dmusingu's picture
End of training
75e4ae6 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - generated_from_trainer
datasets:
  - common_voice_14_0
metrics:
  - wer
model-index:
  - name: XLS-R-LUGANDA-ASR-CV-14-1B
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_14_0
          type: common_voice_14_0
          config: lg
          split: test
          args: lg
        metrics:
          - name: Wer
            type: wer
            value: 0.30603965548369283

XLS-R-LUGANDA-ASR-CV-14-1B

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_14_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.3060
  • Cer: 0.0713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
1.5535 0.18 400 0.1685 inf 0.6590
0.539 0.36 800 0.1516 inf 0.5934
0.49 0.54 1200 0.1365 inf 0.5466
0.4569 0.72 1600 0.1364 inf 0.5523
0.4845 0.45 2000 0.1525 inf 0.5907
0.4592 0.54 2400 0.1485 inf 0.5766
0.4447 0.63 2800 0.1397 inf 0.5482
0.426 0.72 3200 0.1352 inf 0.5290
0.4454 0.81 3600 inf 0.5330 0.1333
0.4188 0.9 4000 inf 0.4903 0.1240
0.4083 0.99 4400 inf 0.4857 0.1226
0.367 1.08 4800 inf 0.4499 0.1114
0.3468 1.17 5200 inf 0.4345 0.1063
0.3401 1.27 5600 inf 0.4130 0.1009
0.3269 1.36 6000 inf 0.4113 0.1004
0.3171 1.45 6400 inf 0.3934 0.0956
0.2996 1.54 6800 inf 0.3803 0.0913
0.288 1.63 7200 inf 0.3681 0.0891
0.2812 1.72 7600 inf 0.3573 0.0853
0.2699 1.81 8000 inf 0.3504 0.0835
0.2584 1.9 8400 inf 0.3343 0.0786
0.2424 1.99 8800 inf 0.3232 0.0759
0.2201 2.08 9200 inf 0.3176 0.0740
0.2031 2.17 9600 inf 0.3085 0.0719
0.2007 2.26 10000 inf 0.3060 0.0713

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1
  • Datasets 2.17.0
  • Tokenizers 0.15.2