deepdml's picture
Update metadata with huggingface_hub
408eba8 verified
|
raw
history blame
2.6 kB
---
language:
- pt
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small pt
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: pt
split: test
args: pt
metrics:
- type: wer
value: 11.034559928386457
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pt_br
split: test
metrics:
- type: wer
value: 10.68
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/multilingual_librispeech
type: facebook/multilingual_librispeech
config: portuguese
split: test
metrics:
- type: wer
value: 13.48
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small pt
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3836
- Wer: 11.0346
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.1139 | 2.0325 | 1000 | 0.2474 | 10.7516 |
| 0.024 | 4.0650 | 2000 | 0.2882 | 10.7692 |
| 0.0065 | 6.0976 | 3000 | 0.3367 | 11.0889 |
| 0.0028 | 8.1301 | 4000 | 0.3731 | 11.0362 |
| 0.0023 | 10.1626 | 5000 | 0.3836 | 11.0346 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1