Edit model card

gerskill-bert

This model is a fine-tuned version of bert-base-german-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1187
  • Hard: {'precision': 0.7063339731285988, 'recall': 0.8070175438596491, 'f1': 0.7533265097236438, 'number': 456}
  • Soft: {'precision': 0.7111111111111111, 'recall': 0.7804878048780488, 'f1': 0.7441860465116279, 'number': 82}
  • Overall Precision: 0.7070
  • Overall Recall: 0.8030
  • Overall F1: 0.7520
  • Overall Accuracy: 0.9644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Hard Soft Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 178 0.1433 {'precision': 0.5503355704697986, 'recall': 0.7192982456140351, 'f1': 0.6235741444866921, 'number': 456} {'precision': 0.5137614678899083, 'recall': 0.6829268292682927, 'f1': 0.5863874345549738, 'number': 82} 0.5447 0.7138 0.6179 0.9448
No log 2.0 356 0.1181 {'precision': 0.7031578947368421, 'recall': 0.7324561403508771, 'f1': 0.7175080558539205, 'number': 456} {'precision': 0.6585365853658537, 'recall': 0.6585365853658537, 'f1': 0.6585365853658537, 'number': 82} 0.6966 0.7212 0.7087 0.9544
0.1645 3.0 534 0.1079 {'precision': 0.6605839416058394, 'recall': 0.793859649122807, 'f1': 0.7211155378486056, 'number': 456} {'precision': 0.6966292134831461, 'recall': 0.7560975609756098, 'f1': 0.7251461988304092, 'number': 82} 0.6656 0.7881 0.7217 0.9603
0.1645 4.0 712 0.1146 {'precision': 0.7030651340996169, 'recall': 0.8048245614035088, 'f1': 0.7505112474437627, 'number': 456} {'precision': 0.6739130434782609, 'recall': 0.7560975609756098, 'f1': 0.7126436781609194, 'number': 82} 0.6987 0.7974 0.7448 0.9621
0.1645 5.0 890 0.1187 {'precision': 0.7063339731285988, 'recall': 0.8070175438596491, 'f1': 0.7533265097236438, 'number': 456} {'precision': 0.7111111111111111, 'recall': 0.7804878048780488, 'f1': 0.7441860465116279, 'number': 82} 0.7070 0.8030 0.7520 0.9644

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dathi103/gerskill-bert

Finetuned
(113)
this model