language: en
license: cc-by-4.0
tags:
- deberta
- deberta-v3
datasets:
- squad_v2
model-index:
- name: deepset/deberta-v3-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 83.8248
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2IyZTEyYzNlOTAwZmFlNWRiZTdiNzQzMTUyM2FmZTQ3ZWQwNWZmMzc2ZDVhYWYyMzkxOTUyMGNlMWY0M2E5MiIsInZlcnNpb24iOjF9.y8KvfefMLI977BYun0X1rAq5qudmezW_UJe9mh6sYBoiWaBosDO5TRnEGR1BHzdxmv2EgPK_PSomtZvb043jBQ
- type: f1
value: 87.41
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVhNjAwM2Q5N2Y3MGU4ZWY3N2Y0MmNjYWYwYmQzNTdiYWExODhkYmQ1YjIwM2I1ODEzNWIxZDI1ZWQ1YWRjNSIsInZlcnNpb24iOjF9.Jk0v1ZheLRFz6k9iNAgCMMZtPYj5eVwUCku4E76wRYc-jHPmiUuxvNiNkn6NW-jkBD8bJGMqDSjJyVpVMn9pBA
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 84.9678
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWUxYTg4MzU3YTdmMDRmMGM0NjFjMTcwNGM3YzljM2RkMTc1ZGNhMDQwMTgwNGI0ZDE4ZGMxZTE3YjY5YzQ0ZiIsInZlcnNpb24iOjF9.KKaJ1UtikNe2g6T8XhLoWNtL9X4dHHyl_O4VZ5LreBT9nXneGc21lI1AW3n8KXTFGemzRpRMvmCDyKVDHucdDQ
- type: f1
value: 92.2777
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDU0ZTQwMzg4ZDY1ZWYxOGIxMzY2ODljZTBkMTNlYjA0ODBjNjcxNTg3ZDliYWU1YTdkYTM2NTIxOTg1MGM4OCIsInZlcnNpb24iOjF9.8VHg1BXx6gLw_K7MUK2QSE80Y9guiVR8n8K8nX4laGsLibxv5u_yDv9F3ahbUa1eZG_bbidl93TY2qFUiYHtAQ
deberta-v3-base for QA
This is the deberta-v3-base model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
Overview
Language model: deberta-v3-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example QA pipeline on Haystack
Infrastructure: 1x NVIDIA A10G
Hyperparameters
batch_size = 12
n_epochs = 4
base_LM_model = "deberta-v3-base"
max_seq_len = 512
learning_rate = 2e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
Usage
In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:
reader = FARMReader(model_name_or_path="deepset/deberta-v3-base-squad2")
# or
reader = TransformersReader(model_name_or_path="deepset/deberta-v3-base-squad2",tokenizer="deepset/deberta-v3-base-squad2")
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/deberta-v3-base-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Authors
Sebastian Lee: sebastian.lee [at] deepset.ai
Timo M枚ller: timo.moeller [at] deepset.ai
Malte Pietsch: malte.pietsch [at] deepset.ai
About us
deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- Distilled roberta-base-squad2 (aka "tinyroberta-squad2")
- German BERT (aka "bert-base-german-cased")
- GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")
Get in touch and join the Haystack community
For more info on Haystack, visit our GitHub repo and Documentation.
We also have a Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website