Zabantu - Sepedi
This is a variant of Zabantu pre-trained on a monolingual dataset of Sepedi(nso) sentences on a transformer network with 120 million traininable parameters.
Usage Example(s)
from transformers import pipeline
# Initialize the pipeline for masked language model
unmasker = pipeline('fill-mask', model='dsfsi/zabantu-nso-120m')
# The Sepedi sentence with a masked token
sample_sentences = ["mopresidente wa <mask> wa afrika-borwa", # original token: maloba
"bašomedi ba polase ya dinamune ya zebediela citrus ba hlomile magato a <mask> malebana le go se sepetšwe botse ga dilo ka polaseng eo." # original token: boipelaetšo
]
# Perform the fill-mask task
results = unmasker(sentence)
# Display the results
for result in results:
print(f"Predicted word: {result['token_str']} - Score: {result['score']}")
print(f"Full sentence: {result['sequence']}\n")
print("=" * 80)
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.