L3.1-Suze-Vume-calc / README.md
djuna's picture
Adding Evaluation Results (#1)
ce11d65 verified
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- djuna/L3-Suze-Vume
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored
model-index:
- name: L3.1-Suze-Vume-calc
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 72.97
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/L3.1-Suze-Vume-calc
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.14
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/L3.1-Suze-Vume-calc
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 9.89
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/L3.1-Suze-Vume-calc
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.25
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/L3.1-Suze-Vume-calc
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.3
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/L3.1-Suze-Vume-calc
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.94
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/L3.1-Suze-Vume-calc
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the linear [DARE](https://arxiv.org/abs/2311.03099) merge method using [Orenguteng/Llama-3.1-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored) as a base.
### Models Merged
The following models were included in the merge:
* [djuna/L3-Suze-Vume](https://huggingface.co/djuna/L3-Suze-Vume)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_linear
models:
- model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored
parameters:
weight:
- filter: v_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: o_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: up_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: gate_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: down_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- value: 1
- model: djuna/L3-Suze-Vume
parameters:
weight:
- filter: v_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: o_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: up_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: gate_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: down_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- value: 0
base_model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored
tokenizer_source: base
dtype: float32
out_dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_djuna__L3.1-Suze-Vume-calc)
| Metric |Value|
|-------------------|----:|
|Avg. |25.75|
|IFEval (0-Shot) |72.97|
|BBH (3-Shot) |31.14|
|MATH Lvl 5 (4-Shot)| 9.89|
|GPQA (0-shot) | 4.25|
|MuSR (0-shot) | 8.30|
|MMLU-PRO (5-shot) |27.94|