metadata
license: mit
base_model: dathi103/gbert-job-extended
tags:
- generated_from_trainer
model-index:
- name: gerskill-gbert-job-extended
results: []
gerskill-gbert-job-extended
This model is a fine-tuned version of dathi103/gbert-job-extended on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0806
- Hard: {'precision': 0.7995867768595041, 'recall': 0.8524229074889867, 'f1': 0.8251599147121534, 'number': 454}
- Soft: {'precision': 0.7804878048780488, 'recall': 0.7804878048780488, 'f1': 0.7804878048780488, 'number': 82}
- Overall Precision: 0.7968
- Overall Recall: 0.8414
- Overall F1: 0.8185
- Overall Accuracy: 0.9750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 178 | 0.1035 | {'precision': 0.6715867158671587, 'recall': 0.801762114537445, 'f1': 0.7309236947791165, 'number': 454} | {'precision': 0.6105263157894737, 'recall': 0.7073170731707317, 'f1': 0.6553672316384181, 'number': 82} | 0.6625 | 0.7873 | 0.7195 | 0.9592 |
No log | 2.0 | 356 | 0.0762 | {'precision': 0.7698744769874477, 'recall': 0.8105726872246696, 'f1': 0.7896995708154506, 'number': 454} | {'precision': 0.7532467532467533, 'recall': 0.7073170731707317, 'f1': 0.7295597484276729, 'number': 82} | 0.7676 | 0.7948 | 0.7809 | 0.9705 |
0.1183 | 3.0 | 534 | 0.0713 | {'precision': 0.7958762886597938, 'recall': 0.8502202643171806, 'f1': 0.8221512247071352, 'number': 454} | {'precision': 0.7974683544303798, 'recall': 0.7682926829268293, 'f1': 0.782608695652174, 'number': 82} | 0.7961 | 0.8377 | 0.8164 | 0.9735 |
0.1183 | 4.0 | 712 | 0.0785 | {'precision': 0.7962962962962963, 'recall': 0.8524229074889867, 'f1': 0.823404255319149, 'number': 454} | {'precision': 0.7901234567901234, 'recall': 0.7804878048780488, 'f1': 0.7852760736196319, 'number': 82} | 0.7954 | 0.8414 | 0.8178 | 0.9739 |
0.1183 | 5.0 | 890 | 0.0806 | {'precision': 0.7995867768595041, 'recall': 0.8524229074889867, 'f1': 0.8251599147121534, 'number': 454} | {'precision': 0.7804878048780488, 'recall': 0.7804878048780488, 'f1': 0.7804878048780488, 'number': 82} | 0.7968 | 0.8414 | 0.8185 | 0.9750 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2