gemma-py2 / README.md
dvdmrs09's picture
Upload folder using huggingface_hub
dddc289 verified
metadata
license: other
library_name: peft
tags:
  - generated_from_trainer
base_model: google/gemma-7b
model-index:
  - name: gemma-python
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

# use google/gemma-7b if you have access
base_model: google/gemma-7b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer


load_in_8bit: false
load_in_4bit: true
strict: false

# huggingface repo
datasets:
  - path: ./dataset/data1.jsonl
    type: input_output
val_set_size: 0.1
output_dir: ./gemma-python

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

gemma-python

This model is a fine-tuned version of google/gemma-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
19.0016 0.12 1 18.6992
19.4686 0.25 2 16.2578
11.468 0.5 4 8.2891
7.5305 0.75 6 5.8847
5.7572 1.0 8 4.3635
4.3903 1.25 10 3.2849
2.9497 1.5 12 2.8539
2.8738 1.75 14 2.6203
2.7298 2.0 16 2.4534
2.4284 2.25 18 2.3077
2.394 2.5 20 2.1876
2.069 2.75 22 2.1294
1.9355 3.0 24 2.1048
1.9635 3.25 26 2.0707
2.092 3.5 28 2.0596
1.9675 3.75 30 2.0287
1.9693 4.0 32 2.0220
2.0198 4.25 34 2.0124
1.9357 4.5 36 1.9946
1.8147 4.75 38 1.9979
1.9084 5.0 40 1.9751
1.6678 5.25 42 2.0049
1.7639 5.5 44 1.9885
1.7475 5.75 46 1.9777
1.4848 6.0 48 1.9939
1.3065 6.25 50 2.0264
1.4792 6.5 52 2.0125
1.4233 6.75 54 2.0204
1.2534 7.0 56 2.0318
1.2409 7.25 58 2.0445
1.4309 7.5 60 2.0641
1.1622 7.75 62 2.0633
1.228 8.0 64 2.0930
1.3076 8.25 66 2.1077
1.2323 8.5 68 2.1060
1.1635 8.75 70 2.1039
1.261 9.0 72 2.1068
1.0122 9.25 74 2.1110
1.218 9.5 76 2.1180
1.1022 9.75 78 2.1226
1.2072 10.0 80 2.1143

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.0