File size: 51,166 Bytes
cadaf7b |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ee54eda2290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ee54eda2320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ee54eda23b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ee54eda2440>", "_build": "<function ActorCriticPolicy._build at 0x7ee54eda24d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ee54eda2560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ee54eda25f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ee54eda2680>", "_predict": "<function ActorCriticPolicy._predict at 0x7ee54eda2710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ee54eda27a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ee54eda2830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ee54eda28c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ee54ed46f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723796299251953997, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9hcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAFwAAAAAAAHCImL/jQUg/CCVnvUEwJz8h8Vo+NHaEP1z777/EFHM9b0ulv0Bfxz+tac4+nWzqvti/v78O0nu/nkWyP68FHj+lpKa/Zcbhv8Q7S74KHNg+XI3wPnR2yz9hE4+/T/EWv5s6w79jJ+K/7MMdPea3wT8kzfq/ioglv9feGD9yKQZA+ylnPnG0jT+SONs/LBQ5v6wQQL+6u+K9QaUPvI7tDj8JUo+/MKJ6v0W1UT6PeibAgYZ5vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqdVK+PTpMPizKSb776Z6/6Kycv2yim7+G3AG/+9NJv2OBnb94KaE4+sp1P6hJL79BSii/V+Sfvq0jsr1EAQbA5N24PpScjb/Jlqy/wQ+FOPN7jr5OVck97vOkP/wYG0AfsaI97CrhvaYRuT+7r5i/fWljPkgYnzjLn+K+e45vP5WbtL0/aQG/64LGvzuHNb+jK3c/SBzlPgFifT8fA5s4UMAmvzsJ1D1B3xm/+8Q5vwrbKL+klim/RjYEPz3vLT/WHgY/ACCNOIByOr+nYPI9XIzXvhOK4b458GU/sZCxPklwDj+pNdc+XJYqvxY2cTg6cos/F34xv46CpD5AwJ6/9dMdv5TB2b/rH40+eY6EP/ojRz8fA5s4VN36P6qeE7/gNJc/2fi+vxl2Fr/vrMe/XG9/PhX4uT/kcAs/ACCNOKJ8+z+hdAq/PKSLP/Aks7+hVpG9YRGxu5ejMz7ATdA/Iq4BPhY2cTiSAQlAhY45vpkHEEBnJQHAKo5Xv3Kn178SpxW/t8iwv2ro9L7qPmo4MsaNQB8mgr6S9FFADH4FwDuhir+FvSrA/ZlUv2QTF8CaCDi/Z7xFOKIpj7/O3zc/ZlQAv3e+az5Sc4C/rAO1PjiFTr+T2lC+Z1whv+o+ajiY1l2/Fr2RvRgbQr9fs50+ANXhvmxpH74AlRi/ihOvvnbhur1nvEU4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXGbdvwmsK7+S78s/e9T/v12gwT+diKa/yRYjv3+3m79MLbS/K6qhu/QDLD8QPXi/JjlGvmb9Wb/iII2/muHqvuR9dj+k5ji/r8JCvjHXzz8aBRG/E7B5v/hZLT6WAaM/tCXXP3Clob5oLYA/X+fUP2iosT70ZKi/tCXXP3Clob5oLYA/X+fUP2iosT70ZKi/K/X4Pm1Gbb/3pmK9HIbXu5d/PD/S8yy/cPHIPmYzRL8tSoq8bHr/O4SIYT5jY1K+cPHIPmYzRL8tSoq8bHr/O4SIYT5jY1K+MXgZv8re+j3vuV8+YvMdvttN/D74SOm+OTVZvL3AoD4ovZC/7yfuP+XyhL8nXZ8+NJGQvu8dz79w/wbAHy+Gv7jRA8DZt8c7T/G+vgEmr78Stpy/sdHsvlowe78Zfn+9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU6SPvxunjr8GUJA/qe4IP/+3jz/OrJA/i7qQP6mLkL9fipC/dTxqv52vjz9ZTY+/zk+RvwvEj78LaZG/CKeRv/80SD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhFbA9U7OLvlaKWzzWLpe9vKAGvS+Cyb7kGKc8aZ7vvYqs0LyD3t48erYBPRc+Tb7HHns74lKiu+1W/DyIw/k9DQ1YO/PIyb6bE668/1NuPLqs0z2duAS9m41sPQbUAb5854W8hJtouuRZvz0Fmg29HfhYPfTkq7wE0GM9cjZ8PvTTkbwL8rS9mp7TPEsTvL6uyYs952M5PMez9L0tdh895OpUvTOvCL792VQ92mLavDMF1L0H2AG7QQNwvaEFeL0GqSK+RAlGPtzijDuXOD+9aZk2vZG9s773bRE9Mwu+vfGGAz4cI0M8kXRXvfhRlb5iUWo+DG4qvaUdJj6/iJw90ZNKvecji74HsLS9KNdSvnWGCL4xk1S8OIWzPXZSkb6tqyS+QtUMvp2WGr6reEM9fR5LPc8Wj760nMO+fv0pP5Fkgj5YtZk+X1nkPoAswb5d4xC/leC6v/iPGz5+xFs+c6+sP3e6bL/meb0+JQFiPunAzr3n2Ge/Qhcqv/YuIb0QGQi/bUa4PUxMlz9H/cc94k+BvJ8gNL/mogM9r6E4v+mfBD94YQZAqVmIvwCVKb/dSwFAobfav/G8yrlsYx2+WD+5vmY74T/yl0I/dyOCP5i50j72G7I9Olk9v1+UoL/I95k+W7Xav1tVGb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgU5mvziXCD/NdSi/ni5Lv30qiL82x/C+/q0tv0DPwL4k5iW/eCmhOHvQlr8ZHx2+AZ9UvxnCsz4Z6ra+f29APjdMCL9vXlU+XjIQvsEPhThF3Vm+/Vlzv2y8Xr4zJBI+uVMev44YHj9cwjw/D/X9Pu35Qz9IGJ849e20v9y+DkBl5sA/eh+nvWyRY7+VQP89p/m0Pxm1KD7H/q8+HwObOCsGk78BKZg+mioDvx23mL1Tz7g9jEw7vYp0MT+dPcA9COoBvwAgjTjKIjq/y/4avylAf7/Spts9RAbgPuw6PL46qhW+da9NvjIFNb8WNnE48MBsP0NbDj+JrTM/Do3Qv9900b9d7ua/6X4tP+hjez8wWYg/HwObOBKSq758jjy+p3xEv73LNr9DY5C/uGaBv5pL0T43dOA+Bt5nPwAgjTjQZzK/Eu4Fv9j4bL+PRHq+Y+voPhXbQD6dHik+dbrfPWkMHL8WNnE4G5raPnLsi7/UrA2/gqivvgVKILyV3Hu/WawWPbX8Or8hN7i+6j5qOFeo2j4XxsO+/SDLPVnAZj8Re8M+fF4Sv6OLNT+k/Dm/ARAyvme8RTjsRpK/QXwfQJGvwT+t8Rg/ah2Iv8HhnD5U07a/IdravR61p77qPmo43d/VPbLJ0T/4CKE/KswCQFlxIMATI6Q/TSu5vyo2Az8t9LC/Z7xFOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKJZ78ZVY6+ZTH1P7rFPb85YNM/HXsevb93j71grWy/DNuwvlu9Mb+M2VU/EdoaP0ZOyj8+bQ++tgGYPkj0lr+B9SRAyj3fPKbgTb41vZe/7kqivj5iF76ZJLc/rqd1v1MMrr43bPq+5i0SvzYaa75ckmw/k8g0PlMMrr43bPq+5i0SvzYaa75ckmw/k8g0Pgb3AL+AI0Y/S3QIwEFDI8CuAhtAFWCxPxHYg748piy87RCfv4wVDr7fnkM/4tl1vRHYg748piy87RCfv4wVDr7fnkM/4tl1vRv0Qr8/sag+dNtqP3j23j2KomE/gXqWvghWCL9EUqU/ZYZRv5uD7T/BpSQ/fgZ2uyvmCT/veU2/TCGrvt9dLL8RI2q/qdsIP95ywj5Q+Cu/2cl8vfBgpr6MLIe+pD7RPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFOkj78bp46/aYqWPiWgkL/v64+/3acpvxLBj796MpA/sk97P/6Jjz/bKb+84JWQP85Pkb8LxI+/iDFrvp93hL8TFZC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYRWwPVOzi75Wils81i6XvbygBr0vgsm+5BinPGme772KrNC8g97ePHq2AT0XPk2+xx57O+JSorvtVvw8iMP5PQ0NWDvzyMm+mxOuvP9Tbjy6rNM9nbgEvZuNbD0G1AG+fOeFvISbaLrkWb89BZoNvR34WD305Ku8BNBjPXI2fD7005G8C/K0vZqe0zxLE7y+rsmLPedjOTzHs/S9LXYfPeTqVL0zrwi+/dlUPdpi2rwzBdS9B9gBu0EDcL2hBXi9BqkivkQJRj7c4ow7lzg/vWmZNr2RvbO+920RPTMLvr3xhgM+HCNDPJF0V734UZW+YlFqPgxuKr2lHSY+v4icPdGTSr3nI4u+B7C0vSjXUr51hgi+MZNUvDiFsz12UpG+cl3GP4q1rEDNrxJAtIMWQE8FLcD4lkhA1xyDP/kGPD8wDRG/gQPkvqh/7r7xkB2/JWB3P8mpcT/a34g/qDODv5FqAT86Ami/8IOov+mGiT8ZwXA8sNIxvhKlKD86S7m+ev+hPdSpcT8v/iQ/Dlh5P+r0gb9VkhO/Gl2KPyJlvL7agI2//fKzPX5o375deY8/Q2bxPljFTD5lG7g/F2ojv8U/VT73n7a8Wb8XvxV9hb5xQhk+/bthPx+tsb5018o+nb/vvuIE1b6KAZK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPcla7/oHAE/PpBKv8TIUT/eQYy/33FJP64sKL8NViE/x4bovngpoTgUNSW/C3gcvRH2+72obYQ/+KSgP3xUcb5frR6/hV9WP4nqsj/BD4U4Ggo4P3Scu74Tq5M9ldGjv0K6hb+lk/2/TboFP7dKgD+0LNk/SBifODatDz/vnfy+MB5TP/Yt2j88KkI9i/dGPxnpuj7YYZC/3rOHvR8Dmzi+Nqm+makuv9R2Mr8ZIEQ/vpXBPn2dij5TkP89S1BEv2PkK78AII04FOYvv0VMLr+1/oy/flA4PSP24T6F3Ii+E4K0vkbCNb70UI6/FjZxOEsCBb+wcoA/45/QvJ+YLD90kta/i90aPxAggT9HQSS/ZOqXPx8DmzhQxFi/Z/b1PpnMWb4yFUc/ZpAqvqYiFD95+U8//kVZv3v6Wr4AII04FN5Bv/r6+z61QFW+v+CtPopjxz9rBbC+cmtMP4DrBb//vpC/FjZxOLQWXr9aYeY+DrUHv+V1Bb942zq/mMLcvkklWL/+ykY+CO2Uvuo+ajhWkHm+choWv/bPK7+YGs++MIZEv954KL+Xbdm+XgtOvrXFbb9nvEU4GSOrP9K69b7FSYo/CIyuP4+Arr6oy8E/PC5KvhQYkD8RvhS/6j5qODPPbj8h0zi/OpJ4Puf1BT/MOGA+a4UDv8JwwT3lqoQ/U5B6P2e8RTgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkETG/7gVcvyDXnT35DTC/4ZgIvlXvvz/eSxU/5uVmP13UBL8AMQzA90WkvTAnhj4qgGk/9hUbP4yB777/PgPAlkTdPribTz5Fgku+9qo6v0+Czj65ZtW/ngUNPpb7SL5OWsm+0HdVvwCBFz6lfsu+GefwPU1NyL5OWsm+0HdVvwCBFz6lfsu+GefwPU1NyL5Pt7k+VMuNOw1m2761JpS/vYQ6vIeiJj6nKkU+JJkYvouT5r74Ok6+HMyNPbie8b2nKkU+JJkYvouT5r74Ok6+HMyNPbie8b262Ok+XO3qvUq8GT/5kCy/saYWPzluPz8ve20+r2P6vnQuVT9A8ki/dgpEP6mTZz/svCu/2YAtv8ljcr8Yaau/rBxgv9/Mpz+0WdG//bXgPdG00T4yxGM/w0iQPp4dGkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARG5A/CbqQPwZQkD+VAbA+/7ePPzOmtj2LupA/apUKP+RIQ7/pObS9oDSRv+CVkD+32PI+j/CQPwtpkb8Ip5G/ExWQvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGEVsD1Ts4u+VopbPNYul728oAa9L4LJvuQYpzxpnu+9iqzQvIPe3jx6tgE9Fz5NvsceezviUqK77Vb8PIjD+T0NDVg788jJvpsTrrz/U248uqzTPZ24BL2bjWw9BtQBvnznhbyEm2i65Fm/PQWaDb0d+Fg99OSrvJ/rJL80xLu+jjitvqDxGL8eP4S+aLfAP67Jiz3nYzk8x7P0vS12Hz3k6lS9M68Ivv3ZVD3aYtq8MwXUvQfYAbtBA3C9oQV4vQapIr5ECUY+3OKMO5c4P71pmTa9kb2zvvdtET0zC7698YYDPhwjQzyRdFe9+FGVvmJRaj4Mbiq9pR0mPr+InD3Rk0q95yOLvgewtL0o11K+dYYIvjGTVLw4hbM9dlKRvq2rJL5C1Qy+nZYavqt4Qz19Hks9zxaPvq4TqL+4mh4/FliVvoGTED8INAU/r0N7P0+ln79lb4G/vqPVvy7/sT9UFAM+puv6vbCKP7/2Lpq/89YRPxyTtj82i76/gE31v7+VJz4FtOc9BJ9wvzDDbb+hzm6+gOAIP+HhET9Ajze/apdlvk82hT+w7g6/HzuEPAsdjr1bUS8/RC+Gvkx6uz5IzTs9CSDMvkiv2b3Rqy2/ZX7kv98PXD4f15a9YC3Wvx32HL748H2+QFuTPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ayA/XOUKvoRRUj9uTMa/1fRQvw9/tr/uesG+tCOPvy31Y794KaE4PoyyP1mA/r4VgF09+6JJv/Lj877QxxPAbAzyPZwzqb9L0py/wQ+FOPtjub0NXXc8Xi1xP+xfD0DQBiG+XyZMPti9lz+RHq2/o5WdvkgYnzjbgNa+QQ2Dvp2+Eb+aWi+/qD0GvyC/Kb82Rxk/wOFAP7GkBz8fA5s4Ofm6vh/sQL7keam+LKKAv5m2Hz6Ke+i+C/bMPle0fT+oue+9ACCNOC4sCb+R4L4+vCaKvRqsW7+I6mk/WJAIP+JJPD9suTM/gVETvxY2cTjsmmg/e2jIv2AAV73Amw2/NjYtPqUTGb8UbgS++L+HP4oB7L4fA5s4edkwQMcXYr8HyLk/EFJ/vw0bCL8ZPz3A0lKyvc+l0z+KCIo/ACCNOLsOOEBykxe/iZy1P3bPib9rsJK/aZ5/wJp0l71Vsu0/NOYNQBY2cTgLIDxAX/xev2z6IkD/u7m/ojc3vubTfb92lXW+ZLXRv/kiTzzqPmo4oM2MQHmVTr+nnz5A8DUivxBNkr5dShw+mWeDvsquGMDSCVE/Z7xFOAg2mL8dWYQ9+nGjvylitr5UuAS/rOfnPP/kA7+5wQm//CgFv+o+ajgigOS+MdEtvxnsar+S/Nc97nlXvfKVoT5VBec9s6wwPge7HL9nvEU4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeHTtvvdiFr8tVYY/qaykv039mz+PgoU+zbKmvlYAyr557969+DY+v1KomD9zEqg+I3ekvoBD076gHQ++g3k9v3aXoj9yLJ8+zGmmvbgKsD46JCu/sInavpqYsj+kXlc/situvVQabD5h3+6+iWrfvejXAD8rUV8+situvVQabD5h3+6+iWrfvejXAD8rUV8+kHyQP+Od8r7esSI/eE/nvv9uAj8pVRu9kGbrv9WzED9ZGsm+Z++yv9h1Nb84ghVAkGbrv9WzED9ZGsm+Z++yv9h1Nb84ghVAqXGQvrvghr5cVX8/HYOCvwbCiD/krbo+GiFbP3dIjD0zQrO/Ge88QH6SUr9ajxZAQFP9vuFwM7/yEw8/mJlUv96GGj+uZtE+9hbTvmCHLr90u58+4csOvxRUpT5v2rs+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU6SPv1KcTT0GUJA/KOxBv3FtHj/OrJA/i7qQP6mLkL9bmi4/JY2Rv6A0kb9ZTY+/0Ex1PwvEj79YQxM/mUCOP/rDjz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABREri/J+XNP8VINsBAI+G/nogBP+JzVT/kGKc8aZ7vvYqs0LyD3t48erYBPRc+Tb7HHns74lKiu+1W/DyIw/k9DQ1YO/PIyb6bE668/1NuPLqs0z2duAS9m41sPQbUAb7XzEE/+iYuPSebK7//DXk/zhHivgRSCz/PwaI/EXLwv39ngD9GbzrAGIYWv45G5j96Kiq/rsfPvLpfFj9KSA2/6jqPPitL67792VQ92mLavDMF1L0H2AG7QQNwvaEFeL0GqSK+RAlGPtzijDuXOD+9aZk2vZG9s773bRE9Mwu+vfGGAz4cI0M8kXRXvfhRlb5iUWo+DG4qvaUdJj6/iJw90ZNKvecji74HsLS9KNdSvnWGCL4xk1S8OIWzPXZSkb6tqyS+QtUMvp2WGr6reEM9fR5LPc8Wj76UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRNeAGGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdi8AAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYALwAAAAAAACuSYINv1rw/9SdCzN3T7z8IGU6CoVlbv67ELv/e0Xg/uUr2qV8Igj8z51WGgnuBP8vqHyHGP4E/mM/WVklSgr+UxGxPvMpmP77/SGgGknG/ZhfrFHmocj+KZJyr/hF2P7T6ewZ9LGa/Gjh6mgzScL+Msr/JYxyEv7bWP1aHxH0/YyVX2832gD/gkfOS2OODv3veTT188HO/OugvfWx8eT+vzDE+dmqCP0ATHAAI9V8/ANHoz1hBNL+YFfzfkz1TP0lrRRxtHIS/n6zzI38cf7+nJ7uYvReDPxCCXU9sLEg/wG10BBctXb/CTdZl/39/P88FdGwfn4E/UEAre89qV7+wPhrheplUP9BqMc7NCVu/usaQkzPleT/o/ePuVkJbP2anBVREiXg/E4l0uy8ygz/A+G2g35NYPxbYNqQf8Hs/ngxFJf8YdT+khx2aJSxnv4YZvVA60oC/ATYJXYregj9q9YHfUnt4PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjaaqhom6pT9jm1bRnlL+PwbeKWMgo/4/+KOmETGRpL/RDlCrSAKgPyIEiDn6RUg/dwSrL/XeD8Ax38MOKUS2v6gE/iS0QrE/Cxxn6J7QIUBnKvU99GuEP41Uq2LTlLs/hNO50jUmvT9GY4u+NyFlv9TvG4Uxw2I//2jP7lPqFD/WiQA/NQjfv13N+5GULIq/6n8Fu/jihT/9C1qEdxgCQCHEx6y90ao/3kJWu0rNrD9EnPvWqpC1PwXrFjpgIkG/cy8g7DesUD9eaNbnDOU4P4R27X8AZN2/DLGApcqZkr9sLTQpO0qOP7rk9pf7dhpAMmGTrE+QqT9cWuXak8fCP9eSlz22HMg/2hrWlIU6qj+qFF3wl91QP9tDYvQmDyU/hgYCf5m14j/8NCU7JGzcv4k/z9xltFE/fNfX/soBE0BjBtqGAneVP7gkvl9vnec/RyA1NYst6D/HEv0JVmm8PwJW5/r0rIA/x8+EzCwXVL8VVF21TE72P+OpozQ/Psy/EnxOevaOj79eIZ5uqgsGQCYsdJUUGo0/4X6LaNVN7D/Woybd1p/sP7gUOaG0Krg/FuV1js5OhD/TSWb4gGtRv+D598AK9fM/+shNCoEewb9a3NBaZ8WMv7uyzL46Rvw/wE+sYRSJqz/g4VWAuBDCPw5zrMpU5cc/JKN0/aQlrL9gTy/bCo/jvoc5xkO65SO/g3Nx9P7x4T/IbShliMbdP1yCfMerblk/fNfX/soBE0CYal652hOhP71I8ek5MOc/iiP5B1In6D8lks/Wm5nCv3AuQrr4gES/WuMRMAg1HL+ZQlHBehj2PypocLWEcdI/8eryqfg9UD9eIZ5uqgsGQAl47f4APZo/rEHJ8yjr6z8NfPk0c5zsP0zJsdCojMG/LNOfyAIaWb9OBTDntbMvv6ZU74NK0vM/LuWaao8IyT8fJD8uMudhP7uyzL46Rvw/UXRGjwEtvz9vQasu+yjKP8xfyOStF9Q/0cInNAoQwr+UMP7SkFppv6XP8RD0hoa/yGeA3moc4r846JMg22Xbv6CnGjsRMZi/fnZmIcmT+j/sjN+Lv1q1PzS9Ra2A+54/Ee9M2KjBuj9pGkXRHWymv454rPP5A3i/Zi7VcfaAfb9wg9fKfoPEv7J2CXTNUdO/mEfObztfiL99O1VWMqzzPydRiX5RI7w/qB9dIXFkyz8EIRXuifbTP9u4KDebcsE/pDaas6e0bb+GU7OdgUyGPzKFCFjWk+K/kmZsB6zW2T9eXtV5NXqYv352ZiHJk/o/ia68pTZFtD89xY7jPDuhPy6Fh/2uiLo/aFUu/IpJpz/olxStZtV3v45AGa+BtHo/0ZH1jAUDxr+Ef4GqN8vSP37DszKcHoS/fTtVVjKs8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvFXS9g75/v1wiGYLe0YI/XlTJ/Qs4Sj9k6hBKnCE5vzZvu6YF31c/lNN87RA8jL8/tAvuvVCAv/SNNASlRpE/5CAV4Ep3UL86wUelKstNvyIrRpbhUFE/7yFePKuXj79gktFrf8dEP2gNnYTGgZE/y4yylkdAUr9+wckCN4tOv0vkng0umV8/tPswX/eYj7/dX6Jh6lRIv9XqXd5NlY8/oNtmLPIrJz9uzktXVlhRv1N1P7f/QWA/Bq7YkKG5j79Ihh6BssNDv/MP5smno4I/CBAC2xX1Lj982gwXlIBPv6S9YlRbGmA/XNy7M+gnkr9Ihh6BssNDv/MP5smno4I/CBAC2xX1Lj982gwXlIBPv6S9YlRbGmA/XNy7M+gnkr8Huy/ALMBWv2qOpTDi/po/ixey/4Befb/6b0GjNRZZv/mp1TtbaFo/xE1vPhsXkL//vrfopQBWvxI/IEjXdZk/1mqg/cVPfb8MfkHLaZRYv6YS2vxwV1o/RQfx3k6ikL//vrfopQBWvxI/IEjXdZk/1mqg/cVPfb8MfkHLaZRYv6YS2vxwV1o/RQfx3k6ikL/a2EeJwOhgv+xFXnr2QoE/7rrmeM06fT9zu1n/6wdYv4K0ARe5cnI/EnnJs5B+ib+dAQECmIJhv2w3C5HHXoU/lI9sijURdT/KN6xGqSNBv9s9J87dgnA//jwaSl+Kir+WRtrI2PKNv57mMphTXpM/arVVcIORcD/oJR3ZebpAvz35OTH8gGM/xhnl+mo6kb8djeICltuNv4ZkizP2GI4/YDt5SbnFKL+kMNV0qy1kvyVEKYIPUVU/SuarwMMlkL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyqQgKJGHuT+vHo7okPjvPxAMEvacc0U/ooydAfw4eD9sKbVLXZVpPyDAmh2LSlM/sQmuw6vXcr+QXa+Vn0Brv1Izwa+nd2O/4LINSvukSr88fIhRYzNlP4AH0ljqbEQ/O+SiV92JgT/IO8gJdEVkv8P5pkAHAoM/YGN0LVHwO7/Zx/2g+VqCP7g1eF/bP4G/4f1sz9GQdL+CldN7mpB/P3C3ipPm/W0/YCjEdAV5X7+A/tqH58xmP0zqFEB37m6/PvXAcNxffb+CIcUZ30d/P0D46xml73K/pOG4hsU1cb+rablqHueCP2/gtDHVWoQ/ERll2WR3gz9p4xWbm+GCP5/chqtYt32/PL9vMnQqaz9SToh4Kit8Pw1OA29MBYA/5iq4e7sxfb8nwjeXHrqBP+DPmwGbgju/mzgEYKSpgr+ghOQcJ4xMP8RTYnyEGmg/gBwidCPgZj9gxhOMEKBNP2A0/W3g/Uc/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzxDPISzalP1pap27IaP4/ktxctQi3/j/76vPvK8GKv9TBl08HGpg/wxBQ9pA/Ij/f+HxS0OsPwLEvZgOY1Zy/eRoTRTerqT8LHGfontAhQNaboBDMOoQ/7wa0w2OHuz8Ed9yl0ha9P1A9qaP6dkm/4rVN73e7Vj/c/EL9j73GPpUeCru9Ad+/023rCrJ0b79CxjEtL4h6P/0LWoR3GAJA1OFPHqjOqj9io7CrVLCsPxIulOfagLU/Phh2ifL8Lb+EpaT+fltRP7txJStDSRI/oJm1/TBM3b9WAllZsNZ5v1krAJXKXo8/uuT2l/t2GkD0bzLLCBSqP/SOtlEIkcI/1IgYzOwGyD9cxOnJDcOqP6rLmbQoqVK/8quHq1dFUD98rxYPGnriP+Svtf4ry9y/QBMIpVVhhT9819f+ygETQGTOZleOtZg/NoJvToh85z9Dtz1L9ifoP10ZKWDP974/V1SgXoqgYb9h4/pjS8Y4P8rAHHZJPvY/RVZf5vC9zr9u0+PpYMFxP14hnm6qCwZACpHEZSlokT9QH0vIJzHsP3vkCXDJm+w/izDmWARbuz/CSTD1tTdbv0Q4tkSmhyo/tBw+oTDr8z9N2uG/V2rDv8kTs9BIUWM/u7LMvjpG/D9mC0y5nJWqP0BStiRAXcI/+trF3pf0xz8NzCxG/Varv8jUsvET+CA/9XCCbEyiNr/qimgkJ0PiP9dRXJ7KJt0/pLl8p3WYbD9819f+ygETQClV2EhVjJw/RvYcIlpd5z8Xhrk4RifoPzFfZlSR08C/rFt2e0EWbz8/0Oln19dFP5PyTY7GLvY/XOzRT46v0D8blMLMbr98v14hnm6qCwZA+HvsN/f6lD9Q1jjxIRXsP/GeEqDbm+w/+K/E5iq3vr80AwbJHhZ2P/TTPqSeREg/eO3U4CXh8z9r4bpE19fFP9SPNUPIaX+/u7LMvjpG/D/614ZyQQS+P1+SNKCbq8o/zZN6/TcI1D+1CKFH2tbBv9GnEAtmPnS/nkrnaO30iL87yGZ6wEriv6A9wiBhzNq/XmJJMFJfnb9+dmYhyZP6P5nllUE407Q/2qtiSs4koD+d9VAE6Xy6PzeQWUfvn6a/wPdKRu9Ver9RccGvmEqAvyeMF9ZOB8W/rFQl/poM078K0Gl3w2uPv307VVYyrPM/3uH57Kw5vT9oXUnmKf3KP9YBDPxgC9Q/ADrqVZuxwT/MnzCPHztuv91TzxizooY/btIgt5lt4r//1VtJ82naP+itQjtsAZm/fnZmIcmT+j8bFrJwprG0P+1i7lO/k6A/+Nr2k2Omuj+ujP22WAenP2OcOajbKne/uDrBxseoej9p4GXMnn7Fv3Lzhzyy/9I/vWVtIVlKg799O1VWMqzzPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxrGaY/MX8/rw9bP9C3cr8hvx6mwJpxv1c2SWZZG2c/BKATB3vFdr8yBE8c0lV1vxpQFoTOL38/woTtIP3wdT/6YbpmUUF0P89EIUcDdGE/IxlMbWVXbb/SBz1ZEQl+v+zJV06Uh5E/Iyi6EvE6dj8jTtHV+Eh0P+bUGUXeZGE/dspp3+NeZb+w3/47pQZ+v0sRH+8Y9Jo/hGnpf2L7gT+IfSGq+etiv4nI/rpNUmc/SVfkDfsPaL/3pt1OPOR6v4ygyIIAAJs/GI6t11AvXz9iTP1wTK1ivzgl+4Z8hmg/3r128iAkaL9rLsChM26Cv4ygyIIAAJs/GI6t11AvXz9iTP1wTK1ivzgl+4Z8hmg/3r128iAkaL9rLsChM26Cv7bc7Anz2YI/rFkdjgbgjD9DutjWLoqIPxqChy9v9GY/wHO0qSeiYr/YG+77jJV8v6c5jg/G14I/dHfUhBW8jT8IEC5D3YeIP5WjrRAG42Y/K5eGsQqfYr/u+nyYpvl7v6c5jg/G14I/dHfUhBW8jT8IEC5D3YeIP5WjrRAG42Y/K5eGsQqfYr/u+nyYpvl7v/MABMZQVCY/BiFZlfpVgr/wjSPFHAB+vwcUWrR1vG0/2uZQ5jD/fb9bJOv9RQZzvzc+SkLKPi0/7AEsCgeihr+DrDhX3I11v9HJxgU3vmU/SpglBhvye78dpepl0dVwvzHJL/aCToQ/ZLo2NYW8dL8RAba+1tNkv1DnjH+bxWk/WovesE4Zc793Nkt22gx2v/th+j6rToQ/ymGeEjvXdr9mwpn91Rlpv3j0T9dOymc/gdBesY+hc79z7GFWz4Z1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnXjqngL+7PyI42GhHs+8/VA+CP8ejcD9g2zrBIsY9v8BemqAQel0//0TeM195gD+XEzVV1SiBv4BuCOr4XoS/IAHj/+NXTr/IY+d4dNppv9/pQNWsBXa/bD9G1kwGcj8Q6NepTTVEP8BoEgsILVA/dqdQA6d3bb+RTGTy5yeEPxr//ptyXXe/NLbl8Amvab+XvhfZXuOBv5CYQIlkAU+/vCinDc1ig7/tImcARRuBP6COSVXPjkS/0tpYTc39ar/Sbs72Ot9wv/YjKodUtWK/qI7vzFgKXj+kQSYNThVvv1wAQg3fW2q/WL5g+JEegL/Jc3hOPVaCv7anC4g56nY/upkgxg40fT+rgwxsPlOEP1EFu0Qv3IG/SDObB4MJc7/aL7X/xdp1vzLkFtK6knk/tBptDyMOYj+uS1Fd2IJ4v0JQS9Pw0Wu/gOPJFY1IZj8QIDva7jlNv7MsYS13h4E/UDIKT0SdWL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjJx1IIGqU/8hENdmFx/j94UWpuQ8D+P5Itg4E5Aoa/c7VU6yW8jL90k2vzPYAvv01RePj/8A/AsQDIoHL0l7/qXymsPtyfvwscZ+ie0CFAq+bu3809hD8rX2mkDYm7PzblFyoSGL0/E0A0IQzPSb/j/E0gtPNZv3iAOs4OgBC/pWEWSXYC37/CMNQRqWxwv0D8XYKtTH6//QtahHcYAkACQovhssuqP2OLXAHwsKw/oLXJpJiCtT8GQER/JCYnv3IWNZnqPEW/0wA8zzHcBD84CTH9HU/dvzY/ITSAg32/qNAgS/Aog7+65PaX+3YaQDlDXhD0/ak/NDZAnZ2dwj8CW9hphArIPygBP+QSs6o/gqdwk4l0ar+Rt67GTOFUPwimqZqwhuI/mbY5pDi33L+gvsaah+GMP3zX1/7KARNA/B/IL/OwmD8UULplDYbnPx8JbjI6Kug/Wr3uaEOivj+/zLLwaWKSvwFW5dJi8mc/OebUQlVB9j+1Mjyyb2jOv5AwExuzZqE/XiGebqoLBkDA49AOSpKRP8Dc5WilOew/HDipJIKc7D/bQOiHLfK6P6Nb0fMfp5a/zsOJQum8ZT8CYNM7l+zzPw9U1d6WHsO/yn79HsISoD+7ssy+Okb8P0eZMCBKpKo/XoGxgJFMwj+EYzlPauTHP5sKk9YER6u/UaOt6OxaZr8qdHB0ffxQv58L5unkMOI/Zh2N8WUs3T9PzQN6yrKGP3zX1/7KARNAglWh6J0mnT8mryIV8FfnP2gkpOU0IOg/v72ZDujhwL/3VEVAFcCRvw3GQlABgWm/J/0fupQq9j/ompqOOcDQP+HOpgghu6A/XiGebqoLBkCYmBRG6LeVPzkYaGsyEOw/ZChgPviT7D8pVic53Ny+vyGY/FyY6Za/CFDu6lxUab9ifEc30d3zP6WEqFBT9sU/0btjDgNOoD+7ssy+Okb8P/MfGChERb4/M8XT0ke8yj/YUtt1sBfUPxP7yi7k4MG/ViK3YXhYg7+jm660KIqPvy1TCdNsS+K/EbZMxmng2r92xRkkCVKlv352ZiHJk/o/mIXZqFQxtT/lSS5ovCWgPy2oeAy9uro/ve8x4O2ypr8ARQRO8qZ8vxytnaqKjoK/UvcfAND2xL/q34UGWTXTv3XIpGxE/pO/fTtVVjKs8z9l5t8K2/u8PxZ3pWWRvso/8NJaJ17W0z9tup+5nXvBPwR/jWdeIX2/JiXNLbx0iz8gkBbUy1Div6GFe8iISdo/7G07gy3Hob9+dmYhyZP6P46ace/YBbQ/bo4uvJt0oD8mKb89jsm5P0AvSUU6faY/ntMNUljVd7/iw/PFKyx9P2hVCeIOdsW/gOXBlzSW0j+8hfZ9jzWHv307VVYyrPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwyqU9hi8Yr89ypko1WlePzyBvtf3+W6/xT/UXSgIRL/gTPyJtAp0vwzqOyAVIHS/h8U0KDvaYb/uOedjHoZ4v5eyfDkc7ny/QKSqXDJbH7/3UQC20ed2v+z8laDqbWq/RwaKs8bLhr/rHvqpbfJ4v9jKTn08kX2/C4mVAzWmHL/x7uw2n5B6vxIRd/kDcGq/XEUFv3iHd7+wjIWYGwpwPyA9kmb2DPS+he93xgMVS7/CUPEGvip5v2OKGWSM7Wm/XBHXX7LTd787PWRFEOGJPxXsDFGWKwa/IdsJFV2LUb+CXR9kSiR5v6Ds2LYefhW/XBHXX7LTd787PWRFEOGJPxXsDFGWKwa/IdsJFV2LUb+CXR9kSiR5v6Ds2LYefhW/wC7VskI1e79gGy+wxY4sP7/K6ucHyV2/bVervZlwPD9itBmPOXl5vwwU45zFV3C/VO1EB/kce79InKT+8URgv7I6YWn8sl2//Ml5b8YzQD93NgsvgXp5v1Z+NN30h3O/VO1EB/kce79InKT+8URgv7I6YWn8sl2//Ml5b8YzQD93NgsvgXp5v1Z+NN30h3O/TzvbEOFQfb+fphFAzuhdP/b6YvCysoG/UMVIn1RSLj9NDM+qFpZ9v3SBQiAEhne/YdELVs1Ufb/Q0TF33HMbv9D551G2i3u/XxlhTMh8Rr9UZaqy5ap7v5UzbZkzmXW/35nscj3laL+3ZiUUv9mAPzYJxIOqAWA/AKP1oafs977zzx/v7nNkv3qYhXSvtn6/Lw42UaLtaL+6ncOAjAKDPwC5t2n8xWg/NnXIcRIkPz93ht+BalBivw6ww8hzwn+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC4p3HNiro/Sf1nn+UQ8D9hQdE/Z/h1v5iMkEAT6FM/ABaM5TEMEr8gES/mG24yP8WvcrSNUoI/DIR9rbElbT9soSK20EV7vzhK3O+IQWU/GEM0jSuhXb/DdTFwT0CEv8AunHhoOTy/VzhOD9e1fr+AhDgRfBlsP/NW6Wxy5IE/EquyzjWIcb9I/NRiwAxyP5iWilRm3VG/4H4KUV7XWb8PySxREDyCP+KuSW/4BWW/3Y2lcS+pgz8A+mLv0a0tPz52S1bJGIC/VXTUww2vdL+5ojeVCZ2APzZG2x3cYHG/cIv7eRvYWj+9eP7cuuCBP1Ti/YQR5nM/RmM8/8uGeb9KUw1EUP5/P4A2stCqdT6/dh8ZOsiOer/opCXs9mqEvzgr2tCJM2i/VznZ1hd7dr/ihcJonVt+P/EwaYCgkoA/Ap8wOtImdD/oh75QCPtoPyblngMSZ3m/sEqIfEBMXT+QzOrTF21PPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOV9IZAoZpT/jUiXwNFj+P51xhNKxpv4/6Y/wKqpXcr+05caIOxKRP8DevEmhOjA/aBTaN9jiD8DjQmrrMoyEv23RP2i70qI/Cxxn6J7QIUC//XLBfj6EP87DUh+Cn7s/y7tGmvotvT+D6ezvcHBCv+KQShD/Vlw/ZJ+GJPOOEz/c/yDwZg/fvxmJkHebhWW/LgYehcSCgD/9C1qEdxgCQLy7H5kEz6o/xaeVlUzdrD8M9tDM8pa1Pw8qHdHEtze/Wr9U7PIwUj8qxMWM188rP2mc8MRedN2/RcM0S6mMdb+ZwplhWliQP7rk9pf7dhpANzEbvoVfqj/JZpl9f2nCP2Tfp/128cc/51lMYprVqj+w56xDqktXv64tcIP8PFQ/yfEYWj9Q4j8oqZGPS/3cv055Ir5Dcoo/fNfX/soBE0A5SJJcxMWZP54XW/qfX+c/S3ZDl5gT6D8lUw4GN66/PzR0OpjKWjy/y5b3PgQJIj/on2yo9i/2P6D/ze1ff8+/hGprwbQVWT9eIZ5uqgsGQC7G8vahVpI/XBqldR8X7D9xneWcK4nsP1WiNVjSPbw/XDYi2ke5YT/c7+9qe+Yxv2uQf9vv4fM/uO4V4aQUxL9QGT/AUDRpv7uyzL46Rvw/uKWPnutqqj8a2/PIKmrCP26ZSG4H98c/9E+Empc9q78covP31oEkPxnU867GGi+/VTYVjNRQ4j9QotRAogrdPxEW8Pr6hmM/fNfX/soBE0Bp9ezqCOWbP5vrVv58aec/qHB4Jnwu6D9zjeYi0Z/AvwGYZlmUyFA/mrihTKMyKj8IJshK3TT2P5TqZHimedA/vn1PnKOQYb9eIZ5uqgsGQF6J2K11YpQ/XSO3fRQg7D//V+2JlKLsPzcVlnUxOb6/VegimnRSQD8uAGY/kZ4RP38h75ci5fM/40EulPJ5xT8uR52TTzJHv7uyzL46Rvw/vb83SETIvT8lzPaFtIbKP+hZj/8Q/dM/n2ntE7u8wb+oM5bfJFlkv+g7qWyq34S/7xge9vNC4r/rxqkXr7zav3ei0BcPvZW/fnZmIcmT+j+qedIFgsK0PyCg4sot9p8/XBfFnFBquj+lgvUzxpmmvz/U9kmle3O/R6JdgLZVdb/5s5jdtQ7Fv70/eVMvAtO/PYJDpWfobL99O1VWMqzzP7ARowF3Yb0/1Iw/gO3Oyj9UYmxroe/TPw6W2LwOp8E/0DdpYLGSeb8I2iwv1piKP8azXnyqVuK/QuJlQrt32j/A77QBbIqgv352ZiHJk/o/fXsa8L6jtD+47ZNz1GSgP0DM0sAQXLo/HAsyY4iqpj+27pTFETp6v2qlQHNh5n8/QvmDPkQ5xb8cXeePzvLSP4xcOc7V8o2/fTtVVjKs8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcmgtEwLh0vwWXb5RthYA/UwcdUKiucb8b4pDYhpqDP5X285JjnVq/MMc+rfMch798a8fT5rx0vxCfeHyJN5E/SxYdHg21Zr/vufE8w1+CPx1vDSwxM1W//nA68aLyir+A+3jvltsqv3AAo/KwN5E/w2JdNF/XZr9hLT1Wu1+CP41SSex2Ikq//F42l3Lyir+moh2Rs0B6v7kIik3k2ZA/NeR9tYeudD/aZPTCJcKAP1hcXGtMEDy/uZcA6QMxjL9FYhEYe1N6v/GZ72lrfZc/OIMREOBQdD+e+ibynnqAP4NuCMZYBTq/8IVg9HCAh79FYhEYe1N6v/GZ72lrfZc/OIMREOBQdD+e+ibynnqAP4NuCMZYBTq/8IVg9HCAh78YnuEutRqEP8ItGdb8PIc/ZXbUoFMlJj8tuxuTOP6CPyjrRSFpy0S/Vl3LhpRtjL+s9VxOZjiEP6cNSprCHnA/VMgaZhegLD/xCMTkM0qDP2iTGBYOVUW/0epaCyvnkL+s9VxOZjiEP6cNSprCHnA/VMgaZhegLD/xCMTkM0qDP2iTGBYOVUW/0epaCyvnkL+SlX5bi29ZP1UbRQR9VYA/KpIlN08tZD/kN++zsD+BPyLoa1W3mls/X47CibK5hL9V6xhwyWRZPxZlLTtI9nc/jBO7hnkLcz+xzaGl4l5+P8Pvw2EfKWI/BqXwYy2rg7/Z+vChvruEv/TF9XXTRYg/EBCnS/3+dr/KFuActauCP362aoHtZGS/dCfG192jiL8qmTg2G72Ev3Grtp0M3oY/xsqWhYO9eb/amcZMnwWCP7ihLdibvmW/w7O9KrVKiL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksETXgBhpSMAUOUdJRSlC4="}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGAIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQOLOOVAeJYWMAWyUTegDjAF0lEdAL+kep4rz5HV9lChoBkdA4wJ1unl4kmgHTegDaAhHQC/nLeQ+2Vp1fZQoaAZHQOGLcpoIv8JoB03oA2gIR0Av5aZhKDkEdX2UKGgGR0DjgBHjG1hLaAdN6ANoCEdAL+QN0/4ZdnV9lChoBkdA4i3EvhQ3xWgHTegDaAhHQDU07o0Q9Rt1fZQoaAZHQOOwWvjGT9toB03oA2gIR0A1M/jbSJCTdX2UKGgGR0DjnwfekYXPaAdN6ANoCEdANTM+NcW0q3V9lChoBkdA4b5yzTvy9WgHTegDaAhHQDUyhVU+9rZ1fZQoaAZHQOGvTw5FPSFoB03oA2gIR0BBDkyULUkOdX2UKGgGR0DkO7N+uvECaAdN6ANoCEdAQQ3S0BwMpnV9lChoBkdA5zRSoTXarWgHTegDaAhHQEENdhy8zyl1fZQoaAZHQOPzlnrt3OhoB03oA2gIR0BBDRd6cAindX2UKGgGR0DnGqXtDUmVaAdN6ANoCEdAQxNHYpUgjnV9lChoBkdA4xaOQTdtVWgHTegDaAhHQEMS1jy4FzN1fZQoaAZHQOJXNrwBo25oB03oA2gIR0BDEoP9UCJXdX2UKGgGR0Diwe10qYqoaAdN6ANoCEdAQxImPYFqz3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV9BsAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWeAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiTXgBhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWeAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVTXgBhZRoGXSUUpSMBl9zaGFwZZRNeAGFlIwDbG93lGgRKJbACwAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgLTXgBhZRoGXSUUpSMBGhpZ2iUaBEolsALAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaAtNeAGFlGgZdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [376], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVKQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWEQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAZRoFUsRhZRoGXSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBEolkQAAAAAAAAAzczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL6UaAtLEYWUaBl0lFKUjARoaWdolGgRKJZEAAAAAAAAAM3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+lGgLSxGFlGgZdJRSlIwIbG93X3JlcHKUjAQtMC40lIwJaGlnaF9yZXBylIwDMC40lIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]", "_shape": [17], "low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]", "high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]", "low_repr": "-0.4", "high_repr": "0.4", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |