|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- biglam/loc_beyond_words |
|
base_model: microsoft/conditional-detr-resnet-50 |
|
model-index: |
|
- name: conditional-detr-resnet-50_fine_tuned_beyond_words |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# conditional-detr-resnet-50_fine_tuned_beyond_words |
|
|
|
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the loc_beyond_words dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5892 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 6.674 | 0.28 | 100 | 1.7571 | |
|
| 1.4721 | 0.56 | 200 | 1.2737 | |
|
| 1.2557 | 0.84 | 300 | 1.1037 | |
|
| 1.0781 | 1.12 | 400 | 1.0184 | |
|
| 1.0353 | 1.4 | 500 | 0.9988 | |
|
| 1.0324 | 1.69 | 600 | 0.9951 | |
|
| 0.9131 | 1.97 | 700 | 0.9224 | |
|
| 0.8724 | 2.25 | 800 | 0.9692 | |
|
| 0.8129 | 2.53 | 900 | 0.8670 | |
|
| 0.9 | 2.81 | 1000 | 0.8326 | |
|
| 0.7993 | 3.09 | 1100 | 0.7875 | |
|
| 0.7907 | 3.37 | 1200 | 0.7517 | |
|
| 0.8424 | 3.65 | 1300 | 0.9088 | |
|
| 0.7808 | 3.93 | 1400 | 0.8506 | |
|
| 0.7469 | 4.21 | 1500 | 0.7928 | |
|
| 0.7582 | 4.49 | 1600 | 0.7228 | |
|
| 0.7546 | 4.78 | 1700 | 0.7588 | |
|
| 0.7842 | 5.06 | 1800 | 0.7726 | |
|
| 0.775 | 5.34 | 1900 | 0.7676 | |
|
| 0.7263 | 5.62 | 2000 | 0.7164 | |
|
| 0.7209 | 5.9 | 2100 | 0.7061 | |
|
| 0.7259 | 6.18 | 2200 | 0.7579 | |
|
| 0.7701 | 6.46 | 2300 | 0.8184 | |
|
| 0.7391 | 6.74 | 2400 | 0.6684 | |
|
| 0.6834 | 7.02 | 2500 | 0.7042 | |
|
| 0.7098 | 7.3 | 2600 | 0.7166 | |
|
| 0.7498 | 7.58 | 2700 | 0.6752 | |
|
| 0.7056 | 7.87 | 2800 | 0.7064 | |
|
| 0.7004 | 8.15 | 2900 | 0.7090 | |
|
| 0.6964 | 8.43 | 3000 | 0.7318 | |
|
| 0.682 | 8.71 | 3100 | 0.7216 | |
|
| 0.7309 | 8.99 | 3200 | 0.6545 | |
|
| 0.6576 | 9.27 | 3300 | 0.6478 | |
|
| 0.7014 | 9.55 | 3400 | 0.6814 | |
|
| 0.673 | 9.83 | 3500 | 0.6783 | |
|
| 0.6455 | 10.11 | 3600 | 0.7248 | |
|
| 0.7041 | 10.39 | 3700 | 0.7729 | |
|
| 0.6664 | 10.67 | 3800 | 0.6746 | |
|
| 0.6161 | 10.96 | 3900 | 0.6414 | |
|
| 0.6975 | 11.24 | 4000 | 0.6637 | |
|
| 0.6751 | 11.52 | 4100 | 0.6570 | |
|
| 0.6092 | 11.8 | 4200 | 0.6691 | |
|
| 0.6593 | 12.08 | 4300 | 0.6276 | |
|
| 0.6449 | 12.36 | 4400 | 0.6388 | |
|
| 0.6136 | 12.64 | 4500 | 0.6711 | |
|
| 0.6521 | 12.92 | 4600 | 0.6768 | |
|
| 0.6162 | 13.2 | 4700 | 0.6427 | |
|
| 0.7083 | 13.48 | 4800 | 0.6492 | |
|
| 0.6407 | 13.76 | 4900 | 0.6213 | |
|
| 0.6371 | 14.04 | 5000 | 0.6674 | |
|
| 0.626 | 14.33 | 5100 | 0.6185 | |
|
| 0.6442 | 14.61 | 5200 | 0.7180 | |
|
| 0.5981 | 14.89 | 5300 | 0.6441 | |
|
| 0.629 | 15.17 | 5400 | 0.6262 | |
|
| 0.625 | 15.45 | 5500 | 0.6397 | |
|
| 0.6123 | 15.73 | 5600 | 0.6440 | |
|
| 0.6084 | 16.01 | 5700 | 0.6493 | |
|
| 0.6021 | 16.29 | 5800 | 0.6263 | |
|
| 0.6502 | 16.57 | 5900 | 0.6254 | |
|
| 0.6339 | 16.85 | 6000 | 0.7043 | |
|
| 0.5925 | 17.13 | 6100 | 0.8014 | |
|
| 0.6453 | 17.42 | 6200 | 0.6385 | |
|
| 0.6143 | 17.7 | 6300 | 0.6033 | |
|
| 0.6057 | 17.98 | 6400 | 0.6881 | |
|
| 0.6386 | 18.26 | 6500 | 0.6366 | |
|
| 0.5839 | 18.54 | 6600 | 0.6563 | |
|
| 0.6013 | 18.82 | 6700 | 0.5982 | |
|
| 0.5999 | 19.1 | 6800 | 0.6064 | |
|
| 0.6023 | 19.38 | 6900 | 0.5795 | |
|
| 0.5593 | 19.66 | 7000 | 0.6538 | |
|
| 0.6375 | 19.94 | 7100 | 0.6991 | |
|
| 0.6073 | 20.22 | 7200 | 0.7117 | |
|
| 0.596 | 20.51 | 7300 | 0.6034 | |
|
| 0.5987 | 20.79 | 7400 | 0.6489 | |
|
| 0.5922 | 21.07 | 7500 | 0.6216 | |
|
| 0.589 | 21.35 | 7600 | 0.6257 | |
|
| 0.6047 | 21.63 | 7700 | 0.6415 | |
|
| 0.5775 | 21.91 | 7800 | 0.6159 | |
|
| 0.588 | 22.19 | 7900 | 0.6095 | |
|
| 0.5844 | 22.47 | 8000 | 0.6373 | |
|
| 0.5964 | 22.75 | 8100 | 0.6022 | |
|
| 0.5987 | 23.03 | 8200 | 0.6050 | |
|
| 0.5605 | 23.31 | 8300 | 0.6083 | |
|
| 0.5835 | 23.6 | 8400 | 0.7823 | |
|
| 0.5816 | 23.88 | 8500 | 0.6417 | |
|
| 0.5757 | 24.16 | 8600 | 0.6324 | |
|
| 0.5997 | 24.44 | 8700 | 0.6046 | |
|
| 0.5674 | 24.72 | 8800 | 0.6558 | |
|
| 0.5703 | 25.0 | 8900 | 0.5819 | |
|
| 0.5766 | 25.28 | 9000 | 0.6116 | |
|
| 0.5548 | 25.56 | 9100 | 0.5877 | |
|
| 0.564 | 25.84 | 9200 | 0.5672 | |
|
| 0.548 | 26.12 | 9300 | 0.6073 | |
|
| 0.5436 | 26.4 | 9400 | 0.5739 | |
|
| 0.6006 | 26.69 | 9500 | 0.6101 | |
|
| 0.5519 | 26.97 | 9600 | 0.5869 | |
|
| 0.5432 | 27.25 | 9700 | 0.5721 | |
|
| 0.5597 | 27.53 | 9800 | 0.5807 | |
|
| 0.5254 | 27.81 | 9900 | 0.5849 | |
|
| 0.5366 | 28.09 | 10000 | 0.5831 | |
|
| 0.5654 | 28.37 | 10100 | 0.5993 | |
|
| 0.57 | 28.65 | 10200 | 0.5892 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |