ernie-phmtweets-sutd
This model is a fine-tuned version of ernie-2.0-en for text classification to identify public health events through tweets. The project was based on an Emory University Study on Detection of Personal Health Mentions in Social Media paper, that worked with this custom dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.885
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd")
model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd")
Model Evaluation Results
With Validation Set
- Accuracy: 0.889763779527559
With Test Set
- Accuracy: 0.884643644379133
References for ERNIE 2.0 Model
@article{sun2019ernie20,
title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:1907.12412},
year={2019}
}
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.