DreamBooth Parameters
class autotrain.trainers.dreambooth.params.DreamBoothTrainingParams
< source >( model: str = None vae_model: Optional = None revision: Optional = None tokenizer: Optional = None image_path: str = None class_image_path: Optional = None prompt: str = None class_prompt: Optional = None num_class_images: int = 100 class_labels_conditioning: Optional = None prior_preservation: bool = False prior_loss_weight: float = 1.0 project_name: str = 'dreambooth-model' seed: int = 42 resolution: int = 512 center_crop: bool = False train_text_encoder: bool = False batch_size: int = 4 sample_batch_size: int = 4 epochs: int = 1 num_steps: int = None checkpointing_steps: int = 500 resume_from_checkpoint: Optional = None gradient_accumulation: int = 1 disable_gradient_checkpointing: bool = False lr: float = 0.0001 scale_lr: bool = False scheduler: str = 'constant' warmup_steps: int = 0 num_cycles: int = 1 lr_power: float = 1.0 dataloader_num_workers: int = 0 use_8bit_adam: bool = False adam_beta1: float = 0.9 adam_beta2: float = 0.999 adam_weight_decay: float = 0.01 adam_epsilon: float = 1e-08 max_grad_norm: float = 1.0 allow_tf32: bool = False prior_generation_precision: Optional = None local_rank: int = -1 xformers: bool = False pre_compute_text_embeddings: bool = False tokenizer_max_length: Optional = None text_encoder_use_attention_mask: bool = False rank: int = 4 xl: bool = False mixed_precision: Optional = None token: Optional = None push_to_hub: bool = False username: Optional = None validation_prompt: Optional = None num_validation_images: int = 4 validation_epochs: int = 50 checkpoints_total_limit: Optional = None validation_images: Optional = None logging: bool = False )
Parameters
- model (str) — Name of the model to be used for training.
- vae_model (Optional[str]) — Name of the VAE model to be used, if any.
- revision (Optional[str]) — Specific model version to use.
- tokenizer (Optional[str]) — Tokenizer to be used, if different from the model.
- image_path (str) — Path to the training images.
- class_image_path (Optional[str]) — Path to the class images.
- prompt (str) — Prompt for the instance images.
- class_prompt (Optional[str]) — Prompt for the class images.
- num_class_images (int) — Number of class images to generate.
- class_labels_conditioning (Optional[str]) — Conditioning labels for class images.
- prior_preservation (bool) — Enable prior preservation during training.
- prior_loss_weight (float) — Weight of the prior preservation loss.
- project_name (str) — Name of the project for output directory.
- seed (int) — Random seed for reproducibility.
- resolution (int) — Resolution of the training images.
- center_crop (bool) — Enable center cropping of images.
- train_text_encoder (bool) — Enable training of the text encoder.
- batch_size (int) — Batch size for training.
- sample_batch_size (int) — Batch size for sampling.
- epochs (int) — Number of training epochs.
- num_steps (int) — Maximum number of training steps.
- checkpointing_steps (int) — Steps interval for checkpointing.
- resume_from_checkpoint (Optional[str]) — Path to resume training from a checkpoint.
- gradient_accumulation (int) — Number of gradient accumulation steps.
- disable_gradient_checkpointing (bool) — Disable gradient checkpointing.
- lr (float) — Learning rate for training.
- scale_lr (bool) — Enable scaling of the learning rate.
- scheduler (str) — Type of learning rate scheduler.
- warmup_steps (int) — Number of warmup steps for learning rate scheduler.
- num_cycles (int) — Number of cycles for learning rate scheduler.
- lr_power (float) — Power factor for learning rate scheduler.
- dataloader_num_workers (int) — Number of workers for data loading.
- use_8bit_adam (bool) — Enable use of 8-bit Adam optimizer.
- adam_beta1 (float) — Beta1 parameter for Adam optimizer.
- adam_beta2 (float) — Beta2 parameter for Adam optimizer.
- adam_weight_decay (float) — Weight decay for Adam optimizer.
- adam_epsilon (float) — Epsilon parameter for Adam optimizer.
- max_grad_norm (float) — Maximum gradient norm for clipping.
- allow_tf32 (bool) — Allow use of TF32 for training.
- prior_generation_precision (Optional[str]) — Precision for prior generation.
- local_rank (int) — Local rank for distributed training.
- xformers (bool) — Enable xformers memory efficient attention.
- pre_compute_text_embeddings (bool) — Pre-compute text embeddings before training.
- tokenizer_max_length (Optional[int]) — Maximum length for tokenizer.
- text_encoder_use_attention_mask (bool) — Use attention mask for text encoder.
- rank (int) — Rank for distributed training.
- xl (bool) — Enable XL model training.
- mixed_precision (Optional[str]) — Enable mixed precision training.
- token (Optional[str]) — Token for accessing the model hub.
- push_to_hub (bool) — Enable pushing the model to the hub.
- username (Optional[str]) — Username for the model hub.
- validation_prompt (Optional[str]) — Prompt for validation images.
- num_validation_images (int) — Number of validation images to generate.
- validation_epochs (int) — Epoch interval for validation.
- checkpoints_total_limit (Optional[int]) — Total limit for checkpoints.
- validation_images (Optional[str]) — Path to validation images.
- logging (bool) — Enable logging using TensorBoard.
DreamBoothTrainingParams