|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-finetuned-CNN-DailyNews |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-finetuned-CNN-DailyNews |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8665 |
|
- Rouge1: 0.1884 |
|
- Rouge2: 0.1059 |
|
- Rougel: 0.1664 |
|
- Rougelsum: 0.1772 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.6095 | 1.0 | 63 | 1.9725 | 0.1592 | 0.0879 | 0.1436 | 0.1489 | |
|
| 2.0568 | 2.0 | 126 | 1.8743 | 0.1945 | 0.1119 | 0.1714 | 0.1827 | |
|
| 1.7918 | 3.0 | 189 | 1.8428 | 0.1867 | 0.1053 | 0.1638 | 0.1734 | |
|
| 1.6358 | 4.0 | 252 | 1.8366 | 0.1873 | 0.1081 | 0.1664 | 0.1758 | |
|
| 1.4646 | 5.0 | 315 | 1.8587 | 0.1915 | 0.1075 | 0.1684 | 0.1786 | |
|
| 1.3943 | 6.0 | 378 | 1.8478 | 0.1824 | 0.1056 | 0.1619 | 0.1706 | |
|
| 1.2954 | 7.0 | 441 | 1.8752 | 0.1897 | 0.1079 | 0.1662 | 0.1764 | |
|
| 1.2544 | 8.0 | 504 | 1.8665 | 0.1884 | 0.1059 | 0.1664 | 0.1772 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|