Quantization
FuriosaAIQuantizer
class optimum.furiosa.FuriosaAIQuantizer
< source >( model_path: Path config: typing.Optional[ForwardRef('PretrainedConfig')] = None )
Handles the FuriosaAI quantization process for models shared on huggingface.co/models.
Computes the quantization ranges.
fit
< source >( dataset: Dataset calibration_config: CalibrationConfig batch_size: int = 1 )
Parameters
- dataset (
Dataset
) — The dataset to use when performing the calibration step. - calibration_config (~CalibrationConfig) — The configuration containing the parameters related to the calibration step.
- batch_size (
int
, optional, defaults to 1) — The batch size to use when collecting the quantization ranges values.
Performs the calibration step and computes the quantization ranges.
from_pretrained
< source >( model_or_path: typing.Union[ForwardRef('FuriosaAIQuantizer'), str, pathlib.Path] file_name: typing.Optional[str] = None )
Parameters
- model_or_path (
Union[FuriosaAIModel, str, Path]
) — Can be either:- A path to a saved exported ONNX Intermediate Representation (IR) model, e.g., `./my_model_directory/.
- Or an
FuriosaAIModelModelForXX
class, e.g.,FuriosaAIModelModelForImageClassification
.
- file_name(
Optional[str]
, optional) — Overwrites the default model file name from"model.onnx"
tofile_name
. This allows you to load different model files from the same repository or directory.
Instantiates a FuriosaAIQuantizer
from a model path.
get_calibration_dataset
< source >( dataset_name: str num_samples: int = 100 dataset_config_name: typing.Optional[str] = None dataset_split: typing.Optional[str] = None preprocess_function: typing.Optional[typing.Callable] = None preprocess_batch: bool = True seed: int = 2016 use_auth_token: bool = False )
Parameters
- dataset_name (
str
) — The dataset repository name on the Hugging Face Hub or path to a local directory containing data files to load to use for the calibration step. - num_samples (
int
, optional, defaults to 100) — The maximum number of samples composing the calibration dataset. - dataset_config_name (
Optional[str]
, optional) — The name of the dataset configuration. - dataset_split (
Optional[str]
, optional) — Which split of the dataset to use to perform the calibration step. - preprocess_function (
Optional[Callable]
, optional) — Processing function to apply to each example after loading dataset. - preprocess_batch (
bool
, optional, defaults toTrue
) — Whether thepreprocess_function
should be batched. - seed (
int
, optional, defaults to 2016) — The random seed to use when shuffling the calibration dataset. - use_auth_token (
bool
, optional, defaults toFalse
) — Whether to use the token generated when runningtransformers-cli login
(necessary for some datasets like ImageNet).
Creates the calibration datasets.Dataset
to use for the post-training static quantization calibration step.
partial_fit
< source >( dataset: Dataset calibration_config: CalibrationConfig batch_size: int = 1 )
Parameters
- dataset (
Dataset
) — The dataset to use when performing the calibration step. - calibration_config (
CalibrationConfig
) — The configuration containing the parameters related to the calibration step. - batch_size (
int
, optional, defaults to 1) — The batch size to use when collecting the quantization ranges values.
Performs the calibration step and collects the quantization ranges without computing them.
quantize
< source >( quantization_config: QuantizationConfig save_dir: typing.Union[str, pathlib.Path] file_suffix: typing.Optional[str] = 'quantized' calibration_tensors_range: typing.Optional[typing.Dict[str, typing.Tuple[float, float]]] = None )
Parameters
- quantization_config (
QuantizationConfig
) — The configuration containing the parameters related to quantization. - save_dir (
Union[str, Path]
) — The directory where the quantized model should be saved. - file_suffix (
Optional[str]
, optional, defaults to"quantized"
) — The file_suffix used to save the quantized model. - calibration_tensors_range (
Optional[Dict[NodeName, Tuple[float, float]]]
, optional) — The dictionary mapping the nodes name to their quantization ranges, used and required only when applying static quantization.
Quantizes a model given the optimization specifications defined in quantization_config
.