dvs's picture
update model card README.md
21edd23
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-mulder-v-scully-colab2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

swin-tiny-patch4-window7-224-mulder-v-scully-colab2

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5344
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6899 0.5
No log 2.0 2 0.6701 0.25
No log 3.0 3 0.6309 0.5
No log 4.0 4 0.6049 0.5
No log 5.0 5 0.5828 0.5
No log 6.0 6 0.5650 0.75
No log 7.0 7 0.5486 0.75
No log 8.0 8 0.5344 1.0
No log 9.0 9 0.5240 1.0
0.2978 10.0 10 0.5149 1.0
0.2978 11.0 11 0.5066 1.0
0.2978 12.0 12 0.4980 1.0
0.2978 13.0 13 0.4880 1.0
0.2978 14.0 14 0.4699 1.0
0.2978 15.0 15 0.4507 1.0
0.2978 16.0 16 0.4310 1.0
0.2978 17.0 17 0.4155 1.0
0.2978 18.0 18 0.4054 1.0
0.2978 19.0 19 0.3994 1.0
0.1751 20.0 20 0.3970 1.0

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3