deepdml's picture
Update metadata with huggingface_hub
780a741 verified
---
base_model: openai/whisper-small
datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
- facebook/multilingual_librispeech
language:
- pt
license: apache-2.0
metrics:
- wer
tags:
- whisper-event
- generated_from_trainer
model-index:
- name: Whisper Small Mixed-Portuguese
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_17_0 pt
type: mozilla-foundation/common_voice_17_0
config: pt
split: test
args: pt
metrics:
- type: wer
value: 10.634930784232232
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pt_br
split: test
metrics:
- type: wer
value: 8.15
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/multilingual_librispeech
type: facebook/multilingual_librispeech
config: portuguese
split: test
metrics:
- type: wer
value: 9.69
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Mixed-Portuguese
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_17_0 pt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2000
- Wer: 10.6349
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1575 | 0.2 | 1000 | 0.2125 | 12.1855 |
| 0.1986 | 0.4 | 2000 | 0.2062 | 11.5701 |
| 0.0942 | 1.131 | 3000 | 0.1979 | 11.0154 |
| 0.0577 | 1.331 | 4000 | 0.2000 | 10.6349 |
| 0.0516 | 2.062 | 5000 | 0.2007 | 10.6701 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1