hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 10
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
248
| max_stars_repo_name
stringlengths 5
125
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
248
| max_issues_repo_name
stringlengths 5
125
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
67k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
248
| max_forks_repo_name
stringlengths 5
125
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 5
2.06M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.03M
| alphanum_fraction
float64 0
1
| count_classes
int64 0
1.6M
| score_classes
float64 0
1
| count_generators
int64 0
651k
| score_generators
float64 0
1
| count_decorators
int64 0
990k
| score_decorators
float64 0
1
| count_async_functions
int64 0
235k
| score_async_functions
float64 0
1
| count_documentation
int64 0
1.04M
| score_documentation
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4bc441d80eb90948270b0c67a69acd09e054bf96 | 793 | py | Python | packages/jobs/statuses.py | NHSDigital/list-reconciliation | 37b1ebe99a64275e23b0e7fb6a89415b92d14306 | [
"MIT"
] | 4 | 2021-06-25T08:28:54.000Z | 2021-12-16T11:03:42.000Z | packages/jobs/statuses.py | NHSDigital/list-reconciliation | 37b1ebe99a64275e23b0e7fb6a89415b92d14306 | [
"MIT"
] | 184 | 2021-06-24T15:27:08.000Z | 2022-03-17T12:44:28.000Z | packages/jobs/statuses.py | NHSDigital/list-reconciliation | 37b1ebe99a64275e23b0e7fb6a89415b92d14306 | [
"MIT"
] | 3 | 2021-11-05T10:21:44.000Z | 2022-03-04T14:29:24.000Z | from enum import Enum
class JobStatus(Enum):
PENDING = "PENDING"
REJECTED = "REJECTED"
SENT_TO_DPS = "SENT_TO_DPS"
PROCESSED_BY_DPS = "PROCESSED_BY_DPS"
COMPLETE = "COMPLETE"
NOTIFIED_VALIDATION_FAILED = "NOTIFIED_VALIDATION_FAILED"
CLEANED_UP = "CLEANED_UP"
class ParseStatus(Enum):
NOT_PARSED = "NOT_PARSED"
PARSE_FAILED = "PARSE_FAILED"
class InvalidErrorType(Enum):
RECORDS = "INVALID_RECORDS"
STRUCTURE = "INVALID_STRUCTURE"
FILENAME = "INVALID_FILENAME"
class InputFolderType(Enum):
IN = "inbound/"
PASS = "pass/"
FAIL = "fail/"
RETRY = "retry/"
REJECTED = "rejected/"
class RegistrationType(Enum):
GP = "OnlyOnGP"
PDS = "OnlyOnPDS"
class JobNotFound(Exception):
"""Job Not Found Exception"""
| 18.880952 | 61 | 0.675914 | 753 | 0.949559 | 0 | 0 | 0 | 0 | 0 | 0 | 273 | 0.344262 |
4bc544909f30548d56d19ceee6f586966f0cd714 | 843 | py | Python | DevOps/Data_Science_in_Production/cap02/15_scikit-learn.py | unimauro/Courses | 81e5b9c4cbc9b875eff82f96bda7d21ec4f258b2 | [
"Apache-2.0"
] | 1 | 2020-07-25T04:56:55.000Z | 2020-07-25T04:56:55.000Z | DevOps/Data_Science_in_Production/cap02/15_scikit-learn.py | unimauro/Courses | 81e5b9c4cbc9b875eff82f96bda7d21ec4f258b2 | [
"Apache-2.0"
] | 2 | 2020-06-15T04:42:00.000Z | 2021-08-29T03:48:28.000Z | DevOps/Data_Science_in_Production/cap02/15_scikit-learn.py | unimauro/Courses | 81e5b9c4cbc9b875eff82f96bda7d21ec4f258b2 | [
"Apache-2.0"
] | null | null | null | import pandas as pd
from sklearn.linear_model import LogisticRegression
import mlflow
import mlflow.sklearn
import flask
model_path = "models/logit_games_v1"
model
= mlflow.sklearn.load_model(model_path)
app = flask.Flask(__name__)
@app.route("/", methods=["GET","POST"])
def predict():
data = {"success": False}
params = flask.request.args
if "G1" in params.keys():
new_row = { "G1": params.get("G1"),"G2": params.get("G2"),
"G3": params.get("G3"),"G4": params.get("G4"),
"G5": params.get("G5"),"G6": params.get("G6"),
"G7": params.get("G7"),"G8": params.get("G8"),
"G9": params.get("G9"),"G10":params.get("G10")}
new_x = pd.DataFrame.from_dict(new_row,
orient = "index").transpose()
data["response"] = str(model.predict_proba(new_x)[0][1])
data["success"] = True
return flask.jsonify(data)
if __name__ == '__main__':
app.run(host='0.0.0.0')
| 31.222222 | 58 | 0.688019 | 0 | 0 | 0 | 0 | 54 | 0.064057 | 0 | 0 | 177 | 0.209964 |
298a78605da6ac7b5a8526389d33bd97829a9e95 | 12,607 | py | Python | tornado_sockets/views/timeseries.py | willjschmitt/joulia-webserver | 712decb749c2d1bda71af49ecab245378bf30078 | [
"FTL"
] | null | null | null | tornado_sockets/views/timeseries.py | willjschmitt/joulia-webserver | 712decb749c2d1bda71af49ecab245378bf30078 | [
"FTL"
] | 95 | 2016-08-04T01:59:37.000Z | 2021-06-10T18:41:46.000Z | tornado_sockets/views/timeseries.py | willjschmitt/joulia-webserver | 712decb749c2d1bda71af49ecab245378bf30078 | [
"FTL"
] | null | null | null | """Handles websockets and asynchronous endpoints provided by Tornado instead
of Django, but use the Django model framework for a database ORM.
"""
import datetime
import functools
import json
import logging
import tornado.escape
from tornado.ioloop import IOLoop
import tornado.web
import tornado.websocket
from django.db.models.signals import post_save
from django.dispatch import receiver
from django.utils import timezone
from rest_framework.authtoken.models import Token
from rest_framework.utils import model_meta
from brewery.models import AssetSensor
from brewery.models import RecipeInstance
from brewery.models import TimeSeriesDataPoint
from brewery.serializers import TimeSeriesDataPointSerializer
from joulia.random import random_string
from tornado_sockets.views.django import DjangoAuthenticatedWebSocketHandler
LOGGER = logging.getLogger(__name__)
class TimeSeriesSocketHandler(DjangoAuthenticatedWebSocketHandler):
"""A websocket request handler/connection used for a two-way connection
for streaming sensor data between a client and the webserver. Allows
for real-time streaming of sensor data as soon as it is posted.
Client posts a subscription request, which then triggers the handler
to send any updates to that sensor immediately to the client.
Attributes:
waiters: (class-level) - A set containing all of the current connection
handlers that are active.
subscriptions: (class-level) - A dictionary mapping to connection
handlers. Key is specified as a tuple of (recipe_instance_pk,
sensor_pk).
controller_requestmap: (class-level) - A dictionary mapping a websocket
connection to a brewhouse object. Used for indicating if a
connection exists with a brewhouse.
controller_controllermap: (class-level) A dictionary mapping a brewhouse
to the websocket connection to it. Used for indicating if a
connection exists with a brewhouse.
source_id: Identifies a unique connection with a short hash, which we
can use to compare new data points to, and see if the socket was the
one that originated it, and thusly should not
"""
waiters = set()
subscriptions = {}
controller_requestmap = {}
controller_controllermap = {}
def __init__(self, *args, **kwargs):
super(TimeSeriesSocketHandler, self).__init__(*args, **kwargs)
self.auth = None
self.recipe_instance_pk = None
self.source_id = random_string(4)
def get_compression_options(self):
# Non-None enables compression with default options.
return {}
def _authenticate(self):
"""If the connection comes from authentication associating it with a
particular Brewhouse, make sure we store the connection in a mapping
between the websocket and the brewhouse.
Stores this request in a class-level map to indicate we have an
established connection with a Brewhouse controller.
"""
if self.auth is not None and isinstance(self.auth, Token):
if self.auth.brewhouse_pk:
self.controller_controllermap[self.auth.brewhouse_pk] = self
self.controller_requestmap[self] = self.auth.brewhouse_pk
def _unauthenticate(self):
"""Remove this request from the class-level maps to indicate we have
lost connection with the Brewhouse.
"""
if self.auth is not None and isinstance(self.auth, Token):
if self.auth.brewhouse_pk:
del self.controller_controllermap[self.auth.brewhouse_pk]
del self.controller_requestmap[self]
def open(self):
"""Handles the opening of a new websocket connection for streaming data.
"""
LOGGER.info("New websocket connection incoming from %s.",
self.get_current_user())
self.waiters.add(self)
self._authenticate()
def on_close(self):
"""Handles the closing of the websocket connection, removing any
subscriptions.
"""
LOGGER.info("Websocket connection from %s ended.",
self.get_current_user())
self.waiters.remove(self)
self.unsubscribe()
self._unauthenticate()
def on_message(self, message):
"""Handles an incoming message in a websocket. Determines what subaction
to route it to, and calls that sub action.
Args:
message: the incoming raw message from the websocket.
"""
parsed_message = tornado.escape.json_decode(message)
self.recipe_instance_pk = parsed_message['recipe_instance']
if not self.check_permission():
return
# Subscription to a signal.
if 'subscribe' in parsed_message:
self.subscribe(parsed_message)
# Submission of a new datapoint.
else:
self.new_data(parsed_message)
def check_permission(self):
"""Checks if the user has access to the ``recipe_instance``."""
permitted = True
recipe_instance = RecipeInstance.objects.get(pk=self.recipe_instance_pk)
if not permitted:
LOGGER.error("Forbidden request from %s for %d.",
self.get_current_user(), recipe_instance)
return permitted
# TODO(willjschmitt): Get this working again.
# user = get_current_user(self)
# brewhouse = recipe_instance.brewhouse
# brewery = brewhouse.brewery
# company = brewery.company
# has_permission = is_member_of_brewing_company(user,company)
#
# if not has_permission:
# LOGGER.error("User %s attempted to access brewhouse they do not"
# " have access to (%s)",
# user, recipe_instance.brewhouse)
#
# return has_permission
def subscribe(self, parsed_message):
"""Handles a subscription request.
Args:
parsed_message: Data received from websocket.
"""
LOGGER.info('New subscription received from %s: %s.',
self.get_current_user(), parsed_message)
recipe_instance_pk = parsed_message['recipe_instance']
sensor_pk = parsed_message['sensor']
history_time = parsed_message.get('history_time', None)
self._add_subscription(recipe_instance_pk, sensor_pk)
historical_timedelta = \
datetime.timedelta(seconds=history_time) if history_time else None
self._write_historical_data(sensor_pk, recipe_instance_pk,
timedelta=historical_timedelta)
def unsubscribe(self):
for subscription in self.subscriptions.values():
if self in subscription:
subscription.remove(self)
def _add_subscription(self, recipe_instance_pk, sensor_pk):
key = (recipe_instance_pk, sensor_pk)
if key not in self.subscriptions:
self.subscriptions[key] = set()
self.subscriptions[key].add(self)
@classmethod
def _write_data_response_chunked(cls, websocket, data_points,
chunk_size=1000):
"""Writes serialized datas in chunks asynchronously.
Args:
websocket: The websocket to write messages on.
data_points: The data to write.
chunk_size: The number of data points to write as a maximum.
"""
assert chunk_size > 0
lower_bound = 0
total_points = len(data_points)
while lower_bound < total_points:
upper_bound = min(lower_bound + chunk_size, total_points)
chunk = data_points[lower_bound:upper_bound]
IOLoop.current().add_callback(
functools.partial(cls._write_data_response, websocket, chunk))
lower_bound += chunk_size
@staticmethod
def _write_data_response(websocket, data_points):
"""Generates a serialized data message with headers for deserialization.
Writes output to websocket.
"""
assert data_points
model_info = model_meta.get_field_info(TimeSeriesDataPoint)
field_names = TimeSeriesDataPointSerializer(data_points[0])\
.get_field_names({}, model_info)
response = {
'headers': list(field_names),
'data': [],
}
LOGGER.debug("Writing %d datapoints out.", len(data_points))
for data_point in data_points:
serializer = TimeSeriesDataPointSerializer(data_point)
data = serializer.data
data_entry = []
for field_name in field_names:
data_entry.append(data[field_name])
response['data'].append(data_entry)
websocket.write_message(json.dumps(response))
def _write_historical_data(self, sensor_pk, recipe_instance_pk,
timedelta=None):
"""Sends all the data that already exists, limited to now + timedelta.
If data exists, but is older than the timedelta, returns the last point
observed.
Args:
sensor_pk: The primary key for the sensor to send data.
recipe_instance_pk: The primary key for the recipe instance to send
data.
timedelta: The amount of time + now to filter against for sending to
client. Negative indicates data in the past. Positive indicates
data in the future, which will be none. If unset (set to None),
no time filter will be applied and all historical data will be
written.
"""
data_points = TimeSeriesDataPoint.objects.filter(
sensor=sensor_pk, recipe_instance=recipe_instance_pk)
if timedelta is not None:
now = timezone.now()
filter_start_time = now + timedelta
data_points = data_points.filter(time__gt=filter_start_time)
data_points = data_points.order_by("time")
if data_points.exists():
self._write_data_response_chunked(self, data_points)
else:
try:
latest_point = TimeSeriesDataPoint.objects.filter(
sensor=sensor_pk, recipe_instance=recipe_instance_pk)\
.latest()
self._write_data_response_chunked(self, [latest_point])
except TimeSeriesDataPoint.DoesNotExist:
pass
def new_data(self, parsed_message):
"""Handles a new data point request.
Args:
parsed_message: Data received from websocket.
"""
LOGGER.debug('New data received from %s: %s.', self.get_current_user(),
parsed_message)
data = parsed_message
data["source"] = self.source_id
serializer = TimeSeriesDataPointSerializer(data=data)
serializer.is_valid(raise_exception=True)
serializer.save()
@classmethod
def send_updates(cls, new_data_point):
"""Sends a new data point to all of the waiters watching the sensor it
is associated with.
Args:
new_data_point: An instance of a TimeSeriesDataPoint to be streamed
to any subscribers.
"""
key = (new_data_point.recipe_instance.pk, new_data_point.sensor.pk)
if key not in cls.subscriptions:
LOGGER.debug("No subscribers for %s.", new_data_point.sensor.name)
return
subscriptions = cls.subscriptions[key]
LOGGER.info("Sending value %s for sensor %s to %d waiters.",
new_data_point.value, new_data_point.sensor,
len(subscriptions))
for waiter in subscriptions:
# Skip sending data points to the subscriber that sent it.
source = new_data_point.source
if source is not None and source == waiter.source_id:
continue
LOGGER.debug("Writing value %s for sensor %s for %s.",
new_data_point.value, new_data_point.sensor,
waiter.get_current_user())
cls._write_data_response_chunked(waiter, [new_data_point])
@receiver(post_save, sender=TimeSeriesDataPoint)
def time_series_watcher(sender, instance, **kwargs):
"""A django receiver watching for any saves on a datapoint to send
to waiters
"""
LOGGER.debug("Observed newly saved datapoint: %s.", instance)
TimeSeriesSocketHandler.send_updates(instance)
| 39.396875 | 80 | 0.649005 | 11,422 | 0.906005 | 0 | 0 | 3,316 | 0.263028 | 0 | 0 | 5,091 | 0.403823 |
298cc1131b4fa0f1be5f4becb01286a44e8b0a9d | 66 | py | Python | report/create_db.py | Kellel/reports | 975e99396301e87176a38dd440a273c9319b3e22 | [
"BSD-3-Clause"
] | null | null | null | report/create_db.py | Kellel/reports | 975e99396301e87176a38dd440a273c9319b3e22 | [
"BSD-3-Clause"
] | null | null | null | report/create_db.py | Kellel/reports | 975e99396301e87176a38dd440a273c9319b3e22 | [
"BSD-3-Clause"
] | null | null | null |
from models import Base, engine
Base.metadata.create_all(engine)
| 16.5 | 32 | 0.818182 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
298ede4e030cbedbbcf9ef9a22b8209288395ba1 | 1,751 | py | Python | plugins/train/model/dfaker.py | aaman123/faceswap | a5825c3457b062c1824ef3f8b02e4f3fa4c2217f | [
"MIT"
] | 2 | 2021-11-11T08:29:01.000Z | 2021-11-11T08:34:50.000Z | plugins/train/model/dfaker.py | aaman123/faceswap | a5825c3457b062c1824ef3f8b02e4f3fa4c2217f | [
"MIT"
] | null | null | null | plugins/train/model/dfaker.py | aaman123/faceswap | a5825c3457b062c1824ef3f8b02e4f3fa4c2217f | [
"MIT"
] | null | null | null | #!/usr/bin/env python3
""" DFaker Model
Based on the dfaker model: https://github.com/dfaker """
from keras.initializers import RandomNormal
from keras.layers import Input
from lib.model.nn_blocks import Conv2DOutput, UpscaleBlock, ResidualBlock
from .original import Model as OriginalModel, KerasModel
class Model(OriginalModel):
""" Dfaker Model """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_shape = (64, 64, 3)
self.encoder_dim = 1024
self.kernel_initializer = RandomNormal(0, 0.02)
def decoder(self, side):
""" Decoder Network """
input_ = Input(shape=(8, 8, 512))
var_x = input_
var_x = UpscaleBlock(512, res_block_follows=True)(var_x)
var_x = ResidualBlock(512, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(256, res_block_follows=True)(var_x)
var_x = ResidualBlock(256, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(128, res_block_follows=True)(var_x)
var_x = ResidualBlock(128, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(64)(var_x)
var_x = Conv2DOutput(3, 5, name="face_out_{}".format(side))(var_x)
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = input_
var_y = UpscaleBlock(512)(var_y)
var_y = UpscaleBlock(256)(var_y)
var_y = UpscaleBlock(128)(var_y)
var_y = UpscaleBlock(64)(var_y)
var_y = Conv2DOutput(1, 5, name="mask_out_{}".format(side))(var_y)
outputs.append(var_y)
return KerasModel([input_], outputs=outputs, name="decoder_{}".format(side))
| 38.911111 | 85 | 0.656768 | 1,438 | 0.821245 | 0 | 0 | 0 | 0 | 0 | 0 | 192 | 0.109652 |
29902382e677a01b98fcb79346e95e0a9cada7e6 | 2,459 | py | Python | classify/train.py | gallupliu/QA | 0e284dd17e27ea9384a1e4d7a4c206eb95e4bf7f | [
"Apache-2.0"
] | 3 | 2017-09-06T07:10:05.000Z | 2019-08-01T03:27:39.000Z | classify/train.py | gallupliu/QA | 0e284dd17e27ea9384a1e4d7a4c206eb95e4bf7f | [
"Apache-2.0"
] | 2 | 2018-01-25T14:46:40.000Z | 2018-01-25T14:53:13.000Z | classify/train.py | gallupliu/QA | 0e284dd17e27ea9384a1e4d7a4c206eb95e4bf7f | [
"Apache-2.0"
] | null | null | null | # encoding: utf-8
"""
@author: gallupliu
@contact: [email protected]
@version: 1.0
@license: Apache Licence
@file: train.py
@time: 2018/3/5 22:58
"""
import tensorflow as tf
from classify.dataset import data_utils
from sklearn.model_selection import train_test_split
from classify.model import TextCNN
def dataset_input_fn(ids,labels,batch_size):
dataset = tf.data.Dataset.from_tensor_slices((ids, labels))
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(batch_size)
return dataset
if __name__ == "__main__":
text,labels = data_utils.loadfile('./data_with_label.csv')
word2idx, vocab = data_utils.load_embedding('./dataset/test_cut.txt', './dataset/wiki_50.model')
ids = data_utils.get_sentence_ids(text, word2idx)
train_ids,test_ids,train_labels,test_labels = train_test_split(ids,labels,test_size=0.1)
# print(len(text),type(text))
# max_length = count_length(text)
# print(max_length)
# train_word2vec()
# print(type(text))
# print(list(word2idx.keys()))
# dataset = tf.data.Dataset.from_tensor_slices((ids, train_labels))
# iterator = dataset.make_initializable_iterator()
# next_element = iterator.get_next()
train_dataset = dataset_input_fn(train_ids, train_labels, 100)
val_dataset = dataset_input_fn(train_ids, train_labels, 100)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types,train_dataset.output_shapes)
next_element,labels = iterator.get_next()
train_iterator_init_op = iterator.make_initializer(train_dataset)
val_iterator_init_op = iterator.make_initializer(val_dataset)
with tf.Session() as sess:
# sess.run(iterator.initializer)
# print(sess.run(next_element))
model = TextCNN(next_element,labels,vocab,120,3,[1,2,3,5],512)
sess.run(tf.global_variables_initializer())
# _,acc,loss = sess.run([model.train_op,model.accuracy,model.loss])
# print(acc,loss)
for _ in range(10):
#训练
sess.run(train_iterator_init_op)
feed_dict = {model.dropout_keep_prob:1.0}
while True:
try:
_, acc, loss = sess.run([model.train_op, model.accuracy, model.loss],feed_dict=feed_dict)
print(acc,loss)
# print(sess.run(next_element),sess.run(labels))
except tf.errors.OutOfRangeError:
break
| 33.684932 | 109 | 0.684831 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 742 | 0.301259 |
2991579a0641f47ea260ec96e0a53c12f4df3dbf | 342 | py | Python | authors/apps/author_follows/urls.py | andela/ah-backend-dojo | f2b14f15c4af906da846cafe722f13868d58371f | [
"BSD-3-Clause"
] | 3 | 2019-05-01T10:41:09.000Z | 2021-04-25T22:17:20.000Z | authors/apps/author_follows/urls.py | andela/ah-backend-dojo | f2b14f15c4af906da846cafe722f13868d58371f | [
"BSD-3-Clause"
] | 24 | 2019-04-23T14:56:21.000Z | 2021-12-13T19:58:37.000Z | authors/apps/author_follows/urls.py | andela/ah-backend-dojo | f2b14f15c4af906da846cafe722f13868d58371f | [
"BSD-3-Clause"
] | 4 | 2019-06-29T10:40:32.000Z | 2022-01-04T11:44:53.000Z | from django.urls import path
from .views import FollowStatsViews, AuthorFollowViews
urlpatterns = [
# /authors/followers/ or ../following/
path("<str:follow_state>/", FollowStatsViews.as_view(), name="follows"),
# /authors/<author_username>/follow
path("<str:username>/follow/", AuthorFollowViews.as_view(), name="follow")
] | 34.2 | 78 | 0.719298 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 135 | 0.394737 |
2992bbf3c6e1e4c6fcb24c568c080fff0f59e86b | 2,299 | py | Python | src/cone/app/tests/test_browser_login.py | lenadax/cone.app | b25c55aedb85e45a962003d2767a22a927cc61c0 | [
"BSD-3-Clause"
] | 1 | 2022-03-13T17:51:09.000Z | 2022-03-13T17:51:09.000Z | src/cone/app/tests/test_browser_login.py | lenadax/cone.app | b25c55aedb85e45a962003d2767a22a927cc61c0 | [
"BSD-3-Clause"
] | 1 | 2021-08-06T08:12:00.000Z | 2021-08-06T08:12:00.000Z | src/cone/app/tests/test_browser_login.py | lenadax/cone.app | b25c55aedb85e45a962003d2767a22a927cc61c0 | [
"BSD-3-Clause"
] | null | null | null | from cone.app import get_root
from cone.app import security
from cone.app import testing
from cone.app.browser.login import login_view
from cone.app.browser.login import logout_view
from cone.tile import render_tile
from cone.tile.tests import TileTestCase
from webob.response import Response
from webob.exc import HTTPFound
class TestBrowserLogin(TileTestCase):
layer = testing.security
def test_login_view(self):
root = get_root()
request = self.layer.new_request()
response = login_view(root, request)
self.assertTrue(isinstance(response, Response))
def test_logout_view(self):
root = get_root()
request = self.layer.new_request()
response = logout_view(root, request)
self.assertTrue(isinstance(response, HTTPFound))
def test_logout_tile(self):
root = get_root()
request = self.layer.new_request()
with self.layer.authenticated('admin'):
render_tile(root, request, 'logout')
self.checkOutput("""
ResponseHeaders([('Set-Cookie', 'auth_tkt=; Max-Age=0; Path=/; expires=...'),
('Set-Cookie', 'auth_tkt=; Domain=example.com; Max-Age=0; Path=/; expires=...'),
('Set-Cookie', 'auth_tkt=; Domain=.example.com; Max-Age=0; Path=/; expires=...')])
""", str(request.response.headers))
def test_login_form(self):
root = get_root()
request = self.layer.new_request()
res = render_tile(root, request, 'loginform')
self.assertTrue(res.find('<form action="http://example.com/login"') > -1)
# Authenticate with wrong credentials
request.params['loginform.user'] = 'foo'
request.params['loginform.password'] = 'bar'
request.params['action.loginform.login'] = '1'
res = render_tile(root, request, 'loginform')
self.assertTrue(res.find('class="errormessage">Invalid Credentials') > -1)
# Authenticate with correct credentials
request.params['loginform.user'] = security.ADMIN_USER
request.params['loginform.password'] = security.ADMIN_PASSWORD
request.params['action.loginform.login'] = '1'
render_tile(root, request, 'loginform')
self.assertTrue(isinstance(request.environ['redirect'], HTTPFound))
| 40.333333 | 94 | 0.660722 | 1,971 | 0.857329 | 0 | 0 | 0 | 0 | 0 | 0 | 650 | 0.282732 |
29934fcb2bb4b9dd5b0dcf07accd0d89e7187b95 | 752 | py | Python | View/telaEditarControle.py | IuriBritoDev/TKINO | 3c689788324bd5badc84c7969f331b076046c211 | [
"MIT"
] | null | null | null | View/telaEditarControle.py | IuriBritoDev/TKINO | 3c689788324bd5badc84c7969f331b076046c211 | [
"MIT"
] | null | null | null | View/telaEditarControle.py | IuriBritoDev/TKINO | 3c689788324bd5badc84c7969f331b076046c211 | [
"MIT"
] | null | null | null | from tkinter import *
def TelaEditarControle(tela, controle):
# Cria a tela de configuração
telaEditar = Toplevel(tela)
telaEditar.title('EDITA CONTROLE')
telaEditar.geometry('280x180+620+120')
telaEditar['bg'] = 'gray'
telaEditar.resizable(False,False)
telaEditar.focus_force()
telaEditar.grab_set()
# Lables de porta e arduino
lblPorta = Label(telaEditar,text='VALOR CONTROLADOR',foreground='black',bg='gray',anchor=W,)
lblPorta.place(x=50,y=20)
slide = Scale(telaEditar,from_=10,to=90,orient=HORIZONTAL)
slide.place(x=95,y=70,width=100,height=50)
# Botão de conexão
btnCnt = Button(telaEditar,text='SALVAR',command = '',foreground='white',bg='black')
btnCnt.place(x=210,y=140) | 32.695652 | 96 | 0.694149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 177 | 0.234127 |
29955858830022ac8b0ab1ecf8622aef64dde5f8 | 395 | py | Python | yao_framework/__init__.py | QuantumBFS/yao-python | c877b3c4f920e76858021b6af8728f839d88fc1d | [
"Apache-2.0"
] | 3 | 2019-12-04T16:40:55.000Z | 2021-12-16T04:28:59.000Z | yao_framework/__init__.py | QuantumBFS/yao-python | c877b3c4f920e76858021b6af8728f839d88fc1d | [
"Apache-2.0"
] | null | null | null | yao_framework/__init__.py | QuantumBFS/yao-python | c877b3c4f920e76858021b6af8728f839d88fc1d | [
"Apache-2.0"
] | 2 | 2021-05-07T01:17:50.000Z | 2021-12-16T04:32:31.000Z | # workaround static linked python
from julia.api import Julia
__julia__ = Julia(compiled_modules=False)
import os
import sys
import subprocess
from .wrappers import apply
script_dir = os.path.dirname(os.path.realpath(__file__))
def install():
"""
Install Julia packages required for yao-framework.
"""
subprocess.check_call(['julia', os.path.join(script_dir, 'install.jl')])
| 21.944444 | 76 | 0.744304 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 0.298734 |
29964b779c4f66694fdf10686261f2a4a69976ee | 4,531 | py | Python | src/multiuserpad/twitchutil.py | codingwithsomeguy/multiuserpad | caca02bb3f98e855a0980b8ac9947c05d5b89463 | [
"MIT"
] | 4 | 2020-04-14T03:25:06.000Z | 2020-11-03T14:30:20.000Z | src/multiuserpad/twitchutil.py | codingwithsomeguy/multiuserpad | caca02bb3f98e855a0980b8ac9947c05d5b89463 | [
"MIT"
] | null | null | null | src/multiuserpad/twitchutil.py | codingwithsomeguy/multiuserpad | caca02bb3f98e855a0980b8ac9947c05d5b89463 | [
"MIT"
] | null | null | null | # TODO: Generalize this with the discordutil module, factor out oauth
import logging
from urllib.parse import urlencode
import requests
import json
from flask import request, redirect, session
from creds import get_creds
from config import config
from sessionutil import invalidate_session
def twitch_login():
ss = get_creds()
params = {
"client_id": ss["twitch_client_id"],
"redirect_uri": "%s/api/ident/twitchcb" % config.MY_URL,
"state": True,
"response_type": "code",
"scope": "openid", # not user_read, id_token, or user_subscriptions
# need to request objects for the later userinfo request
"claims": json.dumps({
"id_token": {},
"userinfo": {
"picture": "null",
"preferred_username": "null",
}
})
}
redirect_url = "%s/oauth2/authorize?%s" % (
config.TWITCH_API_URL, urlencode(params))
return redirect(redirect_url)
def twitch_login_cb():
user_authenticated = False
result = "Missing code"
code = request.args.get("code")
scope = request.args.get("scope")
if code is not None and scope == "openid":
# fetch a token
user_authenticated = fetch_twitch_token(code)
if user_authenticated == True:
user_fetch_worked = fetch_twitch_user()
if not user_fetch_worked:
invalidate_session()
return redirect("/")
return redirect("/user")
return result
# TODO: this should be cached until expiration
# The server can reuse this for API requests
# TODO: factor this out with discord auth to oauth..auth
def fetch_twitch_token(code):
# on success, session has the token to use
ss = get_creds()
result = False
body_payload = {
"client_id": ss["twitch_client_id"],
"client_secret": ss["twitch_client_secret"],
"grant_type": "authorization_code",
"code": code,
"redirect_uri": "%s/api/ident/twitchcb" % config.MY_URL,
}
# redirect_uri may need to match original cb URI (twitch_login_cb)
extra_headers = {
"Content-Type": "application/x-www-form-urlencoded",
}
response = requests.post(
"%s/oauth2/token" % config.TWITCH_API_URL,
data=urlencode(body_payload),
headers=extra_headers)
logging.debug("fetch_twitch_token: headers: %s\n\traw response: %s" % (
response.headers, response.text))
try:
token_response = json.loads(response.text)
if "access_token" in token_response and "refresh_token" in token_response:
session["token_response"] = token_response
result = True
else:
logging.warn("NO refresh_token AVAILABLE, BAD AUTH!")
except ValueError as e:
logging.error("ValueError: " + e)
result = False
return result
def fetch_twitch_user():
if "token_response" not in session:
return False
token = session["token_response"]
if "token_type" not in token or "access_token" not in token:
return False
auth_header_token_type = ""
# token request returns "bearer", not "Bearer" sometimes
if token["token_type"] in ["bearer", "Bearer"]:
auth_header_token_type = "Bearer"
# this are attached to session in fetch_twitch_token
extra_headers = {
"Authorization": "%s %s" % (
auth_header_token_type,
token["access_token"]
),
}
response = requests.get(
"%s/oauth2/userinfo" % config.TWITCH_API_URL,
headers=extra_headers)
logging.debug("fetch_twitch_user: headers: %s\n\traw response: %s" % (
response.headers, response.text))
twitch_avatar_url = None
twitch_username = None
twitch_id = None
try:
logging.debug("fetch_twitch_user response: %s" % response.text)
parsed_response = json.loads(response.text)
twitch_id = parsed_response["sub"]
twitch_username = parsed_response["preferred_username"]
twitch_avatar_url = parsed_response["picture"]
except ValueError as e:
logging.error("ValueError: " + e)
return False
ss = get_creds()
# TODO: move away from "discord" to a generic auth provider
session["discord"] = {
"full_username": twitch_username,
# TODO: get the right avatar from picture
"avatar_url": twitch_avatar_url,
"id": twitch_id,
"authorized": twitch_id in ss["authorized_twitch_ids"]
}
return True
| 31.685315 | 82 | 0.63827 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,614 | 0.356213 |
2996df27209f1d350199a6a54bcf14fae9ad1a1a | 6,173 | py | Python | src/pixel_sorting.py | in3rtial/imgsrt | 2dec237b7d797d9964ed874c4e4d72f7eb23eaf0 | [
"CC0-1.0"
] | 2 | 2015-11-08T09:22:30.000Z | 2020-10-15T03:42:24.000Z | src/pixel_sorting.py | in3rtial/imgsrt | 2dec237b7d797d9964ed874c4e4d72f7eb23eaf0 | [
"CC0-1.0"
] | null | null | null | src/pixel_sorting.py | in3rtial/imgsrt | 2dec237b7d797d9964ed874c4e4d72f7eb23eaf0 | [
"CC0-1.0"
] | null | null | null | #!/usr/bin/python3
"""transliteration of Kim Asendorf's pixel sorting script"""
from copy import copy
from random import random, gauss
from PIL import Image
from numpy import int32
from argparse import ArgumentParser
# PROGRAM CONSTANTS
# rgb(103, 105, 128)
BLACK_VALUE = int32(-10000000)
# rgb(164, 114, 128)
WHITE_VALUE = int32((255 << 24) + (230 << 16) + (230 << 8) + 230)
BRIGHTNESS_VALUE = int32(30)
# PIXEL CONVERSION FUNCTIONS
def get_pixel_value(pixel):
"""rgb pixel to int32 processing representation"""
return(int32((((255 << 8) | pixel[0]) << 8 | pixel[1]) << 8 | pixel[2]))
def get_pixel_brightness(pixel):
"""rgb pixel to brightness value"""
return(max((pixel[0], pixel[1], pixel[2])) / 255 * 100)
# PIXEL FINDING FUNCTIONS
def get_next_satisfying(vector, starting_position, condition_fun):
"""find next pixel in the vector after starting position
that satisfies the condition (boolean)
return -1 if not found"""
position = starting_position
while(position < len(vector) and
not(condition_fun(vector[position]))):
position += 1
if(position == (len(vector) - 1) and
not(condition_fun(vector[position]))):
position = - 1
return(position)
# black mode
def get_next_black(vector, starting_position):
"""next black pixel"""
condition = lambda x: int32(get_pixel_value(x)) > BLACK_VALUE
return get_next_satisfying(vector, starting_position, condition)
def get_next_not_black(vector, starting_position):
"""next non black pixel"""
condition = lambda x: int32(get_pixel_value(x)) < BLACK_VALUE
return get_next_satisfying(vector, starting_position, condition)
# bright mode
def get_next_bright(vector, starting_position):
"""next bright pixel"""
condition = lambda x: int32(get_pixel_brightness(x)) < BRIGHTNESS_VALUE
return get_next_satisfying(vector, starting_position, condition)
def get_next_dark(vector, starting_position):
"""next dark pixel"""
condition = lambda x: int32(get_pixel_brightness(x)) > BRIGHTNESS_VALUE
return get_next_satisfying(vector, starting_position, condition)
# white mode
def get_next_white(vector, starting_position):
"""next white pixel"""
condition = lambda x: int32(get_pixel_value(x)) < WHITE_VALUE
return get_next_satisfying(vector, starting_position, condition)
def get_next_not_white(vector, starting_position):
"""next not white pixel"""
condition = lambda x: int32(get_pixel_value(x)) > WHITE_VALUE
return get_next_satisfying(vector, starting_position, condition)
FIND_FUNCTIONS = ((get_next_black, get_next_not_black), # black
(get_next_bright, get_next_dark), # bright
(get_next_white, get_next_not_white)) # white
# PIXEL SORTING FUNCTIONS
def sort_pixels(vector, mode=0, find=FIND_FUNCTIONS):
"""sort pixel in the given vector"""
assert(mode in (0, 1, 2)), "invalid use case"
vector = copy(vector)
position = 0
pos_end = None
while(position < len(vector)):
if((position == -1) or (pos_end == -1)):
break
position = find[mode][0](vector, position)
pos_end = find[mode][1](vector, position)
vector[position:pos_end] = sorted(vector[position:pos_end],
key=lambda x: get_pixel_value(x))
position = pos_end + 1
return(vector)
# IMAGE TRANSFORMATIONS
def to_vectors(rgb_image, row_or_col):
"""rgb image -> list of lists of RGB tuples"""
assert(rgb_image.mode == "RGB"), "must be a RGB image"""
assert(row_or_col in (0, 1)), "row = 0, col = 1"
vectors = []
x_size, y_size = rgb_image.size
if(row_or_col == 0):
for y_coord in range(0, y_size):
row = []
for x_coord in range(0, x_size):
row.append(rgb_image.getpixel((x_coord, y_coord)))
vectors.append(row)
else:
for x_coord in range(0, x_size):
col = []
for y_coord in range(0, y_size):
col.append(rgb_image.getpixel((x_coord, y_coord)))
vectors.append(col)
return(vectors)
# COMPLETE FUNCTIONS
def sort_image(image, row_or_col, mode=0, prob=1, avg_band_size=1):
"""input: (rgb image, row or column, sort mode, probability of sorting,
average band size for sorting)
output: sorted out image)"""
x_size, y_size = image.size
sigma = avg_band_size / 4
vectors = to_vectors(image, row_or_col)
new_vectors = []
position = 0
while(position < len(vectors)):
if(random() < prob):
# calculate the indices of the rows to sort
to_sort = []
coarseness = int(gauss(avg_band_size, sigma))
for index in range(position, position + coarseness):
if(index >= len(vectors)):
break
else:
to_sort.append(index)
for index in to_sort:
new_vectors.append(sort_pixels(vectors[index], mode))
position += coarseness
else:
new_vectors.append(vectors[position])
position += 1
new_image = []
if(row_or_col == 0):
for vector in new_vectors:
for (red, green, blue) in vector:
new_image.append(int(red))
new_image.append(int(green))
new_image.append(int(blue))
else:
for i in range(0, y_size):
for vector in new_vectors:
(red, green, blue) = vector[i]
new_image.append(int(red))
new_image.append(int(green))
new_image.append(int(blue))
return(Image.fromstring('RGB', (x_size, y_size), bytes(new_image)))
__all__ = ["sort_image"]
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-i", dest="input_image_file", required=True, type=str, help="input")
parser.add_argument("-o", dest="output_image_file", required=True, type=str, help="output")
args = parser.parse_args()
image = Image.open(args.input_image_file)
sort_image(image, 0).save(args.output_image_file)
| 32.661376 | 95 | 0.638749 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,086 | 0.175927 |
29978909888062a7973e1bdbe5b82311fd8d9b27 | 6,173 | py | Python | main.py | ml4design/text-processing-module | f1bfe1a49d58156e9e48e5ef69b980f89a5981ea | [
"MIT"
] | null | null | null | main.py | ml4design/text-processing-module | f1bfe1a49d58156e9e48e5ef69b980f89a5981ea | [
"MIT"
] | null | null | null | main.py | ml4design/text-processing-module | f1bfe1a49d58156e9e48e5ef69b980f89a5981ea | [
"MIT"
] | null | null | null | import pandas as pd
from preprocessing import preprocess
from wordclouds import wordcloud, find_by_word
from sentiment_analysis import calculate_sentiment, find_by_sentiment
import nltk
import os
import tempfile
from topic_modelling import lda_topic_model, show_topics, show_example_sentences_by_topic
os.environ["MPLCONFIGDIR"] = tempfile.gettempdir()
nltk.download('punkt')
nltk.download('stopwords')
pd.set_option('display.max_columns', None)
#####################################################
# READING THE DATA #
#####################################################
# In this tutorial we will mostly deal with comma separated files (CSV) (similar to the structure of Excel files). Each line of the file is a data record. Each record consists of one or more fields, separated by commas. Check here for more information https://en.wikipedia.org/wiki/Comma-separated_values
# reads the file named "students_eng.csv".
# If you want to read a different file you need to (1) upload it in replit and (2) change "students_eng.csv" to the name of the newly uploaded file. Here we use the Pandas library ("pd") to read our file and in return we get a Pandas Dataframe. For faster processing and experimentation you can also select different subsets of the file's content through the nrows parameter -> number of lines to read.
students_data = pd.read_csv("data/students_eng.csv")
# With the next line you can print the data you just read and see how a Pandas Dataframe looks like (seems quite similar to Excel)
print(students_data.head(3))
# As you can see the data is separated in columns. Let's see how we can get the data from a specific column. The following line allows us to get only the data inside the column named "students_needs". Other options are: study_programme, degree_programme, planned_grad_year, today_feeling, physical_health, student_needs, students_sugg_to_improve_wellbeing
students_data = students_data['student_needs']
#################################################
# TEXT PREPROCESSING #
#################################################
# Here we will pre-process our entire text collection.
# First, we need to merge all the different lines of the "comments" into one big corpus, so that we can later analyze it.
corpus = students_data.to_list()
print(corpus[0:5])
# Then we need to "preprocess" our text. To do so we use the following line of code (more details on what happens under the hood could be found in the "preprocessing.py" file - feel free to take a look at it).
# The following code: makes all words lowercase, create word tokens, removes stopwords, punctuations, and digits, and reduces inflected words to their word stem (stemming).Feel free to experiment by turning any of the following values from True to False. In addition, you can add extra words which you do not want to include in your analysis by adding them within the extra_stopwords brackets e.g. extra_stopwords=["people"] would remove the word people from everywhere in the document. Hint: don't forget to use the quotes!
# tokens = [preprocess(sentence, lower=True, rem_punc=True, word_tokenization=True, rem_numb=True, rem_stopwords=True, stem=True, extra_stopwords = []) for sentence in students_data.to_list()]
# print(tokens)
#############################################
# WORD FREQUENCIES #
#############################################
# Word frequencies calculation is the most basic tool in text processing yet it gives a comprehensive picture of the content in your text collection. One the most ways to visualize word frequencies is WordCloud (which you've already seen if you opened Voyant)
# This function needs two things from you:
# 1. tokens -- the result of our preprocessing step
# 2. the name of the picture it will generate and save to your directory
# 3. Number of words to show
# wordcloud(words = tokens, name_of_output = 'wordcloud', num = 10)
# Text processing often requires working with examples, because words are often contextual and it is difficult to understand what is happening in your text collection. For this purpose, you can find documents by pieces of texts.
# This function needs two things from you:
# 1. tokens -- the result of our preprocessing step (it will look for examples in this collection)
# 2. a word or a phrase the text should include
# test = find_by_word(tokens, 'studi')
#print(test)
#############################################
# Sentiment analysis #
#############################################
# The aim of sentiment analysis is to calculate how emotional your texts are and what is the valence of these texts. In our example we use VADER (Valence Aware Dictionary and sEntiment Reasoner) but you can find other various sentiment analysis tools in the internet.
# VADER calculated how positive, neutral, and negative a text is. It also calculates a compound score which considers all three metrics to give you a precise measurement of the sentiment.
# This function requires only the preprocessed collection of texts
# sent_result = calculate_sentiment(tokens)
# print(sent_result)
# Now, when the sentiment scores are calculated, you can find the most interesting texts by looking at the documents with highest scores (in this example, we look at the 5 most positive documents).
# This function requires three things:
# 1. The result of sentiment calculation
# 2. What score you're interested in
# 3. Number of examples you want to get
# res = find_by_sentiment(df_with_scores = sent_result, score_type = 'pos', num_of_examples = 5)
# print(res)
#############################################
# TOPIC MODELING #
#############################################
# num_of_topics = 4
# word_num_per_topic = 5
# lda_model = lda_topic_model(tokens, topic_num=num_of_topics)
# show_topics(lda_model, word_num_per_topic )
# Check examples assigned to a particular topic ####
# num_of_examples = 5
# show_example_sentences_by_topic(corpus, tokens, lda_model, word_num_per_topic,topic_to_check=1, num_of_examp_to_show = num_of_examples) | 55.116071 | 524 | 0.706302 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5,542 | 0.897781 |
299875f6900cd7a8b095fbe70057acd505857f31 | 4,796 | py | Python | finetune/target_models/multifield.py | IndicoDataSolutions/finetune-transformer-lm | 3534658e5de281e5634c8481b0fb37635b0cb3af | [
"MIT"
] | null | null | null | finetune/target_models/multifield.py | IndicoDataSolutions/finetune-transformer-lm | 3534658e5de281e5634c8481b0fb37635b0cb3af | [
"MIT"
] | null | null | null | finetune/target_models/multifield.py | IndicoDataSolutions/finetune-transformer-lm | 3534658e5de281e5634c8481b0fb37635b0cb3af | [
"MIT"
] | null | null | null | import copy
from finetune.errors import FinetuneError
from finetune.target_models.classifier import Classifier, ClassificationPipeline
from finetune.target_models.regressor import Regressor, RegressionPipeline
from finetune.base import BaseModel
class MultiFieldClassificationPipeline(ClassificationPipeline):
def _format_for_encoding(self, X):
return X
class MultiFieldRegressionPipeline(RegressionPipeline):
def _format_for_encoding(self, X):
return X
class MultiFieldClassifier(Classifier):
"""
Classifies a set of documents into 1 of N classes.
:param config: A :py:class:`finetune.config.Settings` object or None (for default config).
:param \**kwargs: key-value pairs of config items to override.
"""
defaults = {"chunk_long_sequences": False}
def __init__(self, **kwargs):
d = copy.deepcopy(MultiFieldClassifier.defaults)
d.update(kwargs)
super().__init__(**d)
if self.config.chunk_long_sequences:
raise FinetuneError(
"Multifield model is incompatible with chunk_long_sequences = True in config."
)
def _get_input_pipeline(self):
return MultiFieldClassificationPipeline(self.config)
def finetune(self, Xs, Y=None, context=None, **kwargs):
"""
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:param Y: integer or string-valued class labels. It is necessary for the items of Y to be sortable.
:param batch_size: integer number of examples per batch. When N_GPUS > 1, this number
corresponds to the number of training examples provided to each GPU.
"""
return BaseModel.finetune(self, Xs, Y=Y, context=context, **kwargs)
def predict(self, Xs, context=None, **kwargs):
"""
Produces list of most likely class labels as determined by the fine-tuned model.
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:returns: list of class labels.
"""
return BaseModel.predict(self, Xs, context=context, **kwargs)
def predict_proba(self, Xs, context=None, **kwargs):
"""
Produces probability distribution over classes for each example in X.
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:returns: list of dictionaries. Each dictionary maps from X2 class label to its assigned class probability.
"""
return BaseModel.predict_proba(self, Xs, context=context, **kwargs)
def featurize(self, Xs, **kwargs):
"""
Embeds inputs in learned feature space. Can be called before or after calling :meth:`finetune`.
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:returns: np.array of features of shape (n_examples, embedding_size).
"""
return BaseModel.featurize(self, Xs, **kwargs)
class MultiFieldRegressor(Regressor):
"""
Regresses one or more floating point values given a set of documents per example.
:param config: A :py:class:`finetune.config.Settings` object or None (for default config).
:param \**kwargs: key-value pairs of config items to override.
"""
def _get_input_pipeline(self):
return MultiFieldRegressionPipeline(self.config)
def finetune(self, Xs, Y=None, **kwargs):
"""
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:param Y: floating point targets
:param batch_size: integer number of examples per batch. When N_GPUS > 1, this number
corresponds to the number of training examples provided to each GPU.
"""
return BaseModel.finetune(self, Xs, Y=Y, **kwargs)
def predict(self, Xs, **kwargs):
"""
Produces list of most likely class labels as determined by the fine-tuned model.
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:returns: list of class labels.
"""
return BaseModel.predict(self, Xs, **kwargs)
def predict_proba(self, Xs, **kwargs):
"""
Produces probability distribution over classes for each example in X.
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:returns: list of dictionaries. Each dictionary maps from X2 class label to its assigned class probability.
"""
return BaseModel.predict_proba(self, Xs, **kwargs)
def featurize(self, Xs, **kwargs):
"""
Embeds inputs in learned feature space. Can be called before or after calling :meth:`finetune`.
:param \*Xs: lists of text inputs, shape [batch, n_fields]
:returns: np.array of features of shape (n_examples, embedding_size).
"""
return BaseModel.featurize(self, Xs, **kwargs)
| 38.677419 | 116 | 0.66347 | 4,537 | 0.945997 | 0 | 0 | 0 | 0 | 0 | 0 | 2,794 | 0.582569 |
2998b411809973174ac82478a06ef6fa40c371df | 157 | py | Python | db_s3_backup/db_interface/dump_protocol.py | saurabhariyan/db-s3-backup | 5b67737f43814f0841d47033c92825206a24e1a1 | [
"MIT"
] | 9 | 2015-08-04T00:54:46.000Z | 2021-08-29T04:21:13.000Z | db_s3_backup/db_interface/dump_protocol.py | saurabhariyan/db-s3-backup | 5b67737f43814f0841d47033c92825206a24e1a1 | [
"MIT"
] | 7 | 2015-05-28T15:57:15.000Z | 2017-01-25T11:29:28.000Z | db_s3_backup/db_interface/dump_protocol.py | saurabhariyan/db-s3-backup | 5b67737f43814f0841d47033c92825206a24e1a1 | [
"MIT"
] | 9 | 2015-05-28T13:09:25.000Z | 2021-02-12T04:57:04.000Z | from exceptions import ValueError
class DumpProtocol:
def dump(self, config=None, verbose=False):
raise ValueError('DumpProtocol not followed')
| 26.166667 | 53 | 0.751592 | 122 | 0.77707 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 0.171975 |
299a6f26561daff35ded494f622e2b673df00a7d | 24,679 | py | Python | LPES-video/01.01-podstawy-terminala/01.01.04-pagery.py | opcode-eu-org-website/LPES-wyklady-src | dd4d413f2bb5560790b6365fa7e68e8f1a8a65b0 | [
"MIT"
] | null | null | null | LPES-video/01.01-podstawy-terminala/01.01.04-pagery.py | opcode-eu-org-website/LPES-wyklady-src | dd4d413f2bb5560790b6365fa7e68e8f1a8a65b0 | [
"MIT"
] | null | null | null | LPES-video/01.01-podstawy-terminala/01.01.04-pagery.py | opcode-eu-org-website/LPES-wyklady-src | dd4d413f2bb5560790b6365fa7e68e8f1a8a65b0 | [
"MIT"
] | 1 | 2021-07-03T16:43:47.000Z | 2021-07-03T16:43:47.000Z | # Copyright (c) 2020-2021 Matematyka dla Ciekawych Świata (http://ciekawi.icm.edu.pl/)
# Copyright (c) 2020-2021 Robert Ryszard Paciorek <[email protected]>
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
try: clipData
except NameError: clipData = []
clipData += [
{ 'section': 'wyświetlanie plików\n z podziałem na strony' },
{
'console': [
[0.070374, "o", eduMovie.clear + eduMovie.prompt()],
[1.067533, "o", "m"],
[1.259512, "o", "a"],
[1.41949, "o", "n"],
[1.611479, "o", " "],
[1.92349, "o", "m"],
[2.115325, "o", "a"],
[2.243465, "o", "n"],
[2.435497, "o", " "],
[3.475488, "o", "\r\n"],
[3.54519, "o", "\u001b[?1049h\u001b[22;0;0t\u001b[?1h\u001b=\r"],
[3.585094, "o", "MAN(1) Manual pager utils MAN(1)\u001b[m\r\n\u001b[m\r\n\u001b[1mNAME\u001b[0m\u001b[m\r\n man - an interface to the on-line reference manuals\u001b[m\r\n\u001b[m\r\n\u001b[1mSYNOPSIS\u001b[0m\u001b[m\r\n \u001b[1mman\u001b[0m [\u001b[1m-C\u001b[0m \u001b[4mfile\u001b[24m] [\u001b[1m-d\u001b[0m] [\u001b[1m-D\u001b[0m] [\u001b[1m--warnings\u001b[0m[=\u001b[4mwarnings\u001b[24m]] [\u001b[1m-R\u001b[0m \u001b[4mencoding\u001b[24m] [\u001b[1m-L\u001b[0m \u001b[4mlo‐\u001b[24m\u001b[m\r\n \u001b[4mcale\u001b[24m] [\u001b[1m-m\u001b[0m \u001b[4msystem\u001b[24m[,...]] [\u001b[1m-M\u001b[0m \u001b[4mpath\u001b[24m] [\u001b[1m-S\u001b[0m \u001b[4mlist\u001b[24m] [\u001b[1m-e\u001b[0m \u001b[4mextension\u001b[24m] [\u001b[1m-i\u001b[0m|\u001b[1m-I\u001b[0m]\u001b[m\r\n [\u001b[1m--regex\u001b[0m|\u001b[1m--wildcard\u001b[0m] [\u001b[1m--names-only\u001b[0m] [\u001b[1m-a\u001b[0m] [\u001b[1m-u\u001b[0m] [\u001b[1m--no-subpages\u001b[0m] [\u001b[1m-P\u001b[0m\u001b[m\r\n \u001b[4mpager\u001b[24m] [\u001b[1m-r\u001b[0m \u001b[4mprompt\u001b[24m] [\u001b[1m-7\u001b[0m] [\u001b[1m-E\u001b[0m \u001b[4mencoding\u001b[24m] [\u001b[1m--no-hyphenation\u001b[0m] [\u001b[1m--no-justifi‐\u001b[0m\u001b[m\r\n \u001b[1mcation\u001b[0m] [\u001b[1m-p\u001b[0m \u001b[4mstring\u001b[24m] [\u001b[1m-t\u001b[0m] [\u001b[1m-T\u001b[0m[\u001b[4mdevice\u001b[24m]] [\u001b[1m-H\u001b[0m[\u001b[4mbrowser\u001b[24m]] [\u001b[1m-X\u001b[0m[\u001b[4mdpi\u001b[24m]] [\u001b[1m-Z\u001b[0m]\u001b[m\r\n [[\u001b["],
[3.585479, "o", "4msection\u001b"],
[3.585788, "o", "[24m] \u001b[4mpage\u001b[24m[.\u001b[4msection\u001b[24m] ...] ...\u001b[m\r\n \u001b[1mman\u001b[0m \u001b[1m-k\u001b[0m [\u001b[4mapropos\u001b[24m \u001b[4moptions\u001b[24m] \u001b[4mregexp\u001b[24m ...\u001b[m\r\n \u001b[1mman\u001b[0m \u001b[1m-K\u001b[0m [\u001b[1m-w\u001b[0m|\u001b[1m-W\u001b[0m] [\u001b[1m-S\u001b[0m \u001b[4mlist\u001b[24m] [\u001b[1m-i\u001b[0m|\u001b[1m-I\u001b[0m] [\u001b[1m--regex\u001b[0m] [\u001b[4msection\u001b[24m] \u001b[4mterm\u001b[24m ...\u001b[m\r\n \u001b[1mman\u001b[0m \u001b[1m-f\u001b[0m [\u001b[4mwhatis\u001b[24m \u001b[4moptions\u001b[24m] \u001b[4mpage\u001b[24m ...\u001b[m\r\n \u001b[1mman\u001b[0m \u001b[1m-l\u001b[0m [\u001b[1m-C\u001b[0m \u001b[4mfile\u001b[24m] [\u001b[1m-d\u001b[0m] [\u001b[1m-D\u001b[0m] [\u001b[1m--warnings\u001b[0m[=\u001b[4mwarnings\u001b[24m]] [\u001b[1m-R\u001b[0m \u001b[4mencoding\u001b[24m] [\u001b[1m-L\u001b[0m\u001b[m\r\n \u001b[4mlocale\u001b[24m] [\u001b[1m-P\u001b[0m \u001b[4mpager\u001b[24m] [\u001b[1m-r\u001b[0m \u001b[4mprompt\u001b[24m] [\u001b[1m-7\u001b[0m] [\u001b[1m-E\u001b[0m \u001b[4mencoding\u001b[24m] [\u001b[1m-p\u001b[0m \u001b[4mstring\u001b[24m] [\u001b[1m-t\u001b[0m]\u001b[m\r\n [\u001b[1m-T\u001b[0m[\u001b[4mdevice\u001b[24m]] [\u001b[1m-H\u001b[0m[\u001b[4mbrowser\u001b[24m]] [\u001b[1m-X\u001b[0m[\u001b[4mdpi\u001b[24m]] [\u001b[1m-Z\u001b[0m] \u001b[4mfile\u001b[24m ...\u001b[m\r\n \u001b[1mman\u001b[0m \u001b[1m-w\u001b[0m|\u001b[1m-W\u001b[0m [\u001b[1m-C\u001b[0m \u001b[4mfile\u001b[24m] [\u001b[1m-d\u001b[0m] [\u001b[1m-D\u001b[0m] \u001b[4mpage\u001b[24m ...\u001b[m\r\n \u001b[1mman\u001b[0m \u001b[1m-c\u001b[0m [\u001b[1m"],
[3.586087, "o", "-C\u001b[0m \u001b[4mfile\u001b[24m] [\u001b[1m-d\u001b[0m] [\u001b[1m-D\u001b[0m] \u001b[4mpage\u001b[24m ...\u001b[m\r\n \u001b[1mman\u001b[0m [\u001b[1m-?V\u001b[0m]\u001b[m\r\n\u001b[m\r\n\u001b[1mDESCRIPTION\u001b[0m\u001b[m\r\n\u001b[7m Manual page man(1) line 1 (press h for help or q to quit)\u001b[27m\u001b[K"],
[5.099652, "o", "\r\u001b[K"],
[5.100412, "o", " \u001b[1mman\u001b[0m is the system's manual pager. Each \u001b[4mpage\u001b[24m argument given to \u001b[1mman\u001b[0m is\u001b[m\r\n normally the name of a program, utility or function. The \u001b[4mmanual\u001b[24m \u001b[4mpage\u001b[24m\u001b[m\r\n associated with each of these arguments is then found and displayed. A\u001b[m\r\n \u001b[4msection\u001b[24m, if provided, will direct \u001b[1mman\u001b[0m to look only in that \u001b[4msection\u001b[24m of\u001b[m\r\n the manual. The default action is to search in all of the available\u001b[m\r\n \u001b[4msections\u001b[24m following a pre-defined order (\"1 n l 8 3 2 3posix 3pm 3perl\u001b[m\r\n 3am 5 4 9 6 7\" by default, unless overridden by the \u001b[1mSECTION\u001b[0m directive\u001b[m\r\n in \u001b[4m/etc/manpath.config\u001b[24m), and to show only the first \u001b[4mpage\u001b[24m found, even if\u001b[m\r\n \u001b[4mpage\u001b[24m exists in several \u001b[4msections\u001b[24m.\u001b[m\r\n\u001b[m\r\n The table below shows the \u001b[4msection\u001b[24m numbers of the manual followed by the\u001b[m\r\n types of pages they contain.\u001b[m\r\n\u001b[m\r\n 1 Executable programs or shell commands\u001b[m\r"],
[5.10077, "o", "\n 2 System calls (functions provided by the kernel)\u001b[m\r\n 3 Library calls (functions within program libraries)\u001b[m\r\n 4 Special files (usually found in \u001b[4m/dev\u001b[24m)\u001b[m\r\n 5 File formats and conventions eg \u001b[4m/etc/passwd\u001b[24m\u001b[m\r\n 6 Games\u001b[m\r\n 7 Miscellaneous (including macro packages and conventions), e.g.\u001b[m\r\n \u001b[1mman\u001b[0m(7), \u001b[1mgroff\u001b[0m(7)\u001b[m\r\n 8 System administration commands (usually only for root)\u001b[m\r\n 9 Kernel routines [Non standard]\u001b[m\r\n\u001b[7m Manual page man(1) line 24 (press h for help or q to quit)\u001b[27m\u001b[K"],
[10.259702, "o", "\r\u001b[K"],
[10.260051, "o", "\u001b[m\r\n A manual \u001b[4mpage\u001b[24m consists of several sections.\u001b[m\r\n\u001b[m\r\n Conventional section names include \u001b[1mNAME\u001b[0m, \u001b[1mSYNOPSIS\u001b[0m, \u001b[1mCONFIGURATION\u001b[0m, \u001b[1mDE‐\u001b[0m\u001b[m\r\n \u001b[1mSCRIPTION\u001b[0m, \u001b[1mOPTIONS\u001b[0m, \u001b[1mEXIT\u001b[0m \u001b[1mSTATUS\u001b[0m, \u001b[1mRETURN\u001b[0m \u001b[1mVALUE\u001b[0m, \u001b[1mERRORS\u001b[0m, \u001b[1mENVIRONMENT\u001b[0m,\u001b[m\r\n"],
[10.260674, "o", " \u001b[1mFILES\u001b[0m, \u001b[1mVERSIONS\u001b[0m, \u001b[1mCONFORMING\u001b[0m \u001b[1mTO\u001b[0m, \u001b[1mNOTES\u001b[0m, \u001b[1mBUGS\u001b[0m, \u001b[1mEXAMPLE\u001b[0m, \u001b[1mAUTHORS\u001b[0m, and\u001b[m\r\n \u001b[1mSEE\u001b[0m \u001b[1mALSO\u001b[0m.\u001b[m\r\n\u001b[m\r\n The following conventions apply to the \u001b[1mSYNOPSIS\u001b[0m section and can be used\u001b[m\r\n as a guide in other sections.\u001b[m\r\n\u001b[m\r\n \u001b[1mbold\u001b[0m \u001b[1mtext\u001b[0m type exactly as shown.\u001b[m\r\n \u001b[4mitalic\u001b[24m \u001b[4mtext\u001b[24m replace with appropriate argument.\u001b[m\r\n [\u001b[1m-abc\u001b[0m] any or all arguments within [ ] are optional.\u001b[m\r\n \u001b[1m-a\u001b[0m|\u001b[1m-b\u001b[0m options delimited by | cannot be used together.\u001b[m\r\n\u001b[m\r\n"],
[10.261539, "o", " \u001b[4margument\u001b[24m ... \u001b[4margument\u001b[24m is repeatable.\u001b[m\r\n [\u001b[4mexpression\u001b[24m] ... entire \u001b[4mexpression\u001b[24m within [ ] is repeatable.\u001b[m\r\n\u001b[m\r\n Exact rendering may vary depending on the output device. For instance,\u001b[m\r\n man will usually not be able to render italics when running in a termi‐\u001b[m\r\n nal, and will typically use underlined or coloured text instead.\u001b[m\r\n\u001b[m\r\n\u001b[7m Manual page man(1) line 47 (press h for help or q to quit)\u001b[27m\u001b[K"],
["search + 0.467738", "o", "\r\u001b[K/"],
["search + 2.427696", "o", "\u001b[Km\bm"],
["search + 2.811736", "o", "\u001b[Ka\ba"],
["search + 3.187628", "o", "\u001b[Kn\bn"],
["search + 4.835791", "o", "\r\u001b[K"],
["search + 4.838372", "o", "\u001b[1;1H\u001b[m\r\n\u001b[2;1H A manual \u001b[4mpage\u001b[24m consists of several sections.\u001b[m\r\n\u001b[3;1H\u001b[m\r\n\u001b[4;1H Conventional section names include \u001b[1mNAME\u001b[0m, \u001b[1mSYNOPSIS\u001b[0m, \u001b[1mCONFIGURATION\u001b[0m, \u001b[1mDE‐\u001b[0m\u001b[m\r\n\u001b[5;1H \u001b[1mSCRIPTION\u001b[0m, \u001b[1mOPTIONS\u001b[0m, \u001b[1mEXIT\u001b[0m \u001b[1mSTATUS\u001b[0m, \u001b[1mRETURN\u001b[0m \u001b[1mVALUE\u001b[0m, \u001b[1mERRORS\u001b[0m, \u001b[1mENVIRONMENT\u001b[0m,\u001b[m\r\n\u001b[6;1H \u001b[1mFILES\u001b[0m, \u001b[1mVERSIONS\u001b[0m, \u001b[1mCONFORMING\u001b[0m \u001b[1mTO\u001b[0m, \u001b[1mNOTES\u001b[0m, \u001b[1mBUGS\u001b[0m, \u001b[1mEXAMPLE\u001b[0m, \u001b[1mAUTHORS\u001b[0m, and\u001b[m\r\n\u001b[7;1H \u001b[1mSEE\u001b[0m \u001b[1mALSO\u001b[0m.\u001b[m\r\n\u001b[8;1H\u001b[m\r\n\u001b[9;1H The following conventions apply to the \u001b[1mSYNOPSIS\u001b[0m section and can be used\u001b[m\r\n\u001b[10;1H as a guide in other sections.\u001b[m\r\n\u001b[11;1H\u001b[m\r\n\u001b[12;1H \u001b[1mbold\u001b[0m \u001b[1mtext\u001b[0m type exactly as shown.\u001b[m\r\n\u001b[13;1H \u001b[4mitalic\u001b[24m \u001b[4mtext\u001b[24m replace with appropriate argument.\u001b[m\r\n\u001b[14;1H [\u001b[1m-abc\u001b[0m] any or all arguments within [ ] are optional.\u001b[m\r\n\u001b[15;1H \u001b[1m-a\u001b[0m|\u001b[1m-b\u001b[0m"],
["search + 4.838671", "o", " "],
["search + 4.840168", "o", " options delimited by | cannot be used together.\u001b[m\r\n\u001b[16;1H\u001b[m\r\n\u001b[17;1H \u001b[4margument\u001b[24m ... \u001b[4margument\u001b[24m is repeatable.\u001b[m\r\n\u001b[18;1H [\u001b[4mexpression\u001b[24m] ... entire \u001b[4mexpression\u001b[24m within [ ] is repeatable.\u001b[m\r\n\u001b[19;1H\u001b[m\r\n\u001b[20;1H Exact rendering may vary depending on the output device. For instance,\u001b[m\r\n\u001b[21;1H man will usually not be able to render italics when running in a termi‐\u001b[m\r\n\u001b[22;1H nal, and will typically use underlined or coloured text instead.\u001b[m\r\n\u001b[23;1H\u001b[m\r\n\u001b[24;1H\u001b[1;1H\u001b[m\r\n\u001b[2;1H A \u001b[7mman\u001b[27mual \u001b[4mpage\u001b[24m consists of several sections.\u001b[m\r\n\u001b[3;1H\u001b[m\r\n\u001b[4;1H Conventional section names include \u001b[1mNAME\u001b[0m, \u001b[1mSYNOPSIS\u001b[0m, \u001b[1mCONFIGURATION\u001b[0m, \u001b[1mDE‐\u001b[0m\u001b[m\r\n\u001b[5;1H \u001b[1mSCRIPTION\u001b[0m, \u001b[1mOPTIONS\u001b[0m, \u001b[1mEXIT\u001b[0m \u001b[1mSTATUS\u001b[0m, \u001b[1mRETURN\u001b[0m \u001b[1mVALUE\u001b[0m, \u001b[1mERRORS\u001b[0m, \u001b[1mENVIRONMENT\u001b[0m,\u001b[m\r\n\u001b[6;1H \u001b[1mFILES\u001b[0m, \u001b[1mVERSIONS\u001b[0m, \u001b[1mCONFORMING\u001b[0m \u001b[1mTO\u001b[0m, \u001b[1mNOTES\u001b[0m, \u001b[1mBUGS\u001b[0m, "],
["search + 4.840432", "o", " \u001b[1mEXAMPLE\u001b"],
["search + 4.841096", "o", "[0m, \u001b[1mAUTHORS\u001b[0m, and\u001b[m\r\n\u001b[7;1H \u001b[1mSEE\u001b[0m \u001b[1mALSO\u001b[0m.\u001b[m\r\n\u001b[8;1H\u001b[m\r\n\u001b[9;1H The following conventions apply to the \u001b[1mSYNOPSIS\u001b[0m section and can be used\u001b[m\r\n\u001b[10;1H as a guide in other sections.\u001b[m\r\n\u001b[11;1H\u001b[m\r\n\u001b[12;1H \u001b[1mbold\u001b[0m \u001b[1mtext\u001b[0m type exactly as shown.\u001b[m\r\n\u001b[13;1H \u001b[4mitalic\u001b[24m \u001b[4mtext\u001b[24m replace with appropriate argument.\u001b[m\r\n\u001b[14;1H [\u001b[1m-abc\u001b[0m] any or all arguments within [ ] are optional.\u001b[m\r\n\u001b[15;1H \u001b[1m-a\u001b[0m|\u001b[1m-b\u001b[0m options delimited by | cannot be used together.\u001b[m\r\n\u001b[16;1H\u001b[m\r\n\u001b[17;1H \u001b[4margument\u001b[24m ... \u001b[4margument\u001b[24m is repeatable.\u001b[m\r\n\u001b[18;1H [\u001b[4mexpression\u001b[24m] ... entire \u001b[4mexpression\u001b[24m within [ ] is repeatable.\u001b[m\r\n\u001b[19;1H\u001b[m\r\n\u001b[20;1H Exact rendering may vary depending on the output device. For instance,\u001b[m\r\n\u001b[21;1H \u001b[7mman\u001b[27m will usually not be able to render italics when running in a termi‐\u001b[m\r\n\u001b[22;1H nal, and will ty"],
["search + 4.841183", "o", "pically use und"],
["search + 4.842076", "o", "erlined or coloured text instead.\u001b[m\r\n\u001b[23;1H\u001b[m\r\n\u001b[24;1H The com\u001b[7mman\u001b[27md or function illustration is a pattern that should match all\u001b[m\r\n\u001b[7m Manual page man(1) line 48 (press h for help or q to quit)\u001b[27m\u001b[K"],
["search + 9.491816", "o", "\r\u001b[K/\r\u001b[K"],
["search + 9.492785", "o", " possible invocations. In some cases it is advisable to illustrate sev‐\u001b[m\r\n eral exclusive invocations as is shown in the \u001b[1mSYNOPSIS\u001b[0m section of this\u001b[m\r\n \u001b[7mman\u001b[27mual page.\u001b[m\r\n\u001b[m\r\n\u001b[1mEXAMPLES\u001b[0m\u001b[m\r\n \u001b[1m\u001b[7mman\u001b[27m\u001b[0m \u001b[4mls\u001b[24m\u001b[m\r\n Display the \u001b[7mman\u001b[27mual page for the \u001b[4mitem\u001b[24m (program) \u001b[4mls\u001b[24m.\u001b[m\r\n\u001b[m\r\n \u001b[1m\u001b[7mman\u001b[27m\u001b[0m \u001b[4m\u001b[7mman\u001b[27m\u001b[24m.\u001b[4m7\u001b[24m\u001b[m\r\n Display the \u001b[7mman\u001b[27mual page for macro package \u001b[4m\u001b[7mman\u001b[27m\u001b[24m from section \u001b[4m7\u001b[24m.\u001b[m\r\n\u001b[m\r\n \u001b[1m\u001b[7mman\u001b[27m\u001b[0m \u001b[1m-a\u001b[0m \u001b[4mintro\u001b[24m\u001b[m\r\n Display, in succession, all of the available \u001b[4mintro\u001b[24m \u001b[7mman\u001b[27mual pages\u001b[m\r\n contained within the \u001b[7mman\u001b[27mual. It is possible to quit between suc‐\u001b[m\r\n cessive displays or skip any of them.\u001b[m\r\n\u001b[m\r\n \u001b[1m\u001b[7mman\u001b[27m\u001b[0m \u001b[1m-t\u001b[0m \u001b[4malias\u001b[24m | \u001b[4mlpr\u001b[24m \u001b[4m-Pps\u001b[24m\u001b[m\r\n Format the \u001b[7mman\u001b[27mual page referenced by `\u001b[4mali"],
["search + 9.493205", "o", "as\u001b[24m', usually a shell \u001b[7mman\u001b[27m‐\u001b[m\r\n ual page, into the default \u001b[1mtroff\u001b[0m or \u001b[1mgroff\u001b[0m format and pipe it to the\u001b[m\r\n\u001b[7m Manual page man(1) line 67 (press h for help or q to quit)\u001b[27m\u001b[K"],
["search + 10.755837", "o", "\r\u001b[K/\r\u001b[K"],
["search + 10.75625", "o", " printer named \u001b[4mps\u001b[24m. The default output for \u001b[1mgroff\u001b[0m is usually Post‐\u001b[m\r\n Script. \u001b[1m\u001b[7mman\u001b[27m\u001b[0m \u001b[1m--help\u001b[0m should advise as to which processor is bound to\u001b[m\r\n the \u001b[1m-t\u001b[0m option.\u001b[m\r\n\u001b[7m Manual page man(1) line 70 (press h for help or q to quit)\u001b[27m\u001b[K"],
["search + 11.707833", "o", "\r\u001b[K/\r\u001b[K"],
["search + 11.708289", "o", "\u001b[m\r\n \u001b[1m\u001b[7mman\u001b[27m\u001b[0m \u001b[1m-l\u001b[0m \u001b[1m-T\u001b[0m\u001b[4mdvi\u001b[24m \u001b[4m./foo.1x.gz\u001b[24m \u001b[1m>\u001b[0m \u001b[4m./foo.1x.dvi\u001b[24m\u001b[m\r\n This com\u001b[7mman\u001b[27md will decompress and format the nroff source \u001b[7mman\u001b[27mual\u001b[m\r\n\u001b[7m Manual page man(1) line 73 (press h for help or q to quit)\u001b[27m\u001b[K"],
["search + 12.75573", "o", "\r\u001b[K/\r\u001b[K"],
["search + 12.75613", "o", " page \u001b[4m./foo.1x.gz\u001b[24m into a \u001b[1mdevice\u001b[0m \u001b[1mindependent\u001b[0m \u001b[1m(dvi)\u001b[0m file. The redi‐\u001b[m\r\n rection is necessary as the \u001b[1m-T\u001b[0m flag causes output to be directed to\u001b[m\r\n \u001b[1mstdout\u001b[0m with no pager. The output could be viewed with a program\u001b[m\r\n\u001b[7m Manual page man(1) line 76 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 0.547791", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
["up + 0.54827", "o", "\u001b[KA\bA\r\u001b[K"],
["up + 0.548773", "o", "\u001b[H\u001bM\u001b[1mEXAMPLES\u001b[0m\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 75 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 1.339862", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
["up + 1.340289", "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bM\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 74 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 2.035805", "o", "\r\u001b[K \u001b[KESC\b\b\bESC"],
["up + 2.036168", "o", "\u001b[KO\bO\u001b[KA\bA\r\u001b[K\u001b[H\u001bM \u001b[7mman\u001b[27mual page.\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 73 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 2.827918", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
["up + 2.82833", "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bM eral exclusive invocations as is shown in the \u001b[1mSYNOPSIS\u001b[0m section of this\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 72 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 3.459969", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
["up + 3.46038", "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bM possible invocations. In some cases it is advisable to illustrate sev‐\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 71 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 4.059878", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
["up + 4.060296", "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bM The com\u001b[7mman\u001b[27md or function illustration is a pattern that should match all\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 70 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 4.731672", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
["up + 4.73192", "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bM\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 69 (press h for help or q to quit)\u001b[27m\u001b[K"],
["up + 5.331857", "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO\u001b[KA\bA\r\u001b[K"],
["up + 5.332293", "o", "\u001b[H\u001bM nal, and will typically use underlined or coloured text instead.\u001b[m\r\n\u001b[24;1H\r\u001b[K\u001b[7m Manual page man(1) line 68 (press h for help or q to quit)\u001b[27m\u001b[K"],
],
'text' : [
# EKRAN: man - przewijnaie stron
'Zapewne zauważyliśmy że dokumentację man przeglądaliśmy ekran po ekranie, <m> natomiast informacje wypisywane przez wywołanie komendy <m> z opcją help wypisywały się hurtem na ekran. <m>'
'Dzieje się tak dlatego że polecenie man korzysta z programu <m> nazywanego pagerem do podziału tekstu na strony. <m>'
'Rolę tą zazwyczaj pełni more lub less a kolejne strony <m> można wyświetlać z użyciem spacji. <mark name="search" />'
# EKRAN: man - wyszukiwanie
'Oba te programy pozwalają także na wyszukiwanie z użyciem ukośnika, <m> rozpoczynającego wprowadzenie szukanego tekstu <m> i klawisza n do wyszukania kolejnego wystąpienia. <m>'
'Natomiast zakończenie działania odbywa się za pomocą klawisza q. <m>'
'Zarówno taki sposób wyszukiwania jak też zamykania programu <m> jest wart zapamiętania, gdyż jest często spotykaną konwencją. <mark name="up" />'
# EKRAN: man - przewijnaie w góre linia po linii
'Less jest bardziej rozbudowany niż more i pozwala także na <m> przewijanie linia po linii, przewijanie w obu kierunkach <m> z użyciem strzałek oraz page up i page down, <m> a także wyszukiwanie wstecz z użyciem shift n <m>'
]
},
{
'console': [
[0.058688, "o", eduMovie.clear + eduMovie.prompt()],
[0.69478, "o", "l"],
[0.886743, "o", "e"],
[1.142775, "o", "s"],
[1.294708, "o", "s"],
[1.454712, "o", " "],
[1.678724, "o", "/"],
[1.838742, "o", "e"],
[2.086702, "o", "t"],
[2.452806, "o", "c/"],
[2.94277, "o", "p"],
[3.478765, "o", "a"],
[3.702748, "o", "s"],
[3.940034, "o", "\u0007swd"],
[4.270745, "o", "\r\n"],
[4.279067, "o", "\u001b[?1049h\u001b[22;0;0t\u001b[?1h\u001b=\r"],
[4.279456, "o", "root:x:0:0:root:/root:/bin/bash\r\ndaemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin\r\nbin:x:2:2:bin:/bin:/usr/sbin/nologin\r\nsys:x:3:3:sys:/dev:/usr/sbin/nologin\r\nsync:x:4:65534:sync:/bin:/bin/sync\r\ngames:x:5:60:games:/usr/games:/usr/sbin/nologin\r\nman:x:6:12:man:/var/cache/man:/usr/sbin/nologin\r\nlp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin\r\nmail:x:8:8:mail:/var/mail:/usr/sbin/nologin\r\nnews:x:9:9:news:/var/spool/news:/usr/sbin/nologin\r\nuucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin\r\nproxy:x:13:13:proxy:/bin:/usr/sbin/nologin\r\nwww-data:x:33:33:www-data:/var/www:/usr/sbin/nologin\r\nbackup:x:34:34:backup:/var/backups:/usr/sbin/nologin\r\nlist:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin\r\nirc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin\r\ngnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologi \bn\r\nnobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin\r\nrrp:x:1000:1000:Robert Paciorek,,,:/rrp:/bin/bash"],
[4.27982, "o", "\r\nmessagebus:x:101:104::/var/run/dbus:/bin/false\r\nsshd:x:102:65534::/var/run/sshd:/usr/sbin/nologin\r\nsystemd-timesync:x:103:111:systemd Time Synchronization,,,:/run/systemd:/bin/fal \b\u001b[7m/etc/passwd\u001b[27m\u001b[K"],
[5.254821, "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
[5.255221, "o", "\u001b[KB\bB\r\u001b[Kse\r\n:\u001b[K"],
[5.638786, "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
[5.639159, "o", "\u001b[KB\bB\r\u001b[Ksystemd-network:x:105:113:systemd Network Management,,,:/run/systemd/netif:/bin/ \b:\u001b[K"],
[6.83884, "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
[6.839274, "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bMdaemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin\r\n\u001b[24;1H\r\u001b[K:\u001b[K"],
[7.126802, "o", "\r\u001b[K \u001b[KESC\b\b\bESC\u001b[KO\bO"],
[7.127176, "o", "\u001b[KA\bA\r\u001b[K\u001b[H\u001bMroot:x:0:0:root:/root:/bin/bash\r\n\u001b[24;1H\r\u001b[K:\u001b[K"],
],
'text' : [
'Polecenia te mogą być także użyte do wyświetlania plików, <m> a także, dzięki przekierowaniom strumieni, <m> do podziału na strony outputu innych poleceń. <m>'
]
},
]
| 173.795775 | 1,738 | 0.678066 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23,172 | 0.935638 |
299c02cae606323659e0dd5bb1c799eaccfa8b0a | 2,109 | py | Python | setup.py | tilakpatidar/pytest-snowflake_bdd | db49f0a6d844828b607a2717b96bba517995cf72 | [
"MIT"
] | null | null | null | setup.py | tilakpatidar/pytest-snowflake_bdd | db49f0a6d844828b607a2717b96bba517995cf72 | [
"MIT"
] | null | null | null | setup.py | tilakpatidar/pytest-snowflake_bdd | db49f0a6d844828b607a2717b96bba517995cf72 | [
"MIT"
] | 1 | 2022-01-24T08:26:08.000Z | 2022-01-24T08:26:08.000Z | #!/usr/bin/env python
# -*- coding: utf-8 -*-
import codecs
import os
from setuptools import setup
def read(fname):
file_path = os.path.join(os.path.dirname(__file__), fname)
return codecs.open(file_path, encoding='utf-8').read()
gh_run_number = os.environ.get("BUILD_NUMBER", None)
build_number = None if gh_run_number is None or gh_run_number == "" else gh_run_number
version = '0.2.2'
setup(
name='pytest-snowflake_bdd',
version=f"{version}-{build_number}" if build_number else version,
author='Tilak Patidar',
author_email='[email protected]',
maintainer='Tilak Patidar',
maintainer_email='[email protected]',
license='MIT',
url='https://github.com/tilakpatidar/pytest-snowflake_bdd',
description='Setup test data and run tests on snowflake in BDD style!',
long_description=read('README.rst'),
py_modules=['pytest_snowflake_bdd'],
python_requires='>=3.6.7',
install_requires=['pytest>=6.2.0', 'pytest-bdd>=3.2.1', 'snowflake-sqlalchemy>=1.3.2', 'SQLAlchemy>=1.4.27', \
'pandas>=0.25.3', 'python-dateutil>=2.8.2'],
tests_require=[
'tox',
],
classifiers=[
'Development Status :: 4 - Beta',
'Framework :: Pytest',
'Intended Audience :: Developers',
'Topic :: Software Development :: Testing',
'Topic :: Database',
'Topic :: Software Development :: Testing :: BDD',
'Programming Language :: Python',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: Implementation :: CPython',
'Programming Language :: Python :: Implementation :: PyPy',
'Framework :: Pytest',
'Operating System :: OS Independent',
'License :: OSI Approved :: MIT License',
],
packages=["pytest_snowflake_bdd"],
entry_points={
'pytest11': [
'pytest-snowflake-bdd = pytest_snowflake_bdd.plugin',
],
},
)
| 33.47619 | 114 | 0.625889 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,173 | 0.556188 |
299c9b32319909c8f36fc5af498db57a782db34f | 437 | py | Python | integration_tests/test_12_dmaap.py | krasm/python-onapsdk | 87cd3017fc542a8afd3be51fbd89934ed87ed3a7 | [
"Apache-2.0"
] | 4 | 2020-06-13T04:51:27.000Z | 2021-01-06T15:00:51.000Z | integration_tests/test_12_dmaap.py | krasm/python-onapsdk | 87cd3017fc542a8afd3be51fbd89934ed87ed3a7 | [
"Apache-2.0"
] | 10 | 2021-09-20T15:42:47.000Z | 2021-09-23T12:49:51.000Z | integration_tests/test_12_dmaap.py | krasm/python-onapsdk | 87cd3017fc542a8afd3be51fbd89934ed87ed3a7 | [
"Apache-2.0"
] | 8 | 2020-08-28T10:56:02.000Z | 2022-02-11T17:06:03.000Z | # SPDX-License-Identifier: Apache-2.0
# Copyright 2020 Nokia
import pytest
import logging
import os
from onapsdk.dmaap.dmaap import Dmaap
logging.basicConfig(level=os.environ.get("LOGLEVEL", "DEBUG"))
@pytest.mark.integration
def test_should_get_all_topics_from_dmaap():
# given
# when
response = Dmaap.get_all_topics(basic_auth={'username': 'demo', 'password': 'demo123456!'})
# then
assert len(response) == 9
| 20.809524 | 95 | 0.729977 | 0 | 0 | 0 | 0 | 231 | 0.528604 | 0 | 0 | 134 | 0.306636 |
299d93368abb2922353eb3246c80b4d0b6d61d48 | 390 | py | Python | awx/main/migrations/0112_deployhistory_date.py | Pavloid21/awx | 224827f6060013b996eb8210597bca68cda65d40 | [
"Apache-2.0"
] | null | null | null | awx/main/migrations/0112_deployhistory_date.py | Pavloid21/awx | 224827f6060013b996eb8210597bca68cda65d40 | [
"Apache-2.0"
] | null | null | null | awx/main/migrations/0112_deployhistory_date.py | Pavloid21/awx | 224827f6060013b996eb8210597bca68cda65d40 | [
"Apache-2.0"
] | null | null | null | # Generated by Django 2.2.8 on 2020-03-25 13:50
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('main', '0111_auto_20200325_1311'),
]
operations = [
migrations.AddField(
model_name='deployhistory',
name='date',
field=models.DateTimeField(auto_now=True),
),
]
| 20.526316 | 54 | 0.602564 | 297 | 0.761538 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 0.253846 |
299f9a135fb0ac674c3200f9214021f3cf9fd561 | 920 | py | Python | policy.py | shantanusingh16/Pytorch-DQN | b7d3270e9e345e85e5c5a5216109529879ab77bd | [
"MIT"
] | 4 | 2018-09-23T19:58:24.000Z | 2022-03-22T20:32:36.000Z | policy.py | shantanusingh16/Pytorch-DQN | b7d3270e9e345e85e5c5a5216109529879ab77bd | [
"MIT"
] | null | null | null | policy.py | shantanusingh16/Pytorch-DQN | b7d3270e9e345e85e5c5a5216109529879ab77bd | [
"MIT"
] | 2 | 2019-05-22T06:02:38.000Z | 2019-10-18T17:08:24.000Z | import numpy as np
import torch
from utils.helpers import process_state, device
def make_epsilon_greedy_policy(estimator, nA):
"""
:param estimator: model that returns q values for a given statem/action pair
:param nA: number of actions in the environment
:return: A function that takes in a state and an epsilon and returns probs for each
action in the form of a numpy array of length nA
"""
def policy_fn(state, epsilon):
"""
:param state: tensor of b x 1 x 84 x 84
:param epsilon:
:return: action probabilities, of size b x nA
"""
A = torch.ones(nA) * epsilon / nA
state = torch.from_numpy(state).float().to(device).unsqueeze(0) / 255.0
q_vals = estimator.forward(state)
best_action = torch.argmax(q_vals, dim=0).unsqueeze(-1) # b
A[best_action] += (1.0 - epsilon)
return A
return policy_fn | 36.8 | 87 | 0.646739 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 434 | 0.471739 |
29a1b5f087c1d14e9f6ed91d094e1aa061d5a041 | 2,798 | py | Python | phonotactics/onsets/onsets.py | shlomo-Kallner/coventreiya | aa0773693220025f8d2c23644a2c5d9d884773e9 | [
"Apache-2.0"
] | null | null | null | phonotactics/onsets/onsets.py | shlomo-Kallner/coventreiya | aa0773693220025f8d2c23644a2c5d9d884773e9 | [
"Apache-2.0"
] | null | null | null | phonotactics/onsets/onsets.py | shlomo-Kallner/coventreiya | aa0773693220025f8d2c23644a2c5d9d884773e9 | [
"Apache-2.0"
] | null | null | null |
__name__ = 'onsets'
__version__ = '1.5.1'
__package__ = 'phonotactics'
# imports
#some import machinery checking and manipulations...
#import sys
#import os
#from os import path
#if '__file__' in dir():
# __mod_path = path.dirname(__file__)
# if __mod_path not in sys.path:
# sys.path.append(__mod_path)
# __pack_path = path.dirname(__mod_path)
# if __pack_path not in sys.path:
# sys.path.append(__pack_path)
from coventreiya.utils.ver import ver
from coventreiya.utils.ver import gen_ver
from coventreiya.utils.ver import Version_Registry
from coventreiya.phonotactics.abc import abc
########################################################
#
#
# Generating the Onsets
#
#
class Onsets(abc):
def __init__(self, min_length=0, max_length=0,
major=0, minor=0, patch=0, version=None):
super().__init__(min_length, max_length,
major, minor, patch, version)
pass
################################################################################
#
# Version Information Control & UnExported [but Versioned] Object Instantiation
#
#
__versions = Version_Registry( Onsets() )
def register( version, functor ):
if isinstance( version, Onsets ):
return __versions.register( version, functor )
else:
raise TypeError()
def get_version(major=0, minor=0, patch=0, version=None):
return __versions.get( major, minor, patch, version )
def gen_version( major=0, minor=0, patch=0, version=None ):
return __versions.gen( major, minor, patch, version )
def get_all_versions():
return list(__versions)
###################################################################################
#
# Getting/Setting the default/current version...
#
def get_current():
return __versions.current()
def get_current_version():
return __versions.current().version()
def reset_current_version( major=0, minor=0, patch=0, version=None ):
v = gen_ver(major, minor, patch, version)
return __versions.current(v)
###################################################################################
#
# The original default version -- used for the(now obsolete and removed)
# "default" gen_*_ functions and the pre-generated lists...
# Note: the *COMPATABILITY_ONLY* default gen_*_ functions will self-update to
# accomidate resets (they call into *THE_CURRENT_VERSION_OBJECT*!!)
# the PRE-GENERATED LISTS will not be updated at all..
# Note: VERSION 2_0: the *OLD* gen_*_ functions no longer self-update as
# they are now directly linked to version 1.5.1 only.
#
# from ver_1_5_1 import *
# __versions.current(gen_ver(1,5,1))
| 30.086022 | 84 | 0.592566 | 248 | 0.088635 | 0 | 0 | 0 | 0 | 0 | 0 | 1,447 | 0.517155 |
29a35e6f75f695c4d26d13d7a9c5d6dff08f119d | 6,228 | py | Python | aptitudetech_private/aptitudetech_private/doctype/simplified_time_reporting/simplified_time_reporting.py | CloudGround/aptitudetech_private | d4d150226bd33ea0c76086264286ae7cae52457f | [
"MIT"
] | null | null | null | aptitudetech_private/aptitudetech_private/doctype/simplified_time_reporting/simplified_time_reporting.py | CloudGround/aptitudetech_private | d4d150226bd33ea0c76086264286ae7cae52457f | [
"MIT"
] | null | null | null | aptitudetech_private/aptitudetech_private/doctype/simplified_time_reporting/simplified_time_reporting.py | CloudGround/aptitudetech_private | d4d150226bd33ea0c76086264286ae7cae52457f | [
"MIT"
] | 1 | 2019-05-17T00:04:05.000Z | 2019-05-17T00:04:05.000Z |
# -*- coding: utf-8 -*-
# Copyright (c) 2019, Aptitudetech and contributors
# For license information, please see license.txt
from __future__ import unicode_literals
import frappe
from frappe import _
from frappe.model.document import Document
class SimplifiedTimeReporting(Document):
def onload_post_render(self):
import json
#https://stackoverflow.com/a/610923/8291000
issues = self.load_closed_issues()
remaining_issues = []
try:
if self.timesheet_detail:
td_issues=[td.issue for td in self.get('timesheet_detail')]
for issue in issues: #Load newest issues - not in the timesheet table yet
if issue['name'] not in td_issues:
remaining_issues.append(issue)
self.add_timesheet_rows(remaining_issues)
except AttributeError:
self.employee = frappe.db.get_value("Employee", {"user_id" : frappe.session.user}, "name")
self.add_timesheet_rows(issues)
def add_timesheet_rows(self, issues = []):
import datetime
from datetime import datetime
if issues:
for issue in issues:
end_time_obj = datetime.strptime(issue['reported_work_end_time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
start_time_obj = datetime.strptime(issue['reported_work_start_time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
diff_time = self.get_diff_time(start_time_obj, end_time_obj)
detail = {
'issue': issue['name'],
'from_time': issue['reported_work_start_time'],
'to_time': issue['reported_work_end_time'],
'note' : issue['description'],
'project' : issue['project'] if issue['project'] else None,
'hours' : diff_time
}
self.append("timesheet_detail", detail)
def before_save(self):
import json, datetime
from frappe.utils import now_datetime
from datetime import datetime
_now = now_datetime()
self.posting_date = datetime.strptime(str(_now).split('.')[:-1][0], '%Y-%m-%d %H:%M:%S')
self.total_reported_time = self.get_total_reported_time()
self.total_captured_time = self.get_total_captured_time()
def on_submit(self):
import json
import datetime
from frappe.utils import now_datetime, getdate
if self.workflow_state == 'Approved' or self.workflow_state == 'To Approve':
_now = now_datetime()
expenses_list = []
if self.expenses:
data = json.loads(str(frappe.as_json(self.expenses))) #need to be as_json, otherwhise the json won't load because of the datetime attribute
for expense in data:
try:
description = expense["description"]
except:
description = ""
exp = {
'expense_date' : expense['date'],
'expense_type' : expense['reason'],
'description' : description,
'claim_amount' : expense['claim_amount'],
'sanctioned_amount' : expense['claim_amount']
}
expenses_list.append(exp)
frappe.new_doc('Expense Claim').update({
"employee": self.employee,
"approval_status" : "Draft",
"posting_date" : datetime.datetime.now().date(),
"expenses" : expenses_list,
"company" : "Aptitude Technologies"
}).save()
for detail in self.get('timesheet_detail'):
if not detail.billable:
continue
service = frappe.db.get_value('Dynamic Link', {'parenttype': 'Issue', 'parent': detail.issue, 'link_doctype': 'Service'}, 'link_name')
if not service:
continue
service_plan = frappe.db.get_value('Service', service, 'service_plan')
metered_feature = frappe.db.get_value('Metered Feature', {'service_plan': service_plan})
if not metered_feature:
continue
args = {
'service': service,
'customer': frappe.db.get_value('Service', service, 'customer'),
'metered_feature': metered_feature,
'consumed_units': detail.hours,
'start_date': getdate(detail.from_time),
'end_date': getdate(detail.to_date),
'item_group': frappe.db.get_value('Employee', self.employee, 'employee_name'),
'item_code': detail.name,
'item_type': detail.activity_type,
'unit': 'Hours'
}
frappe.new_doc('Metered Feature Units Log').update(args).insert()
def get_total_reported_time(self):
import json
total_reported_time = 0
issues = json.loads(str(frappe.as_json(self.timesheet_detail)))
for issue in issues:
total_reported_time = total_reported_time + issue['hours']
return total_reported_time
def get_total_captured_time(self):
import datetime
from datetime import datetime
total_captured_time = 0
issues = self.load_closed_issues()
for issue in issues:
end_time_obj = datetime.strptime(issue['captured_end_working_time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
start_time_obj = datetime.strptime(issue['captured_start_working_time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
diff_time = self.get_diff_time(start_time_obj, end_time_obj)
# diff_time = self.get_diff_time(issue['captured_start_working_time'], issue['captured_end_working_time'])
total_captured_time = total_captured_time + diff_time
return total_captured_time
def get_diff_time(self, start_time, end_time):
import datetime
return round(self.round_number_quarter((end_time - start_time).total_seconds()/3600), 2)
def round_number_quarter(self, number):
import math
return math.ceil(number*4)/4
def load_closed_issues(self):
import datetime, json
cur_month = datetime.datetime.now().strftime("%m")
cur_year = datetime.datetime.now().strftime("%Y")
next_month = int(cur_month) + 1
next_year = cur_year
if next_month == 13:
next_month = 1
next_year = int(next_year) + 1
start_date = "{0}-{1}-01".format(cur_year, cur_month)
end_date = "{0}-{1}-01".format(next_year, next_month)
closed_issues = frappe.db.get_all("Issue", {"kanban_status" : "Completed", "reported_work_start_time" : [ ">=", start_date ], "reported_work_end_time" : [ "<=", end_date ]},['_assign, name, reported_work_start_time, reported_work_end_time, description, captured_start_working_time, captured_end_working_time'])
self_issues = []
for issue in closed_issues:
if issue['_assign'] and frappe.session.user in issue['_assign']:
issue.project = frappe.db.get_value('Task', {'issue' : issue['name']}, 'project')
self_issues.append(issue)
return json.loads(str(frappe.as_json(self_issues)))
| 34.793296 | 312 | 0.701028 | 5,975 | 0.959377 | 0 | 0 | 0 | 0 | 0 | 0 | 1,737 | 0.278902 |
29a405435385e49ddae23458da015f3ba0c567e1 | 442 | py | Python | 6 - Python/Collections/7 - Piling Up!.py | Terence-Guan/Python.HackerRank | 165a5f0e739c7678dfac7eae95443018e2167c3d | [
"MIT"
] | 88 | 2016-10-23T16:41:14.000Z | 2019-12-30T23:51:47.000Z | HackerRank/6 - Python/Collections/7 - Piling Up!.py | natalie-o-perret/coding-challenges | 9a242e0ec54488f59be82592822b31ff51af1633 | [
"MIT"
] | 1 | 2018-10-13T14:31:54.000Z | 2018-10-13T14:31:54.000Z | HackerRank/6 - Python/Collections/7 - Piling Up!.py | natalie-o-perret/coding-challenges | 9a242e0ec54488f59be82592822b31ff51af1633 | [
"MIT"
] | 82 | 2017-02-01T17:02:56.000Z | 2020-02-01T11:45:58.000Z | from collections import deque
T = int(input())
for t in range(T):
n = int(input())
lengths = deque(map(int, input().split()))
top = max(lengths)
while len(lengths) > 0:
left = lengths[0]
right = lengths[-1]
if (right >= left) and (right <= top):
top = right
lengths.pop()
elif (left >= right) and (left <= top):
top = left
lengths.popleft()
else:
break
if len(lengths) == 0:
print("YES")
else:
print("NO")
| 19.217391 | 43 | 0.595023 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0.020362 |
29a40a64c821d23b2e28418293629df23986810c | 6,343 | bzl | Python | tools/bzl/deps.bzl | xshaun/compiler-programl | f90bcd84700d0f245c80440a3d5fd29370d2f973 | [
"Apache-2.0"
] | null | null | null | tools/bzl/deps.bzl | xshaun/compiler-programl | f90bcd84700d0f245c80440a3d5fd29370d2f973 | [
"Apache-2.0"
] | null | null | null | tools/bzl/deps.bzl | xshaun/compiler-programl | f90bcd84700d0f245c80440a3d5fd29370d2f973 | [
"Apache-2.0"
] | null | null | null | load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
def programl_deps():
http_archive(
name="labm8",
sha256="e4bc669322533e7615f689e5e8a810446d0c803be2e3b21e99a4e0135709755e",
strip_prefix="labm8-b98301dec615465a6567bed4ec4131753d1f8b32",
urls=[
"https://github.com/ChrisCummins/labm8/archive/b98301dec615465a6567bed4ec4131753d1f8b32.tar.gz"
],
)
http_archive(
name="com_github_nelhage_rules_boost",
sha256="4031539fe0af832c6b6ed6974d820d350299a291ba7337d6c599d4854e47ed88",
strip_prefix="rules_boost-4ee400beca08f524e7ea3be3ca41cce34454272f",
urls=[
"https://github.com/nelhage/rules_boost/archive/4ee400beca08f524e7ea3be3ca41cce34454272f.tar.gz"
],
)
http_archive(
name="llvm",
sha256="ea0dbab56d11e78006c68c39bc99da672bb6adc7ca03237ba4eb88887bf91a93",
strip_prefix="bazel_llvm-ae9ef2a711c5744fe52c5666d76976a3c6a3128b",
urls=[
"https://github.com/ChrisCummins/bazel_llvm/archive/ae9ef2a711c5744fe52c5666d76976a3c6a3128b.tar.gz"
],
)
http_archive(
name="rules_python",
sha256="64a3c26f95db470c32ad86c924b23a821cd16c3879eed732a7841779a32a60f8",
strip_prefix="rules_python-748aa53d7701e71101dfd15d800e100f6ff8e5d1",
urls=[
"https://github.com/bazelbuild/rules_python/archive/748aa53d7701e71101dfd15d800e100f6ff8e5d1.tar.gz"
],
)
http_archive(
name="com_github_chriscummins_rules_bats",
strip_prefix="rules_bats-6600627545380d2b32485371bed36cef49e9ff68",
sha256="bfaa7a5818e7d6b142ac6e564f383f69f72ea593eb7de360e9aa15db69f67505",
urls=[
"https://github.com/ChrisCummins/rules_bats/archive/6600627545380d2b32485371bed36cef49e9ff68.tar.gz"
],
)
http_archive(
name="subprocess",
build_file="@programl//:third_party/subprocess.BUILD",
sha256="886df0a814a7bb7a3fdeead22f75400abd8d3235b81d05817bc8c1125eeebb8f",
strip_prefix="cpp-subprocess-2.0",
urls=["https://github.com/arun11299/cpp-subprocess/archive/v2.0.tar.gz",],
)
http_archive(
name="ctpl",
build_file="@programl//:third_party/ctpl.BUILD",
sha256="8c1cec7c570d6d84be1d29283af5039ea27c3e69703bd446d396424bf619816e",
strip_prefix="CTPL-ctpl_v.0.0.2",
urls=["https://github.com/vit-vit/CTPL/archive/ctpl_v.0.0.2.tar.gz"],
)
http_archive(
name="fmt",
build_file="@programl//:third_party/fmt.BUILD",
sha256="1cafc80701b746085dddf41bd9193e6d35089e1c6ec1940e037fcb9c98f62365",
strip_prefix="fmt-6.1.2",
urls=["https://github.com/fmtlib/fmt/archive/6.1.2.tar.gz"],
)
http_archive(
name="pybind11_json",
build_file="@programl//:third_party/pybind11_json.BUILD",
sha256="45957f8564e921a412a6de49c578ef1faf3b04e531e859464853e26e1c734ea5",
strip_prefix="pybind11_json-0.2.4/include",
urls=["https://github.com/pybind/pybind11_json/archive/0.2.4.tar.gz"],
)
http_archive(
name="nlohmann_json",
build_file="@programl//:third_party/nlohmann_json.BUILD",
sha256="87b5884741427220d3a33df1363ae0e8b898099fbc59f1c451113f6732891014",
strip_prefix="single_include",
urls=[
"https://github.com/nlohmann/json/releases/download/v3.7.3/include.zip"
],
)
http_archive(
name="build_stack_rules_proto",
sha256="85ccc69a964a9fe3859b1190a7c8246af2a4ead037ee82247378464276d4262a",
strip_prefix="rules_proto-d9a123032f8436dbc34069cfc3207f2810a494ee",
urls=[
"https://github.com/stackb/rules_proto/archive/d9a123032f8436dbc34069cfc3207f2810a494ee.tar.gz"
],
)
http_archive(
name="tbb_mac",
build_file="@programl//:third_party/tbb_mac.BUILD",
sha256="6ff553ec31c33b8340ce2113853be1c42e12b1a4571f711c529f8d4fa762a1bf",
strip_prefix="tbb2017_20170226oss",
urls=[
"https://github.com/01org/tbb/releases/download/2017_U5/tbb2017_20170226oss_mac.tgz"
],
)
http_archive(
name="tbb_lin",
build_file="@programl//:third_party/tbb_lin.BUILD",
sha256="c4cd712f8d58d77f7b47286c867eb6fd70a8e8aef097a5c40f6c6b53d9dd83e1",
strip_prefix="tbb2017_20170226oss",
urls=[
"https://github.com/01org/tbb/releases/download/2017_U5/tbb2017_20170226oss_lin.tgz"
],
)
http_archive(
name="pybind11",
build_file="@programl//:third_party/pybind11_bazel/pybind11.BUILD",
sha256="1eed57bc6863190e35637290f97a20c81cfe4d9090ac0a24f3bbf08f265eb71d",
strip_prefix="pybind11-2.4.3",
urls=["https://github.com/pybind/pybind11/archive/v2.4.3.tar.gz"],
)
http_archive(
name="com_google_absl",
sha256="d10f684f170eb36f3ce752d2819a0be8cc703b429247d7d662ba5b4b48dd7f65",
strip_prefix="abseil-cpp-3088e76c597e068479e82508b1770a7ad0c806b6",
url="https://github.com/abseil/abseil-cpp/archive/3088e76c597e068479e82508b1770a7ad0c806b6.tar.gz",
)
http_archive(
name="com_github_gflags_gflags",
sha256="34af2f15cf7367513b352bdcd2493ab14ce43692d2dcd9dfc499492966c64dcf",
strip_prefix="gflags-2.2.2",
urls=["https://github.com/gflags/gflags/archive/v2.2.2.tar.gz"],
)
http_archive(
name="gtest",
sha256="9dc9157a9a1551ec7a7e43daea9a694a0bb5fb8bec81235d8a1e6ef64c716dcb",
strip_prefix="googletest-release-1.10.0",
urls=[
"https://github.com/google/googletest/archive/release-1.10.0.tar.gz",
],
)
http_archive(
name="com_github_google_benchmark",
sha256="616f252f37d61b15037e3c2ef956905baf9c9eecfeab400cb3ad25bae714e214",
strip_prefix="benchmark-1.4.0",
url="https://github.com/google/benchmark/archive/v1.4.0.tar.gz",
)
http_archive(
name="org_tensorflow",
sha256="92116bfea188963a0e215e21e67c3494f6e1e6959f44dfbcc315f66eb70b5f83",
strip_prefix="tensorflow-f13f807c83c0d8d4d1ef290a17f26fe884ccfe2f",
urls=[
"https://github.com/ChrisCummins/tensorflow/archive/f13f807c83c0d8d4d1ef290a17f26fe884ccfe2f.tar.gz"
],
)
http_archive(
name="io_bazel_rules_closure",
sha256="5b00383d08dd71f28503736db0500b6fb4dda47489ff5fc6bed42557c07c6ba9",
strip_prefix="rules_closure-308b05b2419edb5c8ee0471b67a40403df940149",
urls=[
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_closure/archive/308b05b2419edb5c8ee0471b67a40403df940149.tar.gz",
"https://github.com/bazelbuild/rules_closure/archive/308b05b2419edb5c8ee0471b67a40403df940149.tar.gz", # 2019-06-13
],
)
| 35.836158 | 153 | 0.760366 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,485 | 0.707079 |
29a7a6484cb6277e0cdd34fa9a54d64187a477f7 | 1,082 | py | Python | matrix_multiplication_evolution_example.py | bobbywlindsey/stokepy | e7f4ad0c27d8fc22129558db6ae0dbbab0627ace | [
"MIT"
] | 9 | 2017-05-09T20:00:10.000Z | 2020-07-02T18:00:22.000Z | matrix_multiplication_evolution_example.py | bobbywlindsey/stokepy | e7f4ad0c27d8fc22129558db6ae0dbbab0627ace | [
"MIT"
] | null | null | null | matrix_multiplication_evolution_example.py | bobbywlindsey/stokepy | e7f4ad0c27d8fc22129558db6ae0dbbab0627ace | [
"MIT"
] | 2 | 2017-08-10T14:47:07.000Z | 2019-01-25T02:37:34.000Z | import stokepy as sp
import numpy as np
# instantiate class
fmc = sp.FiniteMarkovChain()
# create initial distribution vector
phi = np.array([0, 0, 1, 0, 0])
# generate Markov chain with no boundary conditions
fmc.gen_from_params(phi, p = 0.6, num_states = 5, dim = 1)
# apply boundary condition: absorbing, reflecting, semi-reflecting
# only works for 1 dimension Markov chains at the moment
fmc.apply_boundary_condition(condition='absorbing')
# choose solution method like Matrix Multiplication Evolution
matrx_mult_evo = sp.MatrixMultiplicationEvolution(fmc, phi, steps = 2000,\
rec_class_states = [])
# run the solution
matrx_mult_evo.run()
# get data from the run
average_distribution = matrx_mult_evo.pi
tpdf = matrx_mult_evo.tpdf
absorption_proportions = matrx_mult_evo.absorption_proportions
apbrc = matrx_mult_evo.recurrent_class_absorbed_proportions
mean_absorption_time = matrx_mult_evo.mean_absorption_time
# plot absorption tiems for recurrent classes
matrx_mult_evo.plot_absorption()
| 33.8125 | 76 | 0.750462 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 386 | 0.356747 |
29a7cf6d7a2997edf3ae4f28829f450e4f401145 | 1,225 | py | Python | tests/__main__.py | nickswebsite/nickswebsite-serializer | 2c131a04a4105afae439670f96b5b72bdfe65854 | [
"Unlicense"
] | 2 | 2017-09-26T16:38:36.000Z | 2018-08-09T15:09:51.000Z | tests/__main__.py | nickswebsite/nickswebsite-serializer | 2c131a04a4105afae439670f96b5b72bdfe65854 | [
"Unlicense"
] | 8 | 2015-02-20T13:16:11.000Z | 2016-12-20T14:55:43.000Z | tests/__main__.py | nickswebsite/nickswebsite-serializer | 2c131a04a4105afae439670f96b5b72bdfe65854 | [
"Unlicense"
] | 6 | 2015-05-20T21:26:40.000Z | 2018-08-08T10:33:04.000Z | import doctest
import sys
import unittest
import r2dto
from tests.test_acceptance import AcceptanceTests
from tests.test_base_serializer import BaseSerializerTests
__all__ = ["doctest", "sys", "unittest", "r2dto", "AcceptanceTests", "BaseSerializerTests"]
try:
import pep8
except ImportError:
print("WARNING: pep8 not installed. Style will not be checked and therefore your build may fail when integrated"
"with the main branch.")
pep8 = None
PEP8_SOURCES = [
"r2dto/__init__.py",
"r2dto/base.py",
"r2dto/fields.py",
"r2dto/validators.py",
"tests/__init__.py",
"tests/__main__.py",
"tests/test_acceptance.py",
"tests/test_base_serializer.py",
]
if __name__ == "__main__":
if pep8 is not None:
sg = pep8.StyleGuide(max_line_length=120)
res = sg.check_files(PEP8_SOURCES)
if res.total_errors != 0:
print("pep8 failed")
sys.exit(1)
doctest_ctx = {
"Serializer": r2dto.Serializer,
"fields": r2dto.fields,
"ValidationError": r2dto.ValidationError,
}
results = doctest.testfile("../README.md", globs=doctest_ctx)
if results.failed != 0:
sys.exit(1)
unittest.main()
| 26.06383 | 117 | 0.660408 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 440 | 0.359184 |
29a7fecfec58a37e5770387c0619949240d50800 | 10,697 | py | Python | manager/jobs/jobs.py | jlbrewe/hub | c737669e6493ad17536eaa240bed3394b20c6b7d | [
"Apache-2.0"
] | 30 | 2016-03-26T12:08:04.000Z | 2021-12-24T14:48:32.000Z | manager/jobs/jobs.py | jlbrewe/hub | c737669e6493ad17536eaa240bed3394b20c6b7d | [
"Apache-2.0"
] | 1,250 | 2016-03-23T04:56:50.000Z | 2022-03-28T02:27:58.000Z | manager/jobs/jobs.py | jlbrewe/hub | c737669e6493ad17536eaa240bed3394b20c6b7d | [
"Apache-2.0"
] | 11 | 2016-07-14T17:04:20.000Z | 2021-07-01T16:19:09.000Z | """
Module that defines the interface between the `manager` (i.e Django) and the `broker` (i.e. RabbitMQ).
Defines three functions involved in a job's lifecycle:
- `dispatch_job` - send a job to a queue
- `update_job` - update the status of a job by checking it's (intermediate) result
- `check_job` - for a parent job, trigger any child jobs, and / or update it's status
- `cancel_job` - remove job from the queue, or terminate it if already started
"""
import datetime
import logging
import time
from celery import Celery, signature
from celery.result import AsyncResult
from django.conf import settings
from django.core.exceptions import PermissionDenied
from django.utils import timezone
from jobs.models import Job, JobMethod, JobStatus, Queue, Worker
logger = logging.getLogger(__name__)
# Setup the Celery app
app = Celery("manager", broker=settings.BROKER_URL, backend=settings.CACHE_URL)
app.conf.update(
# By default Celery will keep on trying to connect to the broker forever
# This overrides that. Initially try again immediately, then add 0.5 seconds for each
# subsequent try (with a maximum of 3 seconds).
# See https://github.com/celery/celery/issues/4296
broker_transport_options={
"max_retries": 10,
"interval_start": 0,
"interval_step": 0.5,
"interval_max": 3,
},
# Needed to ensure STARTED state is emitted
task_track_started=True,
)
def dispatch_job(job: Job) -> Job:
"""
Send a job to a queue.
Decides which queue a job should be sent to and sends it.
The queue can depend upon both the project and the account (either the
account that the project is linked to, or the default account of the job
creator).
"""
if not JobMethod.is_member(job.method):
raise ValueError("Unknown job method '{}'".format(job.method))
if job.method in settings.JOB_METHODS_STAFF_ONLY and (
not job.creator or not job.creator.is_staff
):
raise PermissionDenied
if JobMethod.is_compound(job.method):
children = job.children.all().order_by("id")
if len(children) == 0:
# If there are no children (e.g. a pull job for a project with no sources)
# then job is immediately finished
job.runtime = 0
job.is_active = False
job.status = JobStatus.SUCCESS.value
else:
if job.method == JobMethod.parallel.value:
# Dispatch all child jobs simultaneously
for child in children:
dispatch_job(child)
else:
# Dispatch the first child; subsequent children
# will be status WAITING and will get dispatched later
# on update of the parent.
for index, child in enumerate(children):
if index == 0:
dispatch_job(child)
else:
child.is_active = True
child.status = JobStatus.WAITING.value
child.save()
job.is_active = True
job.status = JobStatus.DISPATCHED.value
else:
# Find queues that have active workers on them
# order by descending priority
queues = list(
Queue.objects.filter(
workers__in=Worker.objects.filter(
# Has not finished
finished__isnull=True,
# Has been updated in the last x minutes
updated__gte=timezone.now() - datetime.timedelta(minutes=15),
),
).order_by("priority")
)
# Fallback to the default Stencila queue
# Apart from anything else having this fallback is useful in development
# because if means that the `overseer` service does not need to be running
# in order keep track of the numbers of workers listening on each queue
# (during development `worker`s listen to the default queue)
if len(queues) == 0:
logger.warning("No queues found with active workers")
queue, _ = Queue.get_or_create(
account_name="stencila", queue_name="default"
)
else:
if job.creator is None or job.project is None:
# Jobs created by anonymous users go on the lowest
# priority queue
priority = 1
else:
# The priority of other jobs is determined by the
# account tier of the project
priority = job.project.account.tier.id
queue = queues[min(len(queues), priority) - 1]
# Add the job's project id, key and secrets to it's kwargs.
# Doing this here ensures it is done for all jobs
# and avoids putting the secrets in the job's `params` field.
kwargs = dict(**job.params) if job.params else {}
kwargs["project"] = job.project.id if job.project else None
kwargs["key"] = job.key
kwargs["secrets"] = job.secrets
# Send the job to the queue
task = signature(
job.method, kwargs=kwargs, queue=queue.name, task_id=str(job.id), app=app,
)
task.apply_async()
job.queue = queue
job.is_active = True
job.status = JobStatus.DISPATCHED.value
job.save()
return job
def update_job(job: Job, data={}, force: bool = False) -> Job:
"""
Update a job.
This method is triggered by a PATCH request from the
`overseer` service. It updates the status, and other fields of
the job, and if the job has a parent, updates it's status too.
See https://stackoverflow.com/a/38267978 for important considerations
in using AsyncResult.
"""
# Avoid unnecessary update
if not job.is_active and not force:
return job
was_active = job.is_active
if JobMethod.is_compound(job.method):
# Update the status of compound jobs based on children
status = job.status
is_active = False
all_previous_succeeded = True
any_previous_failed = False
for child in job.get_children():
# If the child has a 'higher' status then update the
# status of the compound job
status = JobStatus.highest([status, child.status])
# If the child is still waiting then...
if child.status == JobStatus.WAITING.value:
# If all previous have succeeded, dispatch it
if all_previous_succeeded:
dispatch_job(child)
# If any previous have failed, cancel it
elif any_previous_failed:
cancel_job(child)
if child.status != JobStatus.SUCCESS.value:
all_previous_succeeded = False
if child.status == JobStatus.FAILURE.value:
any_previous_failed = True
# If the child is still active then the compound job is active
if child.is_active:
is_active = True
job.is_active = is_active
job.status = JobStatus.RUNNING.value if is_active else status
else:
status = data.get("status")
assert status
# Do not do anything if the new status is lower rank than the
# existing status. This can exist for example when a job is
# terminated (the SUCCESS state is sent after TERMINATED)
if JobStatus.rank(status) < JobStatus.rank(job.status):
return job
# Update fields sent by `overseer` service, including `status`
for key, value in data.items():
setattr(job, key, value)
def async_result():
return AsyncResult(str(job.id), app=app)
# If job succeeded then get the result if we haven't already
if status == JobStatus.SUCCESS.value and job.result is None:
response = None
attempts = 0
while not response and attempts < 5:
try:
response = async_result().get(timeout=30)
except Exception:
# Catch all errors, but log them. Occasional
# errors encountered in prod include ResponseError and TimeoutError
logger.warning(
"Error getting async result",
exc_info=True,
extra=dict(id=job.id, method=job.method, attempts=attempts),
)
time.sleep(1)
attempts += 1
if response:
job.result = response.get("result")
job.log = response.get("log")
else:
logger.error(
"Unable to get async result",
extra=dict(id=job.id, method=job.method, attempts=attempts),
)
job.status = JobStatus.FAILURE.value
job.error = dict(
type="RuntimeError", message="Unable to get result of job"
)
# If job failed then get the error
# For FAILURE, `info` is the raised Exception
elif status == JobStatus.FAILURE.value:
info = async_result().info
if info:
job.error = dict(type=type(info).__name__, message=str(info))
# If the job has just ended then mark it as inactive
if JobStatus.has_ended(status):
job.is_active = False
# If the job is no longer active clear its secrets and run its callback
if was_active and not job.is_active:
job.secrets = None
job.run_callback()
# Save before updating parent (and then this again)
job.save()
# If the job has a parent then update it too
if job.parent:
update_job(job.parent)
return job
def cancel_job(job: Job) -> Job:
"""
Cancel a job.
This uses Celery's terminate options which will kill the worker child process.
This is not normally recommended but in this case is OK because there is only
one task per process.
See `worker/worker.py` for the reasoning for using `SIGUSR1`.
See https://docs.celeryproject.org/en/stable/userguide/workers.html#revoke-revoking-tasks
"""
if job.is_active:
if JobMethod.is_compound(job.method):
for child in job.children.all():
cancel_job(child)
else:
app.control.revoke(str(job.id), terminate=True, signal="SIGUSR1")
job.status = JobStatus.CANCELLED.value
job.is_active = False
job.secrets = None
job.save()
return job
| 37.013841 | 102 | 0.598299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,179 | 0.39067 |
29a916eb7d2d8321665bd4ae8b4fed316f3bc30f | 217 | py | Python | sklearn-nlp/utils/data_utils.py | fmailhot/sklearn-nlp | 3de76cb71fc85bc1231bdfa9cd78b5f98a0f14f7 | [
"BSD-3-Clause"
] | null | null | null | sklearn-nlp/utils/data_utils.py | fmailhot/sklearn-nlp | 3de76cb71fc85bc1231bdfa9cd78b5f98a0f14f7 | [
"BSD-3-Clause"
] | null | null | null | sklearn-nlp/utils/data_utils.py | fmailhot/sklearn-nlp | 3de76cb71fc85bc1231bdfa9cd78b5f98a0f14f7 | [
"BSD-3-Clause"
] | null | null | null | """Data loading/munging utilities.
This will need to leverage a lot of existing stuff
(e.g. numpy.genfromtxt)...
"""
import logging
class DataLoader(object):
def __init__(self, data_files=None):
pass
| 15.5 | 50 | 0.700461 | 79 | 0.364055 | 0 | 0 | 0 | 0 | 0 | 0 | 117 | 0.539171 |
29aa089f836846e2e53f80e15d88b7aa8aa740d4 | 12,785 | py | Python | assignment2/ptb-lm-loss-compute.py | adijo/ift6135-rnn | 88ebcd621cea4042f5ada688f2452ce25d02b761 | [
"Apache-2.0"
] | null | null | null | assignment2/ptb-lm-loss-compute.py | adijo/ift6135-rnn | 88ebcd621cea4042f5ada688f2452ce25d02b761 | [
"Apache-2.0"
] | null | null | null | assignment2/ptb-lm-loss-compute.py | adijo/ift6135-rnn | 88ebcd621cea4042f5ada688f2452ce25d02b761 | [
"Apache-2.0"
] | null | null | null | #!/bin/python
# coding: utf-8
import argparse
import time
import collections
import os
import sys
import torch
import torch.nn
from torch.autograd import Variable
import torch.nn as nn
import numpy as np
from models_grad import RNN, GRU
from models_grad import make_model as TRANSFORMER
parser = argparse.ArgumentParser(description='PyTorch Penn Treebank Language Modeling')
# Arguments you may need to set to run different experiments in 4.1 & 4.2.
parser.add_argument('--data', type=str, default='data',
help='location of the data corpus')
parser.add_argument('--model', type=str, default='TRANSFORMER',
help='type of recurrent net (RNN, GRU, TRANSFORMER)')
parser.add_argument('--optimizer', type=str, default='SGD_LR_SCHEDULE',
help='optimization algo to use; SGD, SGD_LR_SCHEDULE, ADAM')
parser.add_argument('--seq_len', type=int, default=35,
help='number of timesteps over which BPTT is performed')
parser.add_argument('--batch_size', type=int, default=20,
help='size of one minibatch')
parser.add_argument('--initial_lr', type=float, default=20.0,
help='initial learning rate')
parser.add_argument('--hidden_size', type=int, default=512,
help='size of hidden layers. IMPORTANT: for the transformer\
this must be a multiple of 16.')
parser.add_argument('--save_best', action='store_true',
help='save the model for the best validation performance')
parser.add_argument('--num_layers', type=int, default=2,
help='number of hidden layers in RNN/GRU, or number of transformer blocks in TRANSFORMER')
# Other hyperparameters you may want to tune in your exploration
parser.add_argument('--emb_size', type=int, default=200,
help='size of word embeddings')
parser.add_argument('--num_epochs', type=int, default=40,
help='number of epochs to stop after')
parser.add_argument('--dp_keep_prob', type=float, default=0.35,
help='dropout *keep* probability. drop_prob = 1-dp_keep_prob \
(dp_keep_prob=1 means no dropout)')
# Arguments that you may want to make use of / implement more code for
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_dir', type=str, default='',
help='path to save the experimental config, logs, model \
This is automatically generated based on the command line \
arguments you pass and only needs to be set if you want a \
custom dir name')
parser.add_argument('--evaluate', action='store_true',
help="use this flag to run on the test set. Only do this \
ONCE for each model setting, and only after you've \
completed ALL hyperparameter tuning on the validation set.\
Note we are not requiring you to do this.")
# DO NOT CHANGE THIS (setting the random seed makes experiments deterministic,
# which helps for reproducibility)
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
args = parser.parse_args()
argsdict = args.__dict__
argsdict['code_file'] = sys.argv[0]
# Use the model, optimizer, and the flags passed to the script to make the
# name for the experimental dir
print("\n########## Setting Up Experiment ######################")
flags = [flag.lstrip('--') for flag in sys.argv[1:]]
current_script_path = os.path.dirname(os.path.realpath(__file__))
experiment_path = os.path.join(os.path.sep, current_script_path, args.save_dir, '_'.join([argsdict['model'], argsdict['optimizer']] + flags))
# Increment a counter so that previous results with the same args will not
# be overwritten. Comment out the next four lines if you only want to keep
# the most recent results.
i = 0
while os.path.exists(experiment_path + "_" + str(i)):
i += 1
experiment_path = experiment_path + "_" + str(i)
# Creates an experimental directory and dumps all the args to a text file
os.makedirs(experiment_path)
print("\nPutting log in %s" % experiment_path)
argsdict['save_dir'] = experiment_path
with open(os.path.join(experiment_path, 'exp_config.txt'), 'w') as f:
for key in sorted(argsdict):
f.write(key+' '+str(argsdict[key])+'\n')
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
# Use the GPU if you have one
if torch.cuda.is_available():
print("Using the GPU")
device = torch.device("cuda")
else:
print("WARNING: You are about to run on cpu, and this will likely run out \
of memory. \n You can try setting batch_size=1 to reduce memory usage")
device = torch.device("cpu")
###############################################################################
#
# DATA LOADING & PROCESSING
#
###############################################################################
# HELPER FUNCTIONS
def _read_words(filename):
with open(filename, "r") as f:
return f.read().replace("\n", "<eos>").split()
def _build_vocab(filename):
data = _read_words(filename)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
id_to_word = dict((v, k) for k, v in word_to_id.items())
return word_to_id, id_to_word
def _file_to_word_ids(filename, word_to_id):
data = _read_words(filename)
return [word_to_id[word] for word in data if word in word_to_id]
# Processes the raw data from text files
def ptb_raw_data(data_path=None, prefix="ptb"):
train_path = os.path.join(data_path, prefix + ".train.txt")
valid_path = os.path.join(data_path, prefix + ".valid.txt")
test_path = os.path.join(data_path, prefix + ".test.txt")
word_to_id, id_2_word = _build_vocab(train_path)
train_data = _file_to_word_ids(train_path, word_to_id)
valid_data = _file_to_word_ids(valid_path, word_to_id)
test_data = _file_to_word_ids(test_path, word_to_id)
return train_data, valid_data, test_data, word_to_id, id_2_word
# Yields minibatches of data
def ptb_iterator(raw_data, batch_size, num_steps):
raw_data = np.array(raw_data, dtype=np.int32)
data_len = len(raw_data)
batch_len = data_len // batch_size
data = np.zeros([batch_size, batch_len], dtype=np.int32)
for i in range(batch_size):
data[i] = raw_data[batch_len * i:batch_len * (i + 1)]
epoch_size = (batch_len - 1) // num_steps
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = data[:, i*num_steps:(i+1)*num_steps]
y = data[:, i*num_steps+1:(i+1)*num_steps+1]
yield (x, y)
class Batch:
"""
Data processing for the transformer. This class adds a mask to the data.
"""
def __init__(self, x, pad=-1):
self.data = x
self.mask = self.make_mask(self.data, pad)
@staticmethod
def make_mask(data, pad):
"""
Create a mask to hide future words.
"""
def subsequent_mask(size):
""" helper function for creating the masks. """
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
mask = (data != pad).unsqueeze(-2)
mask = mask & Variable(
subsequent_mask(data.size(-1)).type_as(mask.data))
return mask
# LOAD DATA
print('Loading data from '+args.data)
raw_data = ptb_raw_data(data_path=args.data)
train_data, valid_data, test_data, word_to_id, id_2_word = raw_data
vocab_size = len(word_to_id)
print(' vocabulary size: {}'.format(vocab_size))
###############################################################################
#
# MODEL SETUP
#
###############################################################################
# NOTE ==============================================
# This is where your model code will be called. You may modify this code
# if required for your implementation, but it should not typically be necessary,
# and you must let the TAs know if you do so.
if args.model == 'RNN':
print("seq_length", args.seq_len)
print("batch_size", args.batch_size)
model = RNN(emb_size=args.emb_size, hidden_size=args.hidden_size,
seq_len=args.seq_len, batch_size=args.batch_size,
vocab_size=vocab_size, num_layers=args.num_layers,
dp_keep_prob=args.dp_keep_prob)
elif args.model == 'GRU':
model = GRU(emb_size=args.emb_size, hidden_size=args.hidden_size,
seq_len=args.seq_len, batch_size=args.batch_size,
vocab_size=vocab_size, num_layers=args.num_layers,
dp_keep_prob=args.dp_keep_prob)
elif args.model == 'TRANSFORMER':
if args.debug: # use a very small model
model = TRANSFORMER(vocab_size=vocab_size, n_units=16, n_blocks=2)
else:
# Note that we're using num_layers and hidden_size to mean slightly
# different things here than in the RNNs.
# Also, the Transformer also has other hyper-parameters
# (such as the number of attention heads) which can change it's behavior.
model = TRANSFORMER(vocab_size=vocab_size, n_units=args.hidden_size,
n_blocks=args.num_layers, dropout=1.-args.dp_keep_prob)
# these 3 attributes don't affect the Transformer's computations;
# they are only used in run_epoch
model.batch_size = args.batch_size
model.seq_len = args.seq_len
model.vocab_size = vocab_size
else:
print("Model type not recognized.")
model = model.to(device)
# LOSS FUNCTION
loss_fn = nn.CrossEntropyLoss()
if args.optimizer == 'ADAM':
optimizer = torch.optim.Adam(model.parameters(), lr=args.initial_lr)
# LEARNING RATE SCHEDULE
lr = args.initial_lr
lr_decay_base = 1 / 1.15
m_flat_lr = 14.0 # we will not touch lr for the first m_flat_lr epochs
###############################################################################
#
# DEFINE COMPUTATIONS FOR PROCESSING ONE EPOCH
#
###############################################################################
def repackage_hidden(h):
"""
Wraps hidden states in new Tensors, to detach them from their history.
This prevents Pytorch from trying to backpropagate into previous input
sequences when we use the final hidden states from one mini-batch as the
initial hidden states for the next mini-batch.
Using the final hidden states in this way makes sense when the elements of
the mini-batches are actually successive subsequences in a set of longer sequences.
This is the case with the way we've processed the Penn Treebank dataset.
"""
if isinstance(h, Variable):
return h.detach_()
else:
return tuple(repackage_hidden(v) for v in h)
def run_epoch(model, data):
"""
One epoch of training/validation (depending on flag is_train).
"""
model.eval()
state_dict = torch.load('saved_model.pt', map_location="cpu")
model.load_state_dict(state_dict)
total_loss = np.zeros(model.seq_len)
steps = 0
# LOOP THROUGH MINI BATCHES
for step, (x, y) in enumerate(ptb_iterator(data, model.batch_size, model.seq_len)):
steps += 1
if args.model != 'TRANSFORMER':
hidden = model.init_hidden()
hidden = hidden.to(device)
if args.model == 'TRANSFORMER':
batch = Batch(torch.from_numpy(x).long().to(device))
model.zero_grad()
outputs = model.forward(batch.data, batch.mask).transpose(1, 0)
# print ("outputs.shape", outputs.shape)
else:
inputs = torch.from_numpy(x.astype(np.int64)).transpose(0, 1).contiguous().to(device)#.cuda()
model.zero_grad()
hidden = repackage_hidden(hidden)
outputs, hidden = model(inputs, hidden)
targets = torch.from_numpy(y.astype(np.int64)).transpose(0, 1).contiguous().to(device)#.cuda()
total_loss += np.array([loss_fn(outputs[i], targets[i]).item() for i in range(len(outputs))])
total_loss /= float(steps)
print(total_loss)
###############################################################################
#
# RUN MAIN LOOP (TRAIN AND VAL)
#
###############################################################################
print("\n########## Running Main Loop ##########################")
# Gradient compute
num_epochs = 1
# MAIN LOOP
for epoch in range(num_epochs):
# RUN MODEL ON VALID DATA
run_epoch(model, valid_data)
| 38.509036 | 141 | 0.630504 | 767 | 0.059992 | 630 | 0.049276 | 544 | 0.04255 | 0 | 0 | 5,452 | 0.426437 |
29aa6576959454006572496dfd5c5ae886a2c7c2 | 78 | py | Python | Configuration/Eras/python/Modifier_run3_nanoAOD_devel_cff.py | malbouis/cmssw | 16173a30d3f0c9ecc5419c474bb4d272c58b65c8 | [
"Apache-2.0"
] | 852 | 2015-01-11T21:03:51.000Z | 2022-03-25T21:14:00.000Z | Configuration/Eras/python/Modifier_run3_nanoAOD_devel_cff.py | gartung/cmssw | 3072dde3ce94dcd1791d778988198a44cde02162 | [
"Apache-2.0"
] | 30,371 | 2015-01-02T00:14:40.000Z | 2022-03-31T23:26:05.000Z | Configuration/Eras/python/Modifier_run3_nanoAOD_devel_cff.py | gartung/cmssw | 3072dde3ce94dcd1791d778988198a44cde02162 | [
"Apache-2.0"
] | 3,240 | 2015-01-02T05:53:18.000Z | 2022-03-31T17:24:21.000Z | import FWCore.ParameterSet.Config as cms
run3_nanoAOD_devel = cms.Modifier()
| 19.5 | 40 | 0.820513 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29aa65c529d8ece9233ccff13d236d4bc2a7ac6d | 4,892 | py | Python | python-3.4.4.amd64/Lib/site-packages/idlexlib/extensions/ClearWindow.py | CSnap/photogate | 208272ef39f4e86f40d431da2ca523e21701f789 | [
"CC0-1.0"
] | 2 | 2018-12-29T13:47:40.000Z | 2018-12-29T13:47:49.000Z | Build/External/WPy3710/python-3.7.1/Lib/site-packages/idlexlib/extensions/ClearWindow.py | Heono/Turtle-IDE | aa42dd8f658284601b1a8d3ffb92f157de5022e2 | [
"MIT"
] | 1 | 2022-03-17T16:46:04.000Z | 2022-03-17T16:46:04.000Z | Lib/site-packages/idlexlib/extensions/ClearWindow.py | JWerbrouck/RWTH_M1_Projekt | 7ae63a2277361fa3273cf0677b297379482b8240 | [
"bzip2-1.0.6"
] | null | null | null | # IDLEX EXTENSION
## """
## Copyright(C) 2011-2012 The Board of Trustees of the University of Illinois.
## All rights reserved.
##
## Developed by: Roger D. Serwy
## University of Illinois
##
## Permission is hereby granted, free of charge, to any person obtaining
## a copy of this software and associated documentation files (the
## "Software"), to deal with the Software without restriction, including
## without limitation the rights to use, copy, modify, merge, publish,
## distribute, sublicense, and/or sell copies of the Software, and to
## permit persons to whom the Software is furnished to do so, subject to
## the following conditions:
##
## + Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimers.
## + Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimers in the
## documentation and/or other materials provided with the distribution.
## + Neither the names of Roger D. Serwy, the University of Illinois, nor
## the names of its contributors may be used to endorse or promote
## products derived from this Software without specific prior written
## permission.
##
## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
## OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
## MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
## IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR
## ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
## CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
## THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.
##
##
##
##
## Clear Window Extension
##
## About:
##
## It provides "Clear Shell Window" under "Options"
## with ability to undo.
##
## Part of Issue 6143
##
## """
config_extension_def = """
[ClearWindow]
enable=1
enable_editor=0
enable_shell=1
[ClearWindow_cfgBindings]
clear-window=<Control-Key-l>
"""
jn = lambda x,y: '%i.%i' % (x,y) # join integers to text coordinates
sp = lambda x: tuple(map(int, x.split('.'))) # convert tkinter Text coordinate to a line and column tuple
import sys
import re
from idlelib.UndoDelegator import DeleteCommand
ansi_re = re.compile(r'\x01?\x1b\[(.*?)m\x02?')
def strip_ansi(s):
return ansi_re.sub("", s)
class ClearWindow:
menudefs = [
('options', [
('Clear Shell Window', '<<clear-window>>'),
]),]
def __init__(self, editwin):
self.editwin = editwin
self.text = self.editwin.text
self.text.bind("<<clear-window>>", self.clear_window)
def clear_window_event(self, ev=None):
self.clear_window(ev)
return "break"
def clear_window(self, event):
per = self.editwin.per
text = per.bottom
iomark_orig = text.index('iomark')
line_io, col_io = sp(iomark_orig)
# if cursor is at the prompt, preserve the prompt (multiline)
prompt = strip_ansi(sys.ps1)
backlines = prompt.count('\n')
prompt_start = jn(line_io-backlines, 0)
maybe_prompt = text.get(prompt_start, prompt_start + '+%ic' % len(prompt))
at_prompt = maybe_prompt == prompt
if at_prompt:
endpos = text.index(prompt_start)
else:
endpos = text.index('iomark linestart')
dump = text.dump('1.0', endpos, all=True)
# Add a command to the undo delegator
undo = self.editwin.undo
if undo:
dc = ClearWindowDeleteCommand('1.0', endpos, dump)
undo.addcmd(dc)
text.edit_reset() # clear out Tkinter's undo history
class ClearWindowDeleteCommand(DeleteCommand):
def __init__(self, index1, index2, dump):
DeleteCommand.__init__(self, index1, index2)
self.dump = dump
def do(self, text):
text.delete(self.index1, self.index2)
text.see('insert')
def redo(self, text):
text.delete(self.index1, self.index2)
text.see('insert')
def undo(self, text):
# inspired by "Serializing a text widget" at http://wiki.tcl.tk/9167
dump = self.dump
tag = {} # remember the index where a tag was activated
for key, value, index in dump:
if key == 'text':
text.insert(index, value, '')
elif key == 'tagon':
tag[value] = index
elif key == 'tagoff':
text.tag_add(value, tag[value], index)
del tag[value]
# extend existing tags to the end position
for value in tag:
text.tag_add(value, tag[value], self.index2)
text.see('insert')
| 33.737931 | 107 | 0.634914 | 2,360 | 0.48242 | 0 | 0 | 0 | 0 | 0 | 0 | 2,678 | 0.547424 |
29aa9a45456c6db0c06ce0852d48191f56cbe430 | 104 | py | Python | src/hardware/GPIO_Map.py | lbowes/ascii-pong | 00e5a5f4b33a360f14299e6fc33f862880e5fb8f | [
"MIT"
] | null | null | null | src/hardware/GPIO_Map.py | lbowes/ascii-pong | 00e5a5f4b33a360f14299e6fc33f862880e5fb8f | [
"MIT"
] | null | null | null | src/hardware/GPIO_Map.py | lbowes/ascii-pong | 00e5a5f4b33a360f14299e6fc33f862880e5fb8f | [
"MIT"
] | 1 | 2021-03-10T17:22:00.000Z | 2021-03-10T17:22:00.000Z | GPIO_CON_1_BUT_1 = 10
GPIO_CON_1_BUT_2 = 9
GPIO_CON_2_BUT_1 = 11
GPIO_CON_2_BUT_2 = 14
GPIO_BUZZER = 15
| 17.333333 | 21 | 0.807692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29ac9c03bbaa51b34d7d739bc8607fc9dd0af610 | 309 | py | Python | main.py | yaojenkuo/stockflow | 946609c2fcc1d602032672b57ae7119b4cadae8d | [
"MIT"
] | 33 | 2015-03-08T00:43:37.000Z | 2021-02-18T23:40:05.000Z | main.py | Asoul/stockflow | 946609c2fcc1d602032672b57ae7119b4cadae8d | [
"MIT"
] | null | null | null | main.py | Asoul/stockflow | 946609c2fcc1d602032672b57ae7119b4cadae8d | [
"MIT"
] | 25 | 2015-03-07T15:57:23.000Z | 2021-07-05T01:32:32.000Z | #!/bin/python
# -*- coding: utf-8 -*-
'''基本範例格式'''
import sys
from ctrls.Tester import Tester
from models.exampleModel import exampleModel
def main():
numbers = ['1314']# 股票編號
tester = Tester(numbers, exampleModel)# 使用測試元件
tester.run()# 模擬
if __name__ == '__main__':
sys.exit(main())
| 17.166667 | 50 | 0.647249 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 0.342029 |
29ad5c4ad4e9d3f8e84eb705d16ecf7d414f2aac | 4,025 | py | Python | tests/test_preprocessing_evaluation_pipelines.py | CLARIN-PL/embeddings | 49fb59b796475ca92bc262ec2bc6def1d89a10e0 | [
"MIT"
] | 33 | 2021-06-15T12:09:29.000Z | 2022-03-26T14:34:16.000Z | tests/test_preprocessing_evaluation_pipelines.py | CLARIN-PL/embeddings | 49fb59b796475ca92bc262ec2bc6def1d89a10e0 | [
"MIT"
] | 201 | 2021-03-23T05:50:23.000Z | 2022-03-31T22:56:04.000Z | tests/test_preprocessing_evaluation_pipelines.py | CLARIN-PL/embeddings | 49fb59b796475ca92bc262ec2bc6def1d89a10e0 | [
"MIT"
] | null | null | null | from tempfile import TemporaryDirectory
from typing import Any, Dict, Tuple
import datasets
import flair
import numpy as np
import pytest
import torch
from flair.data import Corpus
from numpy import typing as nptyping
from embeddings.data.data_loader import HuggingFaceDataLoader
from embeddings.data.dataset import HuggingFaceDataset
from embeddings.pipeline.evaluation_pipeline import (
FlairSequenceLabelingEvaluationPipeline,
ModelEvaluationPipeline,
)
from embeddings.pipeline.preprocessing_pipeline import PreprocessingPipeline
from embeddings.transformation.flair_transformation.column_corpus_transformation import (
ColumnCorpusTransformation,
)
from embeddings.transformation.flair_transformation.downsample_corpus_transformation import (
DownsampleFlairCorpusTransformation,
)
from embeddings.transformation.flair_transformation.split_sample_corpus_transformation import (
SampleSplitsFlairCorpusTransformation,
)
from embeddings.utils.flair_corpus_persister import FlairConllPersister
@pytest.fixture
def result_path() -> "TemporaryDirectory[str]":
return TemporaryDirectory()
@pytest.fixture
def embedding_name() -> str:
return "allegro/herbert-base-cased"
@pytest.fixture
def ner_dataset_name() -> str:
return "clarin-pl/kpwr-ner"
@pytest.fixture
def hidden_size() -> int:
return 256
@pytest.fixture
def task_train_kwargs() -> Dict[str, int]:
return {"max_epochs": 1, "mini_batch_size": 256}
@pytest.fixture
def sequence_labeling_preprocessing_pipeline(
result_path: "TemporaryDirectory[str]",
embedding_name: str,
ner_dataset_name: str,
) -> Tuple[PreprocessingPipeline[str, datasets.DatasetDict, Corpus], "TemporaryDirectory[str]"]:
dataset = HuggingFaceDataset(ner_dataset_name)
data_loader = HuggingFaceDataLoader()
transformation = (
ColumnCorpusTransformation("tokens", "ner")
.then(SampleSplitsFlairCorpusTransformation(dev_fraction=0.1, test_fraction=0.1, seed=441))
.then(DownsampleFlairCorpusTransformation(percentage=0.005))
.persisting(FlairConllPersister(result_path.name))
)
pipeline = PreprocessingPipeline(
dataset=dataset, data_loader=data_loader, transformation=transformation
)
return pipeline, result_path
@pytest.fixture
def sequence_labeling_evaluation_pipeline(
result_path: "TemporaryDirectory[str]",
embedding_name: str,
ner_dataset_name: str,
hidden_size: int,
task_train_kwargs: Dict[str, int],
) -> Tuple[
ModelEvaluationPipeline[str, Corpus, Dict[str, nptyping.NDArray[Any]], Dict[str, Any]],
"TemporaryDirectory[str]",
]:
pipeline = FlairSequenceLabelingEvaluationPipeline(
dataset_path=result_path.name,
embedding_name=embedding_name,
output_path=result_path.name,
hidden_size=hidden_size,
persist_path=None,
task_train_kwargs=task_train_kwargs,
)
return pipeline, result_path
def test_sequence_labeling_preprocessing_pipeline(
result_path: "TemporaryDirectory[str]",
embedding_name: str,
ner_dataset_name: str,
hidden_size: int,
task_train_kwargs: Dict[str, int],
sequence_labeling_preprocessing_pipeline: Tuple[
PreprocessingPipeline[str, datasets.DatasetDict, Corpus], "TemporaryDirectory[str]"
],
sequence_labeling_evaluation_pipeline: Tuple[
ModelEvaluationPipeline[str, Corpus, Dict[str, nptyping.NDArray[Any]], Dict[str, Any]],
"TemporaryDirectory[str]",
],
) -> None:
flair.set_seed(441)
flair.device = torch.device("cpu")
preprocessing_pipeline, path = sequence_labeling_preprocessing_pipeline
preprocessing_pipeline.run()
evaluation_pipeline, _ = sequence_labeling_evaluation_pipeline
result = evaluation_pipeline.run()
np.testing.assert_almost_equal(
result["seqeval__mode_None__scheme_None"]["overall_accuracy"], 0.7881773
)
np.testing.assert_almost_equal(result["seqeval__mode_None__scheme_None"]["overall_f1"], 0)
path.cleanup()
| 31.692913 | 99 | 0.766957 | 0 | 0 | 0 | 0 | 1,907 | 0.473789 | 0 | 0 | 391 | 0.097143 |
29adb65f2ba3f76e7586b891107a612d5e21f5e3 | 672 | py | Python | Exercises/Exercises_01/06_exercise.py | Szymon-Budziak/ASD_exercises_solutions | 36ccbdae03a6c7e4ad141a2b7b01bef9353574ee | [
"MIT"
] | 7 | 2021-12-28T23:38:42.000Z | 2022-03-29T16:36:16.000Z | Exercises/Exercises_01/06_exercise.py | Szymon-Budziak/ASD_exercises_solutions | 36ccbdae03a6c7e4ad141a2b7b01bef9353574ee | [
"MIT"
] | null | null | null | Exercises/Exercises_01/06_exercise.py | Szymon-Budziak/ASD_exercises_solutions | 36ccbdae03a6c7e4ad141a2b7b01bef9353574ee | [
"MIT"
] | 4 | 2021-06-29T20:21:52.000Z | 2022-03-12T10:04:17.000Z | # Proszę zaimplementować funkcję, która otrzymuje na wejściu posortowaną niemalejąco tablicę A
# o rozmiarze n oraz liczbę x i sprawdza, czy x występuje w A. Jeśli tak, to zwraca najmniejszy indeks,
# pod którym x występuje.
def binary_search(T, i, j, x):
if i > j:
return None
c = (i + j) // 2
if T[c] == x:
value = binary_search(T, i, c - 1, x)
if value is None:
return c
return value
if T[c] > x:
return binary_search(T, i, c - 1, x)
else:
return binary_search(T, c + 1, j, x)
T = [0, 1, 2, 3, 4, 5, 5, 5, 6]
for i in range(len(T)):
print(i, binary_search(T, 0, len(T) - 1, T[i]))
| 28 | 103 | 0.574405 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 235 | 0.343066 |
29ae59f7491eb508b08d30811e2ad409b6a63558 | 4,508 | py | Python | lib/sentencers/RuleBasedSentencer.py | gucorpling/GumDrop | 06e705adc5b78b048f199a3d6f50d911fed398e2 | [
"Apache-2.0"
] | null | null | null | lib/sentencers/RuleBasedSentencer.py | gucorpling/GumDrop | 06e705adc5b78b048f199a3d6f50d911fed398e2 | [
"Apache-2.0"
] | null | null | null | lib/sentencers/RuleBasedSentencer.py | gucorpling/GumDrop | 06e705adc5b78b048f199a3d6f50d911fed398e2 | [
"Apache-2.0"
] | null | null | null | import re, io, os, sys
from nltk import word_tokenize
from argparse import ArgumentParser
# Allow package level imports in module
script_dir = os.path.dirname(os.path.realpath(__file__))
lib = os.path.abspath(script_dir + os.sep + "..")
sys.path.append(lib)
from conll_reader import space_join, text2conllu
class RuleBasedSplitter:
def __init__(self,lang="eng"):
lang_map = {"deu":"german","eng":"english","spa":"spanish","fra":"french","nld":"dutch","rus":"russian",
"eus":"basque","por":"portuguese", "zho": "chinese", "tur":"turkish"}
self.lang = lang
self.name = "RuleBasedSplitter"
self.long_lang = lang_map[lang] if lang in lang_map else lang
def predict(self,conllu):
if "\t" not in conllu: # this is a token list, not conllu string
conllu = text2conllu(" ".join(conllu))
tokens = space_join(conllu)
tokens = tokens.split()
# Run RuleBased sentence tokenize
with open(script_dir + os.sep + "frequency", 'r', encoding='utf-8') as f:
data = [line.strip().split() for line in f.readlines()]
sent_inital = {d[0]: d[1:] for d in data}
ratios ={}
for word in sent_inital[self.lang]:
if word.count("|") == 2:
w, r, f = word.split("|")
r = float(r)
f = int(f)
ratios[w] = r
processed = []
for token in tokens:
if token in ratios:
token = "//<->//" + token
processed.append(token)
# Reconstruct text with heuristics
text = " ".join(processed)
text = re.sub(r" ([.,,!?;;::!?。)\]}%])", r'\1', text)
text = re.sub(r"([$([{]) ", r'\1', text)
endpunct = "[!?。.!?]"
text = re.sub("(" + endpunct + ")", r'\1//<->//', text)
sents = re.split('(?://<->// ?)+', text)
sents = [s for s in sents if len(s.strip()) > 0]
# Realign to input tokens
tabbed = "\t".join(sents)
tabbed = "\t" + tabbed.replace(" ","")
output = []
for tok in tokens:
ratio = ratios[tok] if tok in ratios else -1.0
if tabbed.startswith("\t"): # This is a split point
output.append((1,ratio)) # Prediction is 1 (='segment') probability is 1.0
tabbed = tabbed[1:]
else:
output.append((0,0.0)) # Prediction is 0 (='non segment') probability is 0.0
if tabbed.startswith(tok):
tabbed = tabbed[len(tok):]
# Verify we are returning as many predictions as we received input tokens
assert len(tokens) == len(output)
return output
if __name__ == "__main__":
p = ArgumentParser()
p.add_argument("-f", "--file", default=None, help="file to tokenize")
p.add_argument("-l", "--lang", default="eng", help="language 3 letter code",
choices=["eng", "spa", "fra", "deu", "eus", "nld", "rus", "por", "zho", "tur"])
opts = p.parse_args()
infile = opts.file
lang = opts.lang
# Run test
sentencer = RuleBasedSplitter(lang=lang)
if infile is None:
# Some default test tokens if no file provided
if lang == "zho":
tokens = ['闽', '台', '经贸', '合作', '的', '深入', '发展', '为', '福建', '汽车', '工业', '注入', '了', '生机', '。',
'去年', '初', '以来', ',', '台湾', '最', '具', '实力', '的', '汽车', '公司', '——', '裕隆', '集团', '中华',
'汽车', '公司', '多', '次', '组', '团', '访', '闽', ',', '就', '合作', '发展', '汽车', '工业', '进行',
'了', '积极', '的', '蹉商', ';', "新华社", '福建', '方面', '则', '成立', '了', '由', '省委', '书记', '贾庆林', '、',
'省长', '陈明义', '任', '正', '、', '副', '组长', '的', '省', '汽车', '工业', '领导', '小组', ',', '将',
'发展', '本', '省', '汽车', '工业', '摆上', '重要', '议事', '日程', '。']
elif lang == "nld":
tokens = ['Een', 'ieder', 'heeft', 'recht', 'op', 'onderwijs', ';', 'het', 'onderwijs', 'zal', 'kosteloos',
'zijn,', 'althans', 'wat', 'het', 'lager', 'en', 'basisonderwijs', 'betreft', '.', 'Het', 'lager',
'onderwijs', 'zal', 'verplicht', 'zijn', '.', 'Ambachtsonderwijs', 'en', 'beroepsopleiding',
'zullen', 'algemeen', 'beschikbaar', 'worden', 'gesteld', '.', 'Hoger', 'onderwijs', 'zal',
'openstaan', 'voor', 'een', 'ieder,', 'die', 'daartoe', 'de', 'begaafdheid', 'bezit', '.',
'Het', 'onderwijs', 'zal', 'gericht', 'zijn', 'op', 'de', 'volle', 'ontwikkeling', 'van', 'de',
'menselijke', 'persoonlijkheid', 'en', 'op', 'de', 'versterking', 'van', 'de', 'eerbied', 'voor',
'de', 'rechten', 'van', 'de', 'mens', 'en', 'de', 'fundamentele', 'vrijheden', '.']
else:
tokens = ['Introduction', 'Research', 'has', 'shown', 'examples', '.', 'But', 'we', 'need', 'more', '.']
else:
text = io.open(infile, encoding="utf8").read()
tokens = word_tokenize(text)
sent_starts = sentencer.predict(tokens)
print([(tok, boundary) for tok, boundary in (zip(tokens, sent_starts))])
| 37.882353 | 110 | 0.562999 | 2,036 | 0.42399 | 0 | 0 | 0 | 0 | 0 | 0 | 2,161 | 0.450021 |
29b0e35636d971fec8136ffc141e0dd2c3c239b5 | 2,878 | py | Python | pyogp/lib/client/tests/test_appearance.py | grobertson/PyOGP.lib.Client | 681492d95b9a901a79071b70c77bfdd55cdb02db | [
"Apache-2.0"
] | null | null | null | pyogp/lib/client/tests/test_appearance.py | grobertson/PyOGP.lib.Client | 681492d95b9a901a79071b70c77bfdd55cdb02db | [
"Apache-2.0"
] | null | null | null | pyogp/lib/client/tests/test_appearance.py | grobertson/PyOGP.lib.Client | 681492d95b9a901a79071b70c77bfdd55cdb02db | [
"Apache-2.0"
] | null | null | null |
"""
Contributors can be viewed at:
http://svn.secondlife.com/svn/linden/projects/2008/pyogp/lib/base/trunk/CONTRIBUTORS.txt
$LicenseInfo:firstyear=2008&license=apachev2$
Copyright 2009, Linden Research, Inc.
Licensed under the Apache License, Version 2.0.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
or in
http://svn.secondlife.com/svn/linden/projects/2008/pyogp/lib/base/LICENSE.txt
$/LicenseInfo$
"""
# standard python libs
import unittest
from binascii import unhexlify
#related
# pyogp
from pyogp.lib.client.appearance import *
from pyogp.lib.client.settings import Settings
from pyogp.lib.client.agent import Agent
from pyogp.lib.client.region import Region
from pyogp.lib.base.datatypes import *
# pyogp messaging
from pyogp.lib.base.message.udpdeserializer import UDPMessageDeserializer
# pyogp tests
import pyogp.lib.base.tests.config
class TestAppearance(unittest.TestCase):
def setUp(self):
self.settings = Settings()
self.agent = Agent()
self.appearance = AppearanceManager(self.agent, settings = self.settings)
self.agent.agent_id = UUID("01234567-89ab-cdef-0123-456789abcdef")
self.agent.session_id = UUID("fedcba98-7654-3210-fedc-ba9876543210")
self.agent.region = DummyRegion()
def tearDown(self):
pass
def test_request_agent_wearables(self):
self.agent.appearance.request_agent_wearables()
packet_list = self.agent.region.dummy_packet_holder
self.assertEquals(len(packet_list), 1)
packet = packet_list.pop()
self.assertEquals(self.agent.agent_id, packet["AgentData"][0]['AgentID'])
self.assertEquals(self.agent.session_id, packet["AgentData"][0]['SessionID'])
def test_request_agent_noAgentIDorSessionID(self):
packet_list = self.agent.region.dummy_packet_holder
self.agent.agent_id = None
self.agent.appearance.request_agent_wearables()
self.assertEquals(len(packet_list), 0)
self.agent.agent_id = UUID()
self.agent.appearance.request_agent_wearables()
self.assertEquals(len(packet_list), 0)
self.agent.agent_id = UUID("01234567-89ab-cdef-0123-456789abcdef")
self.agent.session_id = None
self.agent.appearance.request_agent_wearables()
self.assertEquals(len(packet_list), 0)
self.agent.session_id = UUID()
self.agent.appearance.request_agent_wearables()
self.assertEquals(len(packet_list), 0)
def test_send_AgentIsNowWearing(self):
pass
class DummyRegion(Region):
dummy_packet_holder = []
def enqueue_message(self, packet, reliable = False):
self.dummy_packet_holder.append(packet)
def test_suite():
from unittest import TestSuite, makeSuite
suite = TestSuite()
suite.addTest(makeSuite(TestAppearance))
return suite
| 32.704545 | 89 | 0.723767 | 1,820 | 0.632384 | 0 | 0 | 0 | 0 | 0 | 0 | 679 | 0.235928 |
29b119e99bde0832d57541650801a62ec77c42f6 | 1,017 | py | Python | jisho_api/word/cfg.py | finia2NA/jisho-api | c80beb44a7b70f24e799cd2a7d579356c58f8625 | [
"Apache-2.0"
] | 26 | 2021-10-05T03:54:33.000Z | 2022-03-26T10:46:31.000Z | jisho_api/word/cfg.py | finia2NA/jisho-api | c80beb44a7b70f24e799cd2a7d579356c58f8625 | [
"Apache-2.0"
] | 7 | 2021-11-22T00:43:30.000Z | 2022-01-12T00:34:22.000Z | jisho_api/word/cfg.py | finia2NA/jisho-api | c80beb44a7b70f24e799cd2a7d579356c58f8625 | [
"Apache-2.0"
] | 4 | 2021-12-08T13:41:07.000Z | 2022-03-25T20:54:07.000Z | from enum import Enum
from typing import List, Optional
from pydantic import BaseModel, HttpUrl
class Sense(BaseModel):
class Link(BaseModel):
text: str
url: HttpUrl
class Source(BaseModel):
language: str
english_definitions: List[str]
parts_of_speech: List[Optional[str]]
links: List[Link]
tags: List[str]
restrictions: List[str]
see_also: List[str]
antonyms: List[str]
source: List[Source]
info: List[str]
class Japanese(BaseModel):
# Japanese Word - full fledged kanji
# Is optional because there are words that are just kana
word: Optional[str]
# Kana reading
reading: Optional[str]
@property
def name():
if self.word:
return self.word
return self.reading
class WordConfig(BaseModel):
slug: str
is_common: Optional[bool]
tags: List[str]
jlpt: List[str]
japanese: List[Japanese]
senses: List[Sense]
def __iter__(self):
yield from self.senses
| 19.941176 | 60 | 0.647984 | 911 | 0.895772 | 50 | 0.049164 | 104 | 0.102262 | 0 | 0 | 106 | 0.104228 |
29b134fd22e0ec5acfe0ea6bb8fddd3eb700cbd7 | 1,018 | py | Python | tests/validators/test_symbol_required.py | Ennkua/wtforms | c08ec7840c5a78ae8784139f7ee70f9627cf1ab8 | [
"BSD-3-Clause"
] | null | null | null | tests/validators/test_symbol_required.py | Ennkua/wtforms | c08ec7840c5a78ae8784139f7ee70f9627cf1ab8 | [
"BSD-3-Clause"
] | null | null | null | tests/validators/test_symbol_required.py | Ennkua/wtforms | c08ec7840c5a78ae8784139f7ee70f9627cf1ab8 | [
"BSD-3-Clause"
] | null | null | null | import pytest
from wtforms.validators import symbol_required
from wtforms.validators import ValidationError
@pytest.mark.parametrize("min_v", [2, 3, 4, 5, 6])
def test_correct_symbol_required(min_v, dummy_form, dummy_field):
"""
It should pass for the string with correct count of required symbol.
"""
dummy_field.data = "-A%s^D*f(G87KJ@hg8J.&"
validator = symbol_required(min_v)
validator(dummy_form, dummy_field)
@pytest.mark.parametrize(
("validator", "message"),
(
(
symbol_required(2, "at least 2 symbol"),
"at least 2 symbol letter",
),
(symbol_required(2), "at least 2 symbol"),
),
)
def test_symbol_required_messages(dummy_form, dummy_field, validator, message):
"""
It should raise ValidationError for string with incorect symbol_required.
"""
dummy_field.data = "foo123Bar"
with pytest.raises(ValidationError) as e:
validator(dummy_form, dummy_field)
assert str(e.value) == message
| 28.277778 | 79 | 0.674853 | 0 | 0 | 0 | 0 | 903 | 0.887033 | 0 | 0 | 298 | 0.292731 |
29b245fab6ed28cf6c359207c9c4af61c43d22d1 | 102 | py | Python | ch7/exercises/parrot.py | hewittaj/python_crash_course | 52a3341eec79c2eb6c7f9f1cb7f0806c3b2d61aa | [
"MIT"
] | null | null | null | ch7/exercises/parrot.py | hewittaj/python_crash_course | 52a3341eec79c2eb6c7f9f1cb7f0806c3b2d61aa | [
"MIT"
] | null | null | null | ch7/exercises/parrot.py | hewittaj/python_crash_course | 52a3341eec79c2eb6c7f9f1cb7f0806c3b2d61aa | [
"MIT"
] | null | null | null | # using the input() function
message = input("Tell me something, and I'll repeat it!")
print(message) | 25.5 | 57 | 0.72549 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 0.666667 |
29b2e2e2b5e0b11ab0a21e7a356d8c2fabd4abe1 | 1,028 | py | Python | src/Nodes/WhileOp.py | gabrielzezze/z-lang | 89be471fd5618a9d1c9e3eb955608cdc888511c2 | [
"MIT"
] | null | null | null | src/Nodes/WhileOp.py | gabrielzezze/z-lang | 89be471fd5618a9d1c9e3eb955608cdc888511c2 | [
"MIT"
] | null | null | null | src/Nodes/WhileOp.py | gabrielzezze/z-lang | 89be471fd5618a9d1c9e3eb955608cdc888511c2 | [
"MIT"
] | null | null | null | from src.Node import Node
from src.Nodes import Block
from src.SymbolTable import SymbolTable
class WhileOp(Node):
def __init__(self, child: Block, condition: Node):
self.condition = condition
self.child = child
super().__init__(
value=condition,
children=[child, condition],
node_type='WhileOp'
)
def Evaluate(self, symbol_table: SymbolTable):
while_entry = self.builder.append_basic_block(name=f'while_{self.id}')
while_exit = self.builder.append_basic_block(name=f'exit_while_{self.id}')
condition_i = self.condition.Evaluate(symbol_table=symbol_table)
self.builder.cbranch(condition_i, while_entry, while_exit)
self.builder.position_at_start(while_entry)
self.child.Evaluate(symbol_table=symbol_table)
condition_i = self.condition.Evaluate(symbol_table)
self.builder.cbranch(condition_i, while_entry, while_exit)
self.builder.position_at_start(while_exit)
return
| 35.448276 | 82 | 0.694553 | 932 | 0.906615 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0.048638 |
29b5b93fcc93149c869189a925d3bab4277eed76 | 748 | py | Python | googledevices/cli/commands/info.py | vlebourl/googledevices | 5d8604ad48d94170127d1da9f01106a4d3bc4845 | [
"MIT"
] | 19 | 2018-11-24T03:09:59.000Z | 2021-02-11T09:20:11.000Z | googledevices/cli/commands/info.py | vlebourl/googledevices | 5d8604ad48d94170127d1da9f01106a4d3bc4845 | [
"MIT"
] | 13 | 2018-11-24T13:16:38.000Z | 2022-02-22T17:27:08.000Z | googledevices/cli/commands/info.py | vlebourl/googledevices | 5d8604ad48d94170127d1da9f01106a4d3bc4845 | [
"MIT"
] | 4 | 2018-11-26T16:14:42.000Z | 2021-10-20T14:20:40.000Z | """Get information about this package."""
def info(system):
"""Get information about this package."""
import googledevices.utils.const as package
print("Projectname: ", package.NAME)
print("Version: ", package.VERSION)
print("GitHub link: ", package.URLS.get("github"))
print("PyPi link: ", package.URLS.get("pypi"))
print("Maintainers:")
for maintainer in package.MAINTAINERS:
print(" ", maintainer.get("name"), "(", maintainer.get("github"), ")")
print("")
if system:
import platform
print("")
print("System: ", platform.system())
print("Version: ", platform.version())
print("Python version: ", platform.python_version())
| 32.521739 | 81 | 0.593583 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 261 | 0.34893 |
29b61776c27c79d1d7092a2b9bd2ee11a295186e | 251 | py | Python | Check_if_subarray_with_0_sum_is_exists_or_not.py | KiranPesarlanka9/data-structures-and-algorithms-Problems | 557e3ca7f04b37fa5a709295f455b6338815486e | [
"MIT"
] | 1 | 2019-11-28T12:21:51.000Z | 2019-11-28T12:21:51.000Z | Check_if_subarray_with_0_sum_is_exists_or_not.py | KiranPesarlanka9/data-structures-and-algorithms-Problems | 557e3ca7f04b37fa5a709295f455b6338815486e | [
"MIT"
] | null | null | null | Check_if_subarray_with_0_sum_is_exists_or_not.py | KiranPesarlanka9/data-structures-and-algorithms-Problems | 557e3ca7f04b37fa5a709295f455b6338815486e | [
"MIT"
] | 1 | 2019-12-06T09:18:41.000Z | 2019-12-06T09:18:41.000Z | def check(arr):
sum_log = set()
_sum = 0
for i in xrange(len(arr)):
if _sum in sum_log:
return True
_sum += 1
sum_log.add(_sum)
return False
arr = [1, 0, -2, 5, -4, 1, 9, -2]
print(check(arr))
| 15.6875 | 34 | 0.49004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29b90065070b5025868557255475b9c600fb78b4 | 1,588 | py | Python | scripts/join_completed.py | shannonfenn/data-tools | c730c2f88b8443f3c84a41467a40b2cc59dd8e87 | [
"MIT"
] | null | null | null | scripts/join_completed.py | shannonfenn/data-tools | c730c2f88b8443f3c84a41467a40b2cc59dd8e87 | [
"MIT"
] | null | null | null | scripts/join_completed.py | shannonfenn/data-tools | c730c2f88b8443f3c84a41467a40b2cc59dd8e87 | [
"MIT"
] | null | null | null | #! /usr/bin/env python
import argparse
import pandas as pd
import numpy as np
def check_dataframe(filename, data_frame, key_columns):
if any(col not in data_frame for col in key_columns):
raise ValueError('Key columns not in {}.'.format(filename))
nonzero = np.count_nonzero(data_frame['trg_error'])
if nonzero:
print('Warning, some failed runs in {}.'.format(filename))
def join_completed(filenames, key_columns=None):
completed = None
# build single dataframe of successful runs
for filename in filenames:
df = pd.read_json(filename)
check_dataframe(df, key_columns)
if completed is None:
completed = df[df['trg_error'] == 0]
else:
completed = pd.concat([completed, df[df['trg_error'] == 0]],
ignore_index=True)
# check if rows are unique on given columns
if key_columns:
completed.sort(key_columns)
duplicated = completed.duplicated(key_columns).sum()
if duplicated > 0:
raise ValueError('Duplicate rows: {}'.format(duplicated))
return completed
def main():
parser = argparse.ArgumentParser(
description='Join results with zero training error.')
parser.add_argument('-i', type=str, nargs='+', required=True,
help='list of input files')
parser.add_argument('-o', type=str, required=True,
help='file to store result')
args = parser.parse_args()
join_completed(args.i).to_json(args.o)
if __name__ == '__main__':
main()
| 31.137255 | 72 | 0.632872 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 323 | 0.203401 |
29b95a7e7b6ab6d04a7196faa187fadcabb8c0e4 | 9,859 | py | Python | pet/preprocessor.py | YerongLi/pet | 8323080e9033c38c234431aecacad154ed477472 | [
"Apache-2.0"
] | null | null | null | pet/preprocessor.py | YerongLi/pet | 8323080e9033c38c234431aecacad154ed477472 | [
"Apache-2.0"
] | null | null | null | pet/preprocessor.py | YerongLi/pet | 8323080e9033c38c234431aecacad154ed477472 | [
"Apache-2.0"
] | null | null | null | # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from typing import List, Optional
import numpy as np
from pet.utils import InputFeatures, InputExample, PLMInputFeatures, GenerativeInputFeatures, GenerativeInputExample
from pet.pvp import PVPS, PVP
class Preprocessor(ABC):
"""
A preprocessor that transforms an :class:`InputExample` into a :class:`InputFeatures` object so that it can be
processed by the model being used.
"""
def __init__(self, wrapper, task_name: str, pattern_ids: Optional[List[int]] = None, verbalizer_file: str = None):
"""
Create a new preprocessor.
:param wrapper: the wrapper for the language model to use
:param task_name: the name of the task
:param pattern_ids: the ids of the PVPs to be used
:param verbalizer_file: path to a file containing a verbalizer that overrides the default verbalizer
"""
self.wrapper = wrapper
if pattern_ids is not None:
self.pvps = {pid: PVPS[task_name](self.wrapper, pid, verbalizer_file) for pid in pattern_ids}
self.label_map = {label: i for i, label in enumerate(self.wrapper.config.label_list)}
@abstractmethod
def get_input_features(self, example: InputExample, pattern_id: int, labelled: bool, priming: bool = False,
**kwargs) -> InputFeatures:
"""Convert the given example into a set of input features"""
pass
class MLMPreprocessor(Preprocessor):
"""Preprocessor for models pretrained using a masked language modeling objective (e.g., BERT)."""
def get_input_features(self, example: InputExample, pattern_id: int, labelled: bool, priming: bool = False,
**kwargs) -> InputFeatures:
pvp = self.pvps[pattern_id] # type: PVP
if priming:
input_ids, token_type_ids = pvp.encode(example, priming=True)
priming_data = example.meta['priming_data'] # type: List[InputExample]
priming_input_ids = []
for priming_example in priming_data:
pe_input_ids, _ = pvp.encode(priming_example, priming=True, labeled=True)
priming_input_ids += pe_input_ids
input_ids = priming_input_ids + input_ids
token_type_ids = self.wrapper.tokenizer.create_token_type_ids_from_sequences(input_ids)
input_ids = self.wrapper.tokenizer.build_inputs_with_special_tokens(input_ids)
else:
input_ids, token_type_ids = pvp.encode(example)
if self.wrapper.config.model_type == 'pegasus':
# bugfix: Transformers' create_token_type_ids_from_sequences seems to ignore the final </s> token in Pegasus
token_type_ids += [0]
attention_mask = [1] * len(input_ids)
padding_length = self.wrapper.config.max_seq_length - len(input_ids)
if padding_length < 0:
raise ValueError(f"Maximum sequence length is too small, got {len(input_ids)} input ids")
input_ids = input_ids + ([self.wrapper.tokenizer.pad_token_id] * padding_length)
attention_mask = attention_mask + ([0] * padding_length)
token_type_ids = token_type_ids + ([0] * padding_length)
assert len(input_ids) == self.wrapper.config.max_seq_length
assert len(attention_mask) == self.wrapper.config.max_seq_length
assert len(token_type_ids) == self.wrapper.config.max_seq_length
label = self.label_map[example.label] if example.label is not None else -100
logits = example.logits if example.logits else [-1]
if labelled:
mlm_labels = pvp.get_mask_positions(input_ids)
if self.wrapper.config.model_type == 'gpt2':
# shift labels to the left by one
mlm_labels.append(mlm_labels.pop(0))
else:
mlm_labels = [-1] * self.wrapper.config.max_seq_length
return InputFeatures(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
label=label, mlm_labels=mlm_labels, logits=logits, idx=example.idx, pattern_id=pattern_id)
class PLMPreprocessor(MLMPreprocessor):
"""Preprocessor for models pretrained using a permuted language modeling objective (e.g., XLNet)."""
def get_input_features(self, example: InputExample, pattern_id: int, labelled: bool, priming: bool = False,
**kwargs) -> PLMInputFeatures:
input_features = super().get_input_features(example, pattern_id, labelled=labelled, priming=priming, **kwargs)
input_ids = input_features.input_ids
pvp = self.pvps[pattern_id] # type: PVP
num_masks = 1 # currently, PLMPreprocessor supports only replacements that require exactly one mask
perm_mask = np.zeros((len(input_ids), len(input_ids)), dtype=np.float)
label_idx = input_ids.index(pvp.mask_id)
perm_mask[:, label_idx] = 1 # the masked token is not seen by any other token
target_mapping = np.zeros((num_masks, len(input_ids)), dtype=np.float)
target_mapping[0, label_idx] = 1.0
return PLMInputFeatures(perm_mask=perm_mask, target_mapping=target_mapping, **input_features.__dict__)
class GenerativePreprocessor(MLMPreprocessor):
"""Preprocessor for a generative language model and generative task."""
def get_input_features(self, example: InputExample, pattern_id: int, labelled: bool, priming: bool = False,
**kwargs) -> GenerativeInputFeatures:
input_features = super().get_input_features(example, pattern_id, labelled=False, priming=False, **kwargs)
assert isinstance(example, GenerativeInputExample)
if example.output_text is not None:
generative_prefix = self.pvps[pattern_id].generative_prefix_ids()
max_length = self.wrapper.config.output_max_seq_length - len(generative_prefix)
output_ids = self.wrapper.tokenizer.encode(example.output_text, add_special_tokens=True,
max_length=max_length, padding='max_length',
truncation='only_first')
pad_token = self.wrapper.tokenizer.pad_token_id
output_loss_mask = [0] * len(generative_prefix) + [0 if tok_id == pad_token else 1 for tok_id in output_ids]
output_ids = generative_prefix + output_ids
else:
output_ids = [self.wrapper.tokenizer.pad_token_id]
output_loss_mask = [0]
if 'token_ids' in example.meta:
token_ids = example.meta['token_ids']
token_probabilities = example.meta['token_probabilities']
len_output_ids = sum(1 for x in output_ids if x != self.wrapper.tokenizer.pad_token_id)
assert len(token_ids) == len_output_ids, \
f"If given, there should be as many token ids as there are output ids. Got {len(token_ids)} token " \
f"ids and {len_output_ids} output ids."
padding_entry = [0] * len(token_ids[0])
padding = [padding_entry] * (self.wrapper.config.output_max_seq_length - len(token_ids))
input_features.meta['token_ids'] = token_ids + padding
input_features.meta['token_probabilities'] = token_probabilities + padding
return GenerativeInputFeatures(output_ids=output_ids, output_loss_mask=output_loss_mask,
**input_features.__dict__)
class SequenceClassifierPreprocessor(Preprocessor):
"""Preprocessor for a regular sequence classification model."""
def get_input_features(self, example: InputExample, **kwargs) -> InputFeatures:
inputs = self.wrapper.task_helper.get_sequence_classifier_inputs(example) if self.wrapper.task_helper else None
if inputs is None:
inputs = self.wrapper.tokenizer.encode_plus(
example.text_a if example.text_a else None,
example.text_b if example.text_b else None,
add_special_tokens=True,
max_length=self.wrapper.config.max_seq_length,
)
input_ids, token_type_ids = inputs["input_ids"], inputs.get("token_type_ids")
attention_mask = [1] * len(input_ids)
padding_length = self.wrapper.config.max_seq_length - len(input_ids)
input_ids = input_ids + ([self.wrapper.tokenizer.pad_token_id] * padding_length)
attention_mask = attention_mask + ([0] * padding_length)
if not token_type_ids:
token_type_ids = [0] * self.wrapper.config.max_seq_length
else:
token_type_ids = token_type_ids + ([0] * padding_length)
mlm_labels = [-1] * len(input_ids)
assert len(input_ids) == self.wrapper.config.max_seq_length
assert len(attention_mask) == self.wrapper.config.max_seq_length
assert len(token_type_ids) == self.wrapper.config.max_seq_length
label = self.label_map[example.label] if example.label is not None else -100
logits = example.logits if example.logits else [-1]
return InputFeatures(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
label=label, mlm_labels=mlm_labels, logits=logits, idx=example.idx)
| 48.566502 | 120 | 0.674713 | 9,061 | 0.919059 | 0 | 0 | 264 | 0.026778 | 0 | 0 | 2,108 | 0.213815 |
29ba20d9bd3f8cb7d67a41fe698ce4a315481ebd | 21 | py | Python | test/__init__.py | mzappitello/http_monitor | 6a20e41bdbab480090de3c8d760bc7c425b9c899 | [
"MIT"
] | null | null | null | test/__init__.py | mzappitello/http_monitor | 6a20e41bdbab480090de3c8d760bc7c425b9c899 | [
"MIT"
] | null | null | null | test/__init__.py | mzappitello/http_monitor | 6a20e41bdbab480090de3c8d760bc7c425b9c899 | [
"MIT"
] | null | null | null | # test __init__ file
| 10.5 | 20 | 0.761905 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0.952381 |
29ba94b0967bd5341e441dd394da5100f547c093 | 3,542 | py | Python | xbrl/const.py | blinkace/pxp | 9155103dc166674137bd0e2fddb609ca44875761 | [
"MIT"
] | 1 | 2022-01-27T14:53:23.000Z | 2022-01-27T14:53:23.000Z | xbrl/const.py | blinkace/pxp | 9155103dc166674137bd0e2fddb609ca44875761 | [
"MIT"
] | null | null | null | xbrl/const.py | blinkace/pxp | 9155103dc166674137bd0e2fddb609ca44875761 | [
"MIT"
] | null | null | null | import re
class NS:
xs = 'http://www.w3.org/2001/XMLSchema'
link = 'http://www.xbrl.org/2003/linkbase'
xlink = "http://www.w3.org/1999/xlink"
xbrli = "http://www.xbrl.org/2003/instance"
xbrldi = "http://xbrl.org/2006/xbrldi"
xbrldie = "http://xbrl.org/2005/xbrldi/errors"
xbrldt = "http://xbrl.org/2005/xbrldt"
xbrldte = "http://xbrl.org/2005/xbrldt/errors"
catalog = "urn:oasis:names:tc:entity:xmlns:xml:catalog"
tp = "http://xbrl.org/2016/taxonomy-package"
oime = "https://xbrl.org/((~status_date_uri~))/oim/error"
oimce = "https://xbrl.org/((~status_date_uri~))/oim-common/error"
xbrlxe = "http://www.xbrl.org/WGWD/YYYY-MM-DD/xbrl-xml/error"
xbrl21e = "http://www.blinkace.com/python-xbrl-oim/xbrl-2.1/error"
xbrl = "https://xbrl.org/2021"
iso4217 = "http://www.xbrl.org/2003/iso4217"
utr = "http://www.xbrl.org/2009/utr"
ix = "http://www.xbrl.org/2013/inlineXBRL"
ix10 = "http://www.xbrl.org/2008/inlineXBRL"
ixe = "http://www.xbrl.org/2013/inlineXBRL/error"
pyxbrle = "https://blinkace.com/pyxbrl/error"
tpe = 'http://xbrl.org/2016/taxonomy-package/errors'
xhtml = 'http://www.w3.org/1999/xhtml'
xbrlce = 'https://xbrl.org/((~status_date_uri~))/xbrl-csv/error'
xbrlje = 'https://xbrl.org/((~status_date_uri~))/xbrl-json/error'
enum2 = 'http://xbrl.org/2020/extensible-enumerations-2.0'
xsi = 'http://www.w3.org/2001/XMLSchema-instance'
entities = "https://xbrl.org/((~status_date_uri~))/entities"
entities_cr7 = "https://xbrl.org/2021-02-03/entities"
PREFIX = {}
NSMAP = {}
OIM_COMMON_RESERVED_PREFIXES = {}
OIM_COMMON_RESERVED_PREFIX_MAP = {}
def buildPrefixMaps():
global PREFIX
PREFIX.clear()
for k, v in NS.__dict__.items():
if not k.startswith("_"):
PREFIX[v] = k
global NSMAP
NSMAP.clear()
for k, v in NS.__dict__.items():
if not k.startswith("_"):
NSMAP[k] = v
global OIM_COMMON_RESERVED_PREFIXES
OIM_COMMON_RESERVED_PREFIXES = { "iso4217", "utr", "xbrl", "xbrli", "xs" }
global OIM_COMMON_RESERVED_PREFIX_MAP
OIM_COMMON_RESERVED_PREFIX_MAP.clear()
for k in OIM_COMMON_RESERVED_PREFIXES:
OIM_COMMON_RESERVED_PREFIX_MAP[k] = getattr(NS, k)
buildPrefixMaps()
def setOIMVersion(version):
for k, v in NS.__dict__.items():
if not k.startswith("_"):
setattr(NS, k, re.sub(r'\(\(~status_date_uri~\)\)', version, v))
buildPrefixMaps()
class LinkType:
footnote = 'http://www.xbrl.org/2003/arcrole/fact-footnote'
explanatoryFact = 'http://www.xbrl.org/2009/arcrole/fact-explanatoryFact'
class LinkGroup:
default = 'http://www.xbrl.org/2003/role/link'
LINK_RESERVED_URI_MAP = {
"_": LinkGroup.default,
"footnote": LinkType.footnote,
"explanatoryFact": LinkType.explanatoryFact,
}
class DocumentType:
xbrlcsv_git = 'https://xbrl.org/((~status_date_uri~))/xbrl-csv'
xbrlcsv_cr7 = 'https://xbrl.org/CR/2021-02-03/xbrl-csv'
xbrlcsv_cr9 = 'https://xbrl.org/CR/2021-07-07/xbrl-csv'
xbrlcsv_pr1 = 'https://xbrl.org/PR/2021-08-04/xbrl-csv'
xbrlcsv = 'https://xbrl.org/2021/xbrl-csv'
xbrljson_git = 'https://xbrl.org/((~status_date_uri~))/xbrl-json'
xbrljson_wgwd = 'https://xbrl.org/WGWD/YYYY-MM-DD/xbrl-json'
xbrljson_cr7 = 'https://xbrl.org/CR/2021-02-02/xbrl-json'
xbrljson_cr9 = 'https://xbrl.org/CR/2021-07-07/xbrl-json'
xbrljson_pr1 = 'https://xbrl.org/PR/2021-08-04/xbrl-json'
xbrljson = 'https://xbrl.org/2021/xbrl-json'
| 37.680851 | 78 | 0.660926 | 2,469 | 0.697064 | 0 | 0 | 0 | 0 | 0 | 0 | 1,863 | 0.525974 |
29bcfd631b01019c349e3bbedaeeb2cbda9283d5 | 2,832 | py | Python | src/cogs/xpevent.py | nsde/lhxp | ef6d1004c704c1156b9b01172e4748634b31b541 | [
"MIT"
] | 2 | 2021-12-18T11:44:31.000Z | 2022-01-07T23:27:00.000Z | src/cogs/xpevent.py | nsde/lhxp | ef6d1004c704c1156b9b01172e4748634b31b541 | [
"MIT"
] | null | null | null | src/cogs/xpevent.py | nsde/lhxp | ef6d1004c704c1156b9b01172e4748634b31b541 | [
"MIT"
] | null | null | null | try:
from .helpers import config, management, xp, spam
except ImportError:
import helpers.config, helpers.management, helpers.xp, helpers.spam
import time
import discord
from discord.ext import commands
from discord.commands import slash_command
class XPEvent(commands.Cog):
def __init__(self, client):
self.client = client
async def antispam(self, message):
message_is_spam = False
message_content = message.content
if spam.is_spam(message_content):
message_is_spam = True
await message.delete()
last_message = await message.channel.history().get(author__name=message.author.name)
if spam.is_spam(message_content + last_message.content):
message_is_spam = True
messages = []
async for msg in message.channel.history(limit=2):
messages.append(msg)
if message_is_spam or messages[0].content == messages[1].content:
try:
await message.delete()
await last_message.delete()
except:
pass
return message_is_spam
async def give_xp(self, message):
text = message.content.replace(' ', '') # avoid spam
xp_gain = text.count(' ')*config.load()['word-reward-xp'] # word count
if xp_gain < 2: # don't go into negative XP numbers!
xp_gain = config.load()['word-reward-xp']
xp.add(message.author, xp_gain)
async def daily_check(self, message):
is_empty = message.author.id not in list(config.load('dailystep').keys())
if is_empty:
config.set('dailystep', message.author.id, 0)
if config.load('dailystep')[message.author.id] > 31:
config.set('dailystep', message.author.id, 0)
if not config.load('lastmessage').get(message.author.id):
config.set('lastmessage', message.author.id, -1)
else:
config.set('lastmessage', message.author.id, time.time())
penultimate_message_time = config.load('lastmessage')[message.author.id]
today_begin = (time.time()//86400)*86400
if today_begin > penultimate_message_time:
config.change('dailystep', message.author.id, 1)
daily_reward = config.load()['daily-rewards'][int(time.strftime('%d'))-1]
xp.add(message.author, daily_reward*config.load()['daily-reward-multiplier'])
@commands.Cog.listener()
async def on_message(self, message):
if message.author.bot:
return
was_spam = await self.antispam(message)
if was_spam:
return
await self.give_xp(message)
await self.daily_check(message)
await self.client.process_commands(message)
def setup(client):
client.add_cog(XPEvent(client)) | 32.551724 | 92 | 0.628884 | 2,519 | 0.889477 | 0 | 0 | 342 | 0.120763 | 2,377 | 0.839336 | 252 | 0.088983 |
29be043b68e9b14821af31619772ea7a817c2a7b | 2,199 | py | Python | utilities/utils.py | jluech/PGAcloud_Manager | 9008fac26f9d762b2ab527034e46d467b5b0c26f | [
"MIT"
] | null | null | null | utilities/utils.py | jluech/PGAcloud_Manager | 9008fac26f9d762b2ab527034e46d467b5b0c26f | [
"MIT"
] | null | null | null | utilities/utils.py | jluech/PGAcloud_Manager | 9008fac26f9d762b2ab527034e46d467b5b0c26f | [
"MIT"
] | null | null | null | import logging
import os
import subprocess
import sys
import yaml
files_dir = ""
# --- General util commands ---
def execute_command(
command,
working_directory,
environment_variables,
executor,
logger=logging,
livestream=False
):
logger_prefix = ""
if executor:
logger_prefix = executor + ": "
process = subprocess.Popen(
command,
cwd=working_directory,
env=environment_variables,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
shell=True,
)
logger.debug(logger_prefix + "command: " + command)
stdout = ""
for line in iter(process.stdout.readline, b''):
line = str(line, "utf-8")
stdout += line
if livestream:
sys.stdout.write(line)
else:
logger.debug(logger_prefix + "command output: " + line.rstrip())
return_code = process.wait()
stdout = stdout.rstrip()
return stdout, return_code
def merge_dict(dict1, dict2):
res = {**dict1, **dict2}
return res
def parse_yaml(yaml_file_path):
with open(yaml_file_path, mode="r", encoding="utf-8") as yaml_file:
content = yaml.safe_load(yaml_file) or {}
return content
# --- File and path handling commands ---
def get_uploaded_files_path(pga_id):
return os.path.join(files_dir, str(pga_id))
def get_uploaded_files_dict(pga_id):
files_dict = {}
directory = get_uploaded_files_path(pga_id)
files = os.listdir(directory)
for filename in files:
name = filename.split(".")[0]
yaml_dict = parse_yaml(os.path.join(directory, filename))
yaml_dict["_filename"] = filename
files_dict[name] = yaml_dict
return files_dict
def get_filename_from_path(file_path):
if file_path.__contains__("\\"):
filename = file_path.split("\\")[-1].split(".")[0]
else:
filename = file_path.split("/")[-1].split(".")[0]
return filename
def create_pga_subdir(pga_id):
os.makedirs(os.path.join(files_dir, str(pga_id)))
def __set_files_dir(path):
global files_dir
files_dir = os.path.join(path, 'files')
os.makedirs(files_dir, exist_ok=True)
| 23.393617 | 76 | 0.637108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 169 | 0.076853 |
29bfe3374dd25a06358a1da66a585cb725eee7be | 578 | py | Python | pyscf/nao/m_color.py | KMCzajkowski/pyscf | e8af41d910cc0d3963655120c0b689590ad978e7 | [
"BSD-2-Clause"
] | null | null | null | pyscf/nao/m_color.py | KMCzajkowski/pyscf | e8af41d910cc0d3963655120c0b689590ad978e7 | [
"BSD-2-Clause"
] | null | null | null | pyscf/nao/m_color.py | KMCzajkowski/pyscf | e8af41d910cc0d3963655120c0b689590ad978e7 | [
"BSD-2-Clause"
] | null | null | null | class color:
import os
T = os.getenv('TERM')
if ( T=='cygwin' or T=='mingw' ) :
HEADER = '\033[01;35m'
BLUE = '\033[01;34m'
GREEN = '\033[01;32m'
WARNING = '\033[01;33m'
FAIL = '\033[01;31m'
RED = FAIL
ENDC = '\033[0m'
else :
HEADER = '\033[95m'
BLUE = '\033[94m'
GREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
RED = FAIL
ENDC = '\033[0m'
def disable(self):
self.HEADER = ''
self.OKBLUE = ''
self.OKGREEN = ''
self.WARNING = ''
self.FAIL = ''
self.RED = ''
self.ENDC = ''
| 19.931034 | 36 | 0.49308 | 577 | 0.99827 | 0 | 0 | 0 | 0 | 0 | 0 | 168 | 0.290657 |
29c079a0baef167378f06f75800a84013625dfce | 7,958 | py | Python | Scripts Daily/재무정보수집.py | oms1226/msbot | 4c141502ef6899f9e4bb3fe8e03c7eb866487d5e | [
"MIT"
] | 1 | 2020-05-01T07:50:49.000Z | 2020-05-01T07:50:49.000Z | Scripts Daily/재무정보수집.py | oms1226/msbot | 4c141502ef6899f9e4bb3fe8e03c7eb866487d5e | [
"MIT"
] | 1 | 2021-06-01T22:36:14.000Z | 2021-06-01T22:36:14.000Z | Scripts Daily/재무정보수집.py | oms1226/msbot | 4c141502ef6899f9e4bb3fe8e03c7eb866487d5e | [
"MIT"
] | 8 | 2019-10-26T03:30:53.000Z | 2022-03-26T08:06:25.000Z | # -*- coding: utf-8 -*-
import re
import calendar
import datetime, time
from datetime import timedelta
import urllib.request
import requests, json
from http.cookiejar import CookieJar
from bs4 import BeautifulSoup
import numpy as np
import pandas as pd
from pandas import DataFrame
import pandas.io.sql as pdsql
from matplotlib import dates
import sqlite3
DATABASE = '..\\DATA\\mymoneybot.sqlite'
def sqliteconn():
conn = sqlite3.connect(DATABASE)
return conn
def get_webpage(url, encoding=""):
cj = CookieJar()
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
opener.addheaders = [('User-agent', 'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36')]
respstr = ""
try:
op = opener.open(url)
sourcecode = op.read()
except Exception as e:
time.sleep(1)
op = opener.open(url)
sourcecode = op.read()
encodingmethod = op.info().get_param('charset')
if encodingmethod == None:
if encoding != "":
encodingmethod = encoding
if encoding != "":
encodingmethod = encoding
try:
respstr = sourcecode.decode(encoding=encodingmethod, errors='ignore')
except Exception as e:
respstr = sourcecode.decode(encoding="cp949", errors='ignore')
opener.close()
return respstr
def get_company_fundamental_fnguide(code):
def g(x):
if type(x) == str:
return datetime.datetime.strptime(x, '%Y-%m-%d')
else:
return x
# url = "http://comp.fnguide.com/SVO2/ASP/SVD_main.asp?pGB=1&gicode=A%s&cID=&MenuYn=Y&ReportGB=&NewMenuID=11&stkGb=&strResearchYN=" % (code)
url = "http://asp01.fnguide.com/SVO2/ASP/SVD_Main.asp?pGB=1&gicode=A%s&NewMenuID=11&cID=50&MenuYn=N" % (code)
respstr = get_webpage(url, encoding="utf8")
# soup = BeautifulSoup(respstr)
soup = BeautifulSoup(respstr, "lxml")
# <!--IFRS 별도/연간 -->
target_table = soup.find("div", class_="um_table", id="highlight_B_Y")
# print(target_table)
result = []
try:
target_table.find_all('tr')
except Exception as e:
return (DataFrame(), DataFrame())
for tr in target_table.find_all('tr'):
# print("[%s]" % tr)
for th in tr.find_all('th'):
value = "%s" % th.text.replace('(P) : Provisional','').replace('(E) : Estimate','').replace('잠정실적','').replace('컨센서스, 추정치','').replace('(E)','').replace('(P)','').replace('/','-').strip()
if ('-02' in value):
value = value + '-28'
elif ('-04' in value) or ('-06' in value) or ('-09' in value) or ('-11' in value):
value = value + '-30'
elif ('-01' in value) or ('-03' in value) or ('-05' in value) or ('-07' in value) or ('-08' in value) or ('-10' in value) or ('-12' in value):
value = value + '-31'
result.append(value)
# print("[%s]" % th.text.replace('(E) : Estimate','').replace('컨센서스, 추정치','').strip())
for td in tr.find_all('td'):
value = td.text.strip().replace(',','')
try:
value = float(value)
except Exception as e:
value = 0
result.append(value)
# print(td.text.strip())
# print(result[1:])
result = result[1:]
dfdata = []
for x in range(0, len(result), 9):
dfdata.append(result[x:x+9])
df = DataFrame(data=dfdata, columns = [str(x) for x in range(1,10)]).T
df.columns = ['날짜', '매출액', '영업이익', '당기순이익', '자산총계', '부채총계', '자본총계', '자본금', '부채비율', '유보율', '영업이익률', '순이익률', 'ROA', 'ROE', 'EPS', 'BPS', 'DPS', 'PER', 'PBR', '발행주식수', '배당수익률']
df.drop(df.index[[0]], inplace=True)
# df['날짜'] = df['date'].apply(g)
# df.drop(['date'], axis=1, inplace=True)
df = df.convert_objects(convert_numeric=True)
# df.set_index('날짜', inplace=True)
df_year = df
# <!--IFRS 별도/분기 -->
target_table = soup.find("div", class_="um_table", id="highlight_B_Q")
# print(target_table)
result = []
for tr in target_table.find_all('tr'):
# print("[%s]" % tr)
for th in tr.find_all('th'):
value = "%s" % th.text.replace('(P) : Provisional','').replace('(E) : Estimate','').replace('잠정실적','').replace('컨센서스, 추정치','').replace('(E)','').replace('(P)','').replace('/','-').strip()
if ('-02' in value):
value = value + '-28'
elif ('-04' in value) or ('-06' in value) or ('-09' in value) or ('-11' in value):
value = value + '-30'
elif ('-01' in value) or ('-03' in value) or ('-05' in value) or ('-07' in value) or ('-08' in value) or ('-10' in value) or ('-12' in value):
value = value + '-31'
result.append(value)
# print("[%s]" % th.text.replace('(E) : Estimate','').replace('컨센서스, 추정치','').strip())
for td in tr.find_all('td'):
value = td.text.strip().replace(',','')
try:
value = float(value)
except Exception as e:
value = 0
result.append(value)
# print(td.text.strip())
# print(result[1:])
result = result[1:]
dfdata = []
for x in range(0, len(result), 9):
dfdata.append(result[x:x+9])
df = DataFrame(data=dfdata, columns = [str(x) for x in range(1,10)]).T
df.columns = ['날짜', '매출액', '영업이익', '당기순이익', '자산총계', '부채총계', '자본총계', '자본금', '부채비율', '유보율', '영업이익률', '순이익률', 'ROA', 'ROE', 'EPS', 'BPS', 'DPS', 'PER', 'PBR', '발행주식수', '배당수익률']
df.drop(df.index[[0]], inplace=True)
# df['날짜'] = df['date'].apply(g)
# df.drop(['date'], axis=1, inplace=True)
df = df.convert_objects(convert_numeric=True)
# df.set_index('날짜', inplace=True)
df_qtr = df
return (df_year, df_qtr)
def build_fundamental_data():
with sqlite3.connect(DATABASE) as conn:
cursor = conn.cursor()
replace_sqlite = (
"replace into 재무정보( 날짜,종목코드,기간구분,매출액,영업이익,당기순이익,자산총계,부채총계,자본총계,자본금,부채비율,유보율,영업이익률,순이익률,ROA,ROE,EPS,BPS,DPS,PER,PBR,발행주식수,배당수익률 ) "
"values(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) "
)
df = pdsql.read_sql_query('select 단축코드, 종목명 from 종목코드 ', con=conn)
CODES = list(df.values)
for code, name in CODES:
print('FnGuide - %s %s' % (code, name))
try:
(df_year, df_qtr) = get_company_fundamental_fnguide(code)
except Exception as e:
continue
if len(df_year.index) > 0 or len(df_qtr.index) > 0:
if len(df_year.index) > 0:
기간구분 = '년간'
for idx, row in df_year.iterrows():
날짜, 매출액, 영업이익, 당기순이익, 자산총계, 부채총계, 자본총계, 자본금, 부채비율, 유보율, 영업이익률, 순이익률, ROA, ROE, EPS, BPS, DPS, PER, PBR, 발행주식수, 배당수익률 = row
종목코드 = code
d = (날짜,종목코드,기간구분,매출액,영업이익,당기순이익,자산총계,부채총계,자본총계,자본금,부채비율,유보율,영업이익률,순이익률,ROA,ROE,EPS,BPS,DPS,PER,PBR,발행주식수,배당수익률)
cursor.execute(replace_sqlite, d)
conn.commit()
if len(df_qtr.index) > 0:
기간구분 = '분기'
for idx, row in df_qtr.iterrows():
날짜, 매출액, 영업이익, 당기순이익, 자산총계, 부채총계, 자본총계, 자본금, 부채비율, 유보율, 영업이익률, 순이익률, ROA, ROE, EPS, BPS, DPS, PER, PBR, 발행주식수, 배당수익률 = row
종목코드 = code
d = (날짜,종목코드,기간구분,매출액,영업이익,당기순이익,자산총계,부채총계,자본총계,자본금,부채비율,유보율,영업이익률,순이익률,ROA,ROE,EPS,BPS,DPS,PER,PBR,발행주식수,배당수익률)
cursor.execute(replace_sqlite, d)
conn.commit()
# time.sleep(2)
# except Exception as e:
# print(code, name, str(e))
if __name__ == "__main__":
# 재무정보가져오기 - 분기에 한번 실행하면 됨
build_fundamental_data()
| 37.895238 | 199 | 0.539834 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,680 | 0.298242 |
29c2e1b7e5523be19b17e937a85dde93fdb45fab | 24,237 | py | Python | apps/recurring_donations/management/commands/process_monthly_donations.py | gannetson/sportschooldeopenlucht | 0c78e5a95b22a963244112e478119ba60c572141 | [
"BSD-3-Clause"
] | 1 | 2019-01-19T06:58:39.000Z | 2019-01-19T06:58:39.000Z | apps/recurring_donations/management/commands/process_monthly_donations.py | gannetson/sportschooldeopenlucht | 0c78e5a95b22a963244112e478119ba60c572141 | [
"BSD-3-Clause"
] | null | null | null | apps/recurring_donations/management/commands/process_monthly_donations.py | gannetson/sportschooldeopenlucht | 0c78e5a95b22a963244112e478119ba60c572141 | [
"BSD-3-Clause"
] | null | null | null | import csv
import os
import math
import logging
import traceback
import requests
import sys
from collections import namedtuple
from optparse import make_option
from django.conf import settings
from django.contrib.contenttypes.models import ContentType
from django.core.management.base import BaseCommand
from django.db import connection
from django.db import transaction
from django.utils import timezone
from apps.cowry_docdata.adapters import WebDirectDocDataDirectDebitPaymentAdapter
from apps.cowry_docdata.exceptions import DocDataPaymentException
from apps.cowry_docdata.models import DocDataPaymentOrder
from apps.fund.models import RecurringDirectDebitPayment, Order, OrderStatuses, Donation, OrderItem
from apps.projects.models import Project, ProjectPhases
from ...mails import mail_monthly_donation_processed_notification
logger = logging.getLogger(__name__)
#
# Run with:
# ./manage.py process_monthly_donations -v 2 --settings=bluebottle.settings.local (or .production etc.)
#
class Command(BaseCommand):
help = 'Process monthly donations.'
requires_model_validation = True
verbosity_loglevel = {
'0': logging.ERROR, # 0 means no output.
'1': logging.WARNING, # 1 means normal output (default).
'2': logging.INFO, # 2 means verbose output.
'3': logging.DEBUG # 3 means very verbose output.
}
option_list = BaseCommand.option_list + (
make_option('--dry-run', action='store_true', dest='dry_run', default=False,
help="Process the monthly donations without creating any db records or payments."),
make_option('--no-email', action='store_true', dest='no_email', default=False,
help="Don't send the monthly donation email to users."),
make_option('--csv-export', action='store_true', dest='csv_export', default=False,
help="Generate CSV export of monthly donors with donations amounts."),
make_option('--process-one-recurring-payment', action='store', dest='process_payment_id', type='int',
metavar='RECURRING-PAYMENT-ID',
help="Process only the RecurringDirectDebitPayment specified by its primary key."),
)
def handle(self, *args, **options):
# Setup the log level for root logger.
loglevel = self.verbosity_loglevel.get(options['verbosity'])
logger.setLevel(loglevel)
if options['dry_run'] and options['csv_export']:
logger.error("You cannot set both '--dry-run' and '--csv-export'.")
sys.exit(1)
send_email = not options['no_email']
if options['dry_run']:
# TODO Implement --dry-run.
logger.warn("Config: --dry-run not fully implemented yet. Database records and payments will be created.")
logger.info("Config: Not sending emails.")
send_email = False
recurring_payments_queryset = RecurringDirectDebitPayment.objects.filter(active=True)
if options['csv_export']:
generate_monthly_donations_csv(recurring_payments_queryset)
else:
if options['process_payment_id']:
recurring_payments_queryset = recurring_payments_queryset.filter(id=options['process_payment_id'])
try:
process_monthly_donations(recurring_payments_queryset, send_email)
except:
print traceback.format_exc()
def generate_monthly_donations_csv(recurring_payments_queryset):
csv_path = os.path.expanduser('~/monthly-donors-{0}.csv'.format(timezone.now().date()))
logger.info("Saving monthly donations CSV file to:")
logger.info(" {0}".format(csv_path))
with open(csv_path, 'wb') as csv_file:
csvwriter = csv.writer(csv_file, dialect='excel')
csvwriter.writerow(['Member', 'Active', 'Amount'])
for rp in recurring_payments_queryset:
csvwriter.writerow([rp.user.email, rp.active, rp.amount])
def update_last_donation(donation, remaining_amount, popular_projects):
"""
Updates the last donation with the remaining amount of the payment. If the donation is more than the project
needs, the project will be filled and the balance will be used to fill the popular projects recursively.
"""
project = Project.objects.get(id=donation.project_id)
# Base case.
if project.projectcampaign.money_donated + remaining_amount <= project.projectcampaign.money_asked or \
len(popular_projects) == 0:
# The remaining amount won't fill up the project or we have no more projects to try. We're done.
logger.debug(u"Donation is less than project '{0}' needs. No further adjustments are needed.".format(project.title))
donation.amount = remaining_amount
donation.donation_type = Donation.DonationTypes.recurring
donation.save()
return
# Recursive case.
else:
# Fill up the project.
logger.debug(u"Donation is more than project '{0}' needs. Filling up project and creating new donation.".format(project.title))
donation.amount = project.projectcampaign.money_asked - project.projectcampaign.money_donated
donation.donation_type = Donation.DonationTypes.recurring
donation.save()
# Create a new Donation and recursively update it with the remaining amount.
ct = ContentType.objects.get_for_model(donation)
order = OrderItem.objects.get(content_type=ct, content_object=donation)
new_project = popular_projects.pop(0)
new_donation = Donation.objects.create(user=donation.user, project=new_project, amount=0, currency='EUR',
donation_type=Donation.DonationTypes.recurring)
OrderItem.objects.create(content_object=new_donation, order=order)
update_last_donation(new_donation, remaining_amount - donation.amount, popular_projects)
def create_recurring_order(user, projects, order=None):
"""
Creates a recurring Order with donations to the supplied projects.
"""
if not order:
order = Order.objects.create(status=OrderStatuses.recurring, user=user, recurring=True)
for p in projects:
project = Project.objects.get(id=p.id)
if project.phase == ProjectPhases.campaign:
donation = Donation.objects.create(user=user, project=project, amount=0, currency='EUR',
donation_type=Donation.DonationTypes.recurring)
OrderItem.objects.create(content_object=donation, order=order)
return order
def correct_donation_amounts(popular_projects, recurring_order, recurring_payment):
"""
Divides the total amount for the monthly donation across all projects. This method deals with the case of a
donation filling up a project.
"""
remaining_amount = recurring_payment.amount
num_donations = recurring_order.donations.count()
amount_per_project = math.floor(recurring_payment.amount / num_donations)
donations = recurring_order.donations
for i in range(0, num_donations - 1):
donation = donations[i]
project = Project.objects.get(id=donation.project_id)
if project.projectcampaign.money_donated + amount_per_project > project.projectcampaign.money_asked:
donation.amount = project.projectcampaign.money_asked - project.projectcampaign.money_donated
else:
donation.amount = amount_per_project
donation.donation_type = Donation.DonationTypes.recurring
donation.save()
remaining_amount -= donation.amount
# Update the last donation with the remaining amount.
update_last_donation(donations[num_donations - 1], remaining_amount, popular_projects)
def set_order_created_datetime(recurring_order, order_created_datetime):
""" Uses custom SQL to set the created time of Order to a consistent value. """
db_table = recurring_order._meta.db_table
pk_name = recurring_order._meta.pk.name
logger.debug("Setting created and updated to {0} on Order {1}.".format(order_created_datetime, recurring_order.id))
cursor = connection.cursor()
sql_statement = "UPDATE {0} SET created = '{1}' WHERE {2} = {3}".format(db_table, order_created_datetime,
pk_name, recurring_order.pk)
cursor.execute(sql_statement)
sql_statement = "UPDATE {0} SET updated = '{1}' WHERE {2} = {3}".format(db_table, order_created_datetime,
pk_name, recurring_order.pk)
cursor.execute(sql_statement)
transaction.commit_unless_managed()
def process_monthly_donations(recurring_payments_queryset, send_email):
""" The starting point for creating DocData payments for the monthly donations. """
recurring_donation_errors = []
RecurringDonationError = namedtuple('RecurringDonationError', 'recurring_payment error_message')
skipped_recurring_payments = []
SkippedRecurringPayment = namedtuple('SkippedRecurringPayment', 'recurring_payment orders')
donation_count = 0
# The adapter is used after the recurring Order and donations have been adjusted. It's created here so that we can
# reuse it to process all recurring donations.
webdirect_payment_adapter = WebDirectDocDataDirectDebitPaymentAdapter()
# A consistent created time to use for the created recurring Orders.
order_created_datetime = timezone.now()
# Fixed lists of the popular projects.
popular_projects_all = list(Project.objects.filter(phase=ProjectPhases.campaign).order_by('-popularity'))
top_three_projects = popular_projects_all[:3]
popular_projects_rest = popular_projects_all[3:]
logger.info("Config: Using these projects as 'Top Three':")
for project in top_three_projects:
logger.info(" {0}".format(project.title))
# The main loop that processes each monthly donation.
for recurring_payment in recurring_payments_queryset:
top_three_donation = False
user_selected_projects = []
# Skip payment if there has been a recurring Order recently.
ten_days_ago = timezone.now() + timezone.timedelta(days=-10)
recent_closed_recurring_orders = Order.objects.filter(user=recurring_payment.user, status=OrderStatuses.closed,
recurring=True, updated__gt=ten_days_ago)
if recent_closed_recurring_orders.count() > 0:
skipped_recurring_payments.append(SkippedRecurringPayment(recurring_payment, list(recent_closed_recurring_orders)))
logger.warn(
"Skipping '{0}' because it looks like it has been processed recently with one of these Orders:".format(
recurring_payment))
for closed_order in recent_closed_recurring_orders:
logger.warn(" Order Number: {0}".format(closed_order.order_number))
continue
# Check if there is a monthly shopping cart (Order status is 'recurring') for this recurring_payment user.
try:
recurring_order = Order.objects.get(user=recurring_payment.user, status=OrderStatuses.recurring)
logger.debug("Using existing recurring Order for user: {0}.".format(recurring_payment.user))
except Order.DoesNotExist:
# There is no monthly shopping cart. The user is supporting the top three projects so we need to create an
# Order with Donations for the top three projects.
logger.debug("Creating new 'Top Three' recurring Order for user {0}.".format(recurring_payment.user))
recurring_order = create_recurring_order(recurring_payment.user, top_three_projects)
top_three_donation = True
except Order.MultipleObjectsReturned:
error_message = "Multiple Orders with status 'recurring' returned for '{0}'. Not processing this recurring donation.".format(
recurring_payment)
logger.error(error_message)
recurring_donation_errors.append(RecurringDonationError(recurring_payment, error_message))
continue
# Check if we're above the DocData minimum for direct debit.
if recurring_payment.amount < 113:
# Cleanup the Order if there's an error.
if top_three_donation:
recurring_order.delete()
error_message = "Payment amount for '{0}' is less than the DocData minimum for direct debit (113). Skipping.".format(
recurring_payment)
logger.error(error_message)
recurring_donation_errors.append(RecurringDonationError(recurring_payment, error_message))
continue
# Remove donations to projects that are no longer in the campaign phase.
for donation in recurring_order.donations:
project = Project.objects.get(id=donation.project.id)
if project.phase != ProjectPhases.campaign:
ctype = ContentType.objects.get_for_model(donation)
order_item = OrderItem.objects.get(object_id=donation.id, content_type=ctype)
order_item.delete()
donation.delete()
if recurring_order.donations.count() > 0:
# There are donations in the recurring Order and we need to redistribute / correct the donation amounts.
# Save a copy of the projects that have been selected by the user so that the monthly shopping cart can
# recreated after the payment has been successfully started.
for donation in recurring_order.donations:
user_selected_projects.append(donation.project)
correct_donation_amounts(popular_projects_all, recurring_order, recurring_payment)
else:
# There are no donations in the recurring Order so we need to create a monthly shopping cart to support the
# top three projects and redistribute / correct the donation amounts.
create_recurring_order(recurring_payment.user, top_three_projects, recurring_order)
if recurring_order.donations.count() == 0:
logger.debug("The top three donations are full. Using next three projects for top three.")
top_three_projects = popular_projects_rest[:3]
popular_projects_rest = popular_projects_rest[3:]
create_recurring_order(recurring_payment.user, top_three_projects, recurring_order)
correct_donation_amounts(popular_projects_rest, recurring_order, recurring_payment)
top_three_donation = True
# At this point the order should be correctly setup and ready for the DocData payment.
if top_three_donation:
donation_type_message = "supporting the 'Top Three' projects"
else:
donation_type_message = "with {0} donations".format(recurring_order.donations.count())
logger.info("Starting payment for '{0}' {1}.".format(recurring_payment, donation_type_message))
# Safety check to ensure the modifications to the donations in the recurring result in an Order total that
# matches the RecurringDirectDebitPayment.
if recurring_payment.amount != recurring_order.total:
# Cleanup the Order if there's an error.
if top_three_donation:
recurring_order.delete()
error_message = "RecurringDirectDebitPayment amount: {0} does not equal recurring Order amount: {1} for '{2}'. Not processing this recurring donation.".format(
recurring_payment.amount, recurring_order.total, recurring_payment)
logger.error(error_message)
recurring_donation_errors.append(RecurringDonationError(recurring_payment, error_message))
continue
# Check if the IBAN / BIC is stored correctly on the RecurringDirectDebitPayment.
if recurring_payment.iban == '' or recurring_payment.bic == '' or \
not recurring_payment.iban.endswith(recurring_payment.account) or \
recurring_payment.bic[:4] != recurring_payment.iban[4:8]:
# Cleanup the Order if there's an error.
if top_three_donation:
recurring_order.delete()
error_message = "Cannot create payment because the IBAN and/or BIC are not available."
logger.error(error_message)
recurring_donation_errors.append(RecurringDonationError(recurring_payment, error_message))
continue
# Create and fill in the DocDataPaymentOrder.
payment = DocDataPaymentOrder()
payment.order = recurring_order
payment.payment_method_id = 'dd-webdirect'
payment.amount = recurring_payment.amount
payment.currency = recurring_payment.currency
payment.customer_id = recurring_payment.user.id
payment.email = recurring_payment.user.email
# Use the recurring payment name (bank account name) to set the first and last name if they're not set.
if not recurring_payment.user.first_name:
if ' ' in recurring_payment.name:
payment.first_name = recurring_payment.name.split(' ')[0]
else:
payment.first_name = recurring_payment.name
else:
payment.first_name = recurring_payment.user.first_name
if not recurring_payment.user.last_name:
if ' ' in recurring_payment.name:
payment.last_name = recurring_payment.name[recurring_payment.name.index(' ') + 1:]
else:
payment.last_name = recurring_payment.name
else:
payment.last_name = recurring_payment.user.last_name
# Try to use the address from the profile if it's set.
address = recurring_payment.user.address
if not address:
# Cleanup the Order if there's an error.
if top_three_donation:
recurring_order.delete()
error_message = "Cannot create a payment for '{0}' because user does not have an address set.".format(recurring_payment)
logger.error(error_message)
recurring_donation_errors.append(RecurringDonationError(recurring_payment, error_message))
continue
# Set a default value for the pieces of the address that we don't have.
unknown_value = u'Unknown'
if not address.line1:
logger.warn("User '{0}' does not have their street and street number set. Using '{1}'.".format(recurring_payment.user, unknown_value))
payment.address = unknown_value
else:
payment.address = address.line1
if not address.city:
logger.warn("User '{0}' does not have their city set. Using '{1}'.".format(recurring_payment.user, unknown_value))
payment.city = unknown_value
else:
payment.city = address.city
if not address.postal_code:
logger.warn("User '{0}' does not have their postal code set. Using '{1}'.".format(recurring_payment.user, unknown_value))
payment.postal_code = unknown_value
else:
payment.postal_code = address.postal_code
# Assume the Netherlands when country not set.
if address.country:
payment.country = address.country.alpha2_code
else:
payment.country = 'NL'
# Try to use the language from the User settings if it's set.
if recurring_payment.user.primary_language:
payment.language = recurring_payment.user.primary_language[:2] # Cut off locale.
else:
payment.language = 'nl'
payment.save()
# Start the WebDirect payment.
try:
webdirect_payment_adapter.create_remote_payment_order(payment)
except DocDataPaymentException as e:
# Cleanup the Order if there's an error.
if top_three_donation:
recurring_order.delete()
error_message = "Problem creating remote payment order."
logger.error(error_message)
recurring_donation_errors.append(
RecurringDonationError(recurring_payment, "{0} {1}".format(error_message, e.message)))
continue
else:
recurring_order.status = OrderStatuses.closed
recurring_order.save()
try:
webdirect_payment_adapter.start_payment(payment, recurring_payment)
except DocDataPaymentException as e:
# Cleanup the Order if there's an error.
if top_three_donation:
recurring_order.delete()
else:
recurring_order.status = OrderStatuses.recurring
recurring_order.save()
error_message = "Problem starting payment."
logger.error(error_message)
recurring_donation_errors.append(
RecurringDonationError(recurring_payment, "{0} {1}".format(error_message, e.message)))
continue
logger.debug("Payment for '{0}' started.".format(recurring_payment))
donation_count += 1
# Send an email to the user.
if send_email:
mail_monthly_donation_processed_notification(recurring_payment, recurring_order)
# Create a new recurring Order (monthly shopping cart) for donations that are not to the 'Top Three'.
if not top_three_donation and len(user_selected_projects) > 0:
new_recurring_order = create_recurring_order(recurring_payment.user, user_selected_projects)
# Adjust donation amounts in a simple way for the recurring Order (the monthly donations shopping cart).
num_donations = new_recurring_order.donations.count()
amount_per_project = math.floor(recurring_payment.amount / num_donations)
donations = new_recurring_order.donations
for i in range(0, num_donations - 1):
donation = donations[i]
donation.amount = amount_per_project
donation.donation_type = Donation.DonationTypes.recurring
donation.save()
# Update the last donation with the remaining amount.
donation = donations[num_donations - 1]
donation.amount = recurring_payment.amount - (amount_per_project * (num_donations - 1))
donation.donation_type = Donation.DonationTypes.recurring
donation.save()
set_order_created_datetime(recurring_order, order_created_datetime)
logger.info("")
logger.info("Recurring Donation Processing Summary")
logger.info("=====================================")
logger.info("")
logger.info("Total number of recurring donations: {0}".format(recurring_payments_queryset.count()))
logger.info("Number of recurring Orders successfully processed: {0}".format(donation_count))
logger.info("Number of errors: {0}".format(len(recurring_donation_errors)))
logger.info("Number of skipped payments: {0}".format(len(skipped_recurring_payments)))
if len(recurring_donation_errors) > 0:
logger.info("")
logger.info("")
logger.info("Detailed Error List")
logger.info("===================")
logger.info("")
for error in recurring_donation_errors:
logger.info("RecurringDirectDebitPayment: {0} {1}".format(error.recurring_payment.id, error.recurring_payment))
logger.info("Error: {0}".format(error.error_message))
logger.info("--")
if len(skipped_recurring_payments) > 0:
logger.info("")
logger.info("")
logger.info("Skipped Recurring Payments")
logger.info("==========================")
logger.info("")
for skipped_payment in skipped_recurring_payments:
logger.info("RecurringDirectDebitPayment: {0} {1}".format(skipped_payment.recurring_payment.id, skipped_payment.recurring_payment))
for closed_order in skipped_payment.orders:
logger.info("Order Number: {0}".format(closed_order.order_number))
logger.info("--")
| 49.564417 | 171 | 0.67562 | 2,449 | 0.101044 | 0 | 0 | 0 | 0 | 0 | 0 | 6,742 | 0.27817 |
29c3750914f24305e5c021af40b18b30bd0ff4d0 | 5,387 | py | Python | information_extraction/Preprocessor.py | shatha2014/Fashion_Rec | 5f4dd4f1c7c2d18a9364b02f1798125c259e6598 | [
"BSD-2-Clause"
] | 11 | 2018-08-30T10:52:35.000Z | 2021-11-08T06:04:22.000Z | information_extraction/Preprocessor.py | shatha2014/Fashion_Rec | 5f4dd4f1c7c2d18a9364b02f1798125c259e6598 | [
"BSD-2-Clause"
] | 1 | 2020-09-08T19:53:48.000Z | 2021-11-08T13:29:42.000Z | information_extraction/Preprocessor.py | shatha2014/Fashion_Rec | 5f4dd4f1c7c2d18a9364b02f1798125c259e6598 | [
"BSD-2-Clause"
] | 8 | 2018-08-30T10:52:37.000Z | 2022-02-20T09:13:40.000Z | # Author: Kim Hammar <[email protected]> KTH 2018
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import TweetTokenizer
from nltk.tag.perceptron import PerceptronTagger
import nltk
import emoji
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
nltk.download('wordnet')
class PreProcessor(object):
"""
Preprocessor module in the Information Extraction Process of Fashion Related Properties of Instagram posts.
Performs text normalization and parsing.
"""
# Class variables shared by all instances
tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
wordnet_lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
stop_words.update(['.', ',', '"', "'", '?', '!', ':', ';', '(', ')', '[', ']', '{', '}'])
tagger = PerceptronTagger()
def __init__(self, ids, comments, captions, tags):
""" Class Constructor"""
# Raw text
self.raw_id = ids
self.raw_comments = comments
self.raw_captions = captions
self.raw_tags = tags
print("Read in Raw Text")
# Preprocess raw text
self.remove_non_unicode()
self.lower_case()
self.to_unicode()
print("Normalized Raw Text")
# Tokenize and preprocess tokens
self.tokenize()
print("Tokenized the text")
self.remove_stopwords()
#self.remove_urls()
print("Normalized tokens")
# Extract specific tokens
self.lemmatize()
print("Extracted lemmas")
self.extract_emojis()
print("Extracted emojis")
self.extract_hashtags()
print("Extracted hashtags")
#self.pos_tag()
#print("Extracted POS")
def remove_non_unicode(self):
""" Remove non-unicode tokens"""
self.raw_comments = map(lambda x: x.decode('utf-8','ignore').encode("utf-8"), self.raw_comments)
self.raw_captions = map(lambda x: x.decode('utf-8', 'ignore').encode("utf-8"), self.raw_captions)
self.raw_tags = map(lambda x: x.decode('utf-8','ignore').encode("utf-8"), self.raw_tags)
def to_unicode(self):
""" Convert text to unicode """
self.raw_comments = map(lambda x: x.decode('utf-8'), self.raw_comments)
self.raw_captions = map(lambda x: x.decode('utf-8'), self.raw_captions)
self.raw_tags = map(lambda x: x.decode('utf-8'), self.raw_tags)
def tokenize(self):
""" Tokenize text with TweetTokenizer, preserve emojis, hashtags etc """
self.tokens_captions = [self.tknzr.tokenize(caption) for caption in self.raw_captions]
self.tokens_comments = [self.tknzr.tokenize(comment) for comment in self.raw_comments]
self.tokens_tags = [self.tknzr.tokenize(tag) for tag in self.raw_tags]
self.tokens_all = []
for i in range(len(self.raw_id)):
self.tokens_all.append(self.tokens_captions[i] + self.tokens_comments[i] + self.tokens_tags[i])
def lower_case(self):
""" Convert raw text into lowercase"""
self.raw_captions = [caption.lower() for caption in self.raw_captions]
self.raw_comments = [comments.lower() for comments in self.raw_comments]
self.raw_tags = [tags.lower() for tags in self.raw_tags]
def lemmatize(self):
""" Lemmatize tokens"""
self.lemma_caption = [map(lambda x: self.wordnet_lemmatizer.lemmatize(x), caption) for caption in self.tokens_captions]
self.lemma_comments = [map(lambda x: self.wordnet_lemmatizer.lemmatize(x), comments) for comments in self.tokens_comments]
self.lemma_tags = [map(lambda x: self.wordnet_lemmatizer.lemmatize(x), tags) for tags in self.tokens_tags]
self.lemma_all = [map(lambda x: self.wordnet_lemmatizer.lemmatize(x), tokens) for tokens in self.tokens_all]
def remove_urls(self):
""" Remove urls from tokens """
self.tokens_captions = [filter(lambda x: "http" not in x, caption) for caption in self.tokens_captions]
self.tokens_comments = [filter(lambda x: "http" not in x, comments) for comments in self.tokens_comments]
self.tokens_tags = [filter(lambda x: "http" not in x, tags) for tags in self.tokens_tags]
self.tokens_all = [filter(lambda x: "http" not in x, tokens) for tokens in self.tokens_all]
def remove_stopwords(self):
""" Remove stopwords from tokens """
self.tokens_captions = [[token for token in caption if token not in self.stop_words] for caption in self.tokens_captions]
self.tokens_comments = [[token for token in comments if token not in self.stop_words] for comments in self.tokens_comments]
self.tokens_tags = [[token for token in tags if token not in self.stop_words] for tags in self.tokens_tags]
self.tokens_all = [[token for token in tokens if token not in self.stop_words] for tokens in self.tokens_all]
def extract_emojis(self):
""" Extract emojis """
self.emojis = [[c for c in tokens if c in emoji.UNICODE_EMOJI] for tokens in self.tokens_all]
def extract_hashtags(self):
""" Extract hashtags """
self.hashtags = [[x for x in tokens if x.startswith("#")] for tokens in self.tokens_all]
def pos_tag(self):
""" Extract POS tags """
self.pos_tokens = [self.tagger.tag(tokens) for tokens in self.tokens_all]
| 45.652542 | 131 | 0.667347 | 5,053 | 0.937999 | 0 | 0 | 0 | 0 | 0 | 0 | 1,103 | 0.204752 |
29c3fd69e8b7142e1bb7b65ea92363c60fad4735 | 47 | py | Python | searl/__init__.py | automl/SEARL | bac75d8c9540ff4f0b5b340c612ec384b189bd84 | [
"Apache-2.0"
] | 25 | 2021-03-10T09:10:53.000Z | 2022-03-28T09:11:16.000Z | searl/__init__.py | automl/SEARL | bac75d8c9540ff4f0b5b340c612ec384b189bd84 | [
"Apache-2.0"
] | null | null | null | searl/__init__.py | automl/SEARL | bac75d8c9540ff4f0b5b340c612ec384b189bd84 | [
"Apache-2.0"
] | 4 | 2021-03-17T15:00:02.000Z | 2021-07-24T13:35:39.000Z | from .utils.handler.config import ConfigHandler | 47 | 47 | 0.87234 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29c4a45e5143815cb47c3724fcaecb30960fac72 | 475 | py | Python | src/kotify/fabric/procfile.py | kotify/kotify.fabric | 5ce50a38210217f643c81438b53466b60fc16cb1 | [
"MIT"
] | null | null | null | src/kotify/fabric/procfile.py | kotify/kotify.fabric | 5ce50a38210217f643c81438b53466b60fc16cb1 | [
"MIT"
] | null | null | null | src/kotify/fabric/procfile.py | kotify/kotify.fabric | 5ce50a38210217f643c81438b53466b60fc16cb1 | [
"MIT"
] | null | null | null | from ._core import Collection, local, task
@task(name="main", default=True)
def start_main(c):
local(f"overmind start -l {','.join(c.start.main + c.start.minimal)}", pty=True)
@task(name="minimal")
def start_minimal(c):
local(f"overmind start -l {','.join(c.start.minimal)}", pty=True)
@task(name="all")
def start_all(c):
local("overmind start", pty=True)
ns = Collection("start")
ns.add_task(start_all)
ns.add_task(start_main)
ns.add_task(start_minimal)
| 20.652174 | 84 | 0.692632 | 0 | 0 | 0 | 0 | 322 | 0.677895 | 0 | 0 | 154 | 0.324211 |
29c698fcf98da3c177cd1347dd70acef351370fb | 888 | py | Python | backend/src/feature_extraction/rolloff.py | AnXi-TieGuanYin-Tea/MusicGenreClassifiaction | a0b9f621b0a5d2451180b12af7681756c5abd138 | [
"MIT"
] | 7 | 2018-05-01T19:39:17.000Z | 2020-01-02T17:11:05.000Z | backend/src/feature_extraction/rolloff.py | AnXi-TieGuanYin-Tea/MusicGenreClassifiaction | a0b9f621b0a5d2451180b12af7681756c5abd138 | [
"MIT"
] | 10 | 2018-12-10T22:16:43.000Z | 2020-08-27T18:23:45.000Z | backend/src/feature_extraction/rolloff.py | AnXi-TieGuanYin-Tea/MusicGenreClassifiaction | a0b9f621b0a5d2451180b12af7681756c5abd138 | [
"MIT"
] | 2 | 2021-04-16T08:20:17.000Z | 2022-01-06T14:06:44.000Z | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 17 23:14:28 2018
@author: Akihiro Inui
"""
def rolloff(input_power_spectrum: list, param: float=0.85) -> float:
"""
Spectral Rolloff
:param input_power_spectrum: power spectrum in list
:param param: threadshold for roll off
:return Spectral Rolloff
"""
assert (param <= 0 or param >= 1) is False, "parameter must be between 0 and 1"
# Initialize energy and FFT number
energy = 0
count = 0
# Calculate total energy
total_energy = sum(input_power_spectrum[:]**2)
# Find Count which has energy below param*total_energy
while energy <= param*total_energy and count < len(input_power_spectrum):
energy = pow(input_power_spectrum[count], 2) + energy
count += 1
# Normalise Spectral Rolloff
return count/len(input_power_spectrum)
| 28.645161 | 83 | 0.667793 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 448 | 0.504505 |
29c6aa30b18efa3ef99f8685007919d2bfcf3019 | 112 | py | Python | webStorm-APICloud/python_tools/Tools/Scripts/2to3.py | zzr925028429/androidyianyan | 8967fdba92473e8e65ee222515dfc54cdae5bb0b | [
"MIT"
] | null | null | null | webStorm-APICloud/python_tools/Tools/Scripts/2to3.py | zzr925028429/androidyianyan | 8967fdba92473e8e65ee222515dfc54cdae5bb0b | [
"MIT"
] | null | null | null | webStorm-APICloud/python_tools/Tools/Scripts/2to3.py | zzr925028429/androidyianyan | 8967fdba92473e8e65ee222515dfc54cdae5bb0b | [
"MIT"
] | null | null | null | #!/usr/bin/env python
from lib2to3.main import main
import sys
import os
sys.exit(main("lib2to3.fixes"))
| 16 | 32 | 0.714286 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0.330357 |
29c79f364e1d41c68e19d472b3c1d55bd0b5b9e5 | 1,070 | py | Python | afterglow_core/schemas/api/v1/jobs/field_cal_job.py | SkynetRTN/afterglow-access-server | 3d8d62f622577fdd1ae7b0076cb536251f7bf0cd | [
"Apache-2.0"
] | 2 | 2021-05-24T15:12:07.000Z | 2022-02-17T19:58:16.000Z | afterglow_core/schemas/api/v1/jobs/field_cal_job.py | SkynetRTN/afterglow-access-server | 3d8d62f622577fdd1ae7b0076cb536251f7bf0cd | [
"Apache-2.0"
] | 1 | 2022-02-27T03:01:06.000Z | 2022-02-27T03:01:06.000Z | afterglow_core/schemas/api/v1/jobs/field_cal_job.py | SkynetRTN/afterglow-access-server | 3d8d62f622577fdd1ae7b0076cb536251f7bf0cd | [
"Apache-2.0"
] | 2 | 2021-06-08T18:16:40.000Z | 2021-07-09T14:19:49.000Z | """
Afterglow Core: photometric calibration job schemas
"""
from typing import List as TList
from marshmallow.fields import Integer, List, Nested
from ..job import JobSchema, JobResultSchema
from ..field_cal import FieldCalSchema, FieldCalResultSchema
from ..photometry import PhotSettingsSchema
from .source_extraction_job import SourceExtractionSettingsSchema
__all__ = ['FieldCalJobResultSchema', 'FieldCalJobSchema']
class FieldCalJobResultSchema(JobResultSchema):
data: TList[FieldCalResultSchema] = List(
Nested(FieldCalResultSchema), default=[])
class FieldCalJobSchema(JobSchema):
type = 'field_cal'
result: FieldCalJobResultSchema = Nested(
FieldCalJobResultSchema, default={})
file_ids: TList[int] = List(Integer(), default=[])
field_cal: FieldCalSchema = Nested(FieldCalSchema, default={})
source_extraction_settings: SourceExtractionSettingsSchema = Nested(
SourceExtractionSettingsSchema, default=None)
photometry_settings: PhotSettingsSchema = Nested(
PhotSettingsSchema, default=None)
| 31.470588 | 72 | 0.774766 | 638 | 0.596262 | 0 | 0 | 0 | 0 | 0 | 0 | 114 | 0.106542 |
29c7ff7b0f45d2d5b8a537d89fbcc9e55ee8907c | 2,692 | py | Python | Python/addRow.py | alexwu2021/practice | ff786d4d16afdef3e031002d22b58a976c8ed16b | [
"MIT"
] | null | null | null | Python/addRow.py | alexwu2021/practice | ff786d4d16afdef3e031002d22b58a976c8ed16b | [
"MIT"
] | 1 | 2021-11-22T05:54:33.000Z | 2021-11-22T05:54:33.000Z | Python/addRow.py | alexwu2021/practice | ff786d4d16afdef3e031002d22b58a976c8ed16b | [
"MIT"
] | null | null | null | #import unittest
def addRow(r, d, v):
dmo = []
getHeightAndMore(r, 0, dmo, d)
if len(dmo) <= 0:
print ('no way to add row for no d-1 nodes found')
return
print('dmo has %d' % len(dmo))
print('dmo: %s' % ','.join([str(x.val) for x in dmo]))
for n in dmo:
left, right = Node(v), Node(v)
left.left = n.left
n.left = left
right.right = n.right
n.right = right
def getHeightAndMore(r, h, dmo, d):
h += 1
if d == h:
dmo.append(r)
if r.left != None:
getHeightAndMore(r.left, h, dmo, d)
if r.right != None:
getHeightAndMore(r.right, h, dmo, d)
class Node:
def __init__(self, val):
self.left = None
self.right = None
self.val = val
def __expr__(self):
msg = 'Node({self.val})'.format(self=self)
return msg
def insertIntoBinaryTreeWithAGivenIntArray(root, intArray):
n = len(intArray)
if n <= 0: return
root = Node(intArray[0])
if n == 1: return
nodeArray = [root]
i = 1
while i < n:
temp = Node(intArray[i])
if i % 2 == 0:
parentIndex = (i - 2) // 2
nodeArray[parentIndex].right = temp
else:
parentIndex = (i - 1) // 2
nodeArray[parentIndex].left = temp
nodeArray.append(temp)
i += 1
for n in nodeArray:
print('content: %s' % (n))
def binary_insert(root, node):
if root is None:
root = node
else:
if root.val > node.val:
if root.left is None:
root.left = node
else:
binary_insert(root.left, node)
else:
if root.right is None:
root.right = node
else:
binary_insert(root.right, node)
def in_order_print(root):
if not root:
return
in_order_print(root.left)
print (root.val)
in_order_print(root.right)
def pre_order_print(root):
if not root:
return
print ('%s left:%s right:%s' % (str(root.val), str(root.left.val if root.left != None else ''), str(root.right.val if root.right != None else '')))
pre_order_print(root.left)
pre_order_print(root.right)
#case 1
t = Node(4)
#binary_insert(t, Node(2))
#binary_insert(t, Node(7))
#binary_insert(t, Node(3))
#binary_insert(t, Node(6))
#binary_insert(t, Node(2))
#binary_insert(t, Node(5))
#insertIntoBinaryTreeWithAGivenIntArray(t, [4, 2, 6, 3, 1, 5])
t.left = Node(2)
t.right = Node(6)
t.left.left = Node(3)
t.left.right = Node(1)
t.right.left = Node(5)
pre_order_print(t)
d = 2
v = 99
addRow(t, d, v)
pre_order_print(t)
#in_order_print(t)
#case 2
| 23.206897 | 154 | 0.556092 | 208 | 0.077266 | 0 | 0 | 0 | 0 | 0 | 0 | 389 | 0.144502 |
29c8162014a517194fd9f41815841a6c8677d84e | 4,458 | py | Python | src/genie/libs/parser/iosxe/tests/ShowIpInterfaceBrief/cli/equal/golden_expected.py | balmasea/genieparser | d1e71a96dfb081e0a8591707b9d4872decd5d9d3 | [
"Apache-2.0"
] | 204 | 2018-06-27T00:55:27.000Z | 2022-03-06T21:12:18.000Z | src/genie/libs/parser/iosxe/tests/ShowIpInterfaceBrief/cli/equal/golden_expected.py | balmasea/genieparser | d1e71a96dfb081e0a8591707b9d4872decd5d9d3 | [
"Apache-2.0"
] | 468 | 2018-06-19T00:33:18.000Z | 2022-03-31T23:23:35.000Z | src/genie/libs/parser/iosxe/tests/ShowIpInterfaceBrief/cli/equal/golden_expected.py | balmasea/genieparser | d1e71a96dfb081e0a8591707b9d4872decd5d9d3 | [
"Apache-2.0"
] | 309 | 2019-01-16T20:21:07.000Z | 2022-03-30T12:56:41.000Z | expected_output = {
"interface": {
"GigabitEthernet0/0/0": {
"interface_is_ok": "YES",
"ip_address": "10.105.44.23",
"method": "other",
"protocol": "up",
"status": "up"
},
"GigabitEthernet0/0/1": {
"interface_is_ok": "YES",
"ip_address": "10.174.10.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"GigabitEthernet0/0/2": {
"interface_is_ok": "YES",
"ip_address": "10.64.10.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"GigabitEthernet0/0/3": {
"interface_is_ok": "YES",
"ip_address": "10.186.10.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"Loopback65528": {
"interface_is_ok": "YES",
"ip_address": "192.168.1.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"NVI0": {
"interface_is_ok": "YES",
"ip_address": "unassigned",
"method": "unset",
"protocol": "up",
"status": "up"
},
"Sdwan-system-intf": {
"interface_is_ok": "YES",
"ip_address": "192.168.10.64",
"method": "unset",
"protocol": "up",
"status": "up"
},
"TenGigabitEthernet0/0/4": {
"interface_is_ok": "YES",
"ip_address": "10.121.10.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"TenGigabitEthernet0/0/5": {
"interface_is_ok": "YES",
"ip_address": "unassigned",
"method": "unset",
"protocol": "down",
"status": "down"
},
"Tunnel1": {
"interface_is_ok": "YES",
"ip_address": "10.174.10.1",
"method": "TFTP",
"protocol": "up",
"status": "up"
},
"Tunnel2000000001": {
"interface_is_ok": "YES",
"ip_address": "192.168.2.1",
"method": "unset",
"protocol": "up",
"status": "up"
},
"Tunnel2000000002": {
"interface_is_ok": "YES",
"ip_address": "192.168.166.1",
"method": "unset",
"protocol": "up",
"status": "up"
},
"Tunnel3": {
"interface_is_ok": "YES",
"ip_address": "10.186.10.1",
"method": "TFTP",
"protocol": "up",
"status": "up"
},
"TwoGigabitEthernet0/1/0": {
"interface_is_ok": "YES",
"ip_address": "unassigned",
"method": "unset",
"protocol": "up",
"status": "up"
},
"TwoGigabitEthernet0/2/0": {
"interface_is_ok": "YES",
"ip_address": "unassigned",
"method": "unset",
"protocol": "up",
"status": "up"
},
"Ucse1/0/0": {
"interface_is_ok": "YES",
"ip_address": "10.19.14.1",
"method": "other",
"protocol": "down",
"status": "administratively down"
},
"Ucse1/0/1": {
"interface_is_ok": "YES",
"ip_address": "unassigned",
"method": "unset",
"protocol": "down",
"status": "administratively down"
},
"VirtualPortGroup0": {
"interface_is_ok": "YES",
"ip_address": "192.0.2.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"VirtualPortGroup1": {
"interface_is_ok": "YES",
"ip_address": "192.168.2.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"VirtualPortGroup3": {
"interface_is_ok": "YES",
"ip_address": "192.168.3.1",
"method": "other",
"protocol": "up",
"status": "up"
},
"VirtualPortGroup4": {
"interface_is_ok": "YES",
"ip_address": "192.168.166.1",
"method": "other",
"protocol": "up",
"status": "up"
}
}
}
| 29.328947 | 45 | 0.394796 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,281 | 0.511664 |
29c8dfdb3c65c5e9847d8ee2d3b8fe9a5f54498a | 1,000 | py | Python | ssh.py | telkomdev/keris | 8451f3d69df174e33003e90e4fd70f602412412a | [
"MIT"
] | 1 | 2020-02-11T16:10:11.000Z | 2020-02-11T16:10:11.000Z | ssh.py | telkomdev/keris | 8451f3d69df174e33003e90e4fd70f602412412a | [
"MIT"
] | null | null | null | ssh.py | telkomdev/keris | 8451f3d69df174e33003e90e4fd70f602412412a | [
"MIT"
] | null | null | null | from common import is_connection_ok
import paramiko
"""
execute_ssh(host, port, username, password, cmd)
"""
def execute_ssh(host, username, password, cmd, port='22'):
if is_connection_ok():
try:
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(hostname=host, port=int(port), username=username, password=password)
_, stdout, stderr = ssh.exec_command(cmd, timeout=5)
res = stdout.read().decode()
error = stderr.read().decode('utf-8')
if error:
print(error)
return 'SSH_CONNECTION_FAIL'
else:
ssh.close()
return 'SSH_CONNECTION_SUCCESS with username : {username} and password {password}'.format(username=username, password=password)
except Exception:
print('*')
return 'SSH_CONNECTION_FAIL'
else:
return 'CONNECTION_NOT_FOUND'
| 35.714286 | 143 | 0.601 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 209 | 0.209 |
29ca0af350d167975f57568f8d8d244098802dd2 | 376 | py | Python | novel/spider/config.py | rrcgat/novel-info | fcda24f9f6da5a4755e942a520045b7b5a53bef4 | [
"MIT"
] | 4 | 2019-04-02T09:44:18.000Z | 2020-04-15T11:47:49.000Z | novel/spider/config.py | rrcgat/novel-info | fcda24f9f6da5a4755e942a520045b7b5a53bef4 | [
"MIT"
] | 1 | 2019-03-04T17:20:39.000Z | 2019-03-04T17:48:18.000Z | novel/spider/config.py | rrcgat/novel-info | fcda24f9f6da5a4755e942a520045b7b5a53bef4 | [
"MIT"
] | 1 | 2020-04-15T11:47:50.000Z | 2020-04-15T11:47:50.000Z | '''
请求头
'''
HEADERS_IPHONE = {'user-agent': (
'Mozilla/5.0 '
'(iPhone; CPU iPhone OS 6_0 like Mac OS X) '
'AppleWebKit/536.26 (KHTML, like Gecko) '
'Version/6.0 Mobile/10A5376e Safari/8536.25'
)}
HEADERS_CHROME = {'user-agent': (
'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/67.0.3396.99 Safari/537.36'
)}
| 22.117647 | 48 | 0.617021 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 294 | 0.769634 |
29cb4ed39bb073f7561e68074f27a72bbc5b7c7c | 7,167 | py | Python | tests/test_editor_common.py | jpfxgood/ped | f753ca27e4462c321ed28f00e1ef47fbde62990e | [
"MIT"
] | null | null | null | tests/test_editor_common.py | jpfxgood/ped | f753ca27e4462c321ed28f00e1ef47fbde62990e | [
"MIT"
] | 21 | 2020-07-03T13:14:15.000Z | 2020-07-14T14:27:43.000Z | tests/test_editor_common.py | jpfxgood/ped | f753ca27e4462c321ed28f00e1ef47fbde62990e | [
"MIT"
] | null | null | null | from ped_core import editor_common
import io
import pprint
import os
import curses
import curses.ascii
import time
import re
from ped_core import keymap
from ped_core import keytab
from ped_core import clipboard
from ped_test_util import read_str, match_attr, undo_all, window_pos, play_macro, validate_mark, validate_screen, editor_test_suite
import subprocess
def test_memline():
m = editor_common.MemLine( "01234567890123456789" )
assert( m.length() == 20 )
assert( m.getContent() == "01234567890123456789" )
def test_EditFile(testdir):
lines_to_test = ["This is the first line","This is the second line","This is the third line","This is the last line"]
testfile = testdir.makefile(".txt",lines_to_test[0],lines_to_test[1],lines_to_test[2],lines_to_test[3])
fn = str(testfile)
ef = editor_common.EditFile( fn )
assert(ef.get_tabs() == [ 4, 8 ] )
ef.set_tabs( [ 8, 16] )
assert(ef.get_tabs() == [ 8, 16 ] )
w = ef.getWorking()
assert( not w.closed )
assert( ef.getModref() == 0)
assert( isinstance(ef.getUndoMgr(), editor_common.undo.UndoManager ))
assert( not ef.isChanged() )
assert( not ef.isReadOnly() )
ef.setReadOnly( True )
assert( ef.isReadOnly() )
ef.setReadOnly( False )
assert( not ef.isReadOnly() )
assert( ef.getFilename() == fn )
ef.setFilename( "bogus.txt" )
assert( ef.getFilename() == "bogus.txt" )
ef.setFilename( fn )
assert( ef.getFilename() == fn )
fls = ef.getLines()
assert( ef.numLines() == 4 )
ef.close()
assert( ef.getWorking() == None )
ef.load()
w = ef.getWorking()
assert( not w.closed )
for line in range(0,len(lines_to_test)):
assert(ef.length(line) == len(lines_to_test[line]))
fl = ef.getLine(line)
assert(fl.rstrip() == lines_to_test[line])
assert(fls[line].rstrip() == lines_to_test[line])
fls = ef.getLines(1,3)
assert(len(fls) == 2 )
assert(fls[0].rstrip() == lines_to_test[1] and fls[1].rstrip() == lines_to_test[2])
ef.deleteLine(1)
fls = ef.getLines()
assert(fls[0].rstrip() == lines_to_test[0] and fls[1].rstrip() == lines_to_test[2] and fls[2].rstrip() == lines_to_test[3] )
assert(ef.numLines() == 3 )
assert(ef.getModref() == 1 )
assert(ef.isChanged() )
um = ef.getUndoMgr()
um.undo_transaction()
fls = ef.getLines()
for line in range(0,len(lines_to_test)):
assert(fls[line].rstrip() == lines_to_test[line])
assert(ef.numLines() == 4)
assert(ef.getModref() == 2)
assert(not ef.isChanged() )
new_test_line = "This is the line for insert"
ef.insertLine(2,new_test_line)
fls = ef.getLines()
assert(fls[0].rstrip() == lines_to_test[0] and fls[1].rstrip() == lines_to_test[1] and fls[2].rstrip() == new_test_line and fls[3].rstrip() == lines_to_test[2] and fls[4].rstrip() == lines_to_test[3] )
assert(ef.numLines() == 5 )
assert(ef.getModref() == 3 )
assert(ef.isChanged() )
um = ef.getUndoMgr()
um.undo_transaction()
fls = ef.getLines()
for line in range(0,len(lines_to_test)):
assert(fls[line].rstrip() == lines_to_test[line])
assert(ef.numLines() == 4)
assert(ef.getModref() == 4)
assert(not ef.isChanged() )
ef.replaceLine(3,new_test_line)
fls = ef.getLines()
assert(fls[0].rstrip() == lines_to_test[0] and fls[1].rstrip() == lines_to_test[1] and fls[2].rstrip() == lines_to_test[2] and fls[3].rstrip() == new_test_line )
assert(ef.numLines() == 4 )
assert(ef.getModref() == 5 )
assert(ef.isChanged() )
um = ef.getUndoMgr()
um.undo_transaction()
fls = ef.getLines()
for line in range(0,len(lines_to_test)):
assert(fls[line].rstrip() == lines_to_test[line])
assert(ef.numLines() == 4)
assert(ef.getModref() == 6)
assert(not ef.isChanged() )
fd = str(testdir.tmpdir)
backup_filepath = ef.make_backup_dir( fn, fd )
assert(os.path.exists(os.path.dirname(backup_filepath)))
ef.insertLine(10,new_test_line)
ef.backuproot = fd
ef.save()
assert(os.path.exists(backup_filepath))
fls = ef.getLines()
for line in range(0,len(lines_to_test)):
assert(fls[line].rstrip() == lines_to_test[line])
assert(fls[10].rstrip() == new_test_line)
newname = os.path.join(fd,"1_"+os.path.basename(fn))
ef.save(newname)
assert(os.path.exists(newname))
ef.close()
ef.load()
assert(ef.getFilename() == newname)
fls = ef.getLines()
for line in range(0,len(lines_to_test)):
assert(fls[line].rstrip() == lines_to_test[line])
assert(fls[10].rstrip() == new_test_line)
assert(ef.get_tab_stop(4) == 8)
assert(ef.get_tab_stop(10) == 16 )
assert(ef.get_tab_stop(10,True) == 8)
tabby_string = "01234\t56789012\t3456789"
expanded_string = "01234 56789012 3456789"
assert(ef.expand_tabs(tabby_string) == expanded_string)
def test_Editor_unwrapped(testdir,capsys):
with capsys.disabled():
curses.wrapper(editor_test_suite,testdir,False,None)
def test_Editor_wrapped(testdir,capsys):
with capsys.disabled():
curses.wrapper(editor_test_suite,testdir,True,None)
def test_StreamEditor(testdir,capsys):
with capsys.disabled():
def main(stdscr,testdir):
max_y,max_x = stdscr.getmaxyx()
generator_lines = [
"for i in range(0,1000000):",
" print('Line %d of test file'%i)",
]
generator_script = testdir.makepyfile(**{ "generator": "\n".join(generator_lines)})
cmd = 'python3 %s'%str(generator_script)
se = editor_common.StreamEditor(stdscr,stdscr.subwin(max_y,max_x,0,0),"Test Stream",subprocess.Popen(cmd,
shell=True,
bufsize=1024,
encoding="utf-8",
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT).stdout)
starting_num_lines = se.numLines()
time.sleep(1)
for i in range(0,100):
se.main(False)
assert(se.getContent(i) == 'Line %d of test file'%i)
current_line = se.getLine()
se.main(False,6) # ctrl-f
for i in range(0,200):
se.main(False)
assert(se.follow == True and se.getLine() > current_line)
se.main(False,6) # ctrl-f
current_line = se.getLine()
for i in range(0,200):
se.main(False)
assert(se.follow == False and se.getLine() == current_line)
play_macro(se, [keytab.KEYTAB_ALTO,keytab.KEYTAB_TAB,keytab.KEYTAB_DOWN]+list("testout.out")+[keytab.KEYTAB_CR,keytab.KEYTAB_CR])
assert(se.getFilename().endswith("testout.out") and os.path.exists(se.getFilename()))
se.close()
curses.wrapper(main,testdir)
| 40.954286 | 205 | 0.599972 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 435 | 0.060695 |
29cc2793a730a906cbbcc655e8b03fef329faada | 227 | py | Python | rsmtpd/response/smtp_501.py | alfmel/rsmtpd | 10900876b1f83d6c141070a413f81edf3c98ac51 | [
"Apache-2.0"
] | 1 | 2017-06-12T04:10:07.000Z | 2017-06-12T04:10:07.000Z | rsmtpd/response/smtp_501.py | alfmel/rsmtpd | 10900876b1f83d6c141070a413f81edf3c98ac51 | [
"Apache-2.0"
] | null | null | null | rsmtpd/response/smtp_501.py | alfmel/rsmtpd | 10900876b1f83d6c141070a413f81edf3c98ac51 | [
"Apache-2.0"
] | null | null | null | from rsmtpd.response.action import OK
from rsmtpd.response.base_response import BaseResponse
class SmtpResponse501(BaseResponse):
_smtp_code = 501
_message = "Syntax error in parameters or arguments"
_action = OK
| 25.222222 | 56 | 0.779736 | 131 | 0.577093 | 0 | 0 | 0 | 0 | 0 | 0 | 41 | 0.180617 |
29cd522f460b996800fe0d9f2739255f875ef960 | 14,116 | py | Python | qatrack/qatrack_core/tests/test_core.py | crcrewso/qatrackplus | b9da3bc542d9e3eca8b7291bb631d1c7255d528e | [
"MIT"
] | 20 | 2021-03-11T18:37:32.000Z | 2022-03-23T19:38:07.000Z | qatrack/qatrack_core/tests/test_core.py | crcrewso/qatrackplus | b9da3bc542d9e3eca8b7291bb631d1c7255d528e | [
"MIT"
] | 75 | 2021-02-12T02:37:33.000Z | 2022-03-29T20:56:16.000Z | qatrack/qatrack_core/tests/test_core.py | crcrewso/qatrackplus | b9da3bc542d9e3eca8b7291bb631d1c7255d528e | [
"MIT"
] | 5 | 2021-04-07T15:46:53.000Z | 2021-09-18T16:55:00.000Z | import datetime
import re
from django.contrib.sites.models import Site
from django.core import mail
from django.test import TestCase
from django.urls import reverse
from django.utils import timezone
import numpy as np
import pandas as pd
import pytz
from qatrack.qa.tests import utils
from qatrack.qatrack_core.serializers import QATrackJSONEncoder
from qatrack.qatrack_core.utils import end_of_day, relative_dates, start_of_day
class TestLoginViews(TestCase):
def test_password_reset(self):
"""Test full cycle of password reset process"""
Site.objects.all().update(domain="")
u = utils.create_user()
self.client.post(reverse("password_reset"), {'email': u.email})
assert "Password reset" in mail.outbox[0].subject
url = re.search(r"(?P<url>https?://[^\s]+)", mail.outbox[0].body).group("url")
resp = self.client.get(url)
resp = self.client.post(
resp.url, {
'new_password1': '8P0Cut!v6XUr',
'new_password2': '8P0Cut!v6XUr',
}, follow=True
)
assert "/accounts/reset/done/" in resp.redirect_chain[0]
class TestJSONEncoder:
def test_np_int(self):
enc = QATrackJSONEncoder()
assert enc.default(np.int8(1)) == 1
def test_np_array(self):
enc = QATrackJSONEncoder()
assert enc.default(np.array(range(3))) == [0, 1, 2]
def test_range(self):
enc = QATrackJSONEncoder()
assert enc.default(range(3)) == [0, 1, 2]
def test_zip(self):
enc = QATrackJSONEncoder()
assert enc.default(zip(range(3), range(3))) == [(0, 0), (1, 1), (2, 2)]
def test_set(self):
enc = QATrackJSONEncoder()
assert set(enc.default(set(range(3)))) == set(range(3))
def test_pd_df(self):
enc = QATrackJSONEncoder()
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
expected = {'col1': {0: 1, 1: 2}, 'col2': {0: 3, 1: 4}}
assert enc.default(df) == expected
def test_datetime(self):
enc = QATrackJSONEncoder()
tz = pytz.timezone("America/Toronto")
dt = timezone.datetime(2020, 2, 29, 12, 34, 56, tzinfo=tz)
assert enc.default(dt) == "29 Feb 2020 12:34:56"
def test_date(self):
enc = QATrackJSONEncoder()
dt = datetime.date(2020, 2, 29)
assert enc.default(dt) == "29 Feb 2020"
class TestRelativeDates:
def setup_class(self):
self.tz = pytz.timezone("America/Toronto")
self.now = timezone.datetime(2020, 1, 2, 11, 38, tzinfo=self.tz)
self.day_start = start_of_day(self.now)
def test_next_7_days(self):
r = relative_dates("next 7 days", self.now)
end = end_of_day(timezone.datetime(2020, 1, 9, tzinfo=self.tz))
assert r.start() == self.day_start
assert r.end() == end
def test_next_30_days(self):
end = end_of_day(timezone.datetime(2020, 2, 1, tzinfo=self.tz))
r = relative_dates("next 30 days", self.now)
assert r.start() == self.day_start
assert r.end() == end
def test_next_365_days(self):
end = end_of_day(timezone.datetime(2021, 1, 1, tzinfo=self.tz))
r = relative_dates("next 365 days", self.now)
assert r.start() == self.day_start
assert r.end() == end
def test_next_week(self):
start = start_of_day(timezone.datetime(2020, 1, 5, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 11, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next week", self.now)
assert r.start() == start
assert r.end() == end
def test_next_week_sat(self):
pivot = timezone.datetime(2020, 1, 11, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 1, 12, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 18, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next week", pivot)
assert r.start() == start
assert r.end() == end
def test_next_week_sun(self):
pivot = timezone.datetime(2020, 1, 12, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 1, 19, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 25, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next week", pivot)
assert r.start() == start
assert r.end() == end
def test_next_month(self):
start = start_of_day(timezone.datetime(2020, 2, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 2, 29, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next month", self.now)
assert r.start() == start
assert r.end() == end
def test_next_month_first_day(self):
pivot = timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 2, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 2, 29, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next month", pivot)
assert r.start() == start
assert r.end() == end
def test_next_month_last_day(self):
pivot = timezone.datetime(2020, 1, 31, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 2, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 2, 29, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next month", pivot)
assert r.start() == start
assert r.end() == end
def test_next_year(self):
start = start_of_day(timezone.datetime(2021, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2021, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("next year", self.now)
assert r.start() == start
assert r.end() == end
def test_this_week(self):
start = start_of_day(timezone.datetime(2019, 12, 29, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 4, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this week", self.now)
assert r.start() == start
assert r.end() == end
def test_this_week_sat(self):
pivot = timezone.datetime(2020, 1, 11, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 1, 5, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 11, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this week", pivot)
assert r.start() == start
assert r.end() == end
def test_this_week_sun(self):
pivot = timezone.datetime(2020, 1, 5, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 1, 5, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 11, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this week", pivot)
assert r.start() == start
assert r.end() == end
def test_this_year(self):
start = start_of_day(timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this year", self.now)
assert r.start() == start
assert r.end() == end
def test_this_year_jan_1(self):
pivot = timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this year", pivot)
assert r.start() == start
assert r.end() == end
def test_this_year_dec_31(self):
pivot = timezone.datetime(2020, 12, 31, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this year", pivot)
assert r.start() == start
assert r.end() == end
def test_last_7_days(self):
start = start_of_day(timezone.datetime(2019, 12, 26, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 2, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last 7 days", self.now)
assert r.start() == start
assert r.end() == end
def test_last_30_days(self):
start = start_of_day(timezone.datetime(2019, 12, 3, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 2, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last 30 days", self.now)
assert r.start() == start
assert r.end() == end
def test_last_365_days(self):
start = start_of_day(timezone.datetime(2019, 1, 2, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 2, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last 365 days", self.now)
assert r.start() == start
assert r.end() == end
def test_this_month(self):
start = start_of_day(timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("this month", self.now)
assert r.start() == start
assert r.end() == end
def test_last_week(self):
start = start_of_day(timezone.datetime(2019, 12, 22, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 28, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last week", self.now)
assert r.start() == start
assert r.end() == end
def test_last_week_sat(self):
pivot = timezone.datetime(2020, 1, 4, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2019, 12, 22, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 28, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last week", pivot)
assert r.start() == start
assert r.end() == end
def test_last_week_sun(self):
pivot = timezone.datetime(2020, 1, 5, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2019, 12, 29, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2020, 1, 4, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last week", pivot)
assert r.start() == start
assert r.end() == end
def test_last_month(self):
start = start_of_day(timezone.datetime(2019, 12, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last month", self.now)
assert r.start() == start
assert r.end() == end
def test_last_month_jan1(self):
pivot = timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2019, 12, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last month", pivot)
assert r.start() == start
assert r.end() == end
def test_last_month_jan31(self):
pivot = timezone.datetime(2020, 1, 31, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2019, 12, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last month", pivot)
assert r.start() == start
assert r.end() == end
def test_last_year(self):
start = start_of_day(timezone.datetime(2019, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last year", self.now)
assert r.start() == start
assert r.end() == end
def test_last_year_jan1(self):
pivot = timezone.datetime(2020, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2019, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last year", pivot)
assert r.start() == start
assert r.end() == end
def test_last_year_dec31(self):
pivot = timezone.datetime(2020, 12, 31, 11, 38, tzinfo=pytz.timezone("America/Toronto"))
start = start_of_day(timezone.datetime(2019, 1, 1, 11, 38, tzinfo=pytz.timezone("America/Toronto")))
end = end_of_day(timezone.datetime(2019, 12, 31, tzinfo=pytz.timezone("America/Toronto")))
r = relative_dates("last year", pivot)
assert r.start() == start
assert r.end() == end
def test_today(self):
start = self.day_start
end = end_of_day(start)
r = relative_dates("today", self.now)
assert r.start() == start
assert r.end() == end
| 45.980456 | 110 | 0.63637 | 13,676 | 0.96883 | 0 | 0 | 0 | 0 | 0 | 0 | 1,767 | 0.125177 |
29cdd1a0441cda0528b31705900a6564e1af5682 | 179 | py | Python | app/blog/urls.py | AjayHao/AtThirty | 96b2ce00be8f3ed07ee5e6e2b1ca13ab25e9521d | [
"MIT"
] | null | null | null | app/blog/urls.py | AjayHao/AtThirty | 96b2ce00be8f3ed07ee5e6e2b1ca13ab25e9521d | [
"MIT"
] | null | null | null | app/blog/urls.py | AjayHao/AtThirty | 96b2ce00be8f3ed07ee5e6e2b1ca13ab25e9521d | [
"MIT"
] | null | null | null | from django.conf.urls import patterns, url
from app.blog import views as blog_views
urlpatterns = [
#django url
url(r'^$', blog_views.index, name='blog_index'),
]
| 16.272727 | 52 | 0.681564 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0.156425 |
29cde250e9d497ca3e7e9d2169fa12a67aa2c621 | 752 | py | Python | core/recc/system/environ.py | bogonets/answer | 57f892a9841980bcbc35fa1e27521b34cd94bc25 | [
"MIT"
] | 3 | 2021-06-20T02:24:10.000Z | 2022-01-26T23:55:33.000Z | core/recc/system/environ.py | bogonets/answer | 57f892a9841980bcbc35fa1e27521b34cd94bc25 | [
"MIT"
] | null | null | null | core/recc/system/environ.py | bogonets/answer | 57f892a9841980bcbc35fa1e27521b34cd94bc25 | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
from os import environ
from typing import Optional, Dict, Any, Type
def get_os_envs_dict() -> Dict[str, str]:
return {k: str(environ.get(k)) for k in environ if environ}
def exchange_env(key: str, exchange: Optional[str]) -> Optional[str]:
result = environ.get(key)
if result is not None:
environ.pop(key)
if exchange is not None:
environ[key] = exchange
return result
def get_env(key: str) -> Optional[str]:
return environ.get(key)
def opt_env(key: str, default_value: Any, result_class: Type) -> Any:
value = environ.get(key)
if value is None:
return default_value
try:
return result_class(value)
except ValueError:
return default_value
| 23.5 | 69 | 0.655585 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0.030585 |
29cf16e7358b9161ab9d90ae6bb97701b983418a | 436 | py | Python | InteractiveProgramming/assignment3.3.py | mr-ice/pipython | ea27af520946cb710cb717815be625489fc8a1a3 | [
"MIT"
] | null | null | null | InteractiveProgramming/assignment3.3.py | mr-ice/pipython | ea27af520946cb710cb717815be625489fc8a1a3 | [
"MIT"
] | null | null | null | InteractiveProgramming/assignment3.3.py | mr-ice/pipython | ea27af520946cb710cb717815be625489fc8a1a3 | [
"MIT"
] | null | null | null | try:
s = raw_input("Enter score between 0.0 and 1.0: ")
score = float(s)
if score < 0 or score > 1:
raise Exception
except ValueError:
print "You didn't even enter a number"
except:
print "Not a possible score."
else:
if score >= 0.9:
print "A"
elif score >= 0.8:
print "B"
elif score >= 0.7:
print "C"
elif score >= 0.6:
print "D"
else:
print "F"
| 20.761905 | 54 | 0.529817 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105 | 0.240826 |
29cf80f6c6965927720d1b295a0c8b626681599d | 254 | py | Python | Store/robot-test/say.py | Quanta-Robotics/Robot-Blueberry | 7b7e77e09ac5e9ec5afd947e0db1ecc8773e56da | [
"MIT"
] | 25 | 2021-06-08T07:09:30.000Z | 2021-12-30T06:28:35.000Z | Store/robot-test/say.py | ICT-CoU/Robot-Blueberry | d19fd1be037df9d67de64df57a87006d74cd6c43 | [
"MIT"
] | 2 | 2021-05-23T12:54:51.000Z | 2021-06-07T17:47:56.000Z | Store/robot-test/say.py | ICT-CoU/Robot-Blueberry | d19fd1be037df9d67de64df57a87006d74cd6c43 | [
"MIT"
] | 14 | 2021-06-08T13:02:28.000Z | 2021-12-30T20:07:18.000Z | import pyttsx3
engine = pyttsx3.init()
engine.setProperty('rate', 150)
voices = engine.getProperty('voices')
engine.setProperty("voice", 'english_rp+f4')
def talk(text):
engine.say(text)
engine.runAndWait()
talk("My name is robot leena")
| 15.875 | 44 | 0.704724 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0.23622 |
29d39c3e482269db7c4ce7b3f24a9b213141989d | 141 | py | Python | api/server/utils/logger.py | ktolstikhin/vision-service | b87f10f5ec3d22b76c06a0e6c0105fd823e60c39 | [
"MIT"
] | null | null | null | api/server/utils/logger.py | ktolstikhin/vision-service | b87f10f5ec3d22b76c06a0e6c0105fd823e60c39 | [
"MIT"
] | null | null | null | api/server/utils/logger.py | ktolstikhin/vision-service | b87f10f5ec3d22b76c06a0e6c0105fd823e60c39 | [
"MIT"
] | null | null | null | import logging
def initialize(app):
level = logging.DEBUG if app.config.get('DEBUG') else logging.INFO
app.logger.setLevel(level)
| 17.625 | 70 | 0.723404 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0.049645 |
29d3aa7dc92ae861ca049b62d573cabdb669506d | 1,579 | py | Python | tests/integration/test_dug_utils.py | helxplatform/roger | 60c1c1198c41949804692217c74848e2aa8b9ea2 | [
"MIT"
] | null | null | null | tests/integration/test_dug_utils.py | helxplatform/roger | 60c1c1198c41949804692217c74848e2aa8b9ea2 | [
"MIT"
] | 7 | 2021-04-08T12:17:27.000Z | 2022-02-08T23:12:32.000Z | tests/integration/test_dug_utils.py | helxplatform/roger | 60c1c1198c41949804692217c74848e2aa8b9ea2 | [
"MIT"
] | 3 | 2020-12-07T20:49:43.000Z | 2021-06-12T19:49:43.000Z | import tempfile
from pathlib import Path
import pytest
from dug_helpers.dug_utils import FileFetcher, get_topmed_files, get_dbgap_files
from roger.Config import config
def test_fetch_network_file():
filename = "README.md"
with tempfile.TemporaryDirectory() as tmp_dir:
fetch1 = FileFetcher(
"https://github.com",
"/helxplatform/roger/blob/main/",
tmp_dir,
)
expected_path = Path(tmp_dir) / filename
assert not expected_path.exists()
fetch1(filename)
assert expected_path.exists()
with tempfile.TemporaryDirectory() as tmp_dir:
fetch2 = FileFetcher(
"https://github.com",
Path("/helxplatform/roger/blob/main/"),
Path(tmp_dir),
)
expected_path = Path(tmp_dir) / filename
assert not expected_path.exists()
fetch2(filename)
assert expected_path.exists()
def test_fetcher_errors():
filename = "DOES NOT EXIST.md"
with tempfile.TemporaryDirectory() as tmp_dir:
fetch = FileFetcher(
"https://github.com",
Path("/helxplatform/roger/blob/main/"),
Path(tmp_dir),
)
with pytest.raises(RuntimeError):
fetch(filename)
def test_get_topmed_files():
file_names = get_topmed_files(config=config)
for file_name in file_names:
assert Path(file_name).exists()
def test_get_dbgap_files():
file_names = get_dbgap_files(config=config)
for file_name in file_names:
assert Path(file_name).exists() | 26.316667 | 80 | 0.640912 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 186 | 0.117796 |
29d584e58250f68d3fe99344f92ca1d026fcfaa6 | 6,915 | py | Python | tests/bean_test.py | samuelchen/truepy | f1fd86ffccf7c3b2eee4cd4ced9436ff832d257e | [
"OpenSSL"
] | 40 | 2015-08-04T11:01:33.000Z | 2022-01-17T10:45:18.000Z | tests/bean_test.py | samuelchen/truepy | f1fd86ffccf7c3b2eee4cd4ced9436ff832d257e | [
"OpenSSL"
] | 9 | 2016-09-14T04:40:58.000Z | 2021-07-22T09:07:51.000Z | tests/bean_test.py | samuelchen/truepy | f1fd86ffccf7c3b2eee4cd4ced9436ff832d257e | [
"OpenSSL"
] | 13 | 2015-02-24T05:39:10.000Z | 2022-02-03T00:41:53.000Z | # coding: utf-8
# truepy
# Copyright (C) 2014-2015 Moses Palmér
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>.
import unittest
from datetime import datetime
from truepy import fromstring, tostring
from truepy._bean import snake_to_camel, camel_to_snake
from truepy._bean import value_to_xml
from truepy._bean import deserialize, serialize, to_document
from truepy._bean_serializers import _DESERIALIZER_CLASSES, bean_class
class BeanTest(unittest.TestCase):
def test_snake_to_camel(self):
"""Tests that snake_to_camel works as expected"""
self.assertEqual(
'camelCase',
snake_to_camel('camel_case'))
self.assertEqual(
'camelCase',
snake_to_camel('camel__case'))
self.assertEqual(
'camelCase',
snake_to_camel('camel_case_'))
self.assertEqual(
'CamelCase',
snake_to_camel('_camel_case'))
def test_camel_to_snake(self):
"""Tests that camel_to_snake works as expected"""
self.assertEqual('snake_case', camel_to_snake('snakeCase'))
self.assertEqual('_snake_case', camel_to_snake('SnakeCase'))
self.assertEqual('_s_n_a_k_e', camel_to_snake('SNAKE'))
def test_value_to_xml_no_class(self):
"""Tests value_to_xml for no class name"""
self.assertEqual(
'<test>value</test>',
tostring(value_to_xml('value', 'test')))
def test_value_to_xml_with_class(self):
"""Tests value_to_xml for a class name"""
self.assertEqual(
'<object class="test">'
'<tag>value</tag>'
'</object>',
tostring(value_to_xml('value', 'tag', 'test')))
def test_serialize_unknown(self):
"""Serialises an unknown value"""
class unknown(object):
pass
with self.assertRaises(ValueError):
serialize(unknown())
def test_serialize_empty_class(self):
"""Serialises an empty class"""
class empty(object):
bean_class = 'test.class'
self.assertEqual(
'<object class="test.class" />',
tostring(serialize(empty())))
def test_serialize_unknown_property(self):
"""Serialises a class with an unknown property"""
class unknown(object):
pass
class has_unknown(object):
bean_class = 'test.class'
@property
def test_a(self):
return unknown()
with self.assertRaises(ValueError):
serialize(has_unknown())
def test_serialize_string(self):
"""Serialises a string"""
self.assertEqual(
'<string>hello world</string>',
tostring(serialize('hello world')))
def test_serialize_object(self):
"""Serialises an object"""
class test(object):
bean_class = 'test.class'
@property
def test_property(self):
return True
self.assertEqual(
'<object class="test.class">'
'<void property="testProperty">'
'<boolean>true</boolean>'
'</void>'
'</object>',
tostring(serialize(test())))
def test_serialize_datetime(self):
"""Serialises datetime instances"""
self.assertEqual(
'<object class="java.util.Date">'
'<long>0</long>'
'</object>',
tostring(serialize(
datetime.strptime('1970-01-01 UTC', '%Y-%m-%d %Z'))))
self.assertEqual(
'<object class="java.util.Date">'
'<long>86400000</long>'
'</object>',
tostring(serialize(
datetime.strptime('1970-01-02 UTC', '%Y-%m-%d %Z'))))
def test_deserialize_unknown_fragment(self):
"""Deserialises an unknown fragment"""
with self.assertRaises(ValueError):
deserialize(fromstring(
'<object class="unknown">'
'<void property="a">'
'<int>42</int>'
'</void>'
'</object>'))
def test_deserialize(self):
"""Deserialises invalid fragments"""
with self.assertRaises(ValueError):
deserialize(fromstring(
'<boolean>invalid</boolean>'))
with self.assertRaises(ValueError):
deserialize(fromstring(
'<int>invalid</int>'))
def test_deserialize_known_fragment(self):
"""Deserialises known fragments"""
self.assertEqual(
True,
deserialize(fromstring(
'<boolean>true</boolean>')))
self.assertEqual(
42,
deserialize(fromstring(
'<int>42</int>')))
self.assertEqual(
'hello world',
deserialize(fromstring(
'<string>hello world</string>')))
def test_deserialize_with_constructor(self):
"""Deserialises an object using constructor"""
global _DESERIALIZER_CLASSES
class_name = 'test.class'
try:
@bean_class(class_name)
class test(object):
@property
def test_a(selfself):
return self._a
def test___init__(self, a):
self._a = a
o = deserialize(fromstring(
'<object class="test.class">'
'<void property="a">'
'<string>hello world</string>'
'</void>'
'</object>'))
self.assertEqual('hello world', o.a)
self.assertEqual(test, o.__class__)
finally:
del _DESERIALIZER_CLASSES[class_name]
def test_deserialize_datetime(self):
"""Deserialises datetime objects"""
expected = datetime.strptime('2014-01-01 UTC', '%Y-%m-%d %Z')
self.assertEqual(
expected,
deserialize(serialize(expected)))
def test_to_document(self):
"""Tests that todocument creates a valid XML document"""
expected = 'hello world'
self.assertEqual(
expected,
deserialize(
fromstring(
to_document(
serialize(expected)))
[0]))
| 32.013889 | 79 | 0.572523 | 5,898 | 0.852805 | 0 | 0 | 377 | 0.054511 | 0 | 0 | 2,353 | 0.340226 |
29d6295eb61db2d065b900e834740080a6c5d3ff | 3,679 | py | Python | normal_version/export_es_data.py | Logistic98/es-data-transfer | 6ed916201e8ab701e258e156e2c71468a3c509e5 | [
"Apache-2.0"
] | 1 | 2022-03-23T05:22:41.000Z | 2022-03-23T05:22:41.000Z | normal_version/export_es_data.py | Logistic98/es-data-transfer | 6ed916201e8ab701e258e156e2c71468a3c509e5 | [
"Apache-2.0"
] | null | null | null | normal_version/export_es_data.py | Logistic98/es-data-transfer | 6ed916201e8ab701e258e156e2c71468a3c509e5 | [
"Apache-2.0"
] | null | null | null | # -*- coding: utf-8 -*-
from elasticsearch import Elasticsearch
from datetime import timedelta
import datetime
import os
import json
import logging
from configparser import ConfigParser
# 生成日志文件
logging.basicConfig(filename='logging_es.log', level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def read_config():
cfg = ConfigParser()
cfg.read('./config.ini', encoding='utf-8')
host = cfg.get('SOURCE_ES', 'host')
port = cfg.get('SOURCE_ES', 'port')
user = cfg.get('SOURCE_ES', 'user')
password = cfg.get('SOURCE_ES', 'password')
timeout = cfg.get('SOURCE_ES', 'timeout')
index_list = cfg.get('SOURCE_ES', 'index_list')
es_dict = {}
es_dict['host'] = host
es_dict['port'] = port
es_dict['user'] = user
es_dict['password'] = password
es_dict['timeout'] = timeout
es_dict['index_list'] = index_list
return es_dict
def write_list_to_json(list, json_file_name, json_file_save_path):
"""
将list写入到json文件
:param list:
:param json_file_name: 写入的json文件名字
:param json_file_save_path: json文件存储路径
:return:
"""
if not os.path.exists(json_file_save_path):
os.makedirs(json_file_save_path)
os.chdir(json_file_save_path)
with open(json_file_name, 'w', encoding='utf-8') as f:
json.dump(list, f, ensure_ascii=False)
def es_json(es_dict, start_time, end_time):
str_separate = "==============================================================="
try:
BASE_DIR = os.getcwd()
Es = Elasticsearch(
hosts=[str(es_dict['host']) + ":" + str(es_dict['port'])],
http_auth=(str(es_dict['user']), str(es_dict['password'])),
timeout=int(es_dict['timeout'])
)
except Exception as e:
logging.error(e)
index_list = ''.join(es_dict['index_list'].split()).split(",")
for i in index_list:
print(f"保存索引{i}的数据\r")
print_info1 = "保存索引" + i + "的数据"
logging.info(print_info1)
query = {
"range": {
"@timestamp": {
# 大于上一次读取结束时间,小于等于本次读取开始时间
"gt": start_time,
"lte": end_time
}
}
}
try:
data = Es.search(index=i, query=query, size=10000)
source_list = []
for hit in data['hits']['hits']:
source_data = hit['_source']
source_data['_id'] = hit['_id']
source_list.append(source_data)
print(f"保存的时间为{start_time}到{end_time}\r")
print_info2 = "保存的时间为" + start_time + "到" + end_time + ""
logging.info(print_info2)
file_path = BASE_DIR + "/json_file"
file_name = str(i) + ".json"
if len(source_list) != 0:
write_list_to_json(source_list, file_name, file_path)
else:
print('无更新')
logging.info(str(i) + '无更新')
print(str_separate)
logging.info(str_separate)
except Exception as e:
print(e)
logging.info("es数据库到json文件的读写error" % e)
logging.info(str_separate)
if __name__ == '__main__':
start_date_time = datetime.datetime.now() + timedelta(days=-1)
end_date_time = datetime.datetime.now()
start_time = start_date_time.strftime("%Y-%m-%dT%H:00:00.000Z")
end_time = end_date_time.strftime("%Y-%m-%dT%H:00:00.000Z")
# 读取配置信息
es_dict = read_config()
# 获取当前的目录地址
BASE_DIR = os.getcwd()
# 读取es数据库中的数据,写成json文件
es_json(es_dict, start_time, end_time)
| 32.27193 | 84 | 0.57271 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,110 | 0.283091 |
29d8926e28c855d35087d877a48866f5e57129f6 | 25 | py | Python | env/lib/python2.7/site-packages/grpc/_grpcio_metadata.py | husky-parul/SheHacks | 19383029947f50ebaf07232c9b2ee76c75d8ada6 | [
"Apache-2.0"
] | 2 | 2018-02-01T06:30:24.000Z | 2018-04-12T15:39:56.000Z | env/lib/python2.7/site-packages/grpc/_grpcio_metadata.py | husky-parul/SheHacks | 19383029947f50ebaf07232c9b2ee76c75d8ada6 | [
"Apache-2.0"
] | null | null | null | env/lib/python2.7/site-packages/grpc/_grpcio_metadata.py | husky-parul/SheHacks | 19383029947f50ebaf07232c9b2ee76c75d8ada6 | [
"Apache-2.0"
] | null | null | null | __version__ = """1.8.4""" | 25 | 25 | 0.56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0.44 |
29d92f0ff0b006c6d957ac126ab63d45f2f46f8c | 146 | py | Python | danesfield/core/admin/__init__.py | girder/Danesfield | 04b0e991cae52bda758de4ee3f7e04dab45f3ff9 | [
"Apache-2.0"
] | null | null | null | danesfield/core/admin/__init__.py | girder/Danesfield | 04b0e991cae52bda758de4ee3f7e04dab45f3ff9 | [
"Apache-2.0"
] | 24 | 2021-10-29T21:03:34.000Z | 2022-03-18T02:07:57.000Z | danesfield/core/admin/__init__.py | girder/Danesfield | 04b0e991cae52bda758de4ee3f7e04dab45f3ff9 | [
"Apache-2.0"
] | 1 | 2022-01-26T09:31:48.000Z | 2022-01-26T09:31:48.000Z | from django.contrib import admin
# general admin settings
admin.site.site_header = 'Danesfield Admin'
admin.site.site_title = 'Danesfield Admin'
| 24.333333 | 43 | 0.80137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0.410959 |
29dae29f89683a7db968db7356c874c048160ba7 | 2,645 | py | Python | cnmodel/util/expfitting.py | pbmanis/cnmodel | eee593c673752c19137658d5b9a381ea9ad4580f | [
"BSD-3-Clause"
] | 5 | 2017-07-26T21:46:14.000Z | 2020-11-27T07:53:14.000Z | cnmodel/util/expfitting.py | pbmanis/cnmodel | eee593c673752c19137658d5b9a381ea9ad4580f | [
"BSD-3-Clause"
] | 12 | 2017-07-26T07:16:16.000Z | 2021-07-14T13:41:37.000Z | cnmodel/util/expfitting.py | pbmanis/cnmodel | eee593c673752c19137658d5b9a381ea9ad4580f | [
"BSD-3-Clause"
] | 10 | 2017-07-26T07:03:29.000Z | 2021-06-23T15:52:37.000Z | #!/usr/bin/env python
# encoding: utf-8
"""
expfitting.py
Provide single or double exponential fits to data.
"""
import lmfit
import numpy as np
import scipy.optimize
class ExpFitting:
"""
Parameters
----------
nexp : int
1 or 2 for single or double exponential fit
initpars : dict
dict of initial parameters. For example: {'dc': 0.,
'a1': 1., 't1': 3, 'a2' : 0.5, 'delta': 3.}, where
delta determines the ratio between the time constants.
bounds : dict
dictionary of bounds for each parameter, with a list of lower and upper values.
"""
def __init__(self, nexp=1, initpars=None, bounds=None):
self.fitpars = lmfit.Parameters()
if nexp == 1:
# (Name, Value, Vary, Min, Max, Expr)
self.fitpars.add_many(('dc', 0, True, -100., 0., None),
('a1', 1., True, -25., 25., None),
('t1', 10., True, 0.1, 50, None))
self.efunc = self.exp1_err
elif nexp == 2:
self.fitpars.add_many(('dc', 0, True, -100., 0., None),
('a1', 1., True, 0., 25., None),
('t1', 10., True, 0.1, 50, None),
('a2', 1., True, 0., 25., None),
('delta', 3., True, 3., 100., None))
if initpars is not None:
assert len(initpars) == 5
for k, v in initpars.iteritems():
self.fitpars[k].value = v
if bounds is not None:
assert len(bounds) == 5
for k, v in bounds.iteritems():
self.fitpars[k].min = v[0]
self.fitpars[k].max = v[1]
self.efunc = self.exp2_err
else:
raise ValueError
def fit(self, x, y, p, verbose=False):
kws={'maxfev': 5000}
mim = lmfit.minimize(self.efunc, p, method='least_squares', args=(x, y)) #, kws=kws)
if verbose:
lmfit.printfuncs.report_fit(mim.params)
fitpars = mim.params
return fitpars
@staticmethod
def exp1(x, dc, t1, a1):
return dc + a1*np.exp(-x/t1)
def exp1_err(self, p, x, y):
return np.fabs(y-self.exp1(x, **dict([(k,p.value) for k,p in p.items()])))
@staticmethod
def exp2(x, dc, t1, a1, a2, delta):
return dc + a1 * np.exp(-x/t1) + a2 * np.exp(-x/(t1*delta))
def exp2_err(self, p, x, y):
return np.fabs(y-self.exp2(x, **dict([(k,p.value) for k,p in p.items()])))
| 33.910256 | 92 | 0.485444 | 2,473 | 0.934972 | 0 | 0 | 200 | 0.075614 | 0 | 0 | 644 | 0.243478 |
29db5cdc597125eaa323b36fcd83763a78a5f8f9 | 4,338 | py | Python | django_cloud_tasks/models.py | joaodaher/django-cloud-tasks | bc8ff94a281bda8b49ee73229d5ed5cacdd7a388 | [
"Apache-2.0"
] | null | null | null | django_cloud_tasks/models.py | joaodaher/django-cloud-tasks | bc8ff94a281bda8b49ee73229d5ed5cacdd7a388 | [
"Apache-2.0"
] | 1 | 2020-07-09T17:48:19.000Z | 2020-07-09T17:53:33.000Z | django_cloud_tasks/models.py | joaodaher/django-cloud-tasks | bc8ff94a281bda8b49ee73229d5ed5cacdd7a388 | [
"Apache-2.0"
] | null | null | null | # pylint: disable=no-member
from datetime import datetime
from typing import Optional, Dict
from django.db import transaction, models
from django.apps import apps
from django_cloud_tasks import tasks, serializers
class Pipeline(models.Model):
name = models.CharField(max_length=100)
def start(self):
routines = self.routines.filter(
models.Q(dependent_routines__id__isnull=True) & models.Q(status=Routine.Statuses.PENDING)
)
for routine in routines:
routine.enqueue()
def revert(self):
# TODO: Actually we don't know what to do when a routine with RUNNNING status is triggered
# to revert. We trust that it will not be a big deal for now. But would be great to support that soon
routines = self.routines.filter(
models.Q(next_routines__id__isnull=True) & ~models.Q(status=Routine.Statuses.REVERTED)
)
for routine in routines:
routine.revert()
def add_routine(self, routine: Dict) -> "Routine":
return self.routines.create(**routine)
class Routine(models.Model):
class Statuses(models.TextChoices):
PENDING = ("pending", "Pending")
SCHEDULED = ("scheduled", "Scheduled")
RUNNING = ("running", "Running")
COMPLETED = ("completed", "Completed")
FAILED = ("failed", "Failed")
REVERTING = ("reverting", "Reverting")
REVERTED = ("reverted", "Reverted")
# TODO: We have a signal to check if task_name defined does exists.
# We can do it with Django Field Validators
task_name = models.CharField(max_length=100)
pipeline = models.ForeignKey(
to="django_cloud_tasks.Pipeline",
related_name="routines",
on_delete=models.PROTECT,
)
body = models.JSONField(
default=dict,
encoder=serializers.JSONEncoder,
)
attempt_count = models.PositiveIntegerField(default=0)
max_retries = models.PositiveIntegerField(null=True)
output = models.JSONField(
null=True,
blank=True,
encoder=serializers.JSONEncoder,
)
starts_at = models.DateTimeField(null=True, blank=True)
ends_at = models.DateTimeField(null=True, blank=True)
status = models.CharField(
max_length=20,
choices=Statuses.choices,
default=Statuses.PENDING,
)
created_at = models.DateTimeField(
auto_now_add=True,
)
updated_at = models.DateTimeField(
auto_now=True,
)
next_routines = models.ManyToManyField(
to="Routine",
through="RoutineVertex",
through_fields=("routine", "next_routine"),
related_name="dependent_routines",
)
def fail(self, output: Dict):
self.output = output
self.status = self.Statuses.FAILED
self.ends_at = datetime.now()
self.save()
def complete(self, output: Dict):
self.output = output
self.status = self.Statuses.COMPLETED
self.ends_at = datetime.now()
self.save()
def enqueue(self):
with transaction.atomic():
self.status = self.Statuses.SCHEDULED
self.starts_at = datetime.now()
self.save()
def revert(self):
with transaction.atomic():
if self.status not in [self.Statuses.REVERTED, self.Statuses.REVERTING]:
self.status = self.Statuses.REVERTING
self.save()
def add_next(self, routine: Dict) -> "Routine":
routine["pipeline_id"] = self.pipeline_id
return self.next_routines.create(**routine)
@property
def task(self) -> Optional[tasks.Task]:
app = apps.get_app_config("django_cloud_tasks")
return app.get_task(name=self.task_name)
class RoutineVertex(models.Model):
next_routine = models.ForeignKey(
to="django_cloud_tasks.Routine",
on_delete=models.PROTECT,
related_name="required_routine_vertices",
)
routine = models.ForeignKey(
to="django_cloud_tasks.Routine",
related_name="next_routine_vertices",
on_delete=models.PROTECT,
)
class Meta:
constraints = [
models.UniqueConstraint(name="unique_routine_next_routine", fields=("next_routine", "routine")),
]
__all__ = (
"Routine",
"RoutineVertex",
"Pipeline",
)
| 31.434783 | 109 | 0.642692 | 4,048 | 0.933149 | 0 | 0 | 158 | 0.036422 | 0 | 0 | 815 | 0.187875 |
29db5eb5db45a035903363004257142de128c253 | 2,913 | py | Python | src/ifood/model/order/event.py | micael95/sdk-ifood-python | 27462d8127b62a29b5c89624e79accbea9563a80 | [
"MIT"
] | 2 | 2021-05-06T18:50:43.000Z | 2021-06-05T21:54:04.000Z | src/ifood/model/order/event.py | micael95/sdk-ifood-python | 27462d8127b62a29b5c89624e79accbea9563a80 | [
"MIT"
] | null | null | null | src/ifood/model/order/event.py | micael95/sdk-ifood-python | 27462d8127b62a29b5c89624e79accbea9563a80 | [
"MIT"
] | 1 | 2021-05-06T18:50:54.000Z | 2021-05-06T18:50:54.000Z | from datetime import datetime
from uuid import UUID
from ...serializer import IfoodSerializable
from ...utils import auto_str
from uuid import UUID
@auto_str
class Consumer(IfoodSerializable):
financial_occurrence: str
payment_type: str
@staticmethod
def unserialize(dict=None):
if dict is None:
dict = {}
instance = Consumer()
for k, v in dict.items():
setattr(instance, IfoodSerializable.camel_to_snake(k), v)
return instance
@auto_str
class CancellationOccurrence(IfoodSerializable):
restaurant: Consumer
consumer: Consumer
logistic: Consumer
@staticmethod
def unserialize(dict=None):
if dict is None:
dict = {}
instance = CancellationOccurrence()
for k, v in dict.items():
if k == "RESTAURANT":
instance.restaurant = Consumer.unserialize(v)
continue
if k == "CONSUMER":
instance.consumer = Consumer.unserialize(v)
continue
if k == "LOGISTIC":
instance.logistic = Consumer.unserialize(v)
continue
setattr(instance, IfoodSerializable.camel_to_snake(k), v)
return instance
@auto_str
class Metadata(IfoodSerializable):
cancel_stage: str
cancel_code: int
cancellation_occurrence: CancellationOccurrence
timeout_event: bool
cancel_origin: str
cancel_user: str
cancel_reason: str
cancellation_requested_event_id: UUID
def __init__(self) -> None:
pass
@staticmethod
def unserialize(dict=None):
if dict is None:
dict = {}
instance = Metadata()
for k, v in dict.items():
if k == "CANCELLATION_OCCURRENCE":
instance.cancellation_occurrence = CancellationOccurrence.unserialize(v)
continue
setattr(instance, IfoodSerializable.camel_to_snake(k), v)
return instance
@auto_str
class OrderEvent(IfoodSerializable):
created_at: datetime
full_code: str
metadata: Metadata
code: str
order_id: UUID
id: UUID
def __init__(self, created_at: datetime = None, full_code: str = None, metadata: Metadata = None, code: str = None,
order_id: UUID = None, id: UUID = None) -> None:
self.created_at = created_at
self.full_code = full_code
self.metadata = metadata
self.code = code
self.order_id = order_id
self.id = id
@staticmethod
def unserialize(dict=None):
if dict is None:
dict = {}
instance = OrderEvent()
for k, v in dict.items():
if k == "metadata":
instance.metadata = Metadata.unserialize(v)
continue
setattr(instance, IfoodSerializable.camel_to_snake(k), v)
return instance
| 26.243243 | 119 | 0.610711 | 2,714 | 0.931686 | 0 | 0 | 2,754 | 0.945417 | 0 | 0 | 67 | 0.023 |
29dc92373ea8f436e4e33eb083ad67d7e28abdae | 2,599 | py | Python | scripts/pm/set_sla_kpis.py | supsi-dacd-isaac/parity-sidechain-interface | b64a5fb724955332afb4998344081d1b93ac216a | [
"MIT"
] | null | null | null | scripts/pm/set_sla_kpis.py | supsi-dacd-isaac/parity-sidechain-interface | b64a5fb724955332afb4998344081d1b93ac216a | [
"MIT"
] | null | null | null | scripts/pm/set_sla_kpis.py | supsi-dacd-isaac/parity-sidechain-interface | b64a5fb724955332afb4998344081d1b93ac216a | [
"MIT"
] | null | null | null | # Importing section
import json
import requests
import argparse
import logging
import time
import datetime
from classes.time_utils import TimeUtils
import utilities as u
# Main
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-c', help='config file')
arg_parser.add_argument('-l', help='log file')
args = arg_parser.parse_args()
cfg = json.loads(open(args.c).read())
# Get configuration about connections to InfluxDB and remote service related to data retrieving
tmp_config = json.loads(open(cfg['connectionsFile']).read())
cfg.update(tmp_config)
# set logging object
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if not args.l:
log_file = None
else:
log_file = args.l
logger = logging.getLogger()
logging.basicConfig(format='%(asctime)-15s::%(threadName)s::%(levelname)s::%(funcName)s::%(message)s',
level=logging.INFO, filename=log_file)
url_prefix = cfg['sidechainRestApi']
logger.info('Starting program')
# Get the aggregator
res = requests.get('%s/aggregator' % cfg['sidechainRestApi'])
aggregator_id = json.loads(res.text)['Aggregator']['idx']
# Cycle over the configured SLAs
for sla in cfg['slas']:
dt_start, dt_end, _ = TimeUtils.get_start_end(sla['duration'], cfg['utils']['timeZone'])
dt_start = dt_start - datetime.timedelta(minutes=cfg['shiftBackMinutes']['kpiSetting'])
dt_end = dt_end - datetime.timedelta(minutes=cfg['shiftBackMinutes']['kpiSetting'])
sla_idx = '%s_%i-%i' % (sla['idPrefix'], int(dt_start.timestamp()), int(dt_end.timestamp()))
params = {
'idx': sla_idx,
'start': int(dt_start.timestamp()),
'end': int(dt_end.timestamp()),
}
u.send_post('%s/createSla' % url_prefix, params, logger)
time.sleep(cfg['utils']['sleepBetweenTransactions'])
# Cycle over the configured KPIs
for kpi in sla['kpis']:
params = {
'idx': '%s_%i-%i' % (kpi['idPrefix'], int(dt_start.timestamp()), int(dt_end.timestamp())),
'idxSla': sla_idx,
'rule': kpi['rule'],
'limit': kpi['limit'],
'measureUnit': kpi['mu'],
'penalty': kpi['penalty'],
'players': kpi['players'],
}
u.send_post('%s/createKpiFeatures' % url_prefix, params, logger)
time.sleep(cfg['utils']['sleepBetweenTransactions'])
logger.info('Ending program')
| 33.320513 | 106 | 0.614082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 808 | 0.310889 |
29dd6423703e7bd3d65394220ac73d337651b108 | 1,603 | py | Python | src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinnman/messages/scp/impl/scp_version_request.py | Roboy/LSM_SpiNNaker_MyoArm | 04fa1eaf78778edea3ba3afa4c527d20c491718e | [
"BSD-3-Clause"
] | 2 | 2020-11-01T13:22:11.000Z | 2020-11-01T13:22:20.000Z | src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinnman/messages/scp/impl/scp_version_request.py | Roboy/LSM_SpiNNaker_MyoArm | 04fa1eaf78778edea3ba3afa4c527d20c491718e | [
"BSD-3-Clause"
] | null | null | null | src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinnman/messages/scp/impl/scp_version_request.py | Roboy/LSM_SpiNNaker_MyoArm | 04fa1eaf78778edea3ba3afa4c527d20c491718e | [
"BSD-3-Clause"
] | null | null | null | from spinnman.messages.scp.abstract_messages.abstract_scp_request\
import AbstractSCPRequest
from spinnman.messages.sdp.sdp_flag import SDPFlag
from spinnman.messages.sdp.sdp_header import SDPHeader
from spinnman.messages.scp.scp_request_header import SCPRequestHeader
from spinnman.messages.scp.scp_command import SCPCommand
from spinnman.messages.scp.impl.scp_version_response import SCPVersionResponse
class SCPVersionRequest(AbstractSCPRequest):
""" An SCP request to read the version of software running on a core
"""
def __init__(self, x, y, p):
"""
:param x: The x-coordinate of the chip to read from, between 0 and 255
:type x: int
:param y: The y-coordinate of the chip to read from, between 0 and 255
:type y: int
:param p: The id of the processor to read the version from,\
between 0 and 31
:type p: int
:raise spinnman.exceptions.SpinnmanInvalidParameterException:
* If the chip coordinates are out of range
* If the processor is out of range
"""
super(SCPVersionRequest, self).__init__(
SDPHeader(
flags=SDPFlag.REPLY_EXPECTED, destination_port=0,
destination_cpu=p, destination_chip_x=x,
destination_chip_y=y),
SCPRequestHeader(command=SCPCommand.CMD_VER))
def get_scp_response(self):
""" See\
:py:meth:`spinnman.messages.scp.abstract_scp_request.AbstractSCPRequest.get_scp_response`
"""
return SCPVersionResponse()
| 40.075 | 101 | 0.674984 | 1,191 | 0.742982 | 0 | 0 | 0 | 0 | 0 | 0 | 729 | 0.454772 |
29dd6adf13db2f5c89c5474bb138c114f67d7138 | 4,506 | py | Python | mac/pyobjc-framework-Quartz/Examples/Core Image/CIBevelSample/CIBevelView.py | albertz/music-player | d23586f5bf657cbaea8147223be7814d117ae73d | [
"BSD-2-Clause"
] | 132 | 2015-01-01T10:02:42.000Z | 2022-03-09T12:51:01.000Z | mac/pyobjc-framework-Quartz/Examples/Core Image/CIBevelSample/CIBevelView.py | mba811/music-player | 7998986b34cfda2244ef622adefb839331b81a81 | [
"BSD-2-Clause"
] | 6 | 2015-01-06T08:23:19.000Z | 2019-03-14T12:22:06.000Z | mac/pyobjc-framework-Quartz/Examples/Core Image/CIBevelSample/CIBevelView.py | mba811/music-player | 7998986b34cfda2244ef622adefb839331b81a81 | [
"BSD-2-Clause"
] | 27 | 2015-02-23T11:51:43.000Z | 2022-03-07T02:34:18.000Z | from Cocoa import *
from Quartz import *
from SampleCIView import SampleCIView
from math import sin
import objc
NUM_POINTS=4
class CIBevelView (SampleCIView):
currentPoint = objc.ivar(type=objc._C_INT)
points = objc.ivar()
angleTime = objc.ivar(type=objc._C_FLT)
lineImage = objc.ivar()
twirlFilter = objc.ivar()
heightFieldFilter = objc.ivar()
shadedFilter = objc.ivar()
def initWithFrame_(self, frameRect):
self = super(CIBevelView, self).initWithFrame_(frameRect)
if self is None:
return None
self.points = [ None ] * NUM_POINTS
self.points[0] = CGPointMake(0.5 * frameRect.size.width, frameRect.size.height - 100.0)
self.points[1] = CGPointMake(150.0, 100.0)
self.points[2] = CGPointMake(frameRect.size.width - 150.0, 100.0)
self.points[3] = CGPointMake(0.7*self.points[0].x + 0.3*self.points[2].x, 0.7*self.points[0].y + 0.3*self.points[2].y)
url = NSURL.fileURLWithPath_(
NSBundle.mainBundle().pathForResource_ofType_("lightball", "tiff"))
self.lightball = CIImage.imageWithContentsOfURL_(url)
self.heightFieldFilter = CIFilter.filterWithName_("CIHeightFieldFromMask")
self.heightFieldFilter.setDefaults()
self.heightFieldFilter.setValue_forKey_(15.0, "inputRadius")
self.twirlFilter = CIFilter.filterWithName_("CITwirlDistortion")
self.twirlFilter.setDefaults()
self.twirlFilter.setValue_forKey_(
CIVector.vectorWithX_Y_(
0.5*frameRect.size.width,
0.5*frameRect.size.height),
"inputCenter")
self.twirlFilter.setValue_forKey_(300.0, "inputRadius")
self.twirlFilter.setValue_forKey_(0.0, "inputAngle")
self.shadedFilter = CIFilter.filterWithName_("CIShadedMaterial")
self.shadedFilter.setDefaults()
self.shadedFilter.setValue_forKey_(self.lightball, "inputShadingImage")
self.shadedFilter.setValue_forKey_(20.0, "inputScale")
# 1/30 second should give us decent animation
NSTimer.scheduledTimerWithTimeInterval_target_selector_userInfo_repeats_(
1.0/30.0, self, 'changeTwirlAngle:', None, True)
return self
def changeTwirlAngle_(self, timer):
self.angleTime += timer.timeInterval()
self.twirlFilter.setValue_forKey_(
-0.2 * sin(self.angleTime*5.0), 'inputAngle')
self.updateImage()
def mouseDragged_(self, event):
loc = self.convertPoint_fromView_(event.locationInWindow(), None)
self.points[self.currentPoint].x = loc.x
self.points[self.currentPoint].y = loc.y
self.lineImage = None
# normally we'd want this, but the timer will cause us to
# redisplay anyway
#self.setNeedsDisplay_(True)
def mouseDown_(self, event):
d = 1e4
loc = self.convertPoint_fromView_(event.locationInWindow(), None)
for i in range(NUM_POINTS):
x = self.points[i].x - loc.x
y = self.points[i].y - loc.y
t = x*x + y*y
if t < d:
self.currentPoint = i
d = t
self.mouseDragged_(event)
def updateImage(self):
context = NSGraphicsContext.currentContext().CIContext()
if self.lineImage is None:
bounds = self.bounds()
layer = context.createCGLayerWithSize_info_(
CGSizeMake(NSWidth(bounds), NSHeight(bounds)), None)
cg = CGLayerGetContext(layer)
CGContextSetRGBStrokeColor(cg, 1,1,1,1)
CGContextSetLineCap(cg, kCGLineCapRound)
CGContextSetLineWidth(cg, 60.0)
CGContextMoveToPoint(cg, self.points[0].x, self.points[0].y)
for i in range(1, NUM_POINTS):
CGContextAddLineToPoint(cg, self.points[i].x, self.points[i].y)
CGContextStrokePath(cg)
self.lineImage = CIImage.alloc().initWithCGLayer_(layer)
self.heightFieldFilter.setValue_forKey_(self.lineImage, "inputImage")
self.twirlFilter.setValue_forKey_(
self.heightFieldFilter.valueForKey_("outputImage"),
"inputImage")
self.shadedFilter.setValue_forKey_(
self.twirlFilter.valueForKey_("outputImage"),
"inputImage")
self.setImage_(self.shadedFilter.valueForKey_("outputImage"))
| 36.634146 | 126 | 0.630715 | 4,375 | 0.970928 | 0 | 0 | 0 | 0 | 0 | 0 | 413 | 0.091656 |
29e24314b4b43a27db5d5e7fb35c4c927a75f669 | 4,226 | py | Python | oops_fhir/r4/code_system/request_intent.py | Mikuana/oops_fhir | 77963315d123756b7d21ae881f433778096a1d25 | [
"MIT"
] | null | null | null | oops_fhir/r4/code_system/request_intent.py | Mikuana/oops_fhir | 77963315d123756b7d21ae881f433778096a1d25 | [
"MIT"
] | null | null | null | oops_fhir/r4/code_system/request_intent.py | Mikuana/oops_fhir | 77963315d123756b7d21ae881f433778096a1d25 | [
"MIT"
] | null | null | null | from pathlib import Path
from fhir.resources.codesystem import CodeSystem
from oops_fhir.utils import CodeSystemConcept
__all__ = ["RequestIntent"]
_resource = CodeSystem.parse_file(Path(__file__).with_suffix(".json"))
class RequestIntent:
"""
RequestIntent
Codes indicating the degree of authority/intentionality associated with
a request.
Status: draft - Version: 4.0.1
Copyright None
http://hl7.org/fhir/request-intent
"""
proposal = CodeSystemConcept(
{
"code": "proposal",
"definition": "The request is a suggestion made by someone/something that does not have an intention to ensure it occurs and without providing an authorization to act.",
"display": "Proposal",
}
)
"""
Proposal
The request is a suggestion made by someone/something that does not have an intention to ensure it occurs and without providing an authorization to act.
"""
plan = CodeSystemConcept(
{
"code": "plan",
"definition": "The request represents an intention to ensure something occurs without providing an authorization for others to act.",
"display": "Plan",
}
)
"""
Plan
The request represents an intention to ensure something occurs without providing an authorization for others to act.
"""
directive = CodeSystemConcept(
{
"code": "directive",
"definition": "The request represents a legally binding instruction authored by a Patient or RelatedPerson.",
"display": "Directive",
}
)
"""
Directive
The request represents a legally binding instruction authored by a Patient or RelatedPerson.
"""
order = CodeSystemConcept(
{
"code": "order",
"concept": [
{
"code": "original-order",
"definition": "The request represents an original authorization for action.",
"display": "Original Order",
},
{
"code": "reflex-order",
"definition": "The request represents an automatically generated supplemental authorization for action based on a parent authorization together with initial results of the action taken against that parent authorization.",
"display": "Reflex Order",
},
{
"code": "filler-order",
"concept": [
{
"code": "instance-order",
"definition": "An order created in fulfillment of a broader order that represents the authorization for a single activity occurrence. E.g. The administration of a single dose of a drug.",
"display": "Instance Order",
}
],
"definition": "The request represents the view of an authorization instantiated by a fulfilling system representing the details of the fulfiller's intention to act upon a submitted order.",
"display": "Filler Order",
},
],
"definition": "The request represents a request/demand and authorization for action by a Practitioner.",
"display": "Order",
}
)
"""
Order
The request represents a request/demand and authorization for action by a Practitioner.
"""
option = CodeSystemConcept(
{
"code": "option",
"definition": "The request represents a component or option for a RequestGroup that establishes timing, conditionality and/or other constraints among a set of requests. Refer to [[[RequestGroup]]] for additional information on how this status is used.",
"display": "Option",
}
)
"""
Option
The request represents a component or option for a RequestGroup that establishes timing, conditionality and/or other constraints among a set of requests. Refer to [[[RequestGroup]]] for additional information on how this status is used.
"""
class Meta:
resource = _resource
| 35.813559 | 266 | 0.600331 | 3,999 | 0.946285 | 0 | 0 | 0 | 0 | 0 | 0 | 2,835 | 0.670847 |
29e35c162bb13bbac4bbfa70c3c033b9eb162d1c | 266 | py | Python | ABC/202/b.py | fumiyanll23/AtCoder | 362ca9fcacb5415c1458bc8dee5326ba2cc70b65 | [
"MIT"
] | null | null | null | ABC/202/b.py | fumiyanll23/AtCoder | 362ca9fcacb5415c1458bc8dee5326ba2cc70b65 | [
"MIT"
] | null | null | null | ABC/202/b.py | fumiyanll23/AtCoder | 362ca9fcacb5415c1458bc8dee5326ba2cc70b65 | [
"MIT"
] | null | null | null | def main():
# input
S = list(input())
# compute
for i,s in enumerate(S):
if s == '6':
S[i] = '9'
elif s == '9':
S[i] = '6'
# output
print(''.join(reversed(S)))
if __name__ == '__main__':
main()
| 14.777778 | 31 | 0.406015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0.180451 |
29e3af095a46b5abdfb783f45e3fb0c6a6c5b81f | 652 | py | Python | LC/201.py | szhu3210/LeetCode_Solutions | 64747eb172c2ecb3c889830246f3282669516e10 | [
"MIT"
] | 2 | 2018-02-24T17:20:02.000Z | 2018-02-24T17:25:43.000Z | LC/201.py | szhu3210/LeetCode_Solutions | 64747eb172c2ecb3c889830246f3282669516e10 | [
"MIT"
] | null | null | null | LC/201.py | szhu3210/LeetCode_Solutions | 64747eb172c2ecb3c889830246f3282669516e10 | [
"MIT"
] | null | null | null | class Solution(object):
def rangeBitwiseAnd(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
## my solution
# res=''
# for i in xrange(len(bin(m))-2):
# if m>>i & 1 == 0:
# res='0'+res
# elif (((m>>i) + 1) << i) <= n:
# res='0'+res
# else:
# res='1'+res
# return int(res,2)
## quick solution
c=0
for i in xrange(len(bin(m))-2):
if m>>i != n>>i:
c+=1
else:
break
return m>>c<<c | 24.148148 | 44 | 0.328221 | 652 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 301 | 0.461656 |
29e4187ad7c1dcf2ceaec9e4c64c93ba30148a08 | 88 | py | Python | twitoff/__init__.py | boscolio/twitoff-ds19 | 46449f9a55619a74dafa32ebee733daca8d1602f | [
"MIT"
] | null | null | null | twitoff/__init__.py | boscolio/twitoff-ds19 | 46449f9a55619a74dafa32ebee733daca8d1602f | [
"MIT"
] | null | null | null | twitoff/__init__.py | boscolio/twitoff-ds19 | 46449f9a55619a74dafa32ebee733daca8d1602f | [
"MIT"
] | null | null | null | from .app import create_app
# creates the app by calling the package
APP = create_app() | 22 | 40 | 0.772727 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0.454545 |
29e53d00d3dfdf9edbf744f3dfa7a95332d492b5 | 170 | py | Python | books/init_api.py | nabekabebe/BookFInder | aaa7eb3028cb2ef5552f865107ddb13a5dc3fde7 | [
"MIT"
] | null | null | null | books/init_api.py | nabekabebe/BookFInder | aaa7eb3028cb2ef5552f865107ddb13a5dc3fde7 | [
"MIT"
] | null | null | null | books/init_api.py | nabekabebe/BookFInder | aaa7eb3028cb2ef5552f865107ddb13a5dc3fde7 | [
"MIT"
] | null | null | null | from flask_restplus import Api
API = Api(
title="Book API",
version='1.0',
description="This Api provides endpoint for accessing books and their reviews."
)
| 21.25 | 83 | 0.705882 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82 | 0.482353 |
29e60f021e4805e18f02c579cb9365d85a32c49b | 371 | py | Python | test_game.py | thom1555/euchre | f2fa54fcecb5deeaad2e750e8cda04c94eb1e1e9 | [
"Apache-2.0"
] | null | null | null | test_game.py | thom1555/euchre | f2fa54fcecb5deeaad2e750e8cda04c94eb1e1e9 | [
"Apache-2.0"
] | null | null | null | test_game.py | thom1555/euchre | f2fa54fcecb5deeaad2e750e8cda04c94eb1e1e9 | [
"Apache-2.0"
] | null | null | null | import unittest
from game import Game
from suit import Suit
class TestGame(unittest.TestCase):
def test_setup(self):
g = Game('tim', 'rick', 'bob', 'james', 'ballers', 'scrubs')
self.assertEqual(len(g.players), 4)
self.assertEqual(g.dealer, 0)
self.assertEqual(g.trump, Suit.spades)
if __name__ == '__main__':
unittest.main()
| 21.823529 | 68 | 0.6469 | 258 | 0.695418 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0.134771 |
29e805265bd23dadb56a588aaeba28a86de79226 | 4,250 | py | Python | src/test/resources/scripts/Authentication.py | tomjbarry/Penstro | d9179852158bebf48aaba7a198de5246acb1b064 | [
"MIT"
] | 1 | 2019-02-25T05:55:34.000Z | 2019-02-25T05:55:34.000Z | src/test/resources/scripts/Authentication.py | tomjbarry/penstro | d9179852158bebf48aaba7a198de5246acb1b064 | [
"MIT"
] | null | null | null | src/test/resources/scripts/Authentication.py | tomjbarry/penstro | d9179852158bebf48aaba7a198de5246acb1b064 | [
"MIT"
] | null | null | null | from PyConstants import Paths
from PyConstants import Codes
from PyConstants import CacheTimes
from PyBaseTest import BaseTest
from PyRequest import PyRequest
import time
class Authentication(BaseTest):
password = "testPassword123"
invalidPassword = "incorrectincorrect"
def runTests(self):
print("Running authentication tests")
self.testRegister(self.username, self.email)
token = self.testLogin(self.username)
self.testRegister(self.target, self.targetEmail)
self.testLogout(token)
time.sleep(CacheTimes.USER_USERNAME)
token = self.testLogin(self.username)
targetToken = self.testLogin(self.target)
time.sleep(CacheTimes.USER_USERNAME)
return targetToken, token
def testRegister(self, username, email):
invalidBody = {"username":username, "email":email}
body = {"username":username, "email":email, "password":self.password, "confirmNewPassword":self.password, "ageMinimum":True, "recaptchaResponse":"test"}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, invalidBody, self.expectedInvalid)
invalidBody = {"email":email, "password":self.password}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, invalidBody, self.expectedInvalid)
invalidBody = {"username":username, "password":self.password}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, invalidBody, self.expectedInvalid)
invalidBody = {"username":username, "email":email, "password":self.password}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, invalidBody, self.expectedInvalid)
invalidBody = {"username":username, "email":email, "password":self.password, "confirmNewPassword":self.password + "s", "recaptchaResponse":"test"}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, invalidBody, self.expectedInvalid)
invalidBody = {"username":username, "email":email, "password":self.password, "confirmNewPassword":self.password, "ageMinimum":False, "recaptchaResponse":"test"}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, invalidBody, self.expectedInvalid)
restrictedBody = {"username":username, "password":"password1234567", "email":email, "confirmNewPassword":"password1234567", "ageMinimum":True, "recaptchaResponse":"test"}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, restrictedBody, self.expectedRestrictedPassword)
restrictedBody = {"username":"penstro", "password":self.password, "email":email, "confirmNewPassword":self.password, "ageMinimum":True, "recaptchaResponse":"test"}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, restrictedBody, self.expectedRestrictedUsername)
restrictedBody = {"username":username, "password":self.password, "email":"[email protected]", "confirmNewPassword":self.password, "ageMinimum":True, "recaptchaResponse":"test"}
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, restrictedBody, self.expectedRestrictedEmail)
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, body, self.expectedResultCreated)
PyRequest().expectResponse(Paths.REGISTER, PyRequest.POST, body, self.expectedExistsUsernameEmail)
def testLogin(self, username):
body = {"username":username, "password":self.invalidPassword}
PyRequest().expectResponse(Paths.LOGIN, PyRequest.POST, None, self.expectedInvalid)
PyRequest().expectResponse(Paths.LOGIN, PyRequest.POST, body, self.expectedDenied)
body = {"username":username, "password":self.password}
data = PyRequest().expectResponse(Paths.LOGIN, PyRequest.POST, body, self.expectedResultSuccess)
if 'dto' in data:
if 'result' in data['dto']:
print("TOKEN: " + str(data['dto']['result']))
return str(data['dto']['result'])
return None
def testLogout(self, token):
PyRequest().expectResponse(Paths.LOGOUT, PyRequest.POST, None, self.expectedDenied)
PyRequest(token).expectResponse(Paths.LOGOUT, PyRequest.POST, None, self.expectedSuccess)
| 57.432432 | 183 | 0.704941 | 4,068 | 0.957176 | 0 | 0 | 0 | 0 | 0 | 0 | 797 | 0.187529 |
29e8e499563826ecb59fe97bb20177891dc4f78e | 235 | py | Python | my_env/lib/python3.8/site-packages/tests/strategies.py | David5627/AWWARD | a22a2b2f7d7d6377435bfd475e82268e4e907141 | [
"MIT"
] | 296 | 2015-09-07T16:04:01.000Z | 2022-03-27T06:31:43.000Z | my_env/lib/python3.8/site-packages/tests/strategies.py | David5627/AWWARD | a22a2b2f7d7d6377435bfd475e82268e4e907141 | [
"MIT"
] | 189 | 2015-09-07T14:56:32.000Z | 2022-01-31T09:17:22.000Z | my_env/lib/python3.8/site-packages/tests/strategies.py | David5627/AWWARD | a22a2b2f7d7d6377435bfd475e82268e4e907141 | [
"MIT"
] | 115 | 2015-09-17T08:36:36.000Z | 2022-03-09T12:36:14.000Z | from __future__ import unicode_literals
from hypothesis.strategies import integers
from star_ratings import app_settings
def scores(max_rating=app_settings.STAR_RATINGS_RANGE):
return integers(min_value=0, max_value=max_rating)
| 26.111111 | 55 | 0.851064 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29e96f72799e651c5585b837791c85848195cb09 | 55 | py | Python | Game6/modules/sprites/__init__.py | ttkaixin1998/pikachupythongames | 609a3a5a2be3f5a187c332c7980bb5bb14548f02 | [
"MIT"
] | 4,013 | 2018-06-16T08:00:02.000Z | 2022-03-30T11:48:14.000Z | Game6/modules/sprites/__init__.py | pigbearcat/Games | b8c47ef1bcce9a9db3f3730c162e6e8e08b508a2 | [
"MIT"
] | 22 | 2018-10-18T00:15:50.000Z | 2022-01-13T08:16:15.000Z | Game6/modules/sprites/__init__.py | pigbearcat/Games | b8c47ef1bcce9a9db3f3730c162e6e8e08b508a2 | [
"MIT"
] | 2,172 | 2018-07-20T04:03:14.000Z | 2022-03-31T14:18:29.000Z | '''初始化'''
from .Bird import Bird
from .Pipe import Pipe | 18.333333 | 22 | 0.709091 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0.245902 |
29ea1aef1c82bd772907c42e68df319791525947 | 6,824 | py | Python | Render2018/lib/create_config_bodyflow.py | BigOto2/BlenderRenderDNS | a8ff239ecffef5217f0db35d579227a0a444c32d | [
"MIT"
] | 1 | 2021-07-28T00:42:39.000Z | 2021-07-28T00:42:39.000Z | Render2018/lib/create_config_bodyflow.py | BigOto2/BlenderRenderDNS | a8ff239ecffef5217f0db35d579227a0a444c32d | [
"MIT"
] | null | null | null | Render2018/lib/create_config_bodyflow.py | BigOto2/BlenderRenderDNS | a8ff239ecffef5217f0db35d579227a0a444c32d | [
"MIT"
] | 1 | 2019-05-13T17:38:05.000Z | 2019-05-13T17:38:05.000Z | import os.path
import configparser
from dircheck import get_yesno_input
import create_jobscripts
from create_dirname_config import config_dirname_cfg
from create_all_dirs import create_all
import socket
import cgns_load_data
# Script that creates the two configuration files (case and render files) necessary to run the scripts, with a data file from Abhiram's body flow simulation as input.
# Check whether scripts being run on Mox
if socket.gethostname()[0:3] == "mox":
mox = True
blender_dir = "/gscratch/ferrante/blender/blender-2.78c-linux-glibc219-x86_64/./"
else:
mox = False
blender_dir = ""
# Check if dirname.cfg, which contains directory paths used throughout the scripts, exists - otherwise, create it
if not os.path.exists("dirname.cfg"):
config_dirname_cfg()
# Load important directories
dirname_config = configparser.ConfigParser()
dirname_config.read("dirname.cfg")
# Get case name. This corresponds to a specific .h5dns file and is specified by the user. A case config file will be created with its name.
case_name = input("Enter case name. This can be any string that refers to a particular VIZ.cgns file. ")
create_all(case_name)
case_config_path = dirname_config["DIRECTORIES"]["RenderConfig"] + case_name + "-case.cfg"
# If existing case config file exists, the user is specifying a particular .h5dns file that is already associated with
# this case name, so move on to render settings config. Otherwise, create case config file from user input.
if os.path.exists(case_config_path):
print("Found existing case configuration: " + case_config_path)
existing_case_config = configparser.ConfigParser()
existing_case_config.read(case_config_path)
print("data file: " + existing_case_config["STRING"]["h5dns_path"])
else:
# Create new case config file
new_case_config = configparser.ConfigParser()
# There are different sections for each datatype (this is how the scripts know what data types to load, when they are all saved as strings)
new_case_config["STRING"] = {}
new_case_config["FLOAT"] = {}
new_case_config["INT"] = {}
# Save important strings
new_case_config["STRING"]["case_name"] = case_name
new_case_config["STRING"]["data_file_type"] = "bodyflow"
h5dns_path = input("Enter absolute path to data file: ")
new_case_config["STRING"]["h5dns_path"] = h5dns_path
# Load data file and save important params
params = cgns_load_data.get_important_data(h5dns_path)
new_case_config["INT"]["tres"] = str(params["tres"])
new_case_config["INT"]["ires"] = str(params["ires"])
new_case_config["INT"]["jres"] = str(params["jres"])
new_case_config["INT"]["kres"] = str(params["kres"])
# Write case config file
with open(case_config_path, "w") as case_config_file:
new_case_config.write(case_config_file)
# Get render-specific config settings from user. This specifies what type of render to perform (photorealistic, surface
# temperature, ...), and other render settings (scale of droplet to render, etc.)
render_type = int(input("Select type of render to perform (enter number).\n 1 Streamline render\n 2 Vortex line render\n"))
render_name = input("Enter render profile name. This can be any string that refers to specific rendering settings for a data case. ")
# Initialize categories based on data types
new_render_config = configparser.ConfigParser()
new_render_config["STRING"] = {}
new_render_config["INT"] = {}
new_render_config["FLOAT"] = {}
new_render_config["BOOL"] = {}
new_render_config["STRING"]["render_name"] = render_name
# Determine settings from user that are specific to each type.
if (render_type == 1): # Streamline
# Name render config file based on the type of render being performed
render_config_path = dirname_config["DIRECTORIES"]["RenderConfig"] + render_name + "-render-streamline.cfg"
# Get some other settings
elif (render_type == 2): # Vortex line
render_config_path = dirname_config["DIRECTORIES"]["RenderConfig"] + render_name + "-render-vortexline.cfg"
# General inputs
new_render_config["INT"]["num_streamlines"] = input("Specify number of streamlines: ")
new_render_config["INT"]["streamline_seed"] = "777" #input("Specify random seed number to determine streamline start positions from: ")
new_render_config["FLOAT"]["view_fraction"] = input("Specify desired render frame width as multiple of domain length: ")
new_render_config["FLOAT"]["camera_azimuth_angle"] = input("Specify camera azimuth angle from the x-axis (deg): ")
new_render_config["FLOAT"]["camera_elevation_angle"] = input("Specify camera elevation angle from the horizontal (deg): ")
bg_image_enabled = get_yesno_input("Use custom background image? ")
if bg_image_enabled:
new_render_config["STRING"]["bg_image_filepath"] = dirname_config["DIRECTORIES"]["background_images"] + input("Specify background image name (in \"Render2018/BackgroundImages\"): ")
new_render_config["STRING"]["bg_color_1"] = ""
new_render_config["STRING"]["bg_color_2"] = ""
else:
new_render_config["STRING"]["bg_image_filepath"] = ""
new_render_config["STRING"]["bg_color_1"] = input("Specify R,G,B value of lower background color (separate floats by commas, values range from 0 to 1): ")
new_render_config["STRING"]["bg_color_2"] = input("Specify R,G,B value of upper background color (separate floats by commas, values range from 0 to 1): ")
new_render_config["FLOAT"]["resolution_percentage"] = input("Specify resolution percentage out of 100, as a percentage of 4K: ")
# Write render config file
with open(render_config_path, "w") as render_config_file:
new_render_config.write(render_config_file)
# Create slurm jobscript to run on Mox
slurm_name = case_name + "_" + render_name + ".slurm"
create_jobscripts.create_mox_slurm(slurm_dir=dirname_config["DIRECTORIES"]["RenderJobscripts"], slurm_name=slurm_name, job_name=case_name+"_"+render_name, lib_dir=os.getcwd(), python_file_to_run="render_init.py", case_config_path=case_config_path, render_config_path=render_config_path)
local_py_name = case_name + "_" + render_name + ".py"
create_jobscripts.create_local_py(python_dir=dirname_config["DIRECTORIES"]["RenderJobscripts"], python_filename=local_py_name, lib_dir=dirname_config["DIRECTORIES"]["lib"], python_file_to_run="render_init.py", case_config_path=case_config_path, render_config_path=render_config_path)
# Run jobscript if user desires
if mox:
if get_yesno_input("Run " + slurm_name + " to launch this rendering job?"):
os.system("sbatch -p ferrante -A ferrante " + dirname_config["DIRECTORIES"]["RenderJobscripts"] + "/" + slurm_name)
else:
if get_yesno_input("Run " + local_py_name + " to launch this rendering job?"):
os.system("python3 " + dirname_config["DIRECTORIES"]["RenderJobscripts"] + local_py_name)
| 56.396694 | 286 | 0.75381 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,682 | 0.539566 |
29eb3307185eaf4daecd050d3551f86ee4f012bf | 1,004 | py | Python | util/replicate.py | ZvonimirSun/janusgraph-utils | c10e7b3ccb7c56c7662053d9d8b1d0bcb0a20bb8 | [
"Apache-2.0"
] | 204 | 2017-08-10T02:36:53.000Z | 2022-03-11T12:21:18.000Z | util/replicate.py | HsbcJone/Jaunsgraph-LoadBulkData-Utils- | 9c4e3b0c0b9f9966ab43422929ae5ea4993b3bb8 | [
"Apache-2.0"
] | 37 | 2017-08-16T01:06:02.000Z | 2020-08-05T02:30:18.000Z | util/replicate.py | HsbcJone/Jaunsgraph-LoadBulkData-Utils- | 9c4e3b0c0b9f9966ab43422929ae5ea4993b3bb8 | [
"Apache-2.0"
] | 103 | 2017-08-29T14:17:32.000Z | 2022-03-07T14:30:48.000Z | #!/usr/bin/python
import sys
import simplejson as json
def replicate_vertex(conf,pos, i):
p = conf["VertexTypes"][pos]["columns"]["T{}-P1".format(pos+1)]
for x in range(2, i+1):
new_key = "T{}-P{}".format(pos+1, str(x))
conf["VertexTypes"][pos]["columns"][new_key] = p
return conf
def replicate_edge(conf, pos, i):
p = conf["EdgeTypes"][pos]["columns"]["E{}-P1".format(pos+1)]
for x in range(2, i+1):
new_key ='E{}-P{}'.format(pos+1,str(x))
conf["EdgeTypes"][pos]["columns"][new_key] = p
return conf
def main():
f = open(sys.argv[1], "r")
j = json.load(f)
json.dump(replicate_vertex(j,0, int(sys.argv[3])), open(sys.argv[2], "w"))
json.dump(replicate_vertex(j,1, 2*int(sys.argv[3])), open(sys.argv[2], "w"))
json.dump(replicate_vertex(j,2, 2*int(sys.argv[3])), open(sys.argv[2], "w"))
json.dump(replicate_edge(j, 0, int(sys.argv[3])), open(sys.argv[2], "w"))
json.dump(replicate_edge(j, 1, int(sys.argv[3])), open(sys.argv[2], "w"))
if __name__ == "__main__":
main()
| 32.387097 | 77 | 0.62749 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 163 | 0.162351 |
29eb4a3f8932c013c8f2635314e11c22d12e4148 | 1,602 | py | Python | commands/fight.py | AlexMog/IRCPokemonBot | 0a735f262ce06ecd4c3b702094cf4b78e3cd7c45 | [
"MIT"
] | 2 | 2015-06-10T12:16:53.000Z | 2016-03-09T22:43:43.000Z | commands/fight.py | AlexMog/IRCPokemonBot | 0a735f262ce06ecd4c3b702094cf4b78e3cd7c45 | [
"MIT"
] | null | null | null | commands/fight.py | AlexMog/IRCPokemonBot | 0a735f262ce06ecd4c3b702094cf4b78e3cd7c45 | [
"MIT"
] | null | null | null | #!/usr/bin/env python2
import copy
import random
from classes.Pokemons import *
from classes.Battle import *
def fight(connection, canal, auteur, cmds, canalobj, mogbot):
user = mogbot.getUserManager().findUser(auteur)
if user == False:
connection.privmsg(canal, auteur + " je ne te trouve pas dans la base de donnees :( - erreur 500")
return
if user.battle is not None:
connection.privmsg(canal, auteur + " tu es deja en combat avec quelqu'un!")
return
if len(cmds) > 2:
if cmds[2] == "nature":
u = pokemonsManager.getRandom()
mini = user.getActivePokemon().level - 5
if mini <= 0:
mini = 1
maxi = mini + 5
u.level = random.randint(mini, maxi)
battle = Battle(user, u)
battle.auto = True
user.battle = u.battle = battle
user.battle.accepted = True
connection.privmsg(canal, user.username + " tu es tombe sur un " + u.username + " sauvage (lvl: " + str(u.level) + " )! Attention!")
else:
u = mogbot.getUserManager().findUser(cmds[2])
if u == False:
connection.privmsg(canal, user.username + " adversaire introuvable.")
return
user.battle = u.battle = Battle(user, u)
connection.privmsg(canal, user.username + " a defie " + u.username + " en duel! Va-t-il accepter? (utilise accept pour accepter le duel et refuse pour refuser)")
else:
connection.privmsg(canal, auteur + " usage: fight <nature ou pseudo>")
| 40.05 | 173 | 0.585518 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 348 | 0.217228 |
29ebeb3c0f6aa2c670636976b54b4c234e9cc858 | 3,356 | py | Python | horizon_hpe_storage/storage_panel/config/software_tests/forms.py | hp-storage/horizon-ssmc-link | f419ecf2a545a79f1ff6628dc26f31dfb7c84996 | [
"Apache-2.0"
] | 1 | 2017-01-07T13:45:57.000Z | 2017-01-07T13:45:57.000Z | horizon_hpe_storage/storage_panel/config/software_tests/forms.py | hp-storage/horizon-ssmc-link | f419ecf2a545a79f1ff6628dc26f31dfb7c84996 | [
"Apache-2.0"
] | null | null | null | horizon_hpe_storage/storage_panel/config/software_tests/forms.py | hp-storage/horizon-ssmc-link | f419ecf2a545a79f1ff6628dc26f31dfb7c84996 | [
"Apache-2.0"
] | null | null | null | # Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _
import horizon_hpe_storage.api.keystone_api as keystone
import horizon_hpe_storage.api.barbican_api as barbican
from horizon import exceptions
from horizon import forms
from horizon import messages
class AddSoftwareTest(forms.SelfHandlingForm):
sw_package = forms.CharField(max_length=255, label=_("Software Package"))
min_version = forms.CharField(max_length=255, label=_("Minimum Version"))
description = forms.CharField(max_length=255,
required=False,
label=_("Description"))
keystone_api = keystone.KeystoneAPI()
barbican_api = barbican.BarbicanAPI()
def handle(self, request, data):
node_type = self.initial['node_type']
try:
self.keystone_api.do_setup(self.request)
self.barbican_api.do_setup(self.keystone_api.get_session())
self.barbican_api.add_software_test(node_type, data['sw_package'],
data['min_version'],
data['description'])
msg = _('Added softare package "%s".') % data['sw_package']
messages.success(request, msg)
return True
except Exception:
redirect = reverse("horizon:admin:hpe_storage:index")
exceptions.handle(request,
_("Unable to add softare package."),
redirect=redirect)
class EditSoftwareTest(forms.SelfHandlingForm):
min_version = forms.CharField(max_length=255, label=_("Minimum Version"))
description = forms.CharField(max_length=255,
required=False,
label=_("Description"))
keystone_api = keystone.KeystoneAPI()
barbican_api = barbican.BarbicanAPI()
def handle(self, request, data):
sw_package = self.initial['sw_package']
node_type = self.initial['node_type']
try:
self.keystone_api.do_setup(self.request)
self.barbican_api.do_setup(self.keystone_api.get_session())
self.barbican_api.update_software_test(node_type, sw_package,
data['min_version'],
data['description'])
msg = _('Saved softare package "%s".') % sw_package
messages.success(request, msg)
return True
except Exception:
redirect = reverse("horizon:admin:hpe_storage:index")
exceptions.handle(request,
_("Unable to save softare package."),
redirect=redirect)
| 44.157895 | 78 | 0.616508 | 2,503 | 0.745828 | 0 | 0 | 0 | 0 | 0 | 0 | 911 | 0.271454 |
29ecd056c8357be81181e47ac71a968400c85cc9 | 1,396 | py | Python | tests/test_liquidity_provider_factory.py | diem/liquidity-emulator | 255cccd06c0949750e42e93906b083e915ddf505 | [
"Apache-2.0"
] | 2 | 2021-11-29T06:00:59.000Z | 2022-01-27T18:42:29.000Z | tests/test_liquidity_provider_factory.py | hengkyherdianto/liquidity-emulator | 255cccd06c0949750e42e93906b083e915ddf505 | [
"Apache-2.0"
] | 1 | 2021-01-31T09:14:05.000Z | 2021-02-01T07:43:41.000Z | tests/test_liquidity_provider_factory.py | hengkyherdianto/liquidity-emulator | 255cccd06c0949750e42e93906b083e915ddf505 | [
"Apache-2.0"
] | 4 | 2021-02-15T14:45:04.000Z | 2022-03-03T02:32:45.000Z | from diem import chain_ids
from liquidity import create_liquidity_provider, init_liquidity_provider
from liquidity.liquidity import FaucetLiquidityProvider, DDLiquidityProvider
CUSTODY_PRIVATE_KEYS = (
'{"liquidity":"c6537e56d844fa4a15f3bf5eacd41c9123a19ef19a1026f2325a6b2dd33a13f1"}'
)
def test_faucet_liquidity_provider_factory_for_testnet_without_custody_private_keys(
patch_liquidity, monkeypatch
) -> None:
monkeypatch.setenv("CHAIN_ID", str(chain_ids.TESTNET.value))
monkeypatch.delenv("CUSTODY_PRIVATE_KEYS", raising=False)
init_liquidity_provider()
lp = create_liquidity_provider()
assert isinstance(lp, FaucetLiquidityProvider)
def test_dd_liquidity_provider_factory_for_testnet_with_custody_private_keys(
patch_liquidity, monkeypatch
) -> None:
monkeypatch.setenv("CHAIN_ID", str(chain_ids.TESTNET.value))
monkeypatch.setenv("CUSTODY_PRIVATE_KEYS", CUSTODY_PRIVATE_KEYS)
init_liquidity_provider()
lp = create_liquidity_provider()
assert isinstance(lp, DDLiquidityProvider)
def test_dd_liquidity_provider_factory_for_premainnet(
patch_liquidity, monkeypatch
) -> None:
monkeypatch.setenv("CHAIN_ID", str(chain_ids.PREMAINNET.value))
monkeypatch.setenv("CUSTODY_PRIVATE_KEYS", CUSTODY_PRIVATE_KEYS)
init_liquidity_provider()
lp = create_liquidity_provider()
assert isinstance(lp, DDLiquidityProvider)
| 33.238095 | 86 | 0.809456 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 178 | 0.127507 |
29ecd75f594b19acd9901238ad242a2ae33df3f6 | 112 | py | Python | layers/modules/__init__.py | Eralaf/ssd.pytorch | acad53fd801f32120ecb3ff57950556e35db3d1c | [
"MIT"
] | null | null | null | layers/modules/__init__.py | Eralaf/ssd.pytorch | acad53fd801f32120ecb3ff57950556e35db3d1c | [
"MIT"
] | null | null | null | layers/modules/__init__.py | Eralaf/ssd.pytorch | acad53fd801f32120ecb3ff57950556e35db3d1c | [
"MIT"
] | null | null | null | from .l2norm import L2Norm
from .multibox_loss import MultiBoxLoss
__all__ = ['L2Norm', 'MultiBoxLoss']
| 22.4 | 39 | 0.732143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0.196429 |
29edb04d6019c45efcdb61aac97edab310263a90 | 59 | py | Python | test/octagon.py | Jahongir2007/pymetry | 02c8e82a188700b4213fd4a70aa66a3b5e9843b8 | [
"MIT"
] | 1 | 2021-04-04T11:38:42.000Z | 2021-04-04T11:38:42.000Z | test/octagon.py | Jahongir2007/pymetry | 02c8e82a188700b4213fd4a70aa66a3b5e9843b8 | [
"MIT"
] | null | null | null | test/octagon.py | Jahongir2007/pymetry | 02c8e82a188700b4213fd4a70aa66a3b5e9843b8 | [
"MIT"
] | null | null | null | import pymetry
pym = pymetry
pym.octagon(150, "yellow", 8)
| 14.75 | 29 | 0.728814 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0.135593 |
29f10336d5ea889a3a24c9c3648237cbdaee7b65 | 5,586 | py | Python | tools/remote_debugger.py | budelius/openstreetmap-heatmap | f7376671eecda68955b8edc016c63218c5ebc6a2 | [
"Apache-2.0"
] | null | null | null | tools/remote_debugger.py | budelius/openstreetmap-heatmap | f7376671eecda68955b8edc016c63218c5ebc6a2 | [
"Apache-2.0"
] | null | null | null | tools/remote_debugger.py | budelius/openstreetmap-heatmap | f7376671eecda68955b8edc016c63218c5ebc6a2 | [
"Apache-2.0"
] | null | null | null | """
Remote debugging support.
This addon allows you to use a remote Python debugger with PyCharm, PyDev and
possibly other IDEs. As it is, without modification, it only supports PyCharm,
but it may work by pointing it at a similar egg file shipped with PyDev.
Before using, point the addon to your pycharm-debug-py3k.egg file in the
addon preferences screen.
For more information on how to use this addon, please read my article at
http://code.blender.org/2015/10/debugging-python-code-with-pycharm/
"""
bl_info = {
'name': 'Remote debugger',
'author': 'Sybren A. Stüvel',
'version': (0, 4),
'blender': (2, 80, 0),
'location': 'Press [Space], search for "debugger"',
'category': 'Development',
}
import bpy
import os.path
from bpy.types import AddonPreferences
from bpy.props import StringProperty
# Get references to all property definition functions in bpy.props,
# so that they can be used to replace 'x = IntProperty()' to 'x: IntProperty()'
# dynamically when working on Blender 2.80+
__all_prop_funcs = {
getattr(bpy.props, propname)
for propname in dir(bpy.props)
if propname.endswith('Property')
}
def convert_properties(class_):
"""Class decorator to avoid warnings in Blender 2.80+
This decorator replaces property definitions like this:
someprop = bpy.props.IntProperty()
to annotations, as introduced in Blender 2.80:
someprop: bpy.props.IntProperty()
No-op if running on Blender 2.79 or older.
"""
if bpy.app.version < (2, 80):
return class_
if not hasattr(class_, '__annotations__'):
class_.__annotations__ = {}
attrs_to_delete = []
for name, value in class_.__dict__.items():
if not isinstance(value, tuple) or len(value) != 2:
continue
prop_func, kwargs = value
if prop_func not in __all_prop_funcs:
continue
# This is a property definition, replace it with annotation.
attrs_to_delete.append(name)
class_.__annotations__[name] = value
for attr_name in attrs_to_delete:
delattr(class_, attr_name)
return class_
def addon_preferences(context):
try:
preferences = context.preferences
except AttributeError:
# Old (<2.80) location of user preferences
preferences = context.user_preferences
return preferences.addons[__name__].preferences
@convert_properties
class DebuggerAddonPreferences(AddonPreferences):
# this must match the addon name, use '__package__'
# when defining this in a submodule of a python package.
bl_idname = __name__
eggpath = StringProperty(
name='Path of the PyCharm egg file',
description='Make sure you select the py3k egg',
subtype='FILE_PATH',
default='pycharm-debug-py3k.egg'
)
pydevpath = StringProperty(
name='Path of the PyDev pydevd.py file',
subtype='FILE_PATH',
default='pydevd.py'
)
def draw(self, context):
layout = self.layout
layout.prop(self, 'pydevpath')
layout.prop(self, 'eggpath')
layout.label(text='Make sure you select the egg for Python 3.x: pycharm-debug-py3k.egg ')
class DEBUG_OT_connect_debugger_pycharm(bpy.types.Operator):
bl_idname = 'debug.connect_debugger_pycharm'
bl_label = 'Connect to remote PyCharm debugger'
bl_description = 'Connects to a PyCharm debugger on localhost:1090'
def execute(self, context):
import sys
addon_prefs = addon_preferences(context)
eggpath = os.path.abspath(addon_prefs.eggpath)
if not os.path.exists(eggpath):
self.report({'ERROR'}, 'Unable to find debug egg at %r. Configure the addon properties '
'in the User Preferences menu.' % eggpath)
return {'CANCELLED'}
if not any('pycharm-debug' in p for p in sys.path):
sys.path.append(eggpath)
import pydevd
pydevd.settrace('localhost', port=1090, stdoutToServer=True, stderrToServer=True,
suspend=False)
return {'FINISHED'}
class DEBUG_OT_connect_debugger_pydev(bpy.types.Operator):
bl_idname = 'debug.connect_debugger_pydev'
bl_label = 'Connect to remote PyDev debugger'
bl_description = 'Connects to a PyDev debugger on localhost:5678'
def execute(self, context):
import sys
addon_prefs = addon_preferences(context)
pydevpath = os.path.abspath(addon_prefs.pydevpath)
if not os.path.exists(pydevpath):
self.report({'ERROR'}, 'Unable to find pydevd.py at %r. Configure the addon properties '
'in the User Preferences menu.' % pydevpath)
return {'CANCELLED'}
dirname = os.path.dirname(pydevpath)
basename = os.path.basename(dirname)
if not any(basename in p for p in sys.path):
sys.path.append(dirname)
import pydevd
pydevd.settrace('localhost', port=5678, stdoutToServer=True, stderrToServer=True,
suspend=False)
return {'FINISHED'}
def register():
bpy.utils.register_class(DEBUG_OT_connect_debugger_pycharm)
bpy.utils.register_class(DEBUG_OT_connect_debugger_pydev)
bpy.utils.register_class(DebuggerAddonPreferences)
def unregister():
bpy.utils.unregister_class(DEBUG_OT_connect_debugger_pycharm)
bpy.utils.unregister_class(DEBUG_OT_connect_debugger_pydev)
bpy.utils.unregister_class(DebuggerAddonPreferences)
if __name__ == '__main__':
register()
| 30.692308 | 100 | 0.674544 | 2,705 | 0.48416 | 0 | 0 | 798 | 0.142832 | 0 | 0 | 2,150 | 0.384822 |
29f1f4d867171d615c82f43e02801e5ac479dcd4 | 2,247 | py | Python | todo/views/accepted_petitions.py | josalhor/WebModels | 6b9cde3141c53562f40b129e6e1c87448ce9853a | [
"BSD-3-Clause"
] | null | null | null | todo/views/accepted_petitions.py | josalhor/WebModels | 6b9cde3141c53562f40b129e6e1c87448ce9853a | [
"BSD-3-Clause"
] | 41 | 2021-03-23T12:58:25.000Z | 2021-05-25T11:38:42.000Z | todo/views/accepted_petitions.py | josalhor/WebModels | 6b9cde3141c53562f40b129e6e1c87448ce9853a | [
"BSD-3-Clause"
] | null | null | null | import datetime
from django.contrib import messages
from django.contrib.auth.decorators import login_required, user_passes_test
from django.http import HttpResponse
from django.shortcuts import render
from .book_assign import send_email_reject_book
from todo.forms import SearchForm
from todo.models import Task, Book, Editor, Writer
@login_required
def accepted_petitions(request) -> HttpResponse:
deleted, editor_view = False, False
thedate = datetime.datetime.now()
searchform = SearchForm(auto_id=False)
editor = Editor.objects.filter(user=request.user).first()
is_chief = False
all_lists = None
if editor:
lists = Book.objects.filter(completed=False)
all_lists = Book.objects.filter(completed=False)
if editor.chief:
is_chief = True
lists = lists.filter(editor=editor)
all_lists = all_lists.exclude(editor=None)
else:
lists = lists.filter(editor=editor)
lists = lists.exclude(rejected=True).order_by("name")
editor_view = True
else:
author = Writer.objects.filter(user=request.user)
lists = Book.objects.filter(completed=False, rejected=False, author__in=author).exclude(editor=None).order_by("name")
list_count = lists.count()
task_count = 0
for book in lists:
tasks = Task.objects.filter(book=book, completed=False).count()
task_count += tasks
if request.method == "POST":
book = Book.objects.filter(name=request.POST['delete-book']).first()
deleted = True
book.editor = None
book.rejected = True
book.save()
send_email_reject_book(book, reasons=request.POST['reasons'])
messages.success(request, "La petición correspondiente al libro '{}' ha sido eliminada de su lista de peticiones aceptadas.".format(book.name))
context = {
"editor_view": editor_view,
"deleted": deleted,
"lists": lists,
"thedate": thedate,
"searchform": searchform,
"list_count": list_count,
"task_count": task_count,
"all_lists": all_lists,
"is_chief": is_chief
}
return render(request, "todo/accepted_petitions.html", context)
| 31.208333 | 151 | 0.668002 | 0 | 0 | 0 | 0 | 1,909 | 0.849199 | 0 | 0 | 264 | 0.117438 |
29f31b2343f07216325a81bd944dfce29b98de66 | 610 | py | Python | 2_sheet/2-sheet-hundt-robin/plot-data.py | robinhundt/practical-course-parallel-computing | 08f1fc76324d5c6338b32b2f14c2a11fef3ad619 | [
"MIT"
] | null | null | null | 2_sheet/2-sheet-hundt-robin/plot-data.py | robinhundt/practical-course-parallel-computing | 08f1fc76324d5c6338b32b2f14c2a11fef3ad619 | [
"MIT"
] | null | null | null | 2_sheet/2-sheet-hundt-robin/plot-data.py | robinhundt/practical-course-parallel-computing | 08f1fc76324d5c6338b32b2f14c2a11fef3ad619 | [
"MIT"
] | null | null | null | import matplotlib.pyplot as plt
# number of threads used to compute product of 2 matrices of dim. 1024
data_x = [1, 2, 3, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096]
# execution time in seconds
data_y = [3.300059, 1.664494, 2.294884, 3.200235,
2.915945, 3.082389, 3.023162, 3.012096,
2.958028, 2.939918, 2.847527, 2.898556,
2.876036, 2.963720]
plt.figure()
plt.plot(data_x, data_y)
plt.xlabel('# of threads')
plt.xscale('log')
plt.ylabel('execution time in seconds')
plt.title('Exection times of 1024x1024 matrix multi with different thread counts')
plt.show() | 33.888889 | 82 | 0.672131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 214 | 0.35082 |