dddttdat/awesome_qa_model
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.4863
- Validation Loss: 1.7402
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
3.3124 | 1.9745 | 0 |
1.7244 | 1.7402 | 1 |
1.4863 | 1.7402 | 2 |
Framework versions
- Transformers 4.42.4
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for dddttdat/awesome_qa_model
Base model
distilbert/distilbert-base-uncased