dictalm2.0-AWQ / README.md
Shaltiel's picture
Update README.md
a4e6f73 verified
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
pipeline_tag: text-generation
language:
  - en
  - he
tags:
  - pretrained
inference:
  parameters:
    temperature: 0.7

Model Card for DictaLM-2.0-AWQ

The DictaLM-2.0 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters trained to specialize in Hebrew text.

For full details of this model please read our release blog post.

This model contains the AWQ 4-bit quantized version of the base model DictaLM-2.0.

You can view and access the full collection of base/instruct unquantized/quantized versions of DictaLM-2.0 here.

Example Code

Running this code requires less than 5GB of GPU VRAM.

from transformers import pipeline

# This loads the model onto the GPU in bfloat16 precision
model = pipeline('text-generation', 'dicta-il/dictalm2.0-AWQ', device_map='cuda')

# Sample few shot examples
prompt = """
注讘专: 讛诇讻转讬
注转讬讚: 讗诇讱

注讘专: 砖诪专转讬
注转讬讚: 讗砖诪讜专

注讘专: 砖诪注转讬
注转讬讚: 讗砖诪注

注讘专: 讛讘谞转讬
注转讬讚:
"""

print(model(prompt.strip(), do_sample=False, max_new_tokens=4, stop_sequence='\n'))
# [{'generated_text': '注讘专: 讛诇讻转讬\n注转讬讚: 讗诇讱\n\n注讘专: 砖诪专转讬\n注转讬讚: 讗砖诪讜专\n\n注讘专: 砖诪注转讬\n注转讬讚: 讗砖诪注\n\n注讘专: 讛讘谞转讬\n注转讬讚: 讗讘讬谉\n\n'}]

Model Architecture

DictaLM-2.0 is based on the Mistral-7B-v0.1 model with the following changes:

  • An extended tokenizer with 1,000 injected tokens specifically for Hebrew, increasing the compression rate from 5.78 tokens/word to 2.76 tokens/word.
  • Continued pretraining on over 190B tokens of naturally occuring text, 50% Hebrew and 50% English.

Notice

DictaLM 2.0 is a pretrained base model and therefore does not have any moderation mechanisms.

Citation

If you use this model, please cite:

[Will be added soon]