whisper-tiny-mix-en / README.md
deepdml's picture
End of training
97702ed verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: en
          split: test
          args: en
        metrics:
          - name: Wer
            type: wer
            value: 26.482731293299587

Whisper Medium en

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6272
  • Wer: 26.4827

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.3844 0.2 1000 0.6787 28.9037
0.3104 0.4 2000 0.6485 27.1148
0.3125 0.6 3000 0.6359 26.4310
0.2607 0.8 4000 0.6310 26.3389
0.2683 1.0 5000 0.6272 26.4827

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1