jsli96/ResNet-18-1
Image Classification
•
Updated
•
9
•
1
image
imagewidth (px) 64
64
| label
class label 200
classes |
---|---|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
|
0n01443537
|
Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.
The class labels in the dataset are in English.
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190,
'label': 15
}
classes.py
for the map of numbers & labels.Train | Valid | |
---|---|---|
# of samples | 100000 | 10000 |
def example_usage():
tiny_imagenet = load_dataset('Maysee/tiny-imagenet', split='train')
print(tiny_imagenet[0])
if __name__ == '__main__':
example_usage()