metadata
base_model: openai/whisper-large-v2
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: whisper-large-v2-ft-my_dataset_car100_owner12_snr0x8_mp3-241019-v2
results: []
whisper-large-v2-ft-my_dataset_car100_owner12_snr0x8_mp3-241019-v2
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0141
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.7366 | 1.0 | 38 | 4.1452 |
2.8856 | 2.0 | 76 | 1.8884 |
0.7584 | 3.0 | 114 | 0.1070 |
0.0722 | 4.0 | 152 | 0.0496 |
0.0322 | 5.0 | 190 | 0.0292 |
0.0162 | 6.0 | 228 | 0.0217 |
0.0099 | 7.0 | 266 | 0.0178 |
0.0063 | 8.0 | 304 | 0.0170 |
0.0043 | 9.0 | 342 | 0.0146 |
0.0031 | 10.0 | 380 | 0.0141 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0