|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- ko |
|
--- |
|
|
|
# ddobokki/klue-roberta-small-nli-sts |
|
|
|
한국어 Sentence Transformer 모델입니다. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
[sentence-transformers](https://www.SBERT.net) 라이브러리를 이용해 사용할 수 있습니다. |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
사용법 |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["흐르는 강물을 거꾸로 거슬러 오르는", "세월이 가면 가슴이 터질 듯한"] |
|
|
|
model = SentenceTransformer('ddobokki/klue-roberta-small-nli-sts') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
transformers 라이브러리만 사용할 경우 |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["흐르는 강물을 거꾸로 거슬러 오르는", "세월이 가면 가슴이 터질 듯한"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('ddobokki/klue-roberta-small-nli-sts') |
|
model = AutoModel.from_pretrained('ddobokki/klue-roberta-small-nli-sts') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Performance |
|
- Semantic Textual Similarity test set results <br> |
|
|
|
| Model | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman | |
|
|------------------------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |
|
| KoSRoBERTa<sup>small</sup> | 84.27 | 84.17 | 83.33 | 83.65 | 83.34 | 83.65 | 82.10 | 81.38 | |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |