|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- dyyyyyyyy/ScaleQuest-Math |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
<p align="center"><h2 align="center">Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch</h2></p> |
|
|
|
# Model Card for Qwen2-Math-7B-ScaleQuest |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
We introduce ScaleQuest, a scalable and novel data synthesis method that utilizes small-size open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. |
|
|
|
* π Project Page: [https://scalequest.github.io](https://scalequest.github.io/) |
|
* π» Code: [https://github.com/yyDing1/ScaleQuest](https://github.com/yyDing1/ScaleQuest/) |
|
* π Paper: [Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch](https://arxiv.org/abs/2410.18693) |
|
* πΎ Models in the π€ HuggingFace Hub: [ScaleQuest-Models](https://huggingface.co/collections/dyyyyyyyy/scalequest-670a7dc2623c91990f28913b) |
|
|
|
<p align="center"> |
|
<img src="https://github.com/yyDing1/ScaleQuest/raw/main/img/results.png"> |
|
</p> |
|
|
|
## Datasets & Models |
|
|
|
Math Dataset: [link](https://huggingface.co/datasets/dyyyyyyyy/ScaleQuest-Math) |
|
|
|
We release two question generator models and four problem-solving models. |
|
|
|
| Model | Type | MATH | Olympiad Bench | π€ HuggingFace<br />Download Link | |
|
| - | :-: | :-: | :-: | :-: | |
|
| ScaleQuest-DeepSeekMath-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-DeepSeekMath-7B-QGen) |
|
| ScaleQuest-Qwen2-Math-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-Qwen2-Math-7B-QGen) |
|
| Mistral-7B-ScaleQuest | problem solver | 62.9 | 26.8 | [link](https://huggingface.co/dyyyyyyyy/Mistral-7B-ScaleQuest) | |
|
| Llama3-8B-ScaleQuest | problem solver | 64.4 | 25.3 | [link](https://huggingface.co/dyyyyyyyy/Llama3-8B-ScaleQuest) | |
|
| DeepSeekMath-7B-ScaleQuest | problem solver | 66.6 | 29.9 | [link](https://huggingface.co/dyyyyyyyy/DeepSeekMath-7B-ScaleQuest) | |
|
| Qwen2-Math-7B-ScaleQuest | problem solver | 73.4 | 38.5 | [link](https://huggingface.co/dyyyyyyyy/Qwen2-Math-7B-ScaleQuest) | |
|
|
|
## Demo usage |
|
|
|
Below is an example using `Qwen2-Math-7B-ScaleQuest` |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "dyyyyyyyy/Qwen2-Math-7B-ScaleQuest" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
question = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$." |
|
|
|
sys_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" |
|
query_prompt = "<|im_start|>user" + "\n" |
|
# {query} |
|
prompt_after_query = "\n" + "Please reason step by step, and put your final answer within \\boxed{}.<|im_end|>" + "\n" |
|
resp_prompt = "<|im_start|>assistant" + "\n" |
|
prompt_before_resp = "" |
|
# {resp} |
|
delim = "<|im_end|>" + "\n" |
|
|
|
prefix_prompt = f"{query_prompt}{question}{prompt_after_query}{resp_prompt}{prompt_before_resp}".rstrip(" ") |
|
full_prompt = sys_prompt + delim.join([prefix_prompt]) |
|
|
|
# print(full_prompt) |
|
|
|
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)) |
|
|
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{ding2024unleashing, |
|
title={Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch}, |
|
author={Ding, Yuyang and Shi, Xinyu and Liang, Xiaobo and Li, Juntao and Zhu, Qiaoming and Zhang, Min}, |
|
journal={https://arxiv.org/abs/2410.18693}, |
|
year={2024} |
|
} |
|
``` |