1 : R)
[GOAL]
case h.e'_2.h.e'_6
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ 1 = ↑(algebraMap R (CliffordAlgebra Q)) 1
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ 1 = ↑(algebraMap R (CliffordAlgebra Q)) 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
⊢ ↑reverse (a * b) = ↑reverse b * ↑reverse a
[PROOFSTEP]
simp [reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ LinearMap.comp reverse reverse = LinearMap.id
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
m : CliffordAlgebra Q
⊢ ↑(LinearMap.comp reverse reverse) m = ↑LinearMap.id m
[PROOFSTEP]
simp only [LinearMap.id_apply, LinearMap.comp_apply]
[GOAL]
case h
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
m : CliffordAlgebra Q
⊢ ↑reverse (↑reverse m) = m
[PROOFSTEP]
induction m using CliffordAlgebra.induction
[GOAL]
case h.h_grade0
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r✝ : R
⊢ ↑reverse (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑(algebraMap R (CliffordAlgebra Q)) r✝
case h.h_grade1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝
case h.h_mul
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² * b✝)) = a✝² * b✝
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝
[PROOFSTEP]
case h_grade0 => rw [reverse.commutes, reverse.commutes]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r✝ : R
⊢ ↑reverse (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑(algebraMap R (CliffordAlgebra Q)) r✝
[PROOFSTEP]
case h_grade0 => rw [reverse.commutes, reverse.commutes]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r✝ : R
⊢ ↑reverse (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑(algebraMap R (CliffordAlgebra Q)) r✝
[PROOFSTEP]
rw [reverse.commutes, reverse.commutes]
[GOAL]
case h.h_grade1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝
case h.h_mul
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² * b✝)) = a✝² * b✝
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝
[PROOFSTEP]
case h_grade1 => rw [reverse_ι, reverse_ι]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝
[PROOFSTEP]
case h_grade1 => rw [reverse_ι, reverse_ι]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝
[PROOFSTEP]
rw [reverse_ι, reverse_ι]
[GOAL]
case h.h_mul
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² * b✝)) = a✝² * b✝
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝
[PROOFSTEP]
case h_mul a b ha hb => rw [reverse.map_mul, reverse.map_mul, ha, hb]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑reverse a) = a
hb : ↑reverse (↑reverse b) = b
⊢ ↑reverse (↑reverse (a * b)) = a * b
[PROOFSTEP]
case h_mul a b ha hb => rw [reverse.map_mul, reverse.map_mul, ha, hb]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑reverse a) = a
hb : ↑reverse (↑reverse b) = b
⊢ ↑reverse (↑reverse (a * b)) = a * b
[PROOFSTEP]
rw [reverse.map_mul, reverse.map_mul, ha, hb]
[GOAL]
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑reverse a✝²) = a✝²
a✝ : ↑reverse (↑reverse b✝) = b✝
⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝
[PROOFSTEP]
case h_add a b ha hb => rw [reverse.map_add, reverse.map_add, ha, hb]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑reverse a) = a
hb : ↑reverse (↑reverse b) = b
⊢ ↑reverse (↑reverse (a + b)) = a + b
[PROOFSTEP]
case h_add a b ha hb => rw [reverse.map_add, reverse.map_add, ha, hb]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑reverse a) = a
hb : ↑reverse (↑reverse b) = b
⊢ ↑reverse (↑reverse (a + b)) = a + b
[PROOFSTEP]
rw [reverse.map_add, reverse.map_add, ha, hb]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ LinearMap.comp reverse (AlgHom.toLinearMap involute) = LinearMap.comp (AlgHom.toLinearMap involute) reverse
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
⊢ ↑(LinearMap.comp reverse (AlgHom.toLinearMap involute)) x = ↑(LinearMap.comp (AlgHom.toLinearMap involute) reverse) x
[PROOFSTEP]
simp only [LinearMap.comp_apply, AlgHom.toLinearMap_apply]
[GOAL]
case h
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
⊢ ↑reverse (↑involute x) = ↑involute (↑reverse x)
[PROOFSTEP]
induction x using CliffordAlgebra.induction
[GOAL]
case h.h_grade0
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r✝ : R
⊢ ↑reverse (↑involute (↑(algebraMap R (CliffordAlgebra Q)) r✝)) =
↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝))
case h.h_grade1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝))
case h.h_mul
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² * b✝)) = ↑involute (↑reverse (a✝² * b✝))
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝))
[PROOFSTEP]
case h_grade0 => simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r✝ : R
⊢ ↑reverse (↑involute (↑(algebraMap R (CliffordAlgebra Q)) r✝)) =
↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝))
[PROOFSTEP]
case h_grade0 => simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
r✝ : R
⊢ ↑reverse (↑involute (↑(algebraMap R (CliffordAlgebra Q)) r✝)) =
↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝))
[PROOFSTEP]
simp
[GOAL]
case h.h_grade1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝))
case h.h_mul
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² * b✝)) = ↑involute (↑reverse (a✝² * b✝))
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝))
[PROOFSTEP]
case h_grade1 => simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝))
[PROOFSTEP]
case h_grade1 => simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : M
⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝))
[PROOFSTEP]
simp
[GOAL]
case h.h_mul
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² * b✝)) = ↑involute (↑reverse (a✝² * b✝))
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝))
[PROOFSTEP]
case h_mul a b ha hb => simp only [ha, hb, reverse.map_mul, AlgHom.map_mul]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑involute a) = ↑involute (↑reverse a)
hb : ↑reverse (↑involute b) = ↑involute (↑reverse b)
⊢ ↑reverse (↑involute (a * b)) = ↑involute (↑reverse (a * b))
[PROOFSTEP]
case h_mul a b ha hb => simp only [ha, hb, reverse.map_mul, AlgHom.map_mul]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑involute a) = ↑involute (↑reverse a)
hb : ↑reverse (↑involute b) = ↑involute (↑reverse b)
⊢ ↑reverse (↑involute (a * b)) = ↑involute (↑reverse (a * b))
[PROOFSTEP]
simp only [ha, hb, reverse.map_mul, AlgHom.map_mul]
[GOAL]
case h.h_add
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a✝² b✝ : CliffordAlgebra Q
a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²)
a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝)
⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝))
[PROOFSTEP]
case h_add a b ha hb => simp only [ha, hb, reverse.map_add, AlgHom.map_add]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑involute a) = ↑involute (↑reverse a)
hb : ↑reverse (↑involute b) = ↑involute (↑reverse b)
⊢ ↑reverse (↑involute (a + b)) = ↑involute (↑reverse (a + b))
[PROOFSTEP]
case h_add a b ha hb => simp only [ha, hb, reverse.map_add, AlgHom.map_add]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
a b : CliffordAlgebra Q
ha : ↑reverse (↑involute a) = ↑involute (↑reverse a)
hb : ↑reverse (↑involute b) = ↑involute (↑reverse b)
⊢ ↑reverse (↑involute (a + b)) = ↑involute (↑reverse (a + b))
[PROOFSTEP]
simp only [ha, hb, reverse.map_add, AlgHom.map_add]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ ↑reverse (List.prod (List.map ↑(ι Q) [])) = List.prod (List.reverse (List.map ↑(ι Q) []))
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
xs : List M
⊢ ↑reverse (List.prod (List.map (↑(ι Q)) (x :: xs))) = List.prod (List.reverse (List.map (↑(ι Q)) (x :: xs)))
[PROOFSTEP]
simp [reverse_prod_map_ι xs]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ ↑involute (List.prod (List.map ↑(ι Q) [])) = (-1) ^ List.length [] • List.prod (List.map ↑(ι Q) [])
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : M
xs : List M
⊢ ↑involute (List.prod (List.map (↑(ι Q)) (x :: xs))) =
(-1) ^ List.length (x :: xs) • List.prod (List.map (↑(ι Q)) (x :: xs))
[PROOFSTEP]
simp [pow_succ, involute_prod_map_ι xs]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ Submodule.comap (AlgHom.toLinearMap involute) (LinearMap.range (ι Q)) = LinearMap.range (ι Q)
[PROOFSTEP]
rw [← submodule_map_involute_eq_comap, ι_range_map_involute]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
n : ZMod 2
⊢ Submodule.map (AlgHom.toLinearMap involute) (evenOdd Q n) = evenOdd Q n
[PROOFSTEP]
simp_rw [evenOdd, Submodule.map_iSup, Submodule.map_pow, ι_range_map_involute]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
n : ZMod 2
⊢ Submodule.comap (AlgHom.toLinearMap involute) (evenOdd Q n) = evenOdd Q n
[PROOFSTEP]
rw [← submodule_map_involute_eq_comap, evenOdd_map_involute]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ Submodule.map reverse (LinearMap.range (ι Q)) = LinearMap.range (ι Q)
[PROOFSTEP]
rw [reverse, Submodule.map_comp, ι_range_map_lift, LinearMap.range_comp, ← Submodule.map_comp]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ Submodule.map (LinearMap.comp ↑(LinearEquiv.symm (MulOpposite.opLinearEquiv R)) ↑(MulOpposite.opLinearEquiv R))
(LinearMap.range (ι Q)) =
LinearMap.range (ι Q)
[PROOFSTEP]
exact Submodule.map_id _
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
⊢ Submodule.comap reverse (LinearMap.range (ι Q)) = LinearMap.range (ι Q)
[PROOFSTEP]
rw [← submodule_map_reverse_eq_comap, ι_range_map_reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
p q : Submodule R (CliffordAlgebra Q)
⊢ Submodule.map reverse (p * q) = Submodule.map reverse q * Submodule.map reverse p
[PROOFSTEP]
simp_rw [reverse, Submodule.map_comp, Submodule.map_mul, Submodule.map_unop_mul]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
p q : Submodule R (CliffordAlgebra Q)
⊢ Submodule.comap reverse (p * q) = Submodule.comap reverse q * Submodule.comap reverse p
[PROOFSTEP]
simp_rw [← submodule_map_reverse_eq_comap, submodule_map_mul_reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
p : Submodule R (CliffordAlgebra Q)
n : ℕ
⊢ Submodule.map reverse (p ^ n) = Submodule.map reverse p ^ n
[PROOFSTEP]
simp_rw [reverse, Submodule.map_comp, Submodule.map_pow, Submodule.map_unop_pow]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
p : Submodule R (CliffordAlgebra Q)
n : ℕ
⊢ Submodule.comap reverse (p ^ n) = Submodule.comap reverse p ^ n
[PROOFSTEP]
simp_rw [← submodule_map_reverse_eq_comap, submodule_map_pow_reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
n : ZMod 2
⊢ Submodule.map reverse (evenOdd Q n) = evenOdd Q n
[PROOFSTEP]
simp_rw [evenOdd, Submodule.map_iSup, submodule_map_pow_reverse, ι_range_map_reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
n : ZMod 2
⊢ Submodule.comap reverse (evenOdd Q n) = evenOdd Q n
[PROOFSTEP]
rw [← submodule_map_reverse_eq_comap, evenOdd_map_reverse]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
h : x ∈ evenOdd Q 0
⊢ ↑involute x = x
[PROOFSTEP]
refine' even_induction Q (AlgHom.commutes _) _ _ x h
[GOAL]
case refine'_1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
h : x ∈ evenOdd Q 0
⊢ ∀ {x y : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 0} {hy : y ∈ evenOdd Q 0},
↑involute x = x → ↑involute y = y → ↑involute (x + y) = x + y
[PROOFSTEP]
rintro x y _hx _hy ihx ihy
[GOAL]
case refine'_1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : CliffordAlgebra Q
h : x✝ ∈ evenOdd Q 0
x y : CliffordAlgebra Q
_hx : x ∈ evenOdd Q 0
_hy : y ∈ evenOdd Q 0
ihx : ↑involute x = x
ihy : ↑involute y = y
⊢ ↑involute (x + y) = x + y
[PROOFSTEP]
rw [map_add, ihx, ihy]
[GOAL]
case refine'_2
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
h : x ∈ evenOdd Q 0
⊢ ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 0},
↑involute x = x → ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = ↑(ι Q) m₁ * ↑(ι Q) m₂ * x
[PROOFSTEP]
intro m₁ m₂ x _hx ihx
[GOAL]
case refine'_2
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : CliffordAlgebra Q
h : x✝ ∈ evenOdd Q 0
m₁ m₂ : M
x : CliffordAlgebra Q
_hx : x ∈ evenOdd Q 0
ihx : ↑involute x = x
⊢ ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = ↑(ι Q) m₁ * ↑(ι Q) m₂ * x
[PROOFSTEP]
rw [map_mul, map_mul, involute_ι, involute_ι, ihx, neg_mul_neg]
[GOAL]
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
h : x ∈ evenOdd Q 1
⊢ ↑involute x = -x
[PROOFSTEP]
refine' odd_induction Q involute_ι _ _ x h
[GOAL]
case refine'_1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
h : x ∈ evenOdd Q 1
⊢ ∀ {x y : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 1} {hy : y ∈ evenOdd Q 1},
↑involute x = -x → ↑involute y = -y → ↑involute (x + y) = -(x + y)
[PROOFSTEP]
rintro x y _hx _hy ihx ihy
[GOAL]
case refine'_1
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : CliffordAlgebra Q
h : x✝ ∈ evenOdd Q 1
x y : CliffordAlgebra Q
_hx : x ∈ evenOdd Q 1
_hy : y ∈ evenOdd Q 1
ihx : ↑involute x = -x
ihy : ↑involute y = -y
⊢ ↑involute (x + y) = -(x + y)
[PROOFSTEP]
rw [map_add, ihx, ihy, neg_add]
[GOAL]
case refine'_2
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x : CliffordAlgebra Q
h : x ∈ evenOdd Q 1
⊢ ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 1},
↑involute x = -x → ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = -(↑(ι Q) m₁ * ↑(ι Q) m₂ * x)
[PROOFSTEP]
intro m₁ m₂ x _hx ihx
[GOAL]
case refine'_2
R : Type u_1
inst✝² : CommRing R
M : Type u_2
inst✝¹ : AddCommGroup M
inst✝ : Module R M
Q : QuadraticForm R M
x✝ : CliffordAlgebra Q
h : x✝ ∈ evenOdd Q 1
m₁ m₂ : M
x : CliffordAlgebra Q
_hx : x ∈ evenOdd Q 1
ihx : ↑involute x = -x
⊢ ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = -(↑(ι Q) m₁ * ↑(ι Q) m₂ * x)
[PROOFSTEP]
rw [map_mul, map_mul, involute_ι, involute_ι, ihx, neg_mul_neg, mul_neg]
| {"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation", "llama_tokens": 11365} |