metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: bert-finetuned-phishing
results: []
bert-finetuned-phishing
This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1953
- Accuracy: 0.9717
- Precision: 0.9658
- Recall: 0.9670
- False Positive Rate: 0.0249
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate |
---|---|---|---|---|---|---|---|
0.1487 | 1.0 | 3866 | 0.1454 | 0.9596 | 0.9709 | 0.9320 | 0.0203 |
0.0805 | 2.0 | 7732 | 0.1389 | 0.9691 | 0.9663 | 0.9601 | 0.0243 |
0.0389 | 3.0 | 11598 | 0.1779 | 0.9683 | 0.9778 | 0.9461 | 0.0156 |
0.0091 | 4.0 | 15464 | 0.1953 | 0.9717 | 0.9658 | 0.9670 | 0.0249 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1