metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
datasets:
- common_voice_14_0
metrics:
- wer
model-index:
- name: XLS-R-LUGANDA-ASR-CV-14-1B
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_14_0
type: common_voice_14_0
config: lg
split: test
args: lg
metrics:
- name: Wer
type: wer
value: 0.30603965548369283
XLS-R-LUGANDA-ASR-CV-14-1B
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_14_0 dataset. It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.3060
- Cer: 0.0713
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
1.5535 | 0.18 | 400 | 0.1685 | inf | 0.6590 |
0.539 | 0.36 | 800 | 0.1516 | inf | 0.5934 |
0.49 | 0.54 | 1200 | 0.1365 | inf | 0.5466 |
0.4569 | 0.72 | 1600 | 0.1364 | inf | 0.5523 |
0.4845 | 0.45 | 2000 | 0.1525 | inf | 0.5907 |
0.4592 | 0.54 | 2400 | 0.1485 | inf | 0.5766 |
0.4447 | 0.63 | 2800 | 0.1397 | inf | 0.5482 |
0.426 | 0.72 | 3200 | 0.1352 | inf | 0.5290 |
0.4454 | 0.81 | 3600 | inf | 0.5330 | 0.1333 |
0.4188 | 0.9 | 4000 | inf | 0.4903 | 0.1240 |
0.4083 | 0.99 | 4400 | inf | 0.4857 | 0.1226 |
0.367 | 1.08 | 4800 | inf | 0.4499 | 0.1114 |
0.3468 | 1.17 | 5200 | inf | 0.4345 | 0.1063 |
0.3401 | 1.27 | 5600 | inf | 0.4130 | 0.1009 |
0.3269 | 1.36 | 6000 | inf | 0.4113 | 0.1004 |
0.3171 | 1.45 | 6400 | inf | 0.3934 | 0.0956 |
0.2996 | 1.54 | 6800 | inf | 0.3803 | 0.0913 |
0.288 | 1.63 | 7200 | inf | 0.3681 | 0.0891 |
0.2812 | 1.72 | 7600 | inf | 0.3573 | 0.0853 |
0.2699 | 1.81 | 8000 | inf | 0.3504 | 0.0835 |
0.2584 | 1.9 | 8400 | inf | 0.3343 | 0.0786 |
0.2424 | 1.99 | 8800 | inf | 0.3232 | 0.0759 |
0.2201 | 2.08 | 9200 | inf | 0.3176 | 0.0740 |
0.2031 | 2.17 | 9600 | inf | 0.3085 | 0.0719 |
0.2007 | 2.26 | 10000 | inf | 0.3060 | 0.0713 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1
- Datasets 2.17.0
- Tokenizers 0.15.2