|
--- |
|
task_categories: |
|
- image-to-image |
|
tags: |
|
- RAW |
|
- raw |
|
- DNG |
|
- dng |
|
- denoising |
|
- superresolution |
|
- underexposure |
|
- overexpos |
|
pretty_name: fiveK |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
# MIT-Adobe FiveK Dataset |
|
|
|
The MIT-Adobe FiveK Dataset [[1]]( #references ) is a publicly available dataset providing the following items. |
|
1. 5,000 RAW images in DNG format |
|
2. retouched images of each RAW image by five experts in TIFF format (25,000 images, 16 bits per channel, ProPhoto RGB color space, and lossless compression) |
|
3. semantic information about each image |
|
The dataset was created by MIT and Adobe Systems, Inc., and is intended to provide a diverse and challenging set of images for testing image processing algorithms. The images were selected to represent a wide range of scenes, including landscapes, portraits, still lifes, and architecture. The images also vary in terms of lighting conditions, color balance, and exposure. |
|
In practice, this dataset is often used after RAW images have undergone various processing steps. For example, RAW images are developed by adding noise, overexposure, and underexposure to emulate camera errors. |
|
However, the officially provided dataset has a complex structure and is difficult to handle. This repository provides tools to easily download and use the datasets. |
|
|
|
## Official Website |
|
|
|
[MIT-Adobe FiveK Dataset](https://data.csail.mit.edu/graphics/fivek/) |
|
|
|
## License |
|
|
|
- [LicenseAdobe.txt](https://data.csail.mit.edu/graphics/fivek/legal/LicenseAdobe.txt) covers files listed in [filesAdobe.txt](https://data.csail.mit.edu/graphics/fivek/legal/filesAdobe.txt) |
|
- [LicenseAdobeMIT.txt](https://data.csail.mit.edu/graphics/fivek/legal/LicenseAdobeMIT.txt) covers files listed in [filesAdobeMIT.txt](https://data.csail.mit.edu/graphics/fivek/legal/filesAdobeMIT.txt) |
|
|
|
## Data Samples |
|
|
|
|Raw (DNG)|Expert A|Expert B|Expert C|Expert D|Expert E|Categories|Camera Model| |
|
|---|---|---|---|---|---|---|---| |
|
|[a0001-jmac_</br >DSC1459.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a0001-jmac_DSC1459.dng)|![tiff16_a/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_A.jpg)|![tiff16_b/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_B.jpg)|![tiff16_c/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_C.jpg)|![tiff16_d/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_D.jpg)|![tiff16_e/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_E.jpg)|{"location":"outdoor","time": "day","light": "sun_sky","subject": "nature"}|Nikon D70| |
|
|[a1384-dvf_095.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a1384-dvf_095.dng)|![tiff16_a/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_A.jpg)|![tiff16_b/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_B.jpg)|![tiff16_c/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_C.jpg)|![tiff16_d/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_D.jpg)|![tiff16_e/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_E.jpg)|{ "location": "outdoor", "time": "day", "light": "sun_sky", "subject": "nature" }|Leica M8| |
|
|[a4607-050801_</br >080948__</br >I2E5512.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a4607-050801_080948__I2E5512.dng)|![tiff16_a/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_A.jpg)|![tiff16_b/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_B.jpg)|![tiff16_c/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_C.jpg)|![tiff16_d/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_D.jpg)|![tiff16_e/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_E.jpg)|{ "location": "indoor", "time": "day", "light": "artificial", "subject": "people" }|Canon EOS-1D Mark II| |
|
|
|
# References |
|
|
|
``` |
|
@inproceedings{fivek, |
|
author = "Vladimir Bychkovsky and Sylvain Paris and Eric Chan and Fr{\'e}do Durand", |
|
title = "Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs", |
|
booktitle = "The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition", |
|
year = "2011" |
|
} |
|
``` |
|
|
|
# Code |
|
|
|
[GitHub repository](https://github.com/yuukicammy/mit-adobe-fivek-dataset) provides tools to download and use MIT-Adobe FiveK Dataset in a machine learning friendly manner. |
|
You can download the dataset with a single line of Python code. Also, you can use Pytorch's DetaLoader to iteratively retrieve data for your own use. |
|
The processing can be easily accomplished with multiprocessing with Pytorch's DataLoader! |
|
|
|
## Requirements |
|
- Python 3.7 or greater |
|
- Pytorch 2.X |
|
- tqdm |
|
- urllib3 |
|
|
|
## Usage |
|
|
|
You can use as follows. |
|
|
|
<span style="color:red"> |
|
NOTE: For DataLoader, MUST set `batch_size` to `None` to disable automatic batching. |
|
</span> |
|
|
|
```python |
|
from torch.utils.data.dataloader import DataLoader |
|
from dataset.fivek import MITAboveFiveK |
|
|
|
metadata_loader = DataLoader( |
|
MITAboveFiveK(root="path-to-dataset-root", split="train", download=True, experts=["a"]), |
|
batch_size=None, num_workers=2) |
|
|
|
for item in metadata_loader: |
|
# Processing as you want. |
|
# Add noise, overexpose, underexpose, etc. |
|
print(item["files"]["dng"]) |
|
``` |
|
|
|
## Example |
|
|
|
Please see [sample code](https://github.com/yuukicammy/mit-adobe-fivek-dataset/blob/master/sample_process.py) . |
|
|
|
## API |
|
|
|
CLASS MITAboveFiveK(torch.utils.data.dataset.Dataset) |
|
- - - |
|
MITAboveFiveK(root: str, split: str, download: bool = False, experts: List[str] = None) -> None |
|
|
|
- root (str): |
|
The root directory where the MITAboveFiveK directory exists or to be created. |
|
- split (str): |
|
One of {'train', 'val', 'test', 'debug'}. 'debug' uses only 9 data contained in 'train'. |
|
- download (bool): |
|
If True, downloads the dataset from the official urls. Files that already exist locally will skip the download. Defaults to False. |
|
- experts (List[str]): |
|
List of {'a', 'b', 'c', 'd', 'e'}. 'a' means 'Expert A' in the [website](https://data.csail.mit.edu/graphics/fivek/ ). If None or empty list, no expert data is used. Defaults to None. |