metadata
license: mit
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: bart_large_summarise_v2
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
config: default
split: train
args: default
metrics:
- name: Rouge1
type: rouge
value: 39.305
bart_large_summarise_v2
This model is a fine-tuned version of facebook/bart-large-cnn on the multi_news dataset. It achieves the following results on the evaluation set:
- Loss: 4.2988
- Rouge1: 39.305
- Rouge2: 13.4171
- Rougel: 20.4214
- Rougelsum: 34.971
- Gen Len: 142.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- label_smoothing_factor: 0.1
Training results
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.2.dev0
- Tokenizers 0.13.1