File size: 14,392 Bytes
c2e976f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f27f5878950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27f58789e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27f5878a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27f5878b00>", "_build": "<function ActorCriticPolicy._build at 0x7f27f5878b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f27f5878c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27f5878cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f27f5878d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27f5878dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27f5878e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27f5878ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f27f58d31b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667901470898356340, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCguT2BmRA/CEyBvEUdhr7Tgqw8E6G6PQAAAAAAAAAA5hA7PY+aS7rCHo67SrOVtqnTJztYvgU2AACAPwAAgD8A7zm+KRN5vF5t7Lxg8ji70mvcPdJeFTwAAIA/AACAP1r76r3K50Y/5og6PXAGVr7ZoYS9s8pRPAAAAAAAAAAAZlsfvs9/Drzen5Q7bUwPOu0MZT1GIN66AACAPwAAgD9gbS4+4WqNObpEErrxcCu23Kc6PGnqKjkAAIA/AACAP+Zvmj2PO0w/wsCOvv5/Y77mhC29h9eAvgAAAAAAAAAA5tiAPVw3DrouN3G7c03btUtGm7snh446AACAPwAAgD+G7nG+u2qevCst9DmVwCM4N4wLPq/4E7kAAIA/AACAP+aUAL72GGs5wmzUOJJ+TbbVf/m7Bqn2twAAgD8AAIA/us5TvtfnPjw3E4G7O56FObrEyr3K+5s6AACAPwAAgD9mOgY9ru2SuvWNTrqtik82qD1quUjrbjkAAIA/AACAPwAyYTzL9jU/SlokvthhB75ARc+9KJjBvAAAAAAAAAAAmrtAPlTpobyF9EE8FAi2ulrFDb6+npC7AACAPwAAgD+aKX49AsQHP0Bof70EZCy+Nn6vu4zCuz0AAAAAAAAAABqLlj3DaSO6FUelO8Qmejh0YVA6Ys1RugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImNpSB3kRM0CUhpRSlIwBbJRN6AOMAXSUR0CBiUdhiLEUdX2UKGgGaAloD0MILPTBMjboU8CUhpRSlGgVTW8BaBZHQIGbFa6jFhp1fZQoaAZoCWgPQwjoZn+g3MZcQJSGlFKUaBVN6ANoFkdAgaFe8oQWe3V9lChoBmgJaA9DCA5lqIqpyVXAlIaUUpRoFU0gAWgWR0CBoZAxi5NHdX2UKGgGaAloD0MIk40HW+wiWECUhpRSlGgVTegDaBZHQIGiTOmixml1fZQoaAZoCWgPQwh6GjBI+rTav5SGlFKUaBVL12gWR0CBpvD6WPcSdX2UKGgGaAloD0MIM6g2OBFdS0CUhpRSlGgVTegDaBZHQIGnlLL6k691fZQoaAZoCWgPQwhf0hito3RQQJSGlFKUaBVN6ANoFkdAgaqjiOvMbHV9lChoBmgJaA9DCP6ZQXxg6lHAlIaUUpRoFU24AWgWR0CBtqfQKKHgdX2UKGgGaAloD0MI7ded7rwYaMCUhpRSlGgVTRMBaBZHQIG+IAOrhit1fZQoaAZoCWgPQwhRFr6+1mFfQJSGlFKUaBVN6ANoFkdAgcL86V+qi3V9lChoBmgJaA9DCB06Pe/GUhnAlIaUUpRoFU0rAWgWR0CB7cBFuvU0dX2UKGgGaAloD0MI0clS6/2gUECUhpRSlGgVTegDaBZHQIH/anFYMfB1fZQoaAZoCWgPQwiW6CyzCDxhQJSGlFKUaBVN6ANoFkdAggYZlFtsN3V9lChoBmgJaA9DCBzqd2FrKjZAlIaUUpRoFUv8aBZHQIIIYLiMo+h1fZQoaAZoCWgPQwgx0ova/edZQJSGlFKUaBVN6ANoFkdAgg5KLsKLKnV9lChoBmgJaA9DCB3k9WBSuVVAlIaUUpRoFU3oA2gWR0CCEXib2Dg7dX2UKGgGaAloD0MImus00lJnWUCUhpRSlGgVTegDaBZHQIIaxZfUnXx1fZQoaAZoCWgPQwh319mQfy5jQJSGlFKUaBVN6ANoFkdAgh9JqASWaHV9lChoBmgJaA9DCMjPRq6bUklAlIaUUpRoFU3oA2gWR0CCKcP07KaHdX2UKGgGaAloD0MIPPVIg9s+MsCUhpRSlGgVTR0BaBZHQIIwg6ZH/cZ1fZQoaAZoCWgPQwiAme/gp75gQJSGlFKUaBVN6ANoFkdAglYOjynUD3V9lChoBmgJaA9DCLeyRGeZy2VAlIaUUpRoFU3oA2gWR0CCVk6ErXlKdX2UKGgGaAloD0MIUWnEzD7/H8CUhpRSlGgVTegDaBZHQIJdWQlruYx1fZQoaAZoCWgPQwgAHHv2XNFhQJSGlFKUaBVN6ANoFkdAgl4zDGcWkHV9lChoBmgJaA9DCN4DdF/O3lxAlIaUUpRoFU3oA2gWR0CCYgJ8fFJhdX2UKGgGaAloD0MIVrjlIylXWUCUhpRSlGgVTegDaBZHQIJxHyNGViZ1fZQoaAZoCWgPQwjE7GXbacNAwJSGlFKUaBVL22gWR0CCfoC6H0sfdX2UKGgGaAloD0MItHOaBdpQVECUhpRSlGgVTegDaBZHQIJ/1BD5TIh1fZQoaAZoCWgPQwgnM95Weh5UQJSGlFKUaBVN6ANoFkdAgoVumaYu03V9lChoBmgJaA9DCK34hsJnjzhAlIaUUpRoFU3oA2gWR0CCvQLNwBHTdX2UKGgGaAloD0MIyf/k794wUECUhpRSlGgVTegDaBZHQILDf2Xb/Ot1fZQoaAZoCWgPQwi8lLpkHBZSQJSGlFKUaBVN6ANoFkdAgstME7nxKHV9lChoBmgJaA9DCCHkvP+PoFFAlIaUUpRoFU3oA2gWR0CCzlECvHLidX2UKGgGaAloD0MIeR7cnbUXQcCUhpRSlGgVTQgBaBZHQILSLsv7FbV1fZQoaAZoCWgPQwiLwcO0b4hRQJSGlFKUaBVN6ANoFkdAgtdlUyYXwnV9lChoBmgJaA9DCATJO4cyalJAlIaUUpRoFU3oA2gWR0CC3CVymygPdX2UKGgGaAloD0MI9l0R/G/CUUCUhpRSlGgVTegDaBZHQILm7di2Dxt1fZQoaAZoCWgPQwjko8UZQ65jQJSGlFKUaBVN6ANoFkdAgu1XlS0jT3V9lChoBmgJaA9DCEUtza0QolhAlIaUUpRoFU3oA2gWR0CDEPsIE8q4dX2UKGgGaAloD0MIrhBWY4lTZkCUhpRSlGgVTegDaBZHQIMROWUr08N1fZQoaAZoCWgPQwgbLJyk+eNfQJSGlFKUaBVN6ANoFkdAgxjAFPi1iXV9lChoBmgJaA9DCD/+0qI+VV9AlIaUUpRoFU3oA2gWR0CDHOMiKR+0dX2UKGgGaAloD0MI4/viUpVDX0CUhpRSlGgVTegDaBZHQIMthIxxkup1fZQoaAZoCWgPQwjcR25Nuv5gQJSGlFKUaBVN6ANoFkdAgzsv7vXsgXV9lChoBmgJaA9DCJseFJSil2FAlIaUUpRoFU3oA2gWR0CDPHUVBUrDdX2UKGgGaAloD0MIAKq4cYsZA8CUhpRSlGgVTRQBaBZHQINEkI7eVLV1fZQoaAZoCWgPQwgwndZtUDtjQJSGlFKUaBVNGgNoFkdAg0bHI6r/83V9lChoBmgJaA9DCFUX8DLDFF3AlIaUUpRoFU0PAWgWR0CDbZ9uP3i8dX2UKGgGaAloD0MIem6hK5FsYUCUhpRSlGgVTegDaBZHQIN5c7lq8Dl1fZQoaAZoCWgPQwjt8q0Pa3dgQJSGlFKUaBVN6ANoFkdAg3++On2qUHV9lChoBmgJaA9DCEPJ5NTOpVZAlIaUUpRoFU3oA2gWR0CDhyjk+5e7dX2UKGgGaAloD0MI6iXGMv1rY0CUhpRSlGgVTegDaBZHQIONw1m8M/h1fZQoaAZoCWgPQwj7zFmfcm9bQJSGlFKUaBVN6ANoFkdAg5LIcaOxS3V9lChoBmgJaA9DCMo0mlyMCV5AlIaUUpRoFU3oA2gWR0CDl42VmjCYdX2UKGgGaAloD0MISUkPQ6uqZUCUhpRSlGgVTYUCaBZHQIOYSUHIIWx1fZQoaAZoCWgPQwip2JjXER9CQJSGlFKUaBVN6ANoFkdAg6GiFTNt7HV9lChoBmgJaA9DCBTrVPkeGmNAlIaUUpRoFU3oA2gWR0CDqCsXizcAdX2UKGgGaAloD0MIKQZINIG6OsCUhpRSlGgVTTMBaBZHQIOwEEeQuEp1fZQoaAZoCWgPQwjnVDIA1BFlQJSGlFKUaBVNPwJoFkdAg7y50bLlm3V9lChoBmgJaA9DCOsB85CpoWNAlIaUUpRoFU2lA2gWR0CDv1q5byH3dX2UKGgGaAloD0MIR+f8FMenUUCUhpRSlGgVTegDaBZHQIPnhrP+n651fZQoaAZoCWgPQwhMUwQ4vXRaQJSGlFKUaBVN6ANoFkdAg/iZ57gKnnV9lChoBmgJaA9DCKLsLeV8MFVAlIaUUpRoFU3oA2gWR0CD+h/0dzXCdX2UKGgGaAloD0MINfEO8KSKUkCUhpRSlGgVTegDaBZHQIQDx6MR6GB1fZQoaAZoCWgPQwgbnl4pyyhdQJSGlFKUaBVN6ANoFkdAhAZYWDYh+3V9lChoBmgJaA9DCJDXg0nxFlZAlIaUUpRoFU3oA2gWR0CEO822G7BgdX2UKGgGaAloD0MIlNqLaDvSYECUhpRSlGgVTegDaBZHQIRClyvLX+V1fZQoaAZoCWgPQwjMCdrk8P5XQJSGlFKUaBVN6ANoFkdAhFK0L+glGHV9lChoBmgJaA9DCBOe0OtPPE9AlIaUUpRoFU3oA2gWR0CEWKzD4xk/dX2UKGgGaAloD0MIlSh7SzlUYkCUhpRSlGgVTegDaBZHQIRd4OFxn4B1fZQoaAZoCWgPQwhiMepaexlaQJSGlFKUaBVN6ANoFkdAhF67q6e5F3V9lChoBmgJaA9DCKgbKPBOwGlAlIaUUpRoFU17AWgWR0CEaM4PwuuidX2UKGgGaAloD0MIxjL9EvGYV0CUhpRSlGgVTegDaBZHQIRpaD5CWu51fZQoaAZoCWgPQwhZv5mYLlxXQJSGlFKUaBVN6ANoFkdAhG/U2UB4lnV9lChoBmgJaA9DCFsGnKVkG11AlIaUUpRoFU3oA2gWR0CEd7l+3H7xdX2UKGgGaAloD0MIPggB+RLhVkCUhpRSlGgVTegDaBZHQISDXOhTOxB1fZQoaAZoCWgPQwiT5Lm+D+lYQJSGlFKUaBVN6ANoFkdAhIWF7D2rXHV9lChoBmgJaA9DCO0RaoZU/l9AlIaUUpRoFU3oA2gWR0CEqEXXRPXTdX2UKGgGaAloD0MI3c6+8qD/akCUhpRSlGgVTRICaBZHQIS03X9R77d1fZQoaAZoCWgPQwhXzXNEvrtRQJSGlFKUaBVN6ANoFkdAhLcRgJC0GHV9lChoBmgJaA9DCEZ55uWw4VlAlIaUUpRoFU3oA2gWR0CEuE2BreqJdX2UKGgGaAloD0MIelORCmPYaECUhpRSlGgVTf8BaBZHQIS6EfaHsTp1fZQoaAZoCWgPQwhGQIUjyBphQJSGlFKUaBVN6ANoFkdAhL+pwsGxEHV9lChoBmgJaA9DCLQglPdxY1hAlIaUUpRoFU3oA2gWR0CE8/xUedTYdX2UKGgGaAloD0MI0/nwLEHuRECUhpRSlGgVTRkBaBZHQIT3p+QU5+91fZQoaAZoCWgPQwgst7QaErdZQJSGlFKUaBVN6ANoFkdAhPnmlZX+2nV9lChoBmgJaA9DCJrS+lsCrFFAlIaUUpRoFU3oA2gWR0CFB0Vlf7aadX2UKGgGaAloD0MIaM2PvzT4YUCUhpRSlGgVTegDaBZHQIUMNld1Mdt1fZQoaAZoCWgPQwjkTBO2n4hkQJSGlFKUaBVNJgNoFkdAhRAadtl7MXV9lChoBmgJaA9DCL6HS447TGBAlIaUUpRoFU3oA2gWR0CFELuKGcnWdX2UKGgGaAloD0MIOdOE7SfSWkCUhpRSlGgVTegDaBZHQIURc5sCT2Z1fZQoaAZoCWgPQwh6U5EK43xjQJSGlFKUaBVN6ANoFkdAhRnlVT72tnV9lChoBmgJaA9DCMUfRZ25YmNAlIaUUpRoFU3oA2gWR0CFNWDVYp2EdX2UKGgGaAloD0MIoRFsXH/aYkCUhpRSlGgVTegDaBZHQIU4DqMWGh51fZQoaAZoCWgPQwjjiSDOw2BcQJSGlFKUaBVN6ANoFkdAhXL1/DtPYXV9lChoBmgJaA9DCEeNCTGXhF1AlIaUUpRoFU3oA2gWR0CFdcEovzvrdX2UKGgGaAloD0MIoDL+fcZOVUCUhpRSlGgVTegDaBZHQIV3ILXtjTd1fZQoaAZoCWgPQwiSsdr8v1ZaQJSGlFKUaBVN6ANoFkdAhXkrUTcqOXV9lChoBmgJaA9DCNGxg0pcKFJAlIaUUpRoFU3oA2gWR0CFf/AB1cMWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}