djbp's picture
Training in progress, epoch 0
a983fe2 verified
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-Mid-NonMidMarket-Classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8425624321389794

swin-tiny-patch4-window7-224-Mid-NonMidMarket-Classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4046
  • Accuracy: 0.8426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5809 0.9884 64 0.5024 0.7937
0.5326 1.9923 129 0.4402 0.8132
0.4626 2.9961 194 0.4244 0.8284
0.4778 4.0 259 0.4234 0.8274
0.4109 4.9884 323 0.4197 0.8306
0.3764 5.9923 388 0.4095 0.8295
0.3725 6.9961 453 0.4046 0.8426
0.3583 8.0 518 0.4109 0.8371
0.3451 8.9884 582 0.4171 0.8350
0.3351 9.8842 640 0.4153 0.8404

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1