duyntnet's picture
Upload README.md with huggingface_hub
180087c verified
|
raw
history blame
3.54 kB
metadata
license: other
language:
  - en
pipeline_tag: text-generation
inference: false
tags:
  - transformers
  - gguf
  - imatrix
  - Phi-3.5-mini-instruct

Quantizations of https://huggingface.co/microsoft/Phi-3.5-mini-instruct

Inference Clients/UIs


From original readme

Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.

Usage

Requirements

Phi-3 family has been integrated in the 4.43.0 version of transformers. The current transformers version can be verified with: pip list | grep transformers.

Examples of required packages:

flash_attn==2.5.8
torch==2.3.1
accelerate==0.31.0
transformers==4.43.0

Phi-3.5-mini-instruct is also available in Azure AI Studio

Tokenizer

Phi-3.5-mini-Instruct supports a vocabulary size of up to 32064 tokens. The tokenizer files already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size.

Input Formats

Given the nature of the training data, the Phi-3.5-mini-instruct model is best suited for prompts using the chat format as follows:

<|system|>
You are a helpful assistant.<|end|>
<|user|>
How to explain Internet for a medieval knight?<|end|>
<|assistant|>

Loading the model locally

After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this sample code for inference.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

torch.random.manual_seed(0)

model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3.5-mini-instruct", 
    device_map="cuda", 
    torch_dtype="auto", 
    trust_remote_code=True, 
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")

messages = [
    {"role": "system", "content": "You are a helpful AI assistant."},
    {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
    {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
    {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

generation_args = {
    "max_new_tokens": 500,
    "return_full_text": False,
    "temperature": 0.0,
    "do_sample": False,
}

output = pipe(messages, **generation_args)
print(output[0]['generated_text'])