|
# DONUT Cord-v2 |
|
|
|
<a href="https://x.com/nearcyan/status/1706914605262684394"> |
|
<div style="text-align: center;"> |
|
<picture> |
|
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/de-Rodrigo/donut-cord-v2/resolve/main/assets/dragon_huggingface.png"> |
|
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/de-Rodrigo/donut-cord-v2/resolve/main/assets/dragon_huggingface.png"> |
|
<img alt="Image" src="https://huggingface.co/de-Rodrigo/donut-cord-v2/resolve/main/assets/dragon_huggingface.png" style="width: 200px;"> |
|
</picture> |
|
</div> |
|
</a> |
|
|
|
|
|
## Model Architecture |
|
**This model is based on the Donut architecture and fine-tuned on the Cord-v2 dataset for form understanding tasks.** |
|
|
|
- Backbone: [Donut](https://huggingface.co/models) |
|
- Training Data: [Cord-v2](https://huggingface.co/datasets/naver-clova-ix/cord-v2) |
|
|
|
## Example Usage |
|
|
|
```python |
|
from transformers import AutoProcessor, AutoModel |
|
|
|
processor = AutoProcessor.from_pretrained("de-Rodrigo/donut-merit") |
|
model = AutoModel.from_pretrained("de-Rodrigo/donut-merit") |
|
``` |
|
**WIP** 🛠️ |