title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Feature Dynamic Bayesian Networks
Feature Markov Decision Processes (PhiMDPs) are well-suited for learning agents in general environments. Nevertheless, unstructured (Phi)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend PhiMDP to PhiDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the "best" DBN representation. I discuss all building blocks required for a complete general learning algorithm.
Importance Weighted Active Learning
We present a practical and statistically consistent scheme for actively learning binary classifiers under general loss functions. Our algorithm uses importance weighting to correct sampling bias, and by controlling the variance, we are able to give rigorous label complexity bounds for the learning process. Experiments on passively labeled data show that this approach reduces the label complexity required to achieve good predictive performance on many learning problems.
A New Clustering Algorithm Based Upon Flocking On Complex Network
We have proposed a model based upon flocking on a complex network, and then developed two clustering algorithms on the basis of it. In the algorithms, firstly a \textit{k}-nearest neighbor (knn) graph as a weighted and directed graph is produced among all data points in a dataset each of which is regarded as an agent who can move in space, and then a time-varying complex network is created by adding long-range links for each data point. Furthermore, each data point is not only acted by its \textit{k} nearest neighbors but also \textit{r} long-range neighbors through fields established in space by them together, so it will take a step along the direction of the vector sum of all fields. It is more important that these long-range links provides some hidden information for each data point when it moves and at the same time accelerate its speed converging to a center. As they move in space according to the proposed model, data points that belong to the same class are located at a same position gradually, whereas those that belong to different classes are away from one another. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the rates of convergence of clustering algorithms are fast enough. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
A Novel Clustering Algorithm Based Upon Games on Evolving Network
This paper introduces a model based upon games on an evolving network, and develops three clustering algorithms according to it. In the clustering algorithms, data points for clustering are regarded as players who can make decisions in games. On the network describing relationships among data points, an edge-removing-and-rewiring (ERR) function is employed to explore in a neighborhood of a data point, which removes edges connecting to neighbors with small payoffs, and creates new edges to neighbors with larger payoffs. As such, the connections among data points vary over time. During the evolution of network, some strategies are spread in the network. As a consequence, clusters are formed automatically, in which data points with the same evolutionarily stable strategy are collected as a cluster, so the number of evolutionarily stable strategies indicates the number of clusters. Moreover, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the comparison with other algorithms also provides an indication of the effectiveness of the proposed algorithms.
MIMO decoding based on stochastic reconstruction from multiple projections
Least squares (LS) fitting is one of the most fundamental techniques in science and engineering. It is used to estimate parameters from multiple noisy observations. In many problems the parameters are known a-priori to be bounded integer valued, or they come from a finite set of values on an arbitrary finite lattice. In this case finding the closest vector becomes NP-Hard problem. In this paper we propose a novel algorithm, the Tomographic Least Squares Decoder (TLSD), that not only solves the ILS problem, better than other sub-optimal techniques, but also is capable of providing the a-posteriori probability distribution for each element in the solution vector. The algorithm is based on reconstruction of the vector from multiple two-dimensional projections. The projections are carefully chosen to provide low computational complexity. Unlike other iterative techniques, such as the belief propagation, the proposed algorithm has ensured convergence. We also provide simulated experiments comparing the algorithm to other sub-optimal algorithms.
Distributed Preemption Decisions: Probabilistic Graphical Model, Algorithm and Near-Optimality
Cooperative decision making is a vision of future network management and control. Distributed connection preemption is an important example where nodes can make intelligent decisions on allocating resources and controlling traffic flows for multi-class service networks. A challenge is that nodal decisions are spatially dependent as traffic flows trespass multiple nodes in a network. Hence the performance-complexity trade-off becomes important, i.e., how accurate decisions are versus how much information is exchanged among nodes. Connection preemption is known to be NP-complete. Centralized preemption is optimal but computationally intractable. Decentralized preemption is computationally efficient but may result in a poor performance. This work investigates distributed preemption where nodes decide whether and which flows to preempt using only local information exchange with neighbors. We develop, based on the probabilistic graphical models, a near-optimal distributed algorithm. The algorithm is used by each node to make collectively near-optimal preemption decisions. We study trade-offs between near-optimal performance and complexity that corresponds to the amount of information-exchange of the distributed algorithm. The algorithm is validated by both analysis and simulation.
A Theoretical Analysis of Joint Manifolds
The emergence of low-cost sensor architectures for diverse modalities has made it possible to deploy sensor arrays that capture a single event from a large number of vantage points and using multiple modalities. In many scenarios, these sensors acquire very high-dimensional data such as audio signals, images, and video. To cope with such high-dimensional data, we typically rely on low-dimensional models. Manifold models provide a particularly powerful model that captures the structure of high-dimensional data when it is governed by a low-dimensional set of parameters. However, these models do not typically take into account dependencies among multiple sensors. We thus propose a new joint manifold framework for data ensembles that exploits such dependencies. We show that simple algorithms can exploit the joint manifold structure to improve their performance on standard signal processing applications. Additionally, recent results concerning dimensionality reduction for manifolds enable us to formulate a network-scalable data compression scheme that uses random projections of the sensed data. This scheme efficiently fuses the data from all sensors through the addition of such projections, regardless of the data modalities and dimensions.
Joint universal lossy coding and identification of stationary mixing sources with general alphabets
We consider the problem of joint universal variable-rate lossy coding and identification for parametric classes of stationary $\beta$-mixing sources with general (Polish) alphabets. Compression performance is measured in terms of Lagrangians, while identification performance is measured by the variational distance between the true source and the estimated source. Provided that the sources are mixing at a sufficiently fast rate and satisfy certain smoothness and Vapnik-Chervonenkis learnability conditions, it is shown that, for bounded metric distortions, there exist universal schemes for joint lossy compression and identification whose Lagrangian redundancies converge to zero as $\sqrt{V_n \log n /n}$ as the block length $n$ tends to infinity, where $V_n$ is the Vapnik-Chervonenkis dimension of a certain class of decision regions defined by the $n$-dimensional marginal distributions of the sources; furthermore, for each $n$, the decoder can identify $n$-dimensional marginal of the active source up to a ball of radius $O(\sqrt{V_n\log n/n})$ in variational distance, eventually with probability one. The results are supplemented by several examples of parametric sources satisfying the regularity conditions.
Achievability results for statistical learning under communication constraints
The problem of statistical learning is to construct an accurate predictor of a random variable as a function of a correlated random variable on the basis of an i.i.d. training sample from their joint distribution. Allowable predictors are constrained to lie in some specified class, and the goal is to approach asymptotically the performance of the best predictor in the class. We consider two settings in which the learning agent only has access to rate-limited descriptions of the training data, and present information-theoretic bounds on the predictor performance achievable in the presence of these communication constraints. Our proofs do not assume any separation structure between compression and learning and rely on a new class of operational criteria specifically tailored to joint design of encoders and learning algorithms in rate-constrained settings.
A Limit Theorem in Singular Regression Problem
In statistical problems, a set of parameterized probability distributions is used to estimate the true probability distribution. If Fisher information matrix at the true distribution is singular, then it has been left unknown what we can estimate about the true distribution from random samples. In this paper, we study a singular regression problem and prove a limit theorem which shows the relation between the singular regression problem and two birational invariants, a real log canonical threshold and a singular fluctuation. The obtained theorem has an important application to statistics, because it enables us to estimate the generalization error from the training error without any knowledge of the true probability distribution.
Matrix Completion from a Few Entries
Let M be a random (alpha n) x n matrix of rank r<<n, and assume that a uniformly random subset E of its entries is observed. We describe an efficient algorithm that reconstructs M from |E| = O(rn) observed entries with relative root mean square error RMSE <= C(rn/|E|)^0.5 . Further, if r=O(1), M can be reconstructed exactly from |E| = O(n log(n)) entries. These results apply beyond random matrices to general low-rank incoherent matrices. This settles (in the case of bounded rank) a question left open by Candes and Recht and improves over the guarantees for their reconstruction algorithm. The complexity of our algorithm is O(|E|r log(n)), which opens the way to its use for massive data sets. In the process of proving these statements, we obtain a generalization of a celebrated result by Friedman-Kahn-Szemeredi and Feige-Ofek on the spectrum of sparse random matrices.
Model-Consistent Sparse Estimation through the Bootstrap
We consider the least-square linear regression problem with regularization by the $\ell^1$-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection procedure, referred to as the Bolasso, is extended to high-dimensional settings by a provably consistent two-step procedure.
On the Dual Formulation of Boosting Algorithms
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of AdaBoost, LogitBoost and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance.We also theoretically prove that, approximately, AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column generation based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stage-wise additive boosting algorithms but with much faster convergence rates. Therefore fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.
Cross-situational and supervised learning in the emergence of communication
Scenarios for the emergence or bootstrap of a lexicon involve the repeated interaction between at least two agents who must reach a consensus on how to name N objects using H words. Here we consider minimal models of two types of learning algorithms: cross-situational learning, in which the individuals determine the meaning of a word by looking for something in common across all observed uses of that word, and supervised operant conditioning learning, in which there is strong feedback between individuals about the intended meaning of the words. Despite the stark differences between these learning schemes, we show that they yield the same communication accuracy in the realistic limits of large N and H, which coincides with the result of the classical occupancy problem of randomly assigning N objects to H words.
Practical Robust Estimators for the Imprecise Dirichlet Model
Walley's Imprecise Dirichlet Model (IDM) for categorical i.i.d. data extends the classical Dirichlet model to a set of priors. It overcomes several fundamental problems which other approaches to uncertainty suffer from. Yet, to be useful in practice, one needs efficient ways for computing the imprecise=robust sets or intervals. The main objective of this work is to derive exact, conservative, and approximate, robust and credible interval estimates under the IDM for a large class of statistical estimators, including the entropy and mutual information.
Fixing Convergence of Gaussian Belief Propagation
Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm is linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.
Non-Confluent NLC Graph Grammar Inference by Compressing Disjoint Subgraphs
Grammar inference deals with determining (preferable simple) models/grammars consistent with a set of observations. There is a large body of research on grammar inference within the theory of formal languages. However, there is surprisingly little known on grammar inference for graph grammars. In this paper we take a further step in this direction and work within the framework of node label controlled (NLC) graph grammars. Specifically, we characterize, given a set of disjoint and isomorphic subgraphs of a graph $G$, whether or not there is a NLC graph grammar rule which can generate these subgraphs to obtain $G$. This generalizes previous results by assuming that the set of isomorphic subgraphs is disjoint instead of non-touching. This leads naturally to consider the more involved ``non-confluent'' graph grammar rules.
Tree Exploration for Bayesian RL Exploration
Research in reinforcement learning has produced algorithms for optimal decision making under uncertainty that fall within two main types. The first employs a Bayesian framework, where optimality improves with increased computational time. This is because the resulting planning task takes the form of a dynamic programming problem on a belief tree with an infinite number of states. The second type employs relatively simple algorithm which are shown to suffer small regret within a distribution-free framework. This paper presents a lower bound and a high probability upper bound on the optimal value function for the nodes in the Bayesian belief tree, which are analogous to similar bounds in POMDPs. The bounds are then used to create more efficient strategies for exploring the tree. The resulting algorithms are compared with the distribution-free algorithm UCB1, as well as a simpler baseline algorithm on multi-armed bandit problems.
Discovering general partial orders in event streams
Frequent episode discovery is a popular framework for pattern discovery in event streams. An episode is a partially ordered set of nodes with each node associated with an event type. Efficient (and separate) algorithms exist for episode discovery when the associated partial order is total (serial episode) and trivial (parallel episode). In this paper, we propose efficient algorithms for discovering frequent episodes with general partial orders. These algorithms can be easily specialized to discover serial or parallel episodes. Also, the algorithms are flexible enough to be specialized for mining in the space of certain interesting subclasses of partial orders. We point out that there is an inherent combinatorial explosion in frequent partial order mining and most importantly, frequency alone is not a sufficient measure of interestingness. We propose a new interestingness measure for general partial order episodes and a discovery method based on this measure, for filtering out uninteresting partial orders. Simulations demonstrate the effectiveness of our algorithms.
Extraction de concepts sous contraintes dans des donn\'ees d'expression de g\`enes
In this paper, we propose a technique to extract constrained formal concepts.
Database Transposition for Constrained (Closed) Pattern Mining
Recently, different works proposed a new way to mine patterns in databases with pathological size. For example, experiments in genome biology usually provide databases with thousands of attributes (genes) but only tens of objects (experiments). In this case, mining the "transposed" database runs through a smaller search space, and the Galois connection allows to infer the closed patterns of the original database. We focus here on constrained pattern mining for those unusual databases and give a theoretical framework for database and constraint transposition. We discuss the properties of constraint transposition and look into classical constraints. We then address the problem of generating the closed patterns of the original database satisfying the constraint, starting from those mined in the "transposed" database. Finally, we show how to generate all the patterns satisfying the constraint from the closed ones.
Multi-Label Prediction via Compressed Sensing
We consider multi-label prediction problems with large output spaces under the assumption of output sparsity -- that the target (label) vectors have small support. We develop a general theory for a variant of the popular error correcting output code scheme, using ideas from compressed sensing for exploiting this sparsity. The method can be regarded as a simple reduction from multi-label regression problems to binary regression problems. We show that the number of subproblems need only be logarithmic in the total number of possible labels, making this approach radically more efficient than others. We also state and prove robustness guarantees for this method in the form of regret transform bounds (in general), and also provide a more detailed analysis for the linear prediction setting.
Object Classification by means of Multi-Feature Concept Learning in a Multi Expert-Agent System
Classification of some objects in classes of concepts is an essential and even breathtaking task in many applications. A solution is discussed here based on Multi-Agent systems. A kernel of some expert agents in several classes is to consult a central agent decide among the classification problem of a certain object. This kernel is moderated with the center agent, trying to manage the querying agents for any decision problem by means of a data-header like feature set. Agents have cooperation among concepts related to the classes of this classification decision-making; and may affect on each others' results on a certain query object in a multi-agent learning approach. This leads to an online feature learning via the consulting trend. The performance is discussed to be much better in comparison to some other prior trends while system's message passing overload is decreased to less agents and the expertism helps the performance and operability of system win the comparison.
Error-Correcting Tournaments
We present a family of pairwise tournaments reducing $k$-class classification to binary classification. These reductions are provably robust against a constant fraction of binary errors. The results improve on the PECOC construction \cite{SECOC} with an exponential improvement in computation, from $O(k)$ to $O(\log_2 k)$, and the removal of a square root in the regret dependence, matching the best possible computation and regret up to a constant.
An Exact Algorithm for the Stratification Problem with Proportional Allocation
We report a new optimal resolution for the statistical stratification problem under proportional sampling allocation among strata. Consider a finite population of N units, a random sample of n units selected from this population and a number L of strata. Thus, we have to define which units belong to each stratum so as to minimize the variance of a total estimator for one desired variable of interest in each stratum,and consequently reduce the overall variance for such quantity. In order to solve this problem, an exact algorithm based on the concept of minimal path in a graph is proposed and assessed. Computational results using real data from IBGE (Brazilian Central Statistical Office) are provided.
Learning rules from multisource data for cardiac monitoring
This paper formalises the concept of learning symbolic rules from multisource data in a cardiac monitoring context. Our sources, electrocardiograms and arterial blood pressure measures, describe cardiac behaviours from different viewpoints. To learn interpretable rules, we use an Inductive Logic Programming (ILP) method. We develop an original strategy to cope with the dimensionality issues caused by using this ILP technique on a rich multisource language. The results show that our method greatly improves the feasibility and the efficiency of the process while staying accurate. They also confirm the benefits of using multiple sources to improve the diagnosis of cardiac arrhythmias.
Domain Adaptation: Learning Bounds and Algorithms
This paper addresses the general problem of domain adaptation which arises in a variety of applications where the distribution of the labeled sample available somewhat differs from that of the test data. Building on previous work by Ben-David et al. (2007), we introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss functions. We give Rademacher complexity bounds for estimating the discrepancy distance from finite samples for different loss functions. Using this distance, we derive novel generalization bounds for domain adaptation for a wide family of loss functions. We also present a series of novel adaptation bounds for large classes of regularization-based algorithms, including support vector machines and kernel ridge regression based on the empirical discrepancy. This motivates our analysis of the problem of minimizing the empirical discrepancy for various loss functions for which we also give novel algorithms. We report the results of preliminary experiments that demonstrate the benefits of our discrepancy minimization algorithms for domain adaptation.
Online Multi-task Learning with Hard Constraints
We discuss multi-task online learning when a decision maker has to deal simultaneously with M tasks. The tasks are related, which is modeled by imposing that the M-tuple of actions taken by the decision maker needs to satisfy certain constraints. We give natural examples of such restrictions and then discuss a general class of tractable constraints, for which we introduce computationally efficient ways of selecting actions, essentially by reducing to an on-line shortest path problem. We briefly discuss "tracking" and "bandit" versions of the problem and extend the model in various ways, including non-additive global losses and uncountably infinite sets of tasks.
Uniqueness of Low-Rank Matrix Completion by Rigidity Theory
The problem of completing a low-rank matrix from a subset of its entries is often encountered in the analysis of incomplete data sets exhibiting an underlying factor model with applications in collaborative filtering, computer vision and control. Most recent work had been focused on constructing efficient algorithms for exact or approximate recovery of the missing matrix entries and proving lower bounds for the number of known entries that guarantee a successful recovery with high probability. A related problem from both the mathematical and algorithmic point of view is the distance geometry problem of realizing points in a Euclidean space from a given subset of their pairwise distances. Rigidity theory answers basic questions regarding the uniqueness of the realization satisfying a given partial set of distances. We observe that basic ideas and tools of rigidity theory can be adapted to determine uniqueness of low-rank matrix completion, where inner products play the role that distances play in rigidity theory. This observation leads to an efficient randomized algorithm for testing both local and global unique completion. Crucial to our analysis is a new matrix, which we call the completion matrix, that serves as the analogue of the rigidity matrix.
Prediction with expert evaluators' advice
We introduce a new protocol for prediction with expert advice in which each expert evaluates the learner's and his own performance using a loss function that may change over time and may be different from the loss functions used by the other experts. The learner's goal is to perform better or not much worse than each expert, as evaluated by that expert, for all experts simultaneously. If the loss functions used by the experts are all proper scoring rules and all mixable, we show that the defensive forecasting algorithm enjoys the same performance guarantee as that attainable by the Aggregating Algorithm in the standard setting and known to be optimal. This result is also applied to the case of "specialist" (or "sleeping") experts. In this case, the defensive forecasting algorithm reduces to a simple modification of the Aggregating Algorithm.
Multiplicative updates For Non-Negative Kernel SVM
We present multiplicative updates for solving hard and soft margin support vector machines (SVM) with non-negative kernels. They follow as a natural extension of the updates for non-negative matrix factorization. No additional param- eter setting, such as choosing learning, rate is required. Ex- periments demonstrate rapid convergence to good classifiers. We analyze the rates of asymptotic convergence of the up- dates and establish tight bounds. We test the performance on several datasets using various non-negative kernels and report equivalent generalization errors to that of a standard SVM.
Manipulation Robustness of Collaborative Filtering Systems
A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions, and hence have become targets of manipulation by unscrupulous vendors. We provide theoretical and empirical results demonstrating that while common nearest neighbor algorithms, which are widely used in commercial systems, can be highly susceptible to manipulation, two classes of collaborative filtering algorithms which we refer to as linear and asymptotically linear are relatively robust. These results provide guidance for the design of future collaborative filtering systems.
Efficient Human Computation
Collecting large labeled data sets is a laborious and expensive task, whose scaling up requires division of the labeling workload between many teachers. When the number of classes is large, miscorrespondences between the labels given by the different teachers are likely to occur, which, in the extreme case, may reach total inconsistency. In this paper we describe how globally consistent labels can be obtained, despite the absence of teacher coordination, and discuss the possible efficiency of this process in terms of human labor. We define a notion of label efficiency, measuring the ratio between the number of globally consistent labels obtained and the number of labels provided by distributed teachers. We show that the efficiency depends critically on the ratio alpha between the number of data instances seen by a single teacher, and the number of classes. We suggest several algorithms for the distributed labeling problem, and analyze their efficiency as a function of alpha. In addition, we provide an upper bound on label efficiency for the case of completely uncoordinated teachers, and show that efficiency approaches 0 as the ratio between the number of labels each teacher provides and the number of classes drops (i.e. alpha goes to 0).
Multiagent Learning in Large Anonymous Games
In large systems, it is important for agents to learn to act effectively, but sophisticated multi-agent learning algorithms generally do not scale. An alternative approach is to find restricted classes of games where simple, efficient algorithms converge. It is shown that stage learning efficiently converges to Nash equilibria in large anonymous games if best-reply dynamics converge. Two features are identified that improve convergence. First, rather than making learning more difficult, more agents are actually beneficial in many settings. Second, providing agents with statistical information about the behavior of others can significantly reduce the number of observations needed.
Differential Contrastive Divergence
This paper has been retracted.
A parameter-free hedging algorithm
We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large. Previous algorithms for learning in this framework have a tunable learning rate parameter, and a barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly when the number of actions is large. In this paper, we offer a clean solution by proposing a novel and completely parameter-free algorithm for DTOL. We introduce a new notion of regret, which is more natural for applications with a large number of actions. We show that our algorithm achieves good performance with respect to this new notion of regret; in addition, it also achieves performance close to that of the best bounds achieved by previous algorithms with optimally-tuned parameters, according to previous notions of regret.
Tracking using explanation-based modeling
We study the tracking problem, namely, estimating the hidden state of an object over time, from unreliable and noisy measurements. The standard framework for the tracking problem is the generative framework, which is the basis of solutions such as the Bayesian algorithm and its approximation, the particle filters. However, the problem with these solutions is that they are very sensitive to model mismatches. In this paper, motivated by online learning, we introduce a new framework -- an {\em explanatory} framework -- for tracking. We provide an efficient tracking algorithm for this framework. We provide experimental results comparing our algorithm to the Bayesian algorithm on simulated data. Our experiments show that when there are slight model mismatches, our algorithm vastly outperforms the Bayesian algorithm.
On $p$-adic Classification
A $p$-adic modification of the split-LBG classification method is presented in which first clusterings and then cluster centers are computed which locally minimise an energy function. The outcome for a fixed dataset is independent of the prime number $p$ with finitely many exceptions. The methods are applied to the construction of $p$-adic classifiers in the context of learning.
Kalman Filtering with Intermittent Observations: Weak Convergence to a Stationary Distribution
The paper studies the asymptotic behavior of Random Algebraic Riccati Equations (RARE) arising in Kalman filtering when the arrival of the observations is described by a Bernoulli i.i.d. process. We model the RARE as an order-preserving, strongly sublinear random dynamical system (RDS). Under a sufficient condition, stochastic boundedness, and using a limit-set dichotomy result for order-preserving, strongly sublinear RDS, we establish the asymptotic properties of the RARE: the sequence of random prediction error covariance matrices converges weakly to a unique invariant distribution, whose support exhibits fractal behavior. In particular, this weak convergence holds under broad conditions and even when the observations arrival rate is below the critical probability for mean stability. We apply the weak-Feller property of the Markov process governing the RARE to characterize the support of the limiting invariant distribution as the topological closure of a countable set of points, which, in general, is not dense in the set of positive semi-definite matrices. We use the explicit characterization of the support of the invariant distribution and the almost sure ergodicity of the sample paths to easily compute the moments of the invariant distribution. A one dimensional example illustrates that the support is a fractured subset of the non-negative reals with self-similarity properties.
Optimistic Simulated Exploration as an Incentive for Real Exploration
Many reinforcement learning exploration techniques are overly optimistic and try to explore every state. Such exploration is impossible in environments with the unlimited number of states. I propose to use simulated exploration with an optimistic model to discover promising paths for real exploration. This reduces the needs for the real exploration.
Efficiently Learning a Detection Cascade with Sparse Eigenvectors
In this work, we first show that feature selection methods other than boosting can also be used for training an efficient object detector. In particular, we introduce Greedy Sparse Linear Discriminant Analysis (GSLDA) \cite{Moghaddam2007Fast} for its conceptual simplicity and computational efficiency; and slightly better detection performance is achieved compared with \cite{Viola2004Robust}. Moreover, we propose a new technique, termed Boosted Greedy Sparse Linear Discriminant Analysis (BGSLDA), to efficiently train a detection cascade. BGSLDA exploits the sample re-weighting property of boosting and the class-separability criterion of GSLDA.
A New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data
Detecting outliers which are grossly different from or inconsistent with the remaining dataset is a major challenge in real-world KDD applications. Existing outlier detection methods are ineffective on scattered real-world datasets due to implicit data patterns and parameter setting issues. We define a novel "Local Distance-based Outlier Factor" (LDOF) to measure the {outlier-ness} of objects in scattered datasets which addresses these issues. LDOF uses the relative location of an object to its neighbours to determine the degree to which the object deviates from its neighbourhood. Properties of LDOF are theoretically analysed including LDOF's lower bound and its false-detection probability, as well as parameter settings. In order to facilitate parameter settings in real-world applications, we employ a top-n technique in our outlier detection approach, where only the objects with the highest LDOF values are regarded as outliers. Compared to conventional approaches (such as top-n KNN and top-n LOF), our method top-n LDOF is more effective at detecting outliers in scattered data. It is also easier to set parameters, since its performance is relatively stable over a large range of parameter values, as illustrated by experimental results on both real-world and synthetic datasets.
Optimal Policies Search for Sensor Management
This paper introduces a new approach to solve sensor management problems. Classically sensor management problems can be well formalized as Partially-Observed Markov Decision Processes (POMPD). The original approach developped here consists in deriving the optimal parameterized policy based on a stochastic gradient estimation. We assume in this work that it is possible to learn the optimal policy off-line (in simulation) using models of the environement and of the sensor(s). The learned policy can then be used to manage the sensor(s). In order to approximate the gradient in a stochastic context, we introduce a new method to approximate the gradient, based on Infinitesimal Perturbation Approximation (IPA). The effectiveness of this general framework is illustrated by the managing of an Electronically Scanned Array Radar. First simulations results are finally proposed.
How random are a learner's mistakes?
Given a random binary sequence $X^{(n)}$ of random variables, $X_{t},$ $t=1,2,...,n$, for instance, one that is generated by a Markov source (teacher) of order $k^{*}$ (each state represented by $k^{*}$ bits). Assume that the probability of the event $X_{t}=1$ is constant and denote it by $\beta$. Consider a learner which is based on a parametric model, for instance a Markov model of order $k$, who trains on a sequence $x^{(m)}$ which is randomly drawn by the teacher. Test the learner's performance by giving it a sequence $x^{(n)}$ (generated by the teacher) and check its predictions on every bit of $x^{(n)}.$ An error occurs at time $t$ if the learner's prediction $Y_{t}$ differs from the true bit value $X_{t}$. Denote by $\xi^{(n)}$ the sequence of errors where the error bit $\xi_{t}$ at time $t$ equals 1 or 0 according to whether the event of an error occurs or not, respectively. Consider the subsequence $\xi^{(\nu)}$ of $\xi^{(n)}$ which corresponds to the errors of predicting a 0, i.e., $\xi^{(\nu)}$ consists of the bits of $\xi^{(n)}$ only at times $t$ such that $Y_{t}=0.$ In this paper we compute an estimate on the deviation of the frequency of 1s of $\xi^{(\nu)}$ from $\beta$. The result shows that the level of randomness of $\xi^{(\nu)}$ decreases relative to an increase in the complexity of the learner.
Conditional Probability Tree Estimation Analysis and Algorithms
We consider the problem of estimating the conditional probability of a label in time $O(\log n)$, where $n$ is the number of possible labels. We analyze a natural reduction of this problem to a set of binary regression problems organized in a tree structure, proving a regret bound that scales with the depth of the tree. Motivated by this analysis, we propose the first online algorithm which provably constructs a logarithmic depth tree on the set of labels to solve this problem. We test the algorithm empirically, showing that it works succesfully on a dataset with roughly $10^6$ labels.
Graph polynomials and approximation of partition functions with Loopy Belief Propagation
The Bethe approximation, or loopy belief propagation algorithm is a successful method for approximating partition functions of probabilistic models associated with a graph. Chertkov and Chernyak derived an interesting formula called Loop Series Expansion, which is an expansion of the partition function. The main term of the series is the Bethe approximation while other terms are labeled by subgraphs called generalized loops. In our recent paper, we derive the loop series expansion in form of a polynomial with coefficients positive integers, and extend the result to the expansion of marginals. In this paper, we give more clear derivation for the results and discuss the properties of the polynomial which is introduced in the paper.
An Exponential Lower Bound on the Complexity of Regularization Paths
For a variety of regularized optimization problems in machine learning, algorithms computing the entire solution path have been developed recently. Most of these methods are quadratic programs that are parameterized by a single parameter, as for example the Support Vector Machine (SVM). Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only linear complexity, i.e. linearly many bends. We prove that for the support vector machine this complexity can be exponential in the number of training points in the worst case. More strongly, we construct a single instance of n input points in d dimensions for an SVM such that at least \Theta(2^{n/2}) = \Theta(2^d) many distinct subsets of support vectors occur as the regularization parameter changes.
A Combinatorial Algorithm to Compute Regularization Paths
For a wide variety of regularization methods, algorithms computing the entire solution path have been developed recently. Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. Most of the currently used algorithms are not robust in the sense that they cannot deal with general or degenerate input. Here we present a new robust, generic method for parametric quadratic programming. Our algorithm directly applies to nearly all machine learning applications, where so far every application required its own different algorithm. We illustrate the usefulness of our method by applying it to a very low rank problem which could not be solved by existing path tracking methods, namely to compute part-worth values in choice based conjoint analysis, a popular technique from market research to estimate consumers preferences on a class of parameterized options.
Learning Multiple Belief Propagation Fixed Points for Real Time Inference
In the context of inference with expectation constraints, we propose an approach based on the "loopy belief propagation" algorithm LBP, as a surrogate to an exact Markov Random Field MRF modelling. A prior information composed of correlations among a large set of N variables, is encoded into a graphical model; this encoding is optimized with respect to an approximate decoding procedure LBP, which is used to infer hidden variables from an observed subset. We focus on the situation where the underlying data have many different statistical components, representing a variety of independent patterns. Considering a single parameter family of models we show how LBP may be used to encode and decode efficiently such information, without solving the NP hard inverse problem yielding the optimal MRF. Contrary to usual practice, we work in the non-convex Bethe free energy minimization framework, and manage to associate a belief propagation fixed point to each component of the underlying probabilistic mixture. The mean field limit is considered and yields an exact connection with the Hopfield model at finite temperature and steady state, when the number of mixture components is proportional to the number of variables. In addition, we provide an enhanced learning procedure, based on a straightforward multi-parameter extension of the model in conjunction with an effective continuous optimization procedure. This is performed using the stochastic search heuristic CMAES and yields a significant improvement with respect to the single parameter basic model.
Time manipulation technique for speeding up reinforcement learning in simulations
A technique for speeding up reinforcement learning algorithms by using time manipulation is proposed. It is applicable to failure-avoidance control problems running in a computer simulation. Turning the time of the simulation backwards on failure events is shown to speed up the learning by 260% and improve the state space exploration by 12% on the cart-pole balancing task, compared to the conventional Q-learning and Actor-Critic algorithms.
A Stochastic View of Optimal Regret through Minimax Duality
We study the regret of optimal strategies for online convex optimization games. Using von Neumann's minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary's action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen's inequality for a concave functional--the minimizer over the player's actions of expected loss--defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary.
Exact Non-Parametric Bayesian Inference on Infinite Trees
Given i.i.d. data from an unknown distribution, we consider the problem of predicting future items. An adaptive way to estimate the probability density is to recursively subdivide the domain to an appropriate data-dependent granularity. A Bayesian would assign a data-independent prior probability to "subdivide", which leads to a prior over infinite(ly many) trees. We derive an exact, fast, and simple inference algorithm for such a prior, for the data evidence, the predictive distribution, the effective model dimension, moments, and other quantities. We prove asymptotic convergence and consistency results, and illustrate the behavior of our model on some prototypical functions.
Time Hopping technique for faster reinforcement learning in simulations
This preprint has been withdrawn by the author for revision
Eligibility Propagation to Speed up Time Hopping for Reinforcement Learning
A mechanism called Eligibility Propagation is proposed to speed up the Time Hopping technique used for faster Reinforcement Learning in simulations. Eligibility Propagation provides for Time Hopping similar abilities to what eligibility traces provide for conventional Reinforcement Learning. It propagates values from one state to all of its temporal predecessors using a state transitions graph. Experiments on a simulated biped crawling robot confirm that Eligibility Propagation accelerates the learning process more than 3 times.
Performing Nonlinear Blind Source Separation with Signal Invariants
Given a time series of multicomponent measurements x(t), the usual objective of nonlinear blind source separation (BSS) is to find a "source" time series s(t), comprised of statistically independent combinations of the measured components. In this paper, the source time series is required to have a density function in (s,ds/dt)-space that is equal to the product of density functions of individual components. This formulation of the BSS problem has a solution that is unique, up to permutations and component-wise transformations. Separability is shown to impose constraints on certain locally invariant (scalar) functions of x, which are derived from local higher-order correlations of the data's velocity dx/dt. The data are separable if and only if they satisfy these constraints, and, if the constraints are satisfied, the sources can be explicitly constructed from the data. The method is illustrated by using it to separate two speech-like sounds recorded with a single microphone.
Evolvability need not imply learnability
We show that Boolean functions expressible as monotone disjunctive normal forms are PAC-evolvable under a uniform distribution on the Boolean cube if the hypothesis size is allowed to remain fixed. We further show that this result is insufficient to prove the PAC-learnability of monotone Boolean functions, thereby demonstrating a counter-example to a recent claim to the contrary. We further discuss scenarios wherein evolvability and learnability will coincide as well as scenarios under which they differ. The implications of the latter case on the prospects of learning in complex hypothesis spaces is briefly examined.
Induction of High-level Behaviors from Problem-solving Traces using Machine Learning Tools
This paper applies machine learning techniques to student modeling. It presents a method for discovering high-level student behaviors from a very large set of low-level traces corresponding to problem-solving actions in a learning environment. Basic actions are encoded into sets of domain-dependent attribute-value patterns called cases. Then a domain-independent hierarchical clustering identifies what we call general attitudes, yielding automatic diagnosis expressed in natural language, addressed in principle to teachers. The method can be applied to individual students or to entire groups, like a class. We exhibit examples of this system applied to thousands of students' actions in the domain of algebraic transformations.
Stability Analysis and Learning Bounds for Transductive Regression Algorithms
This paper uses the notion of algorithmic stability to derive novel generalization bounds for several families of transductive regression algorithms, both by using convexity and closed-form solutions. Our analysis helps compare the stability of these algorithms. It also shows that a number of widely used transductive regression algorithms are in fact unstable. Finally, it reports the results of experiments with local transductive regression demonstrating the benefit of our stability bounds for model selection, for one of the algorithms, in particular for determining the radius of the local neighborhood used by the algorithm.
Learning convex bodies is hard
We show that learning a convex body in $\RR^d$, given random samples from the body, requires $2^{\Omega(\sqrt{d/\eps})}$ samples. By learning a convex body we mean finding a set having at most $\eps$ relative symmetric difference with the input body. To prove the lower bound we construct a hard to learn family of convex bodies. Our construction of this family is very simple and based on error correcting codes.
Online prediction of ovarian cancer
In this paper we apply computer learning methods to diagnosing ovarian cancer using the level of the standard biomarker CA125 in conjunction with information provided by mass-spectrometry. We are working with a new data set collected over a period of 7 years. Using the level of CA125 and mass-spectrometry peaks, our algorithm gives probability predictions for the disease. To estimate classification accuracy we convert probability predictions into strict predictions. Our algorithm makes fewer errors than almost any linear combination of the CA125 level and one peak's intensity (taken on the log scale). To check the power of our algorithm we use it to test the hypothesis that CA125 and the peaks do not contain useful information for the prediction of the disease at a particular time before the diagnosis. Our algorithm produces $p$-values that are better than those produced by the algorithm that has been previously applied to this data set. Our conclusion is that the proposed algorithm is more reliable for prediction on new data.
Recovering the state sequence of hidden Markov models using mean-field approximations
Inferring the sequence of states from observations is one of the most fundamental problems in Hidden Markov Models. In statistical physics language, this problem is equivalent to computing the marginals of a one-dimensional model with a random external field. While this task can be accomplished through transfer matrix methods, it becomes quickly intractable when the underlying state space is large. This paper develops several low-complexity approximate algorithms to address this inference problem when the state space becomes large. The new algorithms are based on various mean-field approximations of the transfer matrix. Their performances are studied in detail on a simple realistic model for DNA pyrosequencing.
On Fodor on Darwin on Evolution
Jerry Fodor argues that Darwin was wrong about "natural selection" because (1) it is only a tautology rather than a scientific law that can support counterfactuals ("If X had happened, Y would have happened") and because (2) only minds can select. Hence Darwin's analogy with "artificial selection" by animal breeders was misleading and evolutionary explanation is nothing but post-hoc historical narrative. I argue that Darwin was right on all counts.
Boosting through Optimization of Margin Distributions
Boosting has attracted much research attention in the past decade. The success of boosting algorithms may be interpreted in terms of the margin theory. Recently it has been shown that generalization error of classifiers can be obtained by explicitly taking the margin distribution of the training data into account. Most of the current boosting algorithms in practice usually optimizes a convex loss function and do not make use of the margin distribution. In this work we design a new boosting algorithm, termed margin-distribution boosting (MDBoost), which directly maximizes the average margin and minimizes the margin variance simultaneously. This way the margin distribution is optimized. A totally-corrective optimization algorithm based on column generation is proposed to implement MDBoost. Experiments on UCI datasets show that MDBoost outperforms AdaBoost and LPBoost in most cases.
Inferring Dynamic Bayesian Networks using Frequent Episode Mining
Motivation: Several different threads of research have been proposed for modeling and mining temporal data. On the one hand, approaches such as dynamic Bayesian networks (DBNs) provide a formal probabilistic basis to model relationships between time-indexed random variables but these models are intractable to learn in the general case. On the other, algorithms such as frequent episode mining are scalable to large datasets but do not exhibit the rigorous probabilistic interpretations that are the mainstay of the graphical models literature. Results: We present a unification of these two seemingly diverse threads of research, by demonstrating how dynamic (discrete) Bayesian networks can be inferred from the results of frequent episode mining. This helps bridge the modeling emphasis of the former with the counting emphasis of the latter. First, we show how, under reasonable assumptions on data characteristics and on influences of random variables, the optimal DBN structure can be computed using a greedy, local, algorithm. Next, we connect the optimality of the DBN structure with the notion of fixed-delay episodes and their counts of distinct occurrences. Finally, to demonstrate the practical feasibility of our approach, we focus on a specific (but broadly applicable) class of networks, called excitatory networks, and show how the search for the optimal DBN structure can be conducted using just information from frequent episodes. Application on datasets gathered from mathematical models of spiking neurons as well as real neuroscience datasets are presented. Availability: Algorithmic implementations, simulator codebases, and datasets are available from our website at http://neural-code.cs.vt.edu/dbn
Why Global Performance is a Poor Metric for Verifying Convergence of Multi-agent Learning
Experimental verification has been the method of choice for verifying the stability of a multi-agent reinforcement learning (MARL) algorithm as the number of agents grows and theoretical analysis becomes prohibitively complex. For cooperative agents, where the ultimate goal is to optimize some global metric, the stability is usually verified by observing the evolution of the global performance metric over time. If the global metric improves and eventually stabilizes, it is considered a reasonable verification of the system's stability. The main contribution of this note is establishing the need for better experimental frameworks and measures to assess the stability of large-scale adaptive cooperative systems. We show an experimental case study where the stability of the global performance metric can be rather deceiving, hiding an underlying instability in the system that later leads to a significant drop in performance. We then propose an alternative metric that relies on agents' local policies and show, experimentally, that our proposed metric is more effective (than the traditional global performance metric) in exposing the instability of MARL algorithms.
A Methodology for Learning Players' Styles from Game Records
We describe a preliminary investigation into learning a Chess player's style from game records. The method is based on attempting to learn features of a player's individual evaluation function using the method of temporal differences, with the aid of a conventional Chess engine architecture. Some encouraging results were obtained in learning the styles of two recent Chess world champions, and we report on our attempt to use the learnt styles to discriminate between the players from game records by trying to detect who was playing white and who was playing black. We also discuss some limitations of our approach and propose possible directions for future research. The method we have presented may also be applicable to other strategic games, and may even be generalisable to other domains where sequences of agents' actions are recorded.
Exponential Family Graph Matching and Ranking
We present a method for learning max-weight matching predictors in bipartite graphs. The method consists of performing maximum a posteriori estimation in exponential families with sufficient statistics that encode permutations and data features. Although inference is in general hard, we show that for one very relevant application - web page ranking - exact inference is efficient. For general model instances, an appropriate sampler is readily available. Contrary to existing max-margin matching models, our approach is statistically consistent and, in addition, experiments with increasing sample sizes indicate superior improvement over such models. We apply the method to graph matching in computer vision as well as to a standard benchmark dataset for learning web page ranking, in which we obtain state-of-the-art results, in particular improving on max-margin variants. The drawback of this method with respect to max-margin alternatives is its runtime for large graphs, which is comparatively high.
Efficient Construction of Neighborhood Graphs by the Multiple Sorting Method
Neighborhood graphs are gaining popularity as a concise data representation in machine learning. However, naive graph construction by pairwise distance calculation takes $O(n^2)$ runtime for $n$ data points and this is prohibitively slow for millions of data points. For strings of equal length, the multiple sorting method (Uno, 2008) can construct an $\epsilon$-neighbor graph in $O(n+m)$ time, where $m$ is the number of $\epsilon$-neighbor pairs in the data. To introduce this remarkably efficient algorithm to continuous domains such as images, signals and texts, we employ a random projection method to convert vectors to strings. Theoretical results are presented to elucidate the trade-off between approximation quality and computation time. Empirical results show the efficiency of our method in comparison to fast nearest neighbor alternatives.
Optimistic Initialization and Greediness Lead to Polynomial Time Learning in Factored MDPs - Extended Version
In this paper we propose an algorithm for polynomial-time reinforcement learning in factored Markov decision processes (FMDPs). The factored optimistic initial model (FOIM) algorithm, maintains an empirical model of the FMDP in a conventional way, and always follows a greedy policy with respect to its model. The only trick of the algorithm is that the model is initialized optimistically. We prove that with suitable initialization (i) FOIM converges to the fixed point of approximate value iteration (AVI); (ii) the number of steps when the agent makes non-near-optimal decisions (with respect to the solution of AVI) is polynomial in all relevant quantities; (iii) the per-step costs of the algorithm are also polynomial. To our best knowledge, FOIM is the first algorithm with these properties. This extended version contains the rigorous proofs of the main theorem. A version of this paper appeared in ICML'09.
Introduction to Machine Learning: Class Notes 67577
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
Considerations upon the Machine Learning Technologies
Artificial intelligence offers superior techniques and methods by which problems from diverse domains may find an optimal solution. The Machine Learning technologies refer to the domain of artificial intelligence aiming to develop the techniques allowing the computers to "learn". Some systems based on Machine Learning technologies tend to eliminate the necessity of the human intelligence while the others adopt a man-machine collaborative approach.
Limits of Learning about a Categorical Latent Variable under Prior Near-Ignorance
In this paper, we consider the coherent theory of (epistemic) uncertainty of Walley, in which beliefs are represented through sets of probability distributions, and we focus on the problem of modeling prior ignorance about a categorical random variable. In this setting, it is a known result that a state of prior ignorance is not compatible with learning. To overcome this problem, another state of beliefs, called \emph{near-ignorance}, has been proposed. Near-ignorance resembles ignorance very closely, by satisfying some principles that can arguably be regarded as necessary in a state of ignorance, and allows learning to take place. What this paper does, is to provide new and substantial evidence that also near-ignorance cannot be really regarded as a way out of the problem of starting statistical inference in conditions of very weak beliefs. The key to this result is focusing on a setting characterized by a variable of interest that is \emph{latent}. We argue that such a setting is by far the most common case in practice, and we provide, for the case of categorical latent variables (and general \emph{manifest} variables) a condition that, if satisfied, prevents learning to take place under prior near-ignorance. This condition is shown to be easily satisfied even in the most common statistical problems. We regard these results as a strong form of evidence against the possibility to adopt a condition of prior near-ignorance in real statistical problems.
Temporal data mining for root-cause analysis of machine faults in automotive assembly lines
Engine assembly is a complex and heavily automated distributed-control process, with large amounts of faults data logged everyday. We describe an application of temporal data mining for analyzing fault logs in an engine assembly plant. Frequent episode discovery framework is a model-free method that can be used to deduce (temporal) correlations among events from the logs in an efficient manner. In addition to being theoretically elegant and computationally efficient, frequent episodes are also easy to interpret in the form actionable recommendations. Incorporation of domain-specific information is critical to successful application of the method for analyzing fault logs in the manufacturing domain. We show how domain-specific knowledge can be incorporated using heuristic rules that act as pre-filters and post-filters to frequent episode discovery. The system described here is currently being used in one of the engine assembly plants of General Motors and is planned for adaptation in other plants. To the best of our knowledge, this paper presents the first real, large-scale application of temporal data mining in the manufacturing domain. We believe that the ideas presented in this paper can help practitioners engineer tools for analysis in other similar or related application domains as well.
Continuous Strategy Replicator Dynamics for Multi--Agent Learning
The problem of multi-agent learning and adaptation has attracted a great deal of attention in recent years. It has been suggested that the dynamics of multi agent learning can be studied using replicator equations from population biology. Most existing studies so far have been limited to discrete strategy spaces with a small number of available actions. In many cases, however, the choices available to agents are better characterized by continuous spectra. This paper suggests a generalization of the replicator framework that allows to study the adaptive dynamics of Q-learning agents with continuous strategy spaces. Instead of probability vectors, agents strategies are now characterized by probability measures over continuous variables. As a result, the ordinary differential equations for the discrete case are replaced by a system of coupled integral--differential replicator equations that describe the mutual evolution of individual agent strategies. We derive a set of functional equations describing the steady state of the replicator dynamics, examine their solutions for several two-player games, and confirm our analytical results using simulations.
Dictionary Identification - Sparse Matrix-Factorisation via $\ell_1$-Minimisation
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via $\ell_1$-minimisation. The problem can also be seen as factorising a $\ddim \times \nsig$ matrix $Y=(y_1 >... y_\nsig), y_n\in \R^\ddim$ of training signals into a $\ddim \times \natoms$ dictionary matrix $\dico$ and a $\natoms \times \nsig$ coefficient matrix $\X=(x_1... x_\nsig), x_n \in \R^\natoms$, which is sparse. The exact question studied here is when a dictionary coefficient pair $(\dico,\X)$ can be recovered as local minimum of a (nonconvex) $\ell_1$-criterion with input $Y=\dico \X$. First, for general dictionaries and coefficient matrices, algebraic conditions ensuring local identifiability are derived, which are then specialised to the case when the dictionary is a basis. Finally, assuming a random Bernoulli-Gaussian sparse model on the coefficient matrix, it is shown that sufficiently incoherent bases are locally identifiable with high probability. The perhaps surprising result is that the typically sufficient number of training samples $\nsig$ grows up to a logarithmic factor only linearly with the signal dimension, i.e. $\nsig \approx C \natoms \log \natoms$, in contrast to previous approaches requiring combinatorially many samples.
Fast and Near-Optimal Matrix Completion via Randomized Basis Pursuit
Motivated by the philosophy and phenomenal success of compressed sensing, the problem of reconstructing a matrix from a sampling of its entries has attracted much attention recently. Such a problem can be viewed as an information-theoretic variant of the well-studied matrix completion problem, and the main objective is to design an efficient algorithm that can reconstruct a matrix by inspecting only a small number of its entries. Although this is an impossible task in general, Cand\`es and co-authors have recently shown that under a so-called incoherence assumption, a rank $r$ $n\times n$ matrix can be reconstructed using semidefinite programming (SDP) after one inspects $O(nr\log^6n)$ of its entries. In this paper we propose an alternative approach that is much more efficient and can reconstruct a larger class of matrices by inspecting a significantly smaller number of the entries. Specifically, we first introduce a class of so-called stable matrices and show that it includes all those that satisfy the incoherence assumption. Then, we propose a randomized basis pursuit (RBP) algorithm and show that it can reconstruct a stable rank $r$ $n\times n$ matrix after inspecting $O(nr\log n)$ of its entries. Our sampling bound is only a logarithmic factor away from the information-theoretic limit and is essentially optimal. Moreover, the runtime of the RBP algorithm is bounded by $O(nr^2\log n+n^2r)$, which compares very favorably with the $\Omega(n^4r^2\log^{12}n)$ runtime of the SDP-based algorithm. Perhaps more importantly, our algorithm will provide an exact reconstruction of the input matrix in polynomial time. By contrast, the SDP-based algorithm can only provide an approximate one in polynomial time.
Experience-driven formation of parts-based representations in a model of layered visual memory
Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.
Combining Supervised and Unsupervised Learning for GIS Classification
This paper presents a new hybrid learning algorithm for unsupervised classification tasks. We combined Fuzzy c-means learning algorithm and a supervised version of Minimerror to develop a hybrid incremental strategy allowing unsupervised classifications. We applied this new approach to a real-world database in order to know if the information contained in unlabeled features of a Geographic Information System (GIS), allows to well classify it. Finally, we compared our results to a classical supervised classification obtained by a multilayer perceptron.
Information-theoretic limits of selecting binary graphical models in high dimensions
The problem of graphical model selection is to correctly estimate the graph structure of a Markov random field given samples from the underlying distribution. We analyze the information-theoretic limitations of the problem of graph selection for binary Markov random fields under high-dimensional scaling, in which the graph size $p$ and the number of edges $k$, and/or the maximal node degree $d$ are allowed to increase to infinity as a function of the sample size $n$. For pairwise binary Markov random fields, we derive both necessary and sufficient conditions for correct graph selection over the class $\mathcal{G}_{p,k}$ of graphs on $p$ vertices with at most $k$ edges, and over the class $\mathcal{G}_{p,d}$ of graphs on $p$ vertices with maximum degree at most $d$. For the class $\mathcal{G}_{p, k}$, we establish the existence of constants $c$ and $c'$ such that if $\numobs < c k \log p$, any method has error probability at least 1/2 uniformly over the family, and we demonstrate a graph decoder that succeeds with high probability uniformly over the family for sample sizes $\numobs > c' k^2 \log p$. Similarly, for the class $\mathcal{G}_{p,d}$, we exhibit constants $c$ and $c'$ such that for $n < c d^2 \log p$, any method fails with probability at least 1/2, and we demonstrate a graph decoder that succeeds with high probability for $n > c' d^3 \log p$.
Average-Case Active Learning with Costs
We analyze the expected cost of a greedy active learning algorithm. Our analysis extends previous work to a more general setting in which different queries have different costs. Moreover, queries may have more than two possible responses and the distribution over hypotheses may be non uniform. Specific applications include active learning with label costs, active learning for multiclass and partial label queries, and batch mode active learning. We also discuss an approximate version of interest when there are very many queries.
Information Distance in Multiples
Information distance is a parameter-free similarity measure based on compression, used in pattern recognition, data mining, phylogeny, clustering, and classification. The notion of information distance is extended from pairs to multiples (finite lists). We study maximal overlap, metricity, universality, minimal overlap, additivity, and normalized information distance in multiples. We use the theoretical notion of Kolmogorov complexity which for practical purposes is approximated by the length of the compressed version of the file involved, using a real-world compression program. {\em Index Terms}-- Information distance, multiples, pattern recognition, data mining, similarity, Kolmogorov complexity
Learning Nonlinear Dynamic Models
We present a novel approach for learning nonlinear dynamic models, which leads to a new set of tools capable of solving problems that are otherwise difficult. We provide theory showing this new approach is consistent for models with long range structure, and apply the approach to motion capture and high-dimensional video data, yielding results superior to standard alternatives.
Finding Anomalous Periodic Time Series: An Application to Catalogs of Periodic Variable Stars
Catalogs of periodic variable stars contain large numbers of periodic light-curves (photometric time series data from the astrophysics domain). Separating anomalous objects from well-known classes is an important step towards the discovery of new classes of astronomical objects. Most anomaly detection methods for time series data assume either a single continuous time series or a set of time series whose periods are aligned. Light-curve data precludes the use of these methods as the periods of any given pair of light-curves may be out of sync. One may use an existing anomaly detection method if, prior to similarity calculation, one performs the costly act of aligning two light-curves, an operation that scales poorly to massive data sets. This paper presents PCAD, an unsupervised anomaly detection method for large sets of unsynchronized periodic time-series data, that outputs a ranked list of both global and local anomalies. It calculates its anomaly score for each light-curve in relation to a set of centroids produced by a modified k-means clustering algorithm. Our method is able to scale to large data sets through the use of sampling. We validate our method on both light-curve data and other time series data sets. We demonstrate its effectiveness at finding known anomalies, and discuss the effect of sample size and number of centroids on our results. We compare our method to naive solutions and existing time series anomaly detection methods for unphased data, and show that PCAD's reported anomalies are comparable to or better than all other methods. Finally, astrophysicists on our team have verified that PCAD finds true anomalies that might be indicative of novel astrophysical phenomena.
Quantum Annealing for Clustering
This paper studies quantum annealing (QA) for clustering, which can be seen as an extension of simulated annealing (SA). We derive a QA algorithm for clustering and propose an annealing schedule, which is crucial in practice. Experiments show the proposed QA algorithm finds better clustering assignments than SA. Furthermore, QA is as easy as SA to implement.
Quantum Annealing for Variational Bayes Inference
This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy as SAVB to implement. Experiments revealed QAVB finds a better local optimum than SAVB in terms of the variational free energy in latent Dirichlet allocation (LDA).
Coevolutionary Genetic Algorithms for Establishing Nash Equilibrium in Symmetric Cournot Games
We use co-evolutionary genetic algorithms to model the players' learning process in several Cournot models, and evaluate them in terms of their convergence to the Nash Equilibrium. The "social-learning" versions of the two co-evolutionary algorithms we introduce, establish Nash Equilibrium in those models, in contrast to the "individual learning" versions which, as we see here, do not imply the convergence of the players' strategies to the Nash outcome. When players use "canonical co-evolutionary genetic algorithms" as learning algorithms, the process of the game is an ergodic Markov Chain, and therefore we analyze simulation results using both the relevant methodology and more general statistical tests, to find that in the "social" case, states leading to NE play are highly frequent at the stationary distribution of the chain, in contrast to the "individual learning" case, when NE is not reached at all in our simulations; to find that the expected Hamming distance of the states at the limiting distribution from the "NE state" is significantly smaller in the "social" than in the "individual learning case"; to estimate the expected time that the "social" algorithms need to get to the "NE state" and verify their robustness and finally to show that a large fraction of the games played are indeed at the Nash Equilibrium.
Transfer Learning Using Feature Selection
We present three related ways of using Transfer Learning to improve feature selection. The three methods address different problems, and hence share different kinds of information between tasks or feature classes, but all three are based on the information theoretic Minimum Description Length (MDL) principle and share the same underlying Bayesian interpretation. The first method, MIC, applies when predictive models are to be built simultaneously for multiple tasks (``simultaneous transfer'') that share the same set of features. MIC allows each feature to be added to none, some, or all of the task models and is most beneficial for selecting a small set of predictive features from a large pool of features, as is common in genomic and biological datasets. Our second method, TPC (Three Part Coding), uses a similar methodology for the case when the features can be divided into feature classes. Our third method, Transfer-TPC, addresses the ``sequential transfer'' problem in which the task to which we want to transfer knowledge may not be known in advance and may have different amounts of data than the other tasks. Transfer-TPC is most beneficial when we want to transfer knowledge between tasks which have unequal amounts of labeled data, for example the data for disambiguating the senses of different verbs. We demonstrate the effectiveness of these approaches with experimental results on real world data pertaining to genomics and to Word Sense Disambiguation (WSD).
A Minimum Description Length Approach to Multitask Feature Selection
Many regression problems involve not one but several response variables (y's). Often the responses are suspected to share a common underlying structure, in which case it may be advantageous to share information across them; this is known as multitask learning. As a special case, we can use multiple responses to better identify shared predictive features -- a project we might call multitask feature selection. This thesis is organized as follows. Section 1 introduces feature selection for regression, focusing on ell_0 regularization methods and their interpretation within a Minimum Description Length (MDL) framework. Section 2 proposes a novel extension of MDL feature selection to the multitask setting. The approach, called the "Multiple Inclusion Criterion" (MIC), is designed to borrow information across regression tasks by more easily selecting features that are associated with multiple responses. We show in experiments on synthetic and real biological data sets that MIC can reduce prediction error in settings where features are at least partially shared across responses. Section 3 surveys hypothesis testing by regression with a single response, focusing on the parallel between the standard Bonferroni correction and an MDL approach. Mirroring the ideas in Section 2, Section 4 proposes a novel MIC approach to hypothesis testing with multiple responses and shows that on synthetic data with significant sharing of features across responses, MIC sometimes outperforms standard FDR-controlling methods in terms of finding true positives for a given level of false positives. Section 5 concludes.
Equations of States in Statistical Learning for a Nonparametrizable and Regular Case
Many learning machines that have hierarchical structure or hidden variables are now being used in information science, artificial intelligence, and bioinformatics. However, several learning machines used in such fields are not regular but singular statistical models, hence their generalization performance is still left unknown. To overcome these problems, in the previous papers, we proved new equations in statistical learning, by which we can estimate the Bayes generalization loss from the Bayes training loss and the functional variance, on the condition that the true distribution is a singularity contained in a learning machine. In this paper, we prove that the same equations hold even if a true distribution is not contained in a parametric model. Also we prove that, the proposed equations in a regular case are asymptotically equivalent to the Takeuchi information criterion. Therefore, the proposed equations are always applicable without any condition on the unknown true distribution.
An optimal linear separator for the Sonar Signals Classification task
The problem of classifying sonar signals from rocks and mines first studied by Gorman and Sejnowski has become a benchmark against which many learning algorithms have been tested. We show that both the training set and the test set of this benchmark are linearly separable, although with different hyperplanes. Moreover, the complete set of learning and test patterns together, is also linearly separable. We give the weights that separate these sets, which may be used to compare results found by other algorithms.
Using Genetic Algorithms for Texts Classification Problems
The avalanche quantity of the information developed by mankind has led to concept of automation of knowledge extraction - Data Mining ([1]). This direction is connected with a wide spectrum of problems - from recognition of the fuzzy set to creation of search machines. Important component of Data Mining is processing of the text information. Such problems lean on concept of classification and clustering ([2]). Classification consists in definition of an accessory of some element (text) to one of in advance created classes. Clustering means splitting a set of elements (texts) on clusters which quantity are defined by localization of elements of the given set in vicinities of these some natural centers of these clusters. Realization of a problem of classification initially should lean on the given postulates, basic of which - the aprioristic information on primary set of texts and a measure of affinity of elements and classes.
Fast Weak Learner Based on Genetic Algorithm
An approach to the acceleration of parametric weak classifier boosting is proposed. Weak classifier is called parametric if it has fixed number of parameters and, so, can be represented as a point into multidimensional space. Genetic algorithm is used instead of exhaustive search to learn parameters of such classifier. Proposed approach also takes cases when effective algorithm for learning some of the classifier parameters exists into account. Experiments confirm that such an approach can dramatically decrease classifier training time while keeping both training and test errors small.
Feature Reinforcement Learning: Part I: Unstructured MDPs
General-purpose, intelligent, learning agents cycle through sequences of observations, actions, and rewards that are complex, uncertain, unknown, and non-Markovian. On the other hand, reinforcement learning is well-developed for small finite state Markov decision processes (MDPs). Up to now, extracting the right state representations out of bare observations, that is, reducing the general agent setup to the MDP framework, is an art that involves significant effort by designers. The primary goal of this work is to automate the reduction process and thereby significantly expand the scope of many existing reinforcement learning algorithms and the agents that employ them. Before we can think of mechanizing this search for suitable MDPs, we need a formal objective criterion. The main contribution of this article is to develop such a criterion. I also integrate the various parts into one learning algorithm. Extensions to more realistic dynamic Bayesian networks are developed in Part II. The role of POMDPs is also considered there.
Large-Margin kNN Classification Using a Deep Encoder Network
KNN is one of the most popular classification methods, but it often fails to work well with inappropriate choice of distance metric or due to the presence of numerous class-irrelevant features. Linear feature transformation methods have been widely applied to extract class-relevant information to improve kNN classification, which is very limited in many applications. Kernels have been used to learn powerful non-linear feature transformations, but these methods fail to scale to large datasets. In this paper, we present a scalable non-linear feature mapping method based on a deep neural network pretrained with restricted boltzmann machines for improving kNN classification in a large-margin framework, which we call DNet-kNN. DNet-kNN can be used for both classification and for supervised dimensionality reduction. The experimental results on two benchmark handwritten digit datasets show that DNet-kNN has much better performance than large-margin kNN using a linear mapping and kNN based on a deep autoencoder pretrained with retricted boltzmann machines.
Matrix Completion from Noisy Entries
Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the `Netflix problem') to structure-from-motion and positioning. We study a low complexity algorithm introduced by Keshavan et al.(2009), based on a combination of spectral techniques and manifold optimization, that we call here OptSpace. We prove performance guarantees that are order-optimal in a number of circumstances.
Bayesian History Reconstruction of Complex Human Gene Clusters on a Phylogeny
Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. Improved understanding of these clusters is of utmost importance, since they have been shown to be the source of evolutionary innovation, and have been linked to multiple diseases, including HIV and a variety of cancers. Previously, Zhang et al. (2008) developed an algorithm for reconstructing parsimonious evolutionary histories of such gene clusters, using only human genomic sequence data. In this paper, we propose a probabilistic model for the evolution of gene clusters on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate that our method will be useful in analyzing these valuable new data sets.
Entropy Message Passing
The paper proposes a new message passing algorithm for cycle-free factor graphs. The proposed "entropy message passing" (EMP) algorithm may be viewed as sum-product message passing over the entropy semiring, which has previously appeared in automata theory. The primary use of EMP is to compute the entropy of a model. However, EMP can also be used to compute expressions that appear in expectation maximization and in gradient descent algorithms.
Bayesian Forecasting of WWW Traffic on the Time Varying Poisson Model
Traffic forecasting from past observed traffic data with small calculation complexity is one of important problems for planning of servers and networks. Focusing on World Wide Web (WWW) traffic as fundamental investigation, this paper would deal with Bayesian forecasting of network traffic on the time varying Poisson model from a viewpoint from statistical decision theory. Under this model, we would show that the estimated forecasting value is obtained by simple arithmetic calculation and expresses real WWW traffic well from both theoretical and empirical points of view.
Bayesian two-sample tests
In this paper, we present two classes of Bayesian approaches to the two-sample problem. Our first class of methods extends the Bayesian t-test to include all parametric models in the exponential family and their conjugate priors. Our second class of methods uses Dirichlet process mixtures (DPM) of such conjugate-exponential distributions as flexible nonparametric priors over the unknown distributions.
Rough Set Model for Discovering Hybrid Association Rules
In this paper, the mining of hybrid association rules with rough set approach is investigated as the algorithm RSHAR.The RSHAR algorithm is constituted of two steps mainly. At first, to join the participant tables into a general table to generate the rules which is expressing the relationship between two or more domains that belong to several different tables in a database. Then we apply the mapping code on selected dimension, which can be added directly into the information system as one certain attribute. To find the association rules, frequent itemsets are generated in second step where candidate itemsets are generated through equivalence classes and also transforming the mapping code in to real dimensions. The searching method for candidate itemset is similar to apriori algorithm. The analysis of the performance of algorithm has been carried out.