metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9338077114016217
- name: Recall
type: recall
value: 0.9496802423426456
- name: F1
type: f1
value: 0.941677096370463
- name: Accuracy
type: accuracy
value: 0.986504385706717
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0597
- Precision: 0.9338
- Recall: 0.9497
- F1: 0.9417
- Accuracy: 0.9865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0784 | 1.0 | 1756 | 0.0742 | 0.9053 | 0.9302 | 0.9176 | 0.9793 |
0.0404 | 2.0 | 3512 | 0.0583 | 0.9294 | 0.9485 | 0.9389 | 0.9859 |
0.0255 | 3.0 | 5268 | 0.0597 | 0.9338 | 0.9497 | 0.9417 | 0.9865 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3