metadata
language: en
license: mit
library_name: timm
tags:
- image-classification
- resnet18
- cifar100
datasets: cifar100
metrics:
- accuracy
model-index:
- name: resnet18_cifar100
results:
- task:
type: image-classification
dataset:
name: CIFAR-100
type: cifar100
metrics:
- type: accuracy
value: 0.7843
Model Card for Model ID
This model is a small resnet18 trained on cifar100.
- Test Accuracy: 0.7843
- License: MIT
How to Get Started with the Model
Use the code below to get started with the model.
import detectors
import timm
model = timm.create_model("resnet18_cifar100", pretrained=True)
Training Data
Training data is cifar100.
Training Hyperparameters
config: scripts/train_configs/cifar100.json
model: resnet18_cifar100
dataset: cifar100
batch_size: 64
epochs: 200
validation_frequency: 5
seed: 1
criterion: CrossEntropyLoss
criterion_kwargs: {}
optimizer: SGD
lr: 0.1
optimizer_kwargs: {'momentum': 0.9, 'weight_decay': 0.0005}
scheduler: CosineAnnealingLR
scheduler_kwargs: {'T_max': 190}
debug: False
Testing Data
Testing data is cifar100.
This model card was created by Eduardo Dadalto.