Edit model card

bert-base-uncased model fine-tuned on QQP

This model was created using the nn_pruning python library: the linear layers contains 36% of the original weights.

The model contains 50% of the original weights overall (the embeddings account for a significant part of the model, and they are not pruned by this method).

Fine-Pruning details

This model was fine-tuned from the HuggingFace model checkpoint on task, and distilled from the model textattack/bert-base-uncased-QQP. This model is case-insensitive: it does not make a difference between english and English.

A side-effect of block pruning is that some of the attention heads are completely removed: 54 heads were removed on a total of 144 (37.5%).

Details of the QQP dataset

Dataset Split # samples
QQP train 364K
QQP eval 40K

Results

Pytorch model file size: 377MB (original BERT: 420MB)

Metric # Value
F1 87.87
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.