metadata
license: other
license_name: deepseek
license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL
[🏠Homepage] | [🤖 Chat with DeepSeek LLM] | [Discord] | [Wechat(微信)]
1. Introduction to DeepSeekMath
See the Introduction for more details.
2. How to Use
Here give some examples of how to use our model.
Text Completion
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/deepseek-math-7b-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
text = "The integral of x^2 from 0 to 2 is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
3. License
This code repository is licensed under the MIT License. The use of DeepSeekMath models is subject to the Model License. DeepSeekMath supports commercial use.
See the LICENSE-MODEL for more details.
4. Contact
If you have any questions, please raise an issue or contact us at [email protected].