detr-amzss3-v2 / README.md
pallavJha's picture
update model card README.md
c390f03
metadata
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
  - generated_from_trainer
model-index:
  - name: detr-amzss3-v2
    results: []

detr-amzss3-v2

This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
No log 0.54 1000 0.4810
0.5325 1.08 2000 0.4812
0.5325 1.62 3000 0.4739
0.5322 2.16 4000 0.4759
0.5322 2.7 5000 0.4818
0.5259 3.24 6000 0.4522
0.5259 3.78 7000 0.4632
0.5167 4.32 8000 0.4628
0.5167 4.86 9000 0.4345
0.5076 5.4 10000 0.4563
0.5076 5.94 11000 0.4326
0.494 6.48 12000 0.4424
0.4906 7.02 13000 0.4272
0.4906 7.56 14000 0.4164
0.4801 8.1 15000 0.4213
0.4801 8.64 16000 0.4320
0.4699 9.18 17000 0.4100
0.4699 9.72 18000 0.4127
0.4613 10.26 19000 0.4035
0.4613 10.8 20000 0.4039
0.4556 11.34 21000 0.4149
0.4556 11.88 22000 0.4092
0.4475 12.42 23000 0.3965
0.4475 12.96 24000 0.3973
0.4389 13.5 25000 0.4013
0.4349 14.04 26000 0.3797
0.4349 14.58 27000 0.3728
0.4288 15.12 28000 0.3834
0.4288 15.66 29000 0.3885
0.4222 16.2 30000 0.3820
0.4222 16.74 31000 0.3755
0.4152 17.28 32000 0.3693
0.4152 17.82 33000 0.3679
0.4122 18.36 34000 0.3605
0.4122 18.9 35000 0.3625
0.4077 19.44 36000 0.3631
0.4077 19.98 37000 0.3607
0.4 20.52 38000 0.3615
0.3972 21.06 39000 0.3561
0.3972 21.6 40000 0.3594
0.3953 22.14 41000 0.3554
0.3953 22.68 42000 0.3515
0.3903 23.22 43000 0.3539
0.3903 23.76 44000 0.3500
0.3878 24.3 45000 0.3489
0.3878 24.84 46000 0.3494

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3