See axolotl config
axolotl version: 0.4.0
# use google/gemma-7b if you have access
base_model: google/gemma-2b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
#lora_model_dir:
load_in_8bit: false
load_in_4bit: true
strict: false
# huggingface repo
datasets:
- path: ./python-oasst/cleaned-dataset.jsonl
type: oasst
val_set_size: 0.20
output_dir: ./out1v
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
gptq: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
wandb_project: gemma-2b-it
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
out1v
This model is a fine-tuned version of google/gemma-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1243
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1045
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9865 | 0.0 | 1 | 2.2808 |
1.1033 | 0.25 | 2613 | 1.1338 |
1.0035 | 0.5 | 5226 | 1.1308 |
1.0089 | 0.75 | 7839 | 1.1272 |
0.9816 | 1.0 | 10452 | 1.1238 |
0.8727 | 1.25 | 13065 | 1.1270 |
0.9951 | 1.5 | 15678 | 1.1254 |
1.01 | 1.75 | 18291 | 1.1242 |
1.0677 | 2.0 | 20904 | 1.1243 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dvdmrs09/peft-gemma-2b-vXI-merged
Base model
google/gemma-2b