Edit model card

results

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4003
  • Accuracy: 0.8589
  • F1: 0.7308
  • Precision: 0.7238
  • Recall: 0.7379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.2623 16 0.6597 0.7406 0.0 0.0 0.0
No log 0.5246 32 0.5547 0.7406 0.0 0.0 0.0
No log 0.7869 48 0.5144 0.7406 0.0 0.0 0.0
No log 1.0492 64 0.4658 0.8237 0.5205 0.8837 0.3689
No log 1.3115 80 0.4164 0.8338 0.7 0.6581 0.7476
No log 1.5738 96 0.3812 0.8212 0.6872 0.6290 0.7573
No log 1.8361 112 0.3799 0.8564 0.6705 0.8286 0.5631
No log 2.0984 128 0.3736 0.8111 0.6725 0.6111 0.7476
No log 2.3607 144 0.3726 0.8564 0.7047 0.7556 0.6602
No log 2.6230 160 0.4651 0.7456 0.6456 0.5055 0.8932
No log 2.8852 176 0.3592 0.8413 0.7070 0.6786 0.7379
No log 3.1475 192 0.3633 0.8514 0.7035 0.7292 0.6796
No log 3.4098 208 0.4381 0.8086 0.6984 0.5906 0.8544
No log 3.6721 224 0.4114 0.8338 0.7080 0.6504 0.7767
No log 3.9344 240 0.4588 0.8186 0.7025 0.6115 0.8252
No log 4.1967 256 0.3795 0.8615 0.7291 0.74 0.7184
No log 4.4590 272 0.4418 0.8262 0.7113 0.625 0.8252
No log 4.7213 288 0.3962 0.8489 0.7170 0.6972 0.7379
No log 4.9836 304 0.4003 0.8589 0.7308 0.7238 0.7379

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dimasichsanul/best-mbert-reranker

Finetuned
(511)
this model