File size: 2,083 Bytes
16967d8 24c047e 16967d8 24c047e 1a8d6fc 24c047e 93e4af8 24c047e 1a8d6fc 24c047e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-base-injection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base-injection
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0673
- Accuracy: 0.9914
## Model description
This model detects prompt injection attempts and classifies them as "INJECTION". Legitimate requests are classified as "LEGIT". The dataset assumes that legitimate requests are either all sorts of questions of key word searches.
## Intended uses & limitations
If you are using this model to secure your system and it is overly "trigger-happy" to classify requests as injections, consider collecting legitimate examples and retraining the model with the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset.
## Training and evaluation data
Based in the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 69 | 0.2353 | 0.9741 |
| No log | 2.0 | 138 | 0.0894 | 0.9741 |
| No log | 3.0 | 207 | 0.0673 | 0.9914 |
### Framework versions
- Transformers 4.29.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|