File size: 3,006 Bytes
4197354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21edd23
4197354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-mulder-v-scully-colab2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-mulder-v-scully-colab2

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5344
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 1    | 0.6899          | 0.5      |
| No log        | 2.0   | 2    | 0.6701          | 0.25     |
| No log        | 3.0   | 3    | 0.6309          | 0.5      |
| No log        | 4.0   | 4    | 0.6049          | 0.5      |
| No log        | 5.0   | 5    | 0.5828          | 0.5      |
| No log        | 6.0   | 6    | 0.5650          | 0.75     |
| No log        | 7.0   | 7    | 0.5486          | 0.75     |
| No log        | 8.0   | 8    | 0.5344          | 1.0      |
| No log        | 9.0   | 9    | 0.5240          | 1.0      |
| 0.2978        | 10.0  | 10   | 0.5149          | 1.0      |
| 0.2978        | 11.0  | 11   | 0.5066          | 1.0      |
| 0.2978        | 12.0  | 12   | 0.4980          | 1.0      |
| 0.2978        | 13.0  | 13   | 0.4880          | 1.0      |
| 0.2978        | 14.0  | 14   | 0.4699          | 1.0      |
| 0.2978        | 15.0  | 15   | 0.4507          | 1.0      |
| 0.2978        | 16.0  | 16   | 0.4310          | 1.0      |
| 0.2978        | 17.0  | 17   | 0.4155          | 1.0      |
| 0.2978        | 18.0  | 18   | 0.4054          | 1.0      |
| 0.2978        | 19.0  | 19   | 0.3994          | 1.0      |
| 0.1751        | 20.0  | 20   | 0.3970          | 1.0      |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3