metadata
license: apache-2.0
tags:
- summarization
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: distilbart-cnn-12-6-ftn-multi_news
results:
- task:
name: Sequence-to-sequence Language Modeling
type: summarization
dataset:
name: multi_news
type: multi_news
args: default
metrics:
- name: Rouge1
type: rouge
value: 39.9832
distilbart-cnn-12-6-ftn-multi_news
This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on the multi_news dataset. It achieves the following results on the evaluation set:
- Loss: 4.0202
- Rouge1: 39.9832
- Rouge2: 13.0653
- Rougel: 22.1761
- Rougelsum: 34.5466
- Gen Len: 132.41
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
4.1427 | 0.89 | 400 | 4.0202 | 39.9832 | 13.0653 | 22.1761 | 34.5466 | 132.41 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1