julianrisch's picture
Update README.md
35d9bf8 verified
metadata
language: en
license: mit
tags:
  - exbert
datasets:
  - squad_v2
thumbnail: >-
  https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
model-index:
  - name: deepset/bert-medium-squad2-distilled
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_v2
          type: squad_v2
          config: squad_v2
          split: validation
        metrics:
          - type: exact_match
            value: 69.8231
            name: Exact Match
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmE4MGRkZTVjNmViMGNjYjVhY2E1NzcyOGQ1OWE1MWMzMjY5NWU0MmU0Y2I4OWU4YTU5OWQ5YTI2NWE1NmM0ZSIsInZlcnNpb24iOjF9.tnCJvWzMctTwiQu5yig_owO2ZI1t1MZz1AN2lQy4COAGOzuMovD-74acQvMbxJQoRfNNkIetz2hqYivf1lJKDw
          - type: f1
            value: 72.9232
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTMwNzk0ZDRjNGUyMjQyNzc1NzczZmUwMTU2MTM5MGQ3M2NhODlmOTU4ZDI0YjhlNTVjNDA1MGEwM2M1MzIyZSIsInZlcnNpb24iOjF9.eElGmTOXH_qHTNaPwZ-dUJfVz9VMvCutDCof_6UG_625MwctT_j7iVkWcGwed4tUnunuq1BPm-0iRh1RuuB-AQ

bert-medium-squad2-distilled for Extractive QA

Overview

Language model: deepset/roberta-base-squad2-distilled
Language: English
Training data: SQuAD 2.0 training set
Eval data: SQuAD 2.0 dev set
Infrastructure: 1x V100 GPU
Published: Apr 21st, 2021

Details

  • Haystack version 1.x distillation feature was used for training. deepset/bert-large-uncased-whole-word-masking-squad2 was used as the teacher model.

Hyperparameters

batch_size = 6
n_epochs = 2
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 5
distillation_loss_weight = 1

Usage

In Haystack

Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:

# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/bert-medium-squad2-distilled")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}

For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/bert-medium-squad2-distilled"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Performance

"exact": 68.6431398972458
"f1": 72.7637083790805

Authors

  • Timo M枚ller: timo.moeller [at] deepset.ai
  • Julian Risch: julian.risch [at] deepset.ai
  • Malte Pietsch: malte.pietsch [at] deepset.ai
  • Michel Bartels: michel.bartels [at] deepset.ai

About us

deepset is the company behind the production-ready open-source AI framework Haystack.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube

By the way: we're hiring!