datien228's picture
Update README.md
45cb339
|
raw
history blame
1.93 kB
metadata
license: apache-2.0
tags:
  - summarization
datasets:
  - multi_news
metrics:
  - rouge
model-index:
  - name: distilbart-cnn-12-6-ftn-multi_news
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: summarization
        dataset:
          name: multi_news
          type: multi_news
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 39.9832

distilbart-cnn-12-6-ftn-multi_news

This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on the multi_news dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0202
  • Rouge1: 39.9832
  • Rouge2: 13.0653
  • Rougel: 22.1761
  • Rougelsum: 34.5466
  • Gen Len: 132.41

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
4.1427 0.89 400 4.0202 39.9832 13.0653 22.1761 34.5466 132.41

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1