metadata
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1957.59 +/- 114.55
name: mean_reward
verified: false
A2C Agent playing AntBulletEnv-v0
This is a trained model of a A2C agent playing AntBulletEnv-v0 using the stable-baselines3 library.
Usage (with Stable-baselines3)
import gym
from stable_baselines3 import A2C
from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
repo_id="AntBulletEnv-v0",
filename="a2c-AntBulletEnv-v0.zip",
)
model = A2C.load(checkpoint)
# Evaluate the agent and watch it
eval_env = gym.make("AntBulletEnv-v0")
mean_reward, std_reward = evaluate_policy(
model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False
)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")