metadata
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
pretty_name: wikipedia-de-splits
paperswithcode_id: null
license:
- cc-by-sa-3.0
- gfdl
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
source_datasets:
- wikipedia
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
- 1M<n<10M
language:
- de
configs:
- '1'
- '2'
- '3'
- '4'
- '5'
- '6'
- '7'
- '8'
- '9'
- '10'
- '11'
- '12'
- '13'
- '14'
- '15'
- '16'
- '17'
- '18'
- '19'
- '20'
- '21'
- all
Dataset Card for yaakov/wikipedia-de-splits
Dataset Description
The only goal of this dataset is to have random German Wikipedia articles at various dataset sizes: Small datasets for fast development and large datasets for statistically relevant measurements.
For this purpose, I loaded the 2665357 articles in the test
set of the pre-processed German Wikipedia dump from 2022-03-01, randomly permuted the articles and created splits of sizes 2**n
: 1, 2, 4, 8, ...
. The split names are strings. The split 'all'
contains all 2665357 available articles.
Dataset creation
This dataset has been created with the following script:
!apt install git-lfs
!pip install -q transformers datasets
from huggingface_hub import notebook_login
notebook_login()
from datasets import load_dataset
wikipedia_de = load_dataset("wikipedia", "20220301.de")['train']
shuffled = wikipedia_de.shuffle(seed=42)
from datasets import DatasetDict
res = DatasetDict()
k, n = 0, 1
while n <= shuffled.num_rows:
res[str(k)] = shuffled.select(range(n))
k += 1; n *= 2
res['all'] = shuffled
res.push_to_hub('yaakov/wikipedia-de-splits')