whisper-base.en / README.md
eai6's picture
End of training
5626e6e
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - nyansapo_ai-asr-leaderboard
  - generated_from_trainer
datasets:
  - NyansapoAI/azure-dataset
metrics:
  - wer
model-index:
  - name: whisper-base.en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Azure-dataset
          type: NyansapoAI/azure-dataset
          config: default
          split: test
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 19.8989898989899

whisper-base.en

This model is a fine-tuned version of openai/whisper-base.en on the Azure-dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0213
  • Wer: 19.8990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0663 6.21 1000 0.0213 20.2020
0.0485 12.42 2000 0.0213 19.8990

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3