11 / README.md
datdo2717's picture
End of training
54b4867 verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Ori vi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 16.551919937539925

Whisper Small Ori vi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4981
  • Wer: 16.5519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5019 0.2222 100 0.4649 17.3540
0.4235 0.4444 200 0.4257 16.7932
0.4364 0.6667 300 0.4184 16.5164
0.4106 0.8889 400 0.4043 15.6434
0.2338 1.1111 500 0.4064 15.7286
0.2286 1.3333 600 0.4066 15.9699
0.2185 1.5556 700 0.4058 15.7428
0.212 1.7778 800 0.3999 15.6079
0.2308 2.0 900 0.3991 17.2617
0.0983 2.2222 1000 0.4233 15.9415
0.1183 2.4444 1100 0.4286 16.0409
0.1003 2.6667 1200 0.4304 16.0764
0.1005 2.8889 1300 0.4332 15.7641
0.048 3.1111 1400 0.4636 16.3248
0.0475 3.3333 1500 0.4684 16.2041
0.0516 3.5556 1600 0.4679 16.2254
0.058 3.7778 1700 0.4691 16.2538
0.0457 4.0 1800 0.4693 16.2041
0.028 4.2222 1900 0.4940 16.4880
0.0235 4.4444 2000 0.4981 16.5519

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0