license: other
license_name: deepseek
license_link: LICENSE
1. Introduction
Introducing DeepSeek VL, an open-source Vision-Language (VL) Model designed for real-world vision and language understanding applications. DeepSeek-VL possesses general multimodal understanding capabilities, capable of processing logical diagrams, web pages, formula recognition, scientific literature, natural images, and embodied intelligence in complex scenarios.
DeepSeek-VL: Towards Real-World Vision-Language Understanding
Haoyu Lu*, Wen Liu*, Bo Zhang**, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, Chong Ruan (*Equal Contribution, **Project Leader)
2. Model Summary
DeepSeek-VL-7b-base uses the SigLIP-L and SAM-B as the hybrid vision encoder supporting 1024 x 1024 image input and is constructed based on the DeepSeek-LLM-7b-base which is trained on an approximate corpus of 2T text tokens. The whole DeepSeek-VL-7b-base model is finally trained around 400B vision-language tokens.
3. Quick Start
Installation
On the basis of Python >= 3.8
environment, install the necessary dependencies by running the following command:
git clone https://github.com/deepseek-ai/DeepSeek-VL
cd DeepSeek-VL
pip install -r requirements.txt -e .
Simple Inference Example
import torch
from transformers import AutoModelForCausalLM
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
from deepseek_vl.utils.io import load_pil_images
# specify the path to the model
model_path = "deepseek-ai/deepseek-vl-7b-chat"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
conversation = [
{
"role": "User",
"content": "<image_placeholder>Describe each stage of this image.",
"images": ["./images/training_pipelines.png"]
},
{
"role": "Assistant",
"content": ""
}
]
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True
).to(vl_gpt.device)
# run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# run the model to get the response
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)
CLI Chat
python cli_chat.py --model_path "deepseek-ai/deepseek-vl-7b-chat"
# or local path
python cli_chat.py --model_path "local model path"
4. License
This code repository is licensed under the MIT License. The use of DeepSeek LLM Base/Chat models is subject to the Model License. DeepSeek LLM series (including Base and Chat) supports commercial use.
5. Citation
@misc{lu2024deepseekvl,
title={DeepSeek-VL: Towards Real-World Vision-Language Understanding},
author={Haoyu Lu and Wen Liu and Bo Zhang and Bingxuan Wang and Kai Dong and Bo Liu and Jingxiang Sun and Tongzheng Ren and Zhuoshu Li and Yaofeng Sun and Chengqi Deng and Hanwei Xu and Zhenda Xie and Chong Ruan},
year={2024},
eprint={2403.05525},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
6. Contact
If you have any questions, please raise an issue or contact us at [email protected].