dathi103's picture
End of training
2a6de26 verified
metadata
license: mit
base_model: dathi103/gbert-job-extended
tags:
  - generated_from_trainer
model-index:
  - name: gerskill-gbert-job-extended
    results: []

gerskill-gbert-job-extended

This model is a fine-tuned version of dathi103/gbert-job-extended on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0806
  • Hard: {'precision': 0.7995867768595041, 'recall': 0.8524229074889867, 'f1': 0.8251599147121534, 'number': 454}
  • Soft: {'precision': 0.7804878048780488, 'recall': 0.7804878048780488, 'f1': 0.7804878048780488, 'number': 82}
  • Overall Precision: 0.7968
  • Overall Recall: 0.8414
  • Overall F1: 0.8185
  • Overall Accuracy: 0.9750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Hard Soft Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 178 0.1035 {'precision': 0.6715867158671587, 'recall': 0.801762114537445, 'f1': 0.7309236947791165, 'number': 454} {'precision': 0.6105263157894737, 'recall': 0.7073170731707317, 'f1': 0.6553672316384181, 'number': 82} 0.6625 0.7873 0.7195 0.9592
No log 2.0 356 0.0762 {'precision': 0.7698744769874477, 'recall': 0.8105726872246696, 'f1': 0.7896995708154506, 'number': 454} {'precision': 0.7532467532467533, 'recall': 0.7073170731707317, 'f1': 0.7295597484276729, 'number': 82} 0.7676 0.7948 0.7809 0.9705
0.1183 3.0 534 0.0713 {'precision': 0.7958762886597938, 'recall': 0.8502202643171806, 'f1': 0.8221512247071352, 'number': 454} {'precision': 0.7974683544303798, 'recall': 0.7682926829268293, 'f1': 0.782608695652174, 'number': 82} 0.7961 0.8377 0.8164 0.9735
0.1183 4.0 712 0.0785 {'precision': 0.7962962962962963, 'recall': 0.8524229074889867, 'f1': 0.823404255319149, 'number': 454} {'precision': 0.7901234567901234, 'recall': 0.7804878048780488, 'f1': 0.7852760736196319, 'number': 82} 0.7954 0.8414 0.8178 0.9739
0.1183 5.0 890 0.0806 {'precision': 0.7995867768595041, 'recall': 0.8524229074889867, 'f1': 0.8251599147121534, 'number': 454} {'precision': 0.7804878048780488, 'recall': 0.7804878048780488, 'f1': 0.7804878048780488, 'number': 82} 0.7968 0.8414 0.8185 0.9750

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2