File size: 6,751 Bytes
993905d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 015-microsoft-deberta-v3-base-finetuned-yahoo-80_20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 015-microsoft-deberta-v3-base-finetuned-yahoo-80_20

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0709
- F1: 0.2744
- Accuracy: 0.35
- Precision: 0.2452
- Recall: 0.35
- System Ram Used: 3.9663
- System Ram Total: 83.4807
- Gpu Ram Allocated: 2.0874
- Gpu Ram Cached: 6.8516
- Gpu Ram Total: 39.5640
- Gpu Utilization: 14
- Disk Space Used: 24.7820
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 2.3062        | 2.0   | 6    | 2.3028          | 0.025  | 0.1      | 0.0143    | 0.1    | 3.9009          | 83.4807          | 2.0874            | 6.8398         | 39.5640       | 51              | 24.7819         | 78.1898          |
| 2.304         | 4.0   | 12   | 2.3020          | 0.0722 | 0.15     | 0.0625    | 0.15   | 3.9032          | 83.4807          | 2.0873            | 6.8418         | 39.5640       | 56              | 24.7819         | 78.1898          |
| 2.2892        | 6.0   | 18   | 2.2997          | 0.0111 | 0.05     | 0.0063    | 0.05   | 3.9136          | 83.4807          | 2.0874            | 6.8418         | 39.5640       | 62              | 24.7819         | 78.1898          |
| 2.2729        | 8.0   | 24   | 2.2947          | 0.0190 | 0.1      | 0.0105    | 0.1    | 3.9411          | 83.4807          | 2.0873            | 6.8418         | 39.5640       | 56              | 24.7819         | 78.1898          |
| 2.2108        | 10.0  | 30   | 2.2843          | 0.0521 | 0.15     | 0.0333    | 0.15   | 3.9439          | 83.4807          | 2.0873            | 6.8418         | 39.5640       | 60              | 24.7819         | 78.1898          |
| 2.1482        | 12.0  | 36   | 2.2660          | 0.1417 | 0.2      | 0.1643    | 0.2    | 3.9451          | 83.4807          | 2.0873            | 6.8418         | 39.5640       | 48              | 24.7819         | 78.1898          |
| 2.0203        | 14.0  | 42   | 2.2328          | 0.2086 | 0.3      | 0.1617    | 0.3    | 3.9597          | 83.4807          | 2.0874            | 6.8418         | 39.5640       | 52              | 24.7819         | 78.1898          |
| 1.8707        | 16.0  | 48   | 2.2030          | 0.2019 | 0.3      | 0.1533    | 0.3    | 3.9691          | 83.4807          | 2.0873            | 6.8418         | 39.5640       | 55              | 24.7819         | 78.1898          |
| 1.701         | 18.0  | 54   | 2.1741          | 0.2638 | 0.35     | 0.2483    | 0.35   | 3.9705          | 83.4807          | 2.0873            | 6.8418         | 39.5640       | 58              | 24.7819         | 78.1898          |
| 1.5493        | 20.0  | 60   | 2.1379          | 0.2967 | 0.35     | 0.3       | 0.35   | 3.9699          | 83.4807          | 2.0874            | 6.8516         | 39.5640       | 57              | 24.7819         | 78.1898          |
| 1.4073        | 22.0  | 66   | 2.1232          | 0.2244 | 0.3      | 0.1952    | 0.3    | 3.9711          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 51              | 24.7819         | 78.1898          |
| 1.2447        | 24.0  | 72   | 2.1096          | 0.2344 | 0.3      | 0.2119    | 0.3    | 3.9705          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 49              | 24.7819         | 78.1898          |
| 1.155         | 26.0  | 78   | 2.0978          | 0.3178 | 0.4      | 0.3119    | 0.4    | 3.9663          | 83.4807          | 2.0874            | 6.8516         | 39.5640       | 56              | 24.7819         | 78.1898          |
| 1.0522        | 28.0  | 84   | 2.0805          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9661          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 63              | 24.7820         | 78.1898          |
| 0.9741        | 30.0  | 90   | 2.0735          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9575          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 59              | 24.7820         | 78.1898          |
| 0.9042        | 32.0  | 96   | 2.0793          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9661          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 50              | 24.7820         | 78.1898          |
| 0.8497        | 34.0  | 102  | 2.0769          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9654          | 83.4807          | 2.0874            | 6.8516         | 39.5640       | 58              | 24.7820         | 78.1898          |
| 0.8228        | 36.0  | 108  | 2.0736          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9660          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 60              | 24.7820         | 78.1898          |
| 0.7908        | 38.0  | 114  | 2.0717          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9659          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 59              | 24.7820         | 78.1898          |
| 0.7998        | 40.0  | 120  | 2.0709          | 0.2744 | 0.35     | 0.2452    | 0.35   | 3.9661          | 83.4807          | 2.0873            | 6.8516         | 39.5640       | 59              | 24.7820         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3